sched.c 161 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/debug_locks.h>
  33. #include <linux/security.h>
  34. #include <linux/notifier.h>
  35. #include <linux/profile.h>
  36. #include <linux/freezer.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/blkdev.h>
  39. #include <linux/delay.h>
  40. #include <linux/smp.h>
  41. #include <linux/threads.h>
  42. #include <linux/timer.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/cpu.h>
  45. #include <linux/cpuset.h>
  46. #include <linux/percpu.h>
  47. #include <linux/kthread.h>
  48. #include <linux/seq_file.h>
  49. #include <linux/syscalls.h>
  50. #include <linux/times.h>
  51. #include <linux/tsacct_kern.h>
  52. #include <linux/kprobes.h>
  53. #include <linux/delayacct.h>
  54. #include <linux/reciprocal_div.h>
  55. #include <asm/tlb.h>
  56. #include <asm/unistd.h>
  57. /*
  58. * Scheduler clock - returns current time in nanosec units.
  59. * This is default implementation.
  60. * Architectures and sub-architectures can override this.
  61. */
  62. unsigned long long __attribute__((weak)) sched_clock(void)
  63. {
  64. return (unsigned long long)jiffies * (1000000000 / HZ);
  65. }
  66. /*
  67. * Convert user-nice values [ -20 ... 0 ... 19 ]
  68. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  69. * and back.
  70. */
  71. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  72. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  73. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  74. /*
  75. * 'User priority' is the nice value converted to something we
  76. * can work with better when scaling various scheduler parameters,
  77. * it's a [ 0 ... 39 ] range.
  78. */
  79. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  80. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  81. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  82. /*
  83. * Some helpers for converting nanosecond timing to jiffy resolution
  84. */
  85. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  86. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  87. #define NICE_0_LOAD SCHED_LOAD_SCALE
  88. #define NICE_0_SHIFT SCHED_LOAD_SHIFT
  89. /*
  90. * These are the 'tuning knobs' of the scheduler:
  91. *
  92. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  93. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  94. * Timeslices get refilled after they expire.
  95. */
  96. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  97. #define DEF_TIMESLICE (100 * HZ / 1000)
  98. #define ON_RUNQUEUE_WEIGHT 30
  99. #define CHILD_PENALTY 95
  100. #define PARENT_PENALTY 100
  101. #define EXIT_WEIGHT 3
  102. #define PRIO_BONUS_RATIO 25
  103. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  104. #define INTERACTIVE_DELTA 2
  105. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  106. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  107. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  108. /*
  109. * If a task is 'interactive' then we reinsert it in the active
  110. * array after it has expired its current timeslice. (it will not
  111. * continue to run immediately, it will still roundrobin with
  112. * other interactive tasks.)
  113. *
  114. * This part scales the interactivity limit depending on niceness.
  115. *
  116. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  117. * Here are a few examples of different nice levels:
  118. *
  119. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  120. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  121. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  122. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  123. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  124. *
  125. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  126. * priority range a task can explore, a value of '1' means the
  127. * task is rated interactive.)
  128. *
  129. * Ie. nice +19 tasks can never get 'interactive' enough to be
  130. * reinserted into the active array. And only heavily CPU-hog nice -20
  131. * tasks will be expired. Default nice 0 tasks are somewhere between,
  132. * it takes some effort for them to get interactive, but it's not
  133. * too hard.
  134. */
  135. #define CURRENT_BONUS(p) \
  136. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  137. MAX_SLEEP_AVG)
  138. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  139. #ifdef CONFIG_SMP
  140. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  141. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  142. num_online_cpus())
  143. #else
  144. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  145. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  146. #endif
  147. #define SCALE(v1,v1_max,v2_max) \
  148. (v1) * (v2_max) / (v1_max)
  149. #define DELTA(p) \
  150. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  151. INTERACTIVE_DELTA)
  152. #define TASK_INTERACTIVE(p) \
  153. ((p)->prio <= (p)->static_prio - DELTA(p))
  154. #define INTERACTIVE_SLEEP(p) \
  155. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  156. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  157. #define TASK_PREEMPTS_CURR(p, rq) \
  158. ((p)->prio < (rq)->curr->prio)
  159. #define SCALE_PRIO(x, prio) \
  160. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  161. static unsigned int static_prio_timeslice(int static_prio)
  162. {
  163. if (static_prio < NICE_TO_PRIO(0))
  164. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  165. else
  166. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  167. }
  168. #ifdef CONFIG_SMP
  169. /*
  170. * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
  171. * Since cpu_power is a 'constant', we can use a reciprocal divide.
  172. */
  173. static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
  174. {
  175. return reciprocal_divide(load, sg->reciprocal_cpu_power);
  176. }
  177. /*
  178. * Each time a sched group cpu_power is changed,
  179. * we must compute its reciprocal value
  180. */
  181. static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
  182. {
  183. sg->__cpu_power += val;
  184. sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
  185. }
  186. #endif
  187. /*
  188. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  189. * to time slice values: [800ms ... 100ms ... 5ms]
  190. *
  191. * The higher a thread's priority, the bigger timeslices
  192. * it gets during one round of execution. But even the lowest
  193. * priority thread gets MIN_TIMESLICE worth of execution time.
  194. */
  195. static inline unsigned int task_timeslice(struct task_struct *p)
  196. {
  197. return static_prio_timeslice(p->static_prio);
  198. }
  199. static inline int rt_policy(int policy)
  200. {
  201. if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
  202. return 1;
  203. return 0;
  204. }
  205. static inline int task_has_rt_policy(struct task_struct *p)
  206. {
  207. return rt_policy(p->policy);
  208. }
  209. /*
  210. * This is the priority-queue data structure of the RT scheduling class:
  211. */
  212. struct rt_prio_array {
  213. DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
  214. struct list_head queue[MAX_RT_PRIO];
  215. };
  216. struct load_stat {
  217. struct load_weight load;
  218. u64 load_update_start, load_update_last;
  219. unsigned long delta_fair, delta_exec, delta_stat;
  220. };
  221. /* CFS-related fields in a runqueue */
  222. struct cfs_rq {
  223. struct load_weight load;
  224. unsigned long nr_running;
  225. s64 fair_clock;
  226. u64 exec_clock;
  227. s64 wait_runtime;
  228. u64 sleeper_bonus;
  229. unsigned long wait_runtime_overruns, wait_runtime_underruns;
  230. struct rb_root tasks_timeline;
  231. struct rb_node *rb_leftmost;
  232. struct rb_node *rb_load_balance_curr;
  233. #ifdef CONFIG_FAIR_GROUP_SCHED
  234. /* 'curr' points to currently running entity on this cfs_rq.
  235. * It is set to NULL otherwise (i.e when none are currently running).
  236. */
  237. struct sched_entity *curr;
  238. struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
  239. /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
  240. * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
  241. * (like users, containers etc.)
  242. *
  243. * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
  244. * list is used during load balance.
  245. */
  246. struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
  247. #endif
  248. };
  249. /* Real-Time classes' related field in a runqueue: */
  250. struct rt_rq {
  251. struct rt_prio_array active;
  252. int rt_load_balance_idx;
  253. struct list_head *rt_load_balance_head, *rt_load_balance_curr;
  254. };
  255. /*
  256. * The prio-array type of the old scheduler:
  257. */
  258. struct prio_array {
  259. unsigned int nr_active;
  260. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  261. struct list_head queue[MAX_PRIO];
  262. };
  263. /*
  264. * This is the main, per-CPU runqueue data structure.
  265. *
  266. * Locking rule: those places that want to lock multiple runqueues
  267. * (such as the load balancing or the thread migration code), lock
  268. * acquire operations must be ordered by ascending &runqueue.
  269. */
  270. struct rq {
  271. spinlock_t lock; /* runqueue lock */
  272. /*
  273. * nr_running and cpu_load should be in the same cacheline because
  274. * remote CPUs use both these fields when doing load calculation.
  275. */
  276. unsigned long nr_running;
  277. unsigned long raw_weighted_load;
  278. #define CPU_LOAD_IDX_MAX 5
  279. unsigned long cpu_load[CPU_LOAD_IDX_MAX];
  280. unsigned char idle_at_tick;
  281. #ifdef CONFIG_NO_HZ
  282. unsigned char in_nohz_recently;
  283. #endif
  284. struct load_stat ls; /* capture load from *all* tasks on this cpu */
  285. unsigned long nr_load_updates;
  286. u64 nr_switches;
  287. struct cfs_rq cfs;
  288. #ifdef CONFIG_FAIR_GROUP_SCHED
  289. struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
  290. #endif
  291. struct rt_rq rt;
  292. /*
  293. * This is part of a global counter where only the total sum
  294. * over all CPUs matters. A task can increase this counter on
  295. * one CPU and if it got migrated afterwards it may decrease
  296. * it on another CPU. Always updated under the runqueue lock:
  297. */
  298. unsigned long nr_uninterruptible;
  299. unsigned long expired_timestamp;
  300. unsigned long long most_recent_timestamp;
  301. struct task_struct *curr, *idle;
  302. unsigned long next_balance;
  303. struct mm_struct *prev_mm;
  304. struct prio_array *active, *expired, arrays[2];
  305. int best_expired_prio;
  306. u64 clock, prev_clock_raw;
  307. s64 clock_max_delta;
  308. unsigned int clock_warps, clock_overflows;
  309. unsigned int clock_unstable_events;
  310. struct sched_class *load_balance_class;
  311. atomic_t nr_iowait;
  312. #ifdef CONFIG_SMP
  313. struct sched_domain *sd;
  314. /* For active balancing */
  315. int active_balance;
  316. int push_cpu;
  317. int cpu; /* cpu of this runqueue */
  318. struct task_struct *migration_thread;
  319. struct list_head migration_queue;
  320. #endif
  321. #ifdef CONFIG_SCHEDSTATS
  322. /* latency stats */
  323. struct sched_info rq_sched_info;
  324. /* sys_sched_yield() stats */
  325. unsigned long yld_exp_empty;
  326. unsigned long yld_act_empty;
  327. unsigned long yld_both_empty;
  328. unsigned long yld_cnt;
  329. /* schedule() stats */
  330. unsigned long sched_switch;
  331. unsigned long sched_cnt;
  332. unsigned long sched_goidle;
  333. /* try_to_wake_up() stats */
  334. unsigned long ttwu_cnt;
  335. unsigned long ttwu_local;
  336. #endif
  337. struct lock_class_key rq_lock_key;
  338. };
  339. static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
  340. static DEFINE_MUTEX(sched_hotcpu_mutex);
  341. static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
  342. {
  343. rq->curr->sched_class->check_preempt_curr(rq, p);
  344. }
  345. static inline int cpu_of(struct rq *rq)
  346. {
  347. #ifdef CONFIG_SMP
  348. return rq->cpu;
  349. #else
  350. return 0;
  351. #endif
  352. }
  353. /*
  354. * Per-runqueue clock, as finegrained as the platform can give us:
  355. */
  356. static unsigned long long __rq_clock(struct rq *rq)
  357. {
  358. u64 prev_raw = rq->prev_clock_raw;
  359. u64 now = sched_clock();
  360. s64 delta = now - prev_raw;
  361. u64 clock = rq->clock;
  362. /*
  363. * Protect against sched_clock() occasionally going backwards:
  364. */
  365. if (unlikely(delta < 0)) {
  366. clock++;
  367. rq->clock_warps++;
  368. } else {
  369. /*
  370. * Catch too large forward jumps too:
  371. */
  372. if (unlikely(delta > 2*TICK_NSEC)) {
  373. clock++;
  374. rq->clock_overflows++;
  375. } else {
  376. if (unlikely(delta > rq->clock_max_delta))
  377. rq->clock_max_delta = delta;
  378. clock += delta;
  379. }
  380. }
  381. rq->prev_clock_raw = now;
  382. rq->clock = clock;
  383. return clock;
  384. }
  385. static inline unsigned long long rq_clock(struct rq *rq)
  386. {
  387. int this_cpu = smp_processor_id();
  388. if (this_cpu == cpu_of(rq))
  389. return __rq_clock(rq);
  390. return rq->clock;
  391. }
  392. /*
  393. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  394. * See detach_destroy_domains: synchronize_sched for details.
  395. *
  396. * The domain tree of any CPU may only be accessed from within
  397. * preempt-disabled sections.
  398. */
  399. #define for_each_domain(cpu, __sd) \
  400. for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
  401. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  402. #define this_rq() (&__get_cpu_var(runqueues))
  403. #define task_rq(p) cpu_rq(task_cpu(p))
  404. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  405. #ifdef CONFIG_FAIR_GROUP_SCHED
  406. /* Change a task's ->cfs_rq if it moves across CPUs */
  407. static inline void set_task_cfs_rq(struct task_struct *p)
  408. {
  409. p->se.cfs_rq = &task_rq(p)->cfs;
  410. }
  411. #else
  412. static inline void set_task_cfs_rq(struct task_struct *p)
  413. {
  414. }
  415. #endif
  416. #ifndef prepare_arch_switch
  417. # define prepare_arch_switch(next) do { } while (0)
  418. #endif
  419. #ifndef finish_arch_switch
  420. # define finish_arch_switch(prev) do { } while (0)
  421. #endif
  422. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  423. static inline int task_running(struct rq *rq, struct task_struct *p)
  424. {
  425. return rq->curr == p;
  426. }
  427. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  428. {
  429. }
  430. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  431. {
  432. #ifdef CONFIG_DEBUG_SPINLOCK
  433. /* this is a valid case when another task releases the spinlock */
  434. rq->lock.owner = current;
  435. #endif
  436. /*
  437. * If we are tracking spinlock dependencies then we have to
  438. * fix up the runqueue lock - which gets 'carried over' from
  439. * prev into current:
  440. */
  441. spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
  442. spin_unlock_irq(&rq->lock);
  443. }
  444. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  445. static inline int task_running(struct rq *rq, struct task_struct *p)
  446. {
  447. #ifdef CONFIG_SMP
  448. return p->oncpu;
  449. #else
  450. return rq->curr == p;
  451. #endif
  452. }
  453. static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
  454. {
  455. #ifdef CONFIG_SMP
  456. /*
  457. * We can optimise this out completely for !SMP, because the
  458. * SMP rebalancing from interrupt is the only thing that cares
  459. * here.
  460. */
  461. next->oncpu = 1;
  462. #endif
  463. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  464. spin_unlock_irq(&rq->lock);
  465. #else
  466. spin_unlock(&rq->lock);
  467. #endif
  468. }
  469. static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
  470. {
  471. #ifdef CONFIG_SMP
  472. /*
  473. * After ->oncpu is cleared, the task can be moved to a different CPU.
  474. * We must ensure this doesn't happen until the switch is completely
  475. * finished.
  476. */
  477. smp_wmb();
  478. prev->oncpu = 0;
  479. #endif
  480. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  481. local_irq_enable();
  482. #endif
  483. }
  484. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  485. /*
  486. * __task_rq_lock - lock the runqueue a given task resides on.
  487. * Must be called interrupts disabled.
  488. */
  489. static inline struct rq *__task_rq_lock(struct task_struct *p)
  490. __acquires(rq->lock)
  491. {
  492. struct rq *rq;
  493. repeat_lock_task:
  494. rq = task_rq(p);
  495. spin_lock(&rq->lock);
  496. if (unlikely(rq != task_rq(p))) {
  497. spin_unlock(&rq->lock);
  498. goto repeat_lock_task;
  499. }
  500. return rq;
  501. }
  502. /*
  503. * task_rq_lock - lock the runqueue a given task resides on and disable
  504. * interrupts. Note the ordering: we can safely lookup the task_rq without
  505. * explicitly disabling preemption.
  506. */
  507. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  508. __acquires(rq->lock)
  509. {
  510. struct rq *rq;
  511. repeat_lock_task:
  512. local_irq_save(*flags);
  513. rq = task_rq(p);
  514. spin_lock(&rq->lock);
  515. if (unlikely(rq != task_rq(p))) {
  516. spin_unlock_irqrestore(&rq->lock, *flags);
  517. goto repeat_lock_task;
  518. }
  519. return rq;
  520. }
  521. static inline void __task_rq_unlock(struct rq *rq)
  522. __releases(rq->lock)
  523. {
  524. spin_unlock(&rq->lock);
  525. }
  526. static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
  527. __releases(rq->lock)
  528. {
  529. spin_unlock_irqrestore(&rq->lock, *flags);
  530. }
  531. /*
  532. * this_rq_lock - lock this runqueue and disable interrupts.
  533. */
  534. static inline struct rq *this_rq_lock(void)
  535. __acquires(rq->lock)
  536. {
  537. struct rq *rq;
  538. local_irq_disable();
  539. rq = this_rq();
  540. spin_lock(&rq->lock);
  541. return rq;
  542. }
  543. /*
  544. * CPU frequency is/was unstable - start new by setting prev_clock_raw:
  545. */
  546. void sched_clock_unstable_event(void)
  547. {
  548. unsigned long flags;
  549. struct rq *rq;
  550. rq = task_rq_lock(current, &flags);
  551. rq->prev_clock_raw = sched_clock();
  552. rq->clock_unstable_events++;
  553. task_rq_unlock(rq, &flags);
  554. }
  555. /*
  556. * resched_task - mark a task 'to be rescheduled now'.
  557. *
  558. * On UP this means the setting of the need_resched flag, on SMP it
  559. * might also involve a cross-CPU call to trigger the scheduler on
  560. * the target CPU.
  561. */
  562. #ifdef CONFIG_SMP
  563. #ifndef tsk_is_polling
  564. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  565. #endif
  566. static void resched_task(struct task_struct *p)
  567. {
  568. int cpu;
  569. assert_spin_locked(&task_rq(p)->lock);
  570. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  571. return;
  572. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  573. cpu = task_cpu(p);
  574. if (cpu == smp_processor_id())
  575. return;
  576. /* NEED_RESCHED must be visible before we test polling */
  577. smp_mb();
  578. if (!tsk_is_polling(p))
  579. smp_send_reschedule(cpu);
  580. }
  581. static void resched_cpu(int cpu)
  582. {
  583. struct rq *rq = cpu_rq(cpu);
  584. unsigned long flags;
  585. if (!spin_trylock_irqsave(&rq->lock, flags))
  586. return;
  587. resched_task(cpu_curr(cpu));
  588. spin_unlock_irqrestore(&rq->lock, flags);
  589. }
  590. #else
  591. static inline void resched_task(struct task_struct *p)
  592. {
  593. assert_spin_locked(&task_rq(p)->lock);
  594. set_tsk_need_resched(p);
  595. }
  596. #endif
  597. static u64 div64_likely32(u64 divident, unsigned long divisor)
  598. {
  599. #if BITS_PER_LONG == 32
  600. if (likely(divident <= 0xffffffffULL))
  601. return (u32)divident / divisor;
  602. do_div(divident, divisor);
  603. return divident;
  604. #else
  605. return divident / divisor;
  606. #endif
  607. }
  608. #if BITS_PER_LONG == 32
  609. # define WMULT_CONST (~0UL)
  610. #else
  611. # define WMULT_CONST (1UL << 32)
  612. #endif
  613. #define WMULT_SHIFT 32
  614. static inline unsigned long
  615. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  616. struct load_weight *lw)
  617. {
  618. u64 tmp;
  619. if (unlikely(!lw->inv_weight))
  620. lw->inv_weight = WMULT_CONST / lw->weight;
  621. tmp = (u64)delta_exec * weight;
  622. /*
  623. * Check whether we'd overflow the 64-bit multiplication:
  624. */
  625. if (unlikely(tmp > WMULT_CONST)) {
  626. tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
  627. >> (WMULT_SHIFT/2);
  628. } else {
  629. tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
  630. }
  631. return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
  632. }
  633. static inline unsigned long
  634. calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
  635. {
  636. return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
  637. }
  638. static void update_load_add(struct load_weight *lw, unsigned long inc)
  639. {
  640. lw->weight += inc;
  641. lw->inv_weight = 0;
  642. }
  643. static void update_load_sub(struct load_weight *lw, unsigned long dec)
  644. {
  645. lw->weight -= dec;
  646. lw->inv_weight = 0;
  647. }
  648. static void __update_curr_load(struct rq *rq, struct load_stat *ls)
  649. {
  650. if (rq->curr != rq->idle && ls->load.weight) {
  651. ls->delta_exec += ls->delta_stat;
  652. ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
  653. ls->delta_stat = 0;
  654. }
  655. }
  656. /*
  657. * Update delta_exec, delta_fair fields for rq.
  658. *
  659. * delta_fair clock advances at a rate inversely proportional to
  660. * total load (rq->ls.load.weight) on the runqueue, while
  661. * delta_exec advances at the same rate as wall-clock (provided
  662. * cpu is not idle).
  663. *
  664. * delta_exec / delta_fair is a measure of the (smoothened) load on this
  665. * runqueue over any given interval. This (smoothened) load is used
  666. * during load balance.
  667. *
  668. * This function is called /before/ updating rq->ls.load
  669. * and when switching tasks.
  670. */
  671. static void update_curr_load(struct rq *rq, u64 now)
  672. {
  673. struct load_stat *ls = &rq->ls;
  674. u64 start;
  675. start = ls->load_update_start;
  676. ls->load_update_start = now;
  677. ls->delta_stat += now - start;
  678. /*
  679. * Stagger updates to ls->delta_fair. Very frequent updates
  680. * can be expensive.
  681. */
  682. if (ls->delta_stat >= sysctl_sched_stat_granularity)
  683. __update_curr_load(rq, ls);
  684. }
  685. /*
  686. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  687. * of tasks with abnormal "nice" values across CPUs the contribution that
  688. * each task makes to its run queue's load is weighted according to its
  689. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  690. * scaled version of the new time slice allocation that they receive on time
  691. * slice expiry etc.
  692. */
  693. /*
  694. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  695. * If static_prio_timeslice() is ever changed to break this assumption then
  696. * this code will need modification
  697. */
  698. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  699. #define load_weight(lp) \
  700. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  701. #define PRIO_TO_LOAD_WEIGHT(prio) \
  702. load_weight(static_prio_timeslice(prio))
  703. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  704. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
  705. #define WEIGHT_IDLEPRIO 2
  706. #define WMULT_IDLEPRIO (1 << 31)
  707. /*
  708. * Nice levels are multiplicative, with a gentle 10% change for every
  709. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  710. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  711. * that remained on nice 0.
  712. *
  713. * The "10% effect" is relative and cumulative: from _any_ nice level,
  714. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  715. * it's +10% CPU usage.
  716. */
  717. static const int prio_to_weight[40] = {
  718. /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
  719. /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
  720. /* 0 */ NICE_0_LOAD /* 1024 */,
  721. /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
  722. /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
  723. };
  724. static const u32 prio_to_wmult[40] = {
  725. 48356, 60446, 75558, 94446, 118058, 147573,
  726. 184467, 230589, 288233, 360285, 450347,
  727. 562979, 703746, 879575, 1099582, 1374389,
  728. 717986, 2147483, 2684354, 3355443, 4194304,
  729. 244160, 6557201, 8196502, 10250518, 12782640,
  730. 16025997, 19976592, 24970740, 31350126, 39045157,
  731. 49367440, 61356675, 76695844, 95443717, 119304647,
  732. 148102320, 186737708, 238609294, 286331153,
  733. };
  734. static inline void
  735. inc_load(struct rq *rq, const struct task_struct *p, u64 now)
  736. {
  737. update_curr_load(rq, now);
  738. update_load_add(&rq->ls.load, p->se.load.weight);
  739. }
  740. static inline void
  741. dec_load(struct rq *rq, const struct task_struct *p, u64 now)
  742. {
  743. update_curr_load(rq, now);
  744. update_load_sub(&rq->ls.load, p->se.load.weight);
  745. }
  746. static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  747. {
  748. rq->nr_running++;
  749. inc_load(rq, p, now);
  750. }
  751. static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
  752. {
  753. rq->nr_running--;
  754. dec_load(rq, p, now);
  755. }
  756. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
  757. /*
  758. * runqueue iterator, to support SMP load-balancing between different
  759. * scheduling classes, without having to expose their internal data
  760. * structures to the load-balancing proper:
  761. */
  762. struct rq_iterator {
  763. void *arg;
  764. struct task_struct *(*start)(void *);
  765. struct task_struct *(*next)(void *);
  766. };
  767. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  768. unsigned long max_nr_move, unsigned long max_load_move,
  769. struct sched_domain *sd, enum cpu_idle_type idle,
  770. int *all_pinned, unsigned long *load_moved,
  771. int this_best_prio, int best_prio, int best_prio_seen,
  772. struct rq_iterator *iterator);
  773. #include "sched_stats.h"
  774. #include "sched_rt.c"
  775. #include "sched_fair.c"
  776. #include "sched_idletask.c"
  777. #ifdef CONFIG_SCHED_DEBUG
  778. # include "sched_debug.c"
  779. #endif
  780. #define sched_class_highest (&rt_sched_class)
  781. static void set_load_weight(struct task_struct *p)
  782. {
  783. task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
  784. p->se.wait_runtime = 0;
  785. if (task_has_rt_policy(p)) {
  786. p->se.load.weight = prio_to_weight[0] * 2;
  787. p->se.load.inv_weight = prio_to_wmult[0] >> 1;
  788. return;
  789. }
  790. /*
  791. * SCHED_IDLE tasks get minimal weight:
  792. */
  793. if (p->policy == SCHED_IDLE) {
  794. p->se.load.weight = WEIGHT_IDLEPRIO;
  795. p->se.load.inv_weight = WMULT_IDLEPRIO;
  796. return;
  797. }
  798. p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
  799. p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
  800. }
  801. static void
  802. enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
  803. {
  804. sched_info_queued(p);
  805. p->sched_class->enqueue_task(rq, p, wakeup, now);
  806. p->se.on_rq = 1;
  807. }
  808. static void
  809. dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
  810. {
  811. p->sched_class->dequeue_task(rq, p, sleep, now);
  812. p->se.on_rq = 0;
  813. }
  814. /*
  815. * __normal_prio - return the priority that is based on the static prio
  816. */
  817. static inline int __normal_prio(struct task_struct *p)
  818. {
  819. return p->static_prio;
  820. }
  821. /*
  822. * Calculate the expected normal priority: i.e. priority
  823. * without taking RT-inheritance into account. Might be
  824. * boosted by interactivity modifiers. Changes upon fork,
  825. * setprio syscalls, and whenever the interactivity
  826. * estimator recalculates.
  827. */
  828. static inline int normal_prio(struct task_struct *p)
  829. {
  830. int prio;
  831. if (task_has_rt_policy(p))
  832. prio = MAX_RT_PRIO-1 - p->rt_priority;
  833. else
  834. prio = __normal_prio(p);
  835. return prio;
  836. }
  837. /*
  838. * Calculate the current priority, i.e. the priority
  839. * taken into account by the scheduler. This value might
  840. * be boosted by RT tasks, or might be boosted by
  841. * interactivity modifiers. Will be RT if the task got
  842. * RT-boosted. If not then it returns p->normal_prio.
  843. */
  844. static int effective_prio(struct task_struct *p)
  845. {
  846. p->normal_prio = normal_prio(p);
  847. /*
  848. * If we are RT tasks or we were boosted to RT priority,
  849. * keep the priority unchanged. Otherwise, update priority
  850. * to the normal priority:
  851. */
  852. if (!rt_prio(p->prio))
  853. return p->normal_prio;
  854. return p->prio;
  855. }
  856. /*
  857. * activate_task - move a task to the runqueue.
  858. */
  859. static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
  860. {
  861. u64 now = rq_clock(rq);
  862. if (p->state == TASK_UNINTERRUPTIBLE)
  863. rq->nr_uninterruptible--;
  864. enqueue_task(rq, p, wakeup, now);
  865. inc_nr_running(p, rq, now);
  866. }
  867. /*
  868. * activate_idle_task - move idle task to the _front_ of runqueue.
  869. */
  870. static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
  871. {
  872. u64 now = rq_clock(rq);
  873. if (p->state == TASK_UNINTERRUPTIBLE)
  874. rq->nr_uninterruptible--;
  875. enqueue_task(rq, p, 0, now);
  876. inc_nr_running(p, rq, now);
  877. }
  878. /*
  879. * deactivate_task - remove a task from the runqueue.
  880. */
  881. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
  882. {
  883. u64 now = rq_clock(rq);
  884. if (p->state == TASK_UNINTERRUPTIBLE)
  885. rq->nr_uninterruptible++;
  886. dequeue_task(rq, p, sleep, now);
  887. dec_nr_running(p, rq, now);
  888. }
  889. /**
  890. * task_curr - is this task currently executing on a CPU?
  891. * @p: the task in question.
  892. */
  893. inline int task_curr(const struct task_struct *p)
  894. {
  895. return cpu_curr(task_cpu(p)) == p;
  896. }
  897. /* Used instead of source_load when we know the type == 0 */
  898. unsigned long weighted_cpuload(const int cpu)
  899. {
  900. return cpu_rq(cpu)->ls.load.weight;
  901. }
  902. static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
  903. {
  904. #ifdef CONFIG_SMP
  905. task_thread_info(p)->cpu = cpu;
  906. set_task_cfs_rq(p);
  907. #endif
  908. }
  909. #ifdef CONFIG_SMP
  910. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  911. {
  912. int old_cpu = task_cpu(p);
  913. struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
  914. u64 clock_offset, fair_clock_offset;
  915. clock_offset = old_rq->clock - new_rq->clock;
  916. fair_clock_offset = old_rq->cfs.fair_clock -
  917. new_rq->cfs.fair_clock;
  918. if (p->se.wait_start)
  919. p->se.wait_start -= clock_offset;
  920. if (p->se.wait_start_fair)
  921. p->se.wait_start_fair -= fair_clock_offset;
  922. if (p->se.sleep_start)
  923. p->se.sleep_start -= clock_offset;
  924. if (p->se.block_start)
  925. p->se.block_start -= clock_offset;
  926. if (p->se.sleep_start_fair)
  927. p->se.sleep_start_fair -= fair_clock_offset;
  928. __set_task_cpu(p, new_cpu);
  929. }
  930. struct migration_req {
  931. struct list_head list;
  932. struct task_struct *task;
  933. int dest_cpu;
  934. struct completion done;
  935. };
  936. /*
  937. * The task's runqueue lock must be held.
  938. * Returns true if you have to wait for migration thread.
  939. */
  940. static int
  941. migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
  942. {
  943. struct rq *rq = task_rq(p);
  944. /*
  945. * If the task is not on a runqueue (and not running), then
  946. * it is sufficient to simply update the task's cpu field.
  947. */
  948. if (!p->se.on_rq && !task_running(rq, p)) {
  949. set_task_cpu(p, dest_cpu);
  950. return 0;
  951. }
  952. init_completion(&req->done);
  953. req->task = p;
  954. req->dest_cpu = dest_cpu;
  955. list_add(&req->list, &rq->migration_queue);
  956. return 1;
  957. }
  958. /*
  959. * wait_task_inactive - wait for a thread to unschedule.
  960. *
  961. * The caller must ensure that the task *will* unschedule sometime soon,
  962. * else this function might spin for a *long* time. This function can't
  963. * be called with interrupts off, or it may introduce deadlock with
  964. * smp_call_function() if an IPI is sent by the same process we are
  965. * waiting to become inactive.
  966. */
  967. void wait_task_inactive(struct task_struct *p)
  968. {
  969. unsigned long flags;
  970. int running, on_rq;
  971. struct rq *rq;
  972. repeat:
  973. /*
  974. * We do the initial early heuristics without holding
  975. * any task-queue locks at all. We'll only try to get
  976. * the runqueue lock when things look like they will
  977. * work out!
  978. */
  979. rq = task_rq(p);
  980. /*
  981. * If the task is actively running on another CPU
  982. * still, just relax and busy-wait without holding
  983. * any locks.
  984. *
  985. * NOTE! Since we don't hold any locks, it's not
  986. * even sure that "rq" stays as the right runqueue!
  987. * But we don't care, since "task_running()" will
  988. * return false if the runqueue has changed and p
  989. * is actually now running somewhere else!
  990. */
  991. while (task_running(rq, p))
  992. cpu_relax();
  993. /*
  994. * Ok, time to look more closely! We need the rq
  995. * lock now, to be *sure*. If we're wrong, we'll
  996. * just go back and repeat.
  997. */
  998. rq = task_rq_lock(p, &flags);
  999. running = task_running(rq, p);
  1000. on_rq = p->se.on_rq;
  1001. task_rq_unlock(rq, &flags);
  1002. /*
  1003. * Was it really running after all now that we
  1004. * checked with the proper locks actually held?
  1005. *
  1006. * Oops. Go back and try again..
  1007. */
  1008. if (unlikely(running)) {
  1009. cpu_relax();
  1010. goto repeat;
  1011. }
  1012. /*
  1013. * It's not enough that it's not actively running,
  1014. * it must be off the runqueue _entirely_, and not
  1015. * preempted!
  1016. *
  1017. * So if it wa still runnable (but just not actively
  1018. * running right now), it's preempted, and we should
  1019. * yield - it could be a while.
  1020. */
  1021. if (unlikely(on_rq)) {
  1022. yield();
  1023. goto repeat;
  1024. }
  1025. /*
  1026. * Ahh, all good. It wasn't running, and it wasn't
  1027. * runnable, which means that it will never become
  1028. * running in the future either. We're all done!
  1029. */
  1030. }
  1031. /***
  1032. * kick_process - kick a running thread to enter/exit the kernel
  1033. * @p: the to-be-kicked thread
  1034. *
  1035. * Cause a process which is running on another CPU to enter
  1036. * kernel-mode, without any delay. (to get signals handled.)
  1037. *
  1038. * NOTE: this function doesnt have to take the runqueue lock,
  1039. * because all it wants to ensure is that the remote task enters
  1040. * the kernel. If the IPI races and the task has been migrated
  1041. * to another CPU then no harm is done and the purpose has been
  1042. * achieved as well.
  1043. */
  1044. void kick_process(struct task_struct *p)
  1045. {
  1046. int cpu;
  1047. preempt_disable();
  1048. cpu = task_cpu(p);
  1049. if ((cpu != smp_processor_id()) && task_curr(p))
  1050. smp_send_reschedule(cpu);
  1051. preempt_enable();
  1052. }
  1053. /*
  1054. * Return a low guess at the load of a migration-source cpu weighted
  1055. * according to the scheduling class and "nice" value.
  1056. *
  1057. * We want to under-estimate the load of migration sources, to
  1058. * balance conservatively.
  1059. */
  1060. static inline unsigned long source_load(int cpu, int type)
  1061. {
  1062. struct rq *rq = cpu_rq(cpu);
  1063. unsigned long total = weighted_cpuload(cpu);
  1064. if (type == 0)
  1065. return total;
  1066. return min(rq->cpu_load[type-1], total);
  1067. }
  1068. /*
  1069. * Return a high guess at the load of a migration-target cpu weighted
  1070. * according to the scheduling class and "nice" value.
  1071. */
  1072. static inline unsigned long target_load(int cpu, int type)
  1073. {
  1074. struct rq *rq = cpu_rq(cpu);
  1075. unsigned long total = weighted_cpuload(cpu);
  1076. if (type == 0)
  1077. return total;
  1078. return max(rq->cpu_load[type-1], total);
  1079. }
  1080. /*
  1081. * Return the average load per task on the cpu's run queue
  1082. */
  1083. static inline unsigned long cpu_avg_load_per_task(int cpu)
  1084. {
  1085. struct rq *rq = cpu_rq(cpu);
  1086. unsigned long total = weighted_cpuload(cpu);
  1087. unsigned long n = rq->nr_running;
  1088. return n ? total / n : SCHED_LOAD_SCALE;
  1089. }
  1090. /*
  1091. * find_idlest_group finds and returns the least busy CPU group within the
  1092. * domain.
  1093. */
  1094. static struct sched_group *
  1095. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  1096. {
  1097. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  1098. unsigned long min_load = ULONG_MAX, this_load = 0;
  1099. int load_idx = sd->forkexec_idx;
  1100. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1101. do {
  1102. unsigned long load, avg_load;
  1103. int local_group;
  1104. int i;
  1105. /* Skip over this group if it has no CPUs allowed */
  1106. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  1107. goto nextgroup;
  1108. local_group = cpu_isset(this_cpu, group->cpumask);
  1109. /* Tally up the load of all CPUs in the group */
  1110. avg_load = 0;
  1111. for_each_cpu_mask(i, group->cpumask) {
  1112. /* Bias balancing toward cpus of our domain */
  1113. if (local_group)
  1114. load = source_load(i, load_idx);
  1115. else
  1116. load = target_load(i, load_idx);
  1117. avg_load += load;
  1118. }
  1119. /* Adjust by relative CPU power of the group */
  1120. avg_load = sg_div_cpu_power(group,
  1121. avg_load * SCHED_LOAD_SCALE);
  1122. if (local_group) {
  1123. this_load = avg_load;
  1124. this = group;
  1125. } else if (avg_load < min_load) {
  1126. min_load = avg_load;
  1127. idlest = group;
  1128. }
  1129. nextgroup:
  1130. group = group->next;
  1131. } while (group != sd->groups);
  1132. if (!idlest || 100*this_load < imbalance*min_load)
  1133. return NULL;
  1134. return idlest;
  1135. }
  1136. /*
  1137. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1138. */
  1139. static int
  1140. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1141. {
  1142. cpumask_t tmp;
  1143. unsigned long load, min_load = ULONG_MAX;
  1144. int idlest = -1;
  1145. int i;
  1146. /* Traverse only the allowed CPUs */
  1147. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  1148. for_each_cpu_mask(i, tmp) {
  1149. load = weighted_cpuload(i);
  1150. if (load < min_load || (load == min_load && i == this_cpu)) {
  1151. min_load = load;
  1152. idlest = i;
  1153. }
  1154. }
  1155. return idlest;
  1156. }
  1157. /*
  1158. * sched_balance_self: balance the current task (running on cpu) in domains
  1159. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1160. * SD_BALANCE_EXEC.
  1161. *
  1162. * Balance, ie. select the least loaded group.
  1163. *
  1164. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1165. *
  1166. * preempt must be disabled.
  1167. */
  1168. static int sched_balance_self(int cpu, int flag)
  1169. {
  1170. struct task_struct *t = current;
  1171. struct sched_domain *tmp, *sd = NULL;
  1172. for_each_domain(cpu, tmp) {
  1173. /*
  1174. * If power savings logic is enabled for a domain, stop there.
  1175. */
  1176. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  1177. break;
  1178. if (tmp->flags & flag)
  1179. sd = tmp;
  1180. }
  1181. while (sd) {
  1182. cpumask_t span;
  1183. struct sched_group *group;
  1184. int new_cpu, weight;
  1185. if (!(sd->flags & flag)) {
  1186. sd = sd->child;
  1187. continue;
  1188. }
  1189. span = sd->span;
  1190. group = find_idlest_group(sd, t, cpu);
  1191. if (!group) {
  1192. sd = sd->child;
  1193. continue;
  1194. }
  1195. new_cpu = find_idlest_cpu(group, t, cpu);
  1196. if (new_cpu == -1 || new_cpu == cpu) {
  1197. /* Now try balancing at a lower domain level of cpu */
  1198. sd = sd->child;
  1199. continue;
  1200. }
  1201. /* Now try balancing at a lower domain level of new_cpu */
  1202. cpu = new_cpu;
  1203. sd = NULL;
  1204. weight = cpus_weight(span);
  1205. for_each_domain(cpu, tmp) {
  1206. if (weight <= cpus_weight(tmp->span))
  1207. break;
  1208. if (tmp->flags & flag)
  1209. sd = tmp;
  1210. }
  1211. /* while loop will break here if sd == NULL */
  1212. }
  1213. return cpu;
  1214. }
  1215. #endif /* CONFIG_SMP */
  1216. /*
  1217. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1218. * not idle and an idle cpu is available. The span of cpus to
  1219. * search starts with cpus closest then further out as needed,
  1220. * so we always favor a closer, idle cpu.
  1221. *
  1222. * Returns the CPU we should wake onto.
  1223. */
  1224. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1225. static int wake_idle(int cpu, struct task_struct *p)
  1226. {
  1227. cpumask_t tmp;
  1228. struct sched_domain *sd;
  1229. int i;
  1230. /*
  1231. * If it is idle, then it is the best cpu to run this task.
  1232. *
  1233. * This cpu is also the best, if it has more than one task already.
  1234. * Siblings must be also busy(in most cases) as they didn't already
  1235. * pickup the extra load from this cpu and hence we need not check
  1236. * sibling runqueue info. This will avoid the checks and cache miss
  1237. * penalities associated with that.
  1238. */
  1239. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  1240. return cpu;
  1241. for_each_domain(cpu, sd) {
  1242. if (sd->flags & SD_WAKE_IDLE) {
  1243. cpus_and(tmp, sd->span, p->cpus_allowed);
  1244. for_each_cpu_mask(i, tmp) {
  1245. if (idle_cpu(i))
  1246. return i;
  1247. }
  1248. }
  1249. else
  1250. break;
  1251. }
  1252. return cpu;
  1253. }
  1254. #else
  1255. static inline int wake_idle(int cpu, struct task_struct *p)
  1256. {
  1257. return cpu;
  1258. }
  1259. #endif
  1260. /***
  1261. * try_to_wake_up - wake up a thread
  1262. * @p: the to-be-woken-up thread
  1263. * @state: the mask of task states that can be woken
  1264. * @sync: do a synchronous wakeup?
  1265. *
  1266. * Put it on the run-queue if it's not already there. The "current"
  1267. * thread is always on the run-queue (except when the actual
  1268. * re-schedule is in progress), and as such you're allowed to do
  1269. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1270. * runnable without the overhead of this.
  1271. *
  1272. * returns failure only if the task is already active.
  1273. */
  1274. static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
  1275. {
  1276. int cpu, this_cpu, success = 0;
  1277. unsigned long flags;
  1278. long old_state;
  1279. struct rq *rq;
  1280. #ifdef CONFIG_SMP
  1281. struct sched_domain *sd, *this_sd = NULL;
  1282. unsigned long load, this_load;
  1283. int new_cpu;
  1284. #endif
  1285. rq = task_rq_lock(p, &flags);
  1286. old_state = p->state;
  1287. if (!(old_state & state))
  1288. goto out;
  1289. if (p->se.on_rq)
  1290. goto out_running;
  1291. cpu = task_cpu(p);
  1292. this_cpu = smp_processor_id();
  1293. #ifdef CONFIG_SMP
  1294. if (unlikely(task_running(rq, p)))
  1295. goto out_activate;
  1296. new_cpu = cpu;
  1297. schedstat_inc(rq, ttwu_cnt);
  1298. if (cpu == this_cpu) {
  1299. schedstat_inc(rq, ttwu_local);
  1300. goto out_set_cpu;
  1301. }
  1302. for_each_domain(this_cpu, sd) {
  1303. if (cpu_isset(cpu, sd->span)) {
  1304. schedstat_inc(sd, ttwu_wake_remote);
  1305. this_sd = sd;
  1306. break;
  1307. }
  1308. }
  1309. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1310. goto out_set_cpu;
  1311. /*
  1312. * Check for affine wakeup and passive balancing possibilities.
  1313. */
  1314. if (this_sd) {
  1315. int idx = this_sd->wake_idx;
  1316. unsigned int imbalance;
  1317. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1318. load = source_load(cpu, idx);
  1319. this_load = target_load(this_cpu, idx);
  1320. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1321. if (this_sd->flags & SD_WAKE_AFFINE) {
  1322. unsigned long tl = this_load;
  1323. unsigned long tl_per_task;
  1324. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1325. /*
  1326. * If sync wakeup then subtract the (maximum possible)
  1327. * effect of the currently running task from the load
  1328. * of the current CPU:
  1329. */
  1330. if (sync)
  1331. tl -= current->se.load.weight;
  1332. if ((tl <= load &&
  1333. tl + target_load(cpu, idx) <= tl_per_task) ||
  1334. 100*(tl + p->se.load.weight) <= imbalance*load) {
  1335. /*
  1336. * This domain has SD_WAKE_AFFINE and
  1337. * p is cache cold in this domain, and
  1338. * there is no bad imbalance.
  1339. */
  1340. schedstat_inc(this_sd, ttwu_move_affine);
  1341. goto out_set_cpu;
  1342. }
  1343. }
  1344. /*
  1345. * Start passive balancing when half the imbalance_pct
  1346. * limit is reached.
  1347. */
  1348. if (this_sd->flags & SD_WAKE_BALANCE) {
  1349. if (imbalance*this_load <= 100*load) {
  1350. schedstat_inc(this_sd, ttwu_move_balance);
  1351. goto out_set_cpu;
  1352. }
  1353. }
  1354. }
  1355. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1356. out_set_cpu:
  1357. new_cpu = wake_idle(new_cpu, p);
  1358. if (new_cpu != cpu) {
  1359. set_task_cpu(p, new_cpu);
  1360. task_rq_unlock(rq, &flags);
  1361. /* might preempt at this point */
  1362. rq = task_rq_lock(p, &flags);
  1363. old_state = p->state;
  1364. if (!(old_state & state))
  1365. goto out;
  1366. if (p->se.on_rq)
  1367. goto out_running;
  1368. this_cpu = smp_processor_id();
  1369. cpu = task_cpu(p);
  1370. }
  1371. out_activate:
  1372. #endif /* CONFIG_SMP */
  1373. activate_task(rq, p, 1);
  1374. /*
  1375. * Sync wakeups (i.e. those types of wakeups where the waker
  1376. * has indicated that it will leave the CPU in short order)
  1377. * don't trigger a preemption, if the woken up task will run on
  1378. * this cpu. (in this case the 'I will reschedule' promise of
  1379. * the waker guarantees that the freshly woken up task is going
  1380. * to be considered on this CPU.)
  1381. */
  1382. if (!sync || cpu != this_cpu)
  1383. check_preempt_curr(rq, p);
  1384. success = 1;
  1385. out_running:
  1386. p->state = TASK_RUNNING;
  1387. out:
  1388. task_rq_unlock(rq, &flags);
  1389. return success;
  1390. }
  1391. int fastcall wake_up_process(struct task_struct *p)
  1392. {
  1393. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1394. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1395. }
  1396. EXPORT_SYMBOL(wake_up_process);
  1397. int fastcall wake_up_state(struct task_struct *p, unsigned int state)
  1398. {
  1399. return try_to_wake_up(p, state, 0);
  1400. }
  1401. /*
  1402. * Perform scheduler related setup for a newly forked process p.
  1403. * p is forked by current.
  1404. *
  1405. * __sched_fork() is basic setup used by init_idle() too:
  1406. */
  1407. static void __sched_fork(struct task_struct *p)
  1408. {
  1409. p->se.wait_start_fair = 0;
  1410. p->se.wait_start = 0;
  1411. p->se.exec_start = 0;
  1412. p->se.sum_exec_runtime = 0;
  1413. p->se.delta_exec = 0;
  1414. p->se.delta_fair_run = 0;
  1415. p->se.delta_fair_sleep = 0;
  1416. p->se.wait_runtime = 0;
  1417. p->se.sum_wait_runtime = 0;
  1418. p->se.sum_sleep_runtime = 0;
  1419. p->se.sleep_start = 0;
  1420. p->se.sleep_start_fair = 0;
  1421. p->se.block_start = 0;
  1422. p->se.sleep_max = 0;
  1423. p->se.block_max = 0;
  1424. p->se.exec_max = 0;
  1425. p->se.wait_max = 0;
  1426. p->se.wait_runtime_overruns = 0;
  1427. p->se.wait_runtime_underruns = 0;
  1428. INIT_LIST_HEAD(&p->run_list);
  1429. p->se.on_rq = 0;
  1430. /*
  1431. * We mark the process as running here, but have not actually
  1432. * inserted it onto the runqueue yet. This guarantees that
  1433. * nobody will actually run it, and a signal or other external
  1434. * event cannot wake it up and insert it on the runqueue either.
  1435. */
  1436. p->state = TASK_RUNNING;
  1437. }
  1438. /*
  1439. * fork()/clone()-time setup:
  1440. */
  1441. void sched_fork(struct task_struct *p, int clone_flags)
  1442. {
  1443. int cpu = get_cpu();
  1444. __sched_fork(p);
  1445. #ifdef CONFIG_SMP
  1446. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1447. #endif
  1448. __set_task_cpu(p, cpu);
  1449. /*
  1450. * Make sure we do not leak PI boosting priority to the child:
  1451. */
  1452. p->prio = current->normal_prio;
  1453. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1454. if (likely(sched_info_on()))
  1455. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1456. #endif
  1457. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1458. p->oncpu = 0;
  1459. #endif
  1460. #ifdef CONFIG_PREEMPT
  1461. /* Want to start with kernel preemption disabled. */
  1462. task_thread_info(p)->preempt_count = 1;
  1463. #endif
  1464. put_cpu();
  1465. }
  1466. /*
  1467. * After fork, child runs first. (default) If set to 0 then
  1468. * parent will (try to) run first.
  1469. */
  1470. unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
  1471. /*
  1472. * wake_up_new_task - wake up a newly created task for the first time.
  1473. *
  1474. * This function will do some initial scheduler statistics housekeeping
  1475. * that must be done for every newly created context, then puts the task
  1476. * on the runqueue and wakes it.
  1477. */
  1478. void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
  1479. {
  1480. unsigned long flags;
  1481. struct rq *rq;
  1482. int this_cpu;
  1483. rq = task_rq_lock(p, &flags);
  1484. BUG_ON(p->state != TASK_RUNNING);
  1485. this_cpu = smp_processor_id(); /* parent's CPU */
  1486. p->prio = effective_prio(p);
  1487. if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
  1488. task_cpu(p) != this_cpu || !current->se.on_rq) {
  1489. activate_task(rq, p, 0);
  1490. } else {
  1491. /*
  1492. * Let the scheduling class do new task startup
  1493. * management (if any):
  1494. */
  1495. p->sched_class->task_new(rq, p);
  1496. }
  1497. check_preempt_curr(rq, p);
  1498. task_rq_unlock(rq, &flags);
  1499. }
  1500. /**
  1501. * prepare_task_switch - prepare to switch tasks
  1502. * @rq: the runqueue preparing to switch
  1503. * @next: the task we are going to switch to.
  1504. *
  1505. * This is called with the rq lock held and interrupts off. It must
  1506. * be paired with a subsequent finish_task_switch after the context
  1507. * switch.
  1508. *
  1509. * prepare_task_switch sets up locking and calls architecture specific
  1510. * hooks.
  1511. */
  1512. static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
  1513. {
  1514. prepare_lock_switch(rq, next);
  1515. prepare_arch_switch(next);
  1516. }
  1517. /**
  1518. * finish_task_switch - clean up after a task-switch
  1519. * @rq: runqueue associated with task-switch
  1520. * @prev: the thread we just switched away from.
  1521. *
  1522. * finish_task_switch must be called after the context switch, paired
  1523. * with a prepare_task_switch call before the context switch.
  1524. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1525. * and do any other architecture-specific cleanup actions.
  1526. *
  1527. * Note that we may have delayed dropping an mm in context_switch(). If
  1528. * so, we finish that here outside of the runqueue lock. (Doing it
  1529. * with the lock held can cause deadlocks; see schedule() for
  1530. * details.)
  1531. */
  1532. static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1533. __releases(rq->lock)
  1534. {
  1535. struct mm_struct *mm = rq->prev_mm;
  1536. long prev_state;
  1537. rq->prev_mm = NULL;
  1538. /*
  1539. * A task struct has one reference for the use as "current".
  1540. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1541. * schedule one last time. The schedule call will never return, and
  1542. * the scheduled task must drop that reference.
  1543. * The test for TASK_DEAD must occur while the runqueue locks are
  1544. * still held, otherwise prev could be scheduled on another cpu, die
  1545. * there before we look at prev->state, and then the reference would
  1546. * be dropped twice.
  1547. * Manfred Spraul <manfred@colorfullife.com>
  1548. */
  1549. prev_state = prev->state;
  1550. finish_arch_switch(prev);
  1551. finish_lock_switch(rq, prev);
  1552. if (mm)
  1553. mmdrop(mm);
  1554. if (unlikely(prev_state == TASK_DEAD)) {
  1555. /*
  1556. * Remove function-return probe instances associated with this
  1557. * task and put them back on the free list.
  1558. */
  1559. kprobe_flush_task(prev);
  1560. put_task_struct(prev);
  1561. }
  1562. }
  1563. /**
  1564. * schedule_tail - first thing a freshly forked thread must call.
  1565. * @prev: the thread we just switched away from.
  1566. */
  1567. asmlinkage void schedule_tail(struct task_struct *prev)
  1568. __releases(rq->lock)
  1569. {
  1570. struct rq *rq = this_rq();
  1571. finish_task_switch(rq, prev);
  1572. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1573. /* In this case, finish_task_switch does not reenable preemption */
  1574. preempt_enable();
  1575. #endif
  1576. if (current->set_child_tid)
  1577. put_user(current->pid, current->set_child_tid);
  1578. }
  1579. /*
  1580. * context_switch - switch to the new MM and the new
  1581. * thread's register state.
  1582. */
  1583. static inline void
  1584. context_switch(struct rq *rq, struct task_struct *prev,
  1585. struct task_struct *next)
  1586. {
  1587. struct mm_struct *mm, *oldmm;
  1588. prepare_task_switch(rq, next);
  1589. mm = next->mm;
  1590. oldmm = prev->active_mm;
  1591. /*
  1592. * For paravirt, this is coupled with an exit in switch_to to
  1593. * combine the page table reload and the switch backend into
  1594. * one hypercall.
  1595. */
  1596. arch_enter_lazy_cpu_mode();
  1597. if (unlikely(!mm)) {
  1598. next->active_mm = oldmm;
  1599. atomic_inc(&oldmm->mm_count);
  1600. enter_lazy_tlb(oldmm, next);
  1601. } else
  1602. switch_mm(oldmm, mm, next);
  1603. if (unlikely(!prev->mm)) {
  1604. prev->active_mm = NULL;
  1605. rq->prev_mm = oldmm;
  1606. }
  1607. /*
  1608. * Since the runqueue lock will be released by the next
  1609. * task (which is an invalid locking op but in the case
  1610. * of the scheduler it's an obvious special-case), so we
  1611. * do an early lockdep release here:
  1612. */
  1613. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1614. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1615. #endif
  1616. /* Here we just switch the register state and the stack. */
  1617. switch_to(prev, next, prev);
  1618. barrier();
  1619. /*
  1620. * this_rq must be evaluated again because prev may have moved
  1621. * CPUs since it called schedule(), thus the 'rq' on its stack
  1622. * frame will be invalid.
  1623. */
  1624. finish_task_switch(this_rq(), prev);
  1625. }
  1626. /*
  1627. * nr_running, nr_uninterruptible and nr_context_switches:
  1628. *
  1629. * externally visible scheduler statistics: current number of runnable
  1630. * threads, current number of uninterruptible-sleeping threads, total
  1631. * number of context switches performed since bootup.
  1632. */
  1633. unsigned long nr_running(void)
  1634. {
  1635. unsigned long i, sum = 0;
  1636. for_each_online_cpu(i)
  1637. sum += cpu_rq(i)->nr_running;
  1638. return sum;
  1639. }
  1640. unsigned long nr_uninterruptible(void)
  1641. {
  1642. unsigned long i, sum = 0;
  1643. for_each_possible_cpu(i)
  1644. sum += cpu_rq(i)->nr_uninterruptible;
  1645. /*
  1646. * Since we read the counters lockless, it might be slightly
  1647. * inaccurate. Do not allow it to go below zero though:
  1648. */
  1649. if (unlikely((long)sum < 0))
  1650. sum = 0;
  1651. return sum;
  1652. }
  1653. unsigned long long nr_context_switches(void)
  1654. {
  1655. int i;
  1656. unsigned long long sum = 0;
  1657. for_each_possible_cpu(i)
  1658. sum += cpu_rq(i)->nr_switches;
  1659. return sum;
  1660. }
  1661. unsigned long nr_iowait(void)
  1662. {
  1663. unsigned long i, sum = 0;
  1664. for_each_possible_cpu(i)
  1665. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1666. return sum;
  1667. }
  1668. unsigned long nr_active(void)
  1669. {
  1670. unsigned long i, running = 0, uninterruptible = 0;
  1671. for_each_online_cpu(i) {
  1672. running += cpu_rq(i)->nr_running;
  1673. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1674. }
  1675. if (unlikely((long)uninterruptible < 0))
  1676. uninterruptible = 0;
  1677. return running + uninterruptible;
  1678. }
  1679. /*
  1680. * Update rq->cpu_load[] statistics. This function is usually called every
  1681. * scheduler tick (TICK_NSEC).
  1682. */
  1683. static void update_cpu_load(struct rq *this_rq)
  1684. {
  1685. u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
  1686. unsigned long total_load = this_rq->ls.load.weight;
  1687. unsigned long this_load = total_load;
  1688. struct load_stat *ls = &this_rq->ls;
  1689. u64 now = __rq_clock(this_rq);
  1690. int i, scale;
  1691. this_rq->nr_load_updates++;
  1692. if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
  1693. goto do_avg;
  1694. /* Update delta_fair/delta_exec fields first */
  1695. update_curr_load(this_rq, now);
  1696. fair_delta64 = ls->delta_fair + 1;
  1697. ls->delta_fair = 0;
  1698. exec_delta64 = ls->delta_exec + 1;
  1699. ls->delta_exec = 0;
  1700. sample_interval64 = now - ls->load_update_last;
  1701. ls->load_update_last = now;
  1702. if ((s64)sample_interval64 < (s64)TICK_NSEC)
  1703. sample_interval64 = TICK_NSEC;
  1704. if (exec_delta64 > sample_interval64)
  1705. exec_delta64 = sample_interval64;
  1706. idle_delta64 = sample_interval64 - exec_delta64;
  1707. tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
  1708. tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
  1709. this_load = (unsigned long)tmp64;
  1710. do_avg:
  1711. /* Update our load: */
  1712. for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
  1713. unsigned long old_load, new_load;
  1714. /* scale is effectively 1 << i now, and >> i divides by scale */
  1715. old_load = this_rq->cpu_load[i];
  1716. new_load = this_load;
  1717. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
  1718. }
  1719. }
  1720. #ifdef CONFIG_SMP
  1721. /*
  1722. * double_rq_lock - safely lock two runqueues
  1723. *
  1724. * Note this does not disable interrupts like task_rq_lock,
  1725. * you need to do so manually before calling.
  1726. */
  1727. static void double_rq_lock(struct rq *rq1, struct rq *rq2)
  1728. __acquires(rq1->lock)
  1729. __acquires(rq2->lock)
  1730. {
  1731. BUG_ON(!irqs_disabled());
  1732. if (rq1 == rq2) {
  1733. spin_lock(&rq1->lock);
  1734. __acquire(rq2->lock); /* Fake it out ;) */
  1735. } else {
  1736. if (rq1 < rq2) {
  1737. spin_lock(&rq1->lock);
  1738. spin_lock(&rq2->lock);
  1739. } else {
  1740. spin_lock(&rq2->lock);
  1741. spin_lock(&rq1->lock);
  1742. }
  1743. }
  1744. }
  1745. /*
  1746. * double_rq_unlock - safely unlock two runqueues
  1747. *
  1748. * Note this does not restore interrupts like task_rq_unlock,
  1749. * you need to do so manually after calling.
  1750. */
  1751. static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
  1752. __releases(rq1->lock)
  1753. __releases(rq2->lock)
  1754. {
  1755. spin_unlock(&rq1->lock);
  1756. if (rq1 != rq2)
  1757. spin_unlock(&rq2->lock);
  1758. else
  1759. __release(rq2->lock);
  1760. }
  1761. /*
  1762. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1763. */
  1764. static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
  1765. __releases(this_rq->lock)
  1766. __acquires(busiest->lock)
  1767. __acquires(this_rq->lock)
  1768. {
  1769. if (unlikely(!irqs_disabled())) {
  1770. /* printk() doesn't work good under rq->lock */
  1771. spin_unlock(&this_rq->lock);
  1772. BUG_ON(1);
  1773. }
  1774. if (unlikely(!spin_trylock(&busiest->lock))) {
  1775. if (busiest < this_rq) {
  1776. spin_unlock(&this_rq->lock);
  1777. spin_lock(&busiest->lock);
  1778. spin_lock(&this_rq->lock);
  1779. } else
  1780. spin_lock(&busiest->lock);
  1781. }
  1782. }
  1783. /*
  1784. * If dest_cpu is allowed for this process, migrate the task to it.
  1785. * This is accomplished by forcing the cpu_allowed mask to only
  1786. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1787. * the cpu_allowed mask is restored.
  1788. */
  1789. static void sched_migrate_task(struct task_struct *p, int dest_cpu)
  1790. {
  1791. struct migration_req req;
  1792. unsigned long flags;
  1793. struct rq *rq;
  1794. rq = task_rq_lock(p, &flags);
  1795. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1796. || unlikely(cpu_is_offline(dest_cpu)))
  1797. goto out;
  1798. /* force the process onto the specified CPU */
  1799. if (migrate_task(p, dest_cpu, &req)) {
  1800. /* Need to wait for migration thread (might exit: take ref). */
  1801. struct task_struct *mt = rq->migration_thread;
  1802. get_task_struct(mt);
  1803. task_rq_unlock(rq, &flags);
  1804. wake_up_process(mt);
  1805. put_task_struct(mt);
  1806. wait_for_completion(&req.done);
  1807. return;
  1808. }
  1809. out:
  1810. task_rq_unlock(rq, &flags);
  1811. }
  1812. /*
  1813. * sched_exec - execve() is a valuable balancing opportunity, because at
  1814. * this point the task has the smallest effective memory and cache footprint.
  1815. */
  1816. void sched_exec(void)
  1817. {
  1818. int new_cpu, this_cpu = get_cpu();
  1819. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1820. put_cpu();
  1821. if (new_cpu != this_cpu)
  1822. sched_migrate_task(current, new_cpu);
  1823. }
  1824. /*
  1825. * pull_task - move a task from a remote runqueue to the local runqueue.
  1826. * Both runqueues must be locked.
  1827. */
  1828. static void pull_task(struct rq *src_rq, struct task_struct *p,
  1829. struct rq *this_rq, int this_cpu)
  1830. {
  1831. deactivate_task(src_rq, p, 0);
  1832. set_task_cpu(p, this_cpu);
  1833. activate_task(this_rq, p, 0);
  1834. /*
  1835. * Note that idle threads have a prio of MAX_PRIO, for this test
  1836. * to be always true for them.
  1837. */
  1838. check_preempt_curr(this_rq, p);
  1839. }
  1840. /*
  1841. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1842. */
  1843. static
  1844. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  1845. struct sched_domain *sd, enum cpu_idle_type idle,
  1846. int *all_pinned)
  1847. {
  1848. /*
  1849. * We do not migrate tasks that are:
  1850. * 1) running (obviously), or
  1851. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1852. * 3) are cache-hot on their current CPU.
  1853. */
  1854. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1855. return 0;
  1856. *all_pinned = 0;
  1857. if (task_running(rq, p))
  1858. return 0;
  1859. /*
  1860. * Aggressive migration if too many balance attempts have failed:
  1861. */
  1862. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1863. return 1;
  1864. return 1;
  1865. }
  1866. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1867. unsigned long max_nr_move, unsigned long max_load_move,
  1868. struct sched_domain *sd, enum cpu_idle_type idle,
  1869. int *all_pinned, unsigned long *load_moved,
  1870. int this_best_prio, int best_prio, int best_prio_seen,
  1871. struct rq_iterator *iterator)
  1872. {
  1873. int pulled = 0, pinned = 0, skip_for_load;
  1874. struct task_struct *p;
  1875. long rem_load_move = max_load_move;
  1876. if (max_nr_move == 0 || max_load_move == 0)
  1877. goto out;
  1878. pinned = 1;
  1879. /*
  1880. * Start the load-balancing iterator:
  1881. */
  1882. p = iterator->start(iterator->arg);
  1883. next:
  1884. if (!p)
  1885. goto out;
  1886. /*
  1887. * To help distribute high priority tasks accross CPUs we don't
  1888. * skip a task if it will be the highest priority task (i.e. smallest
  1889. * prio value) on its new queue regardless of its load weight
  1890. */
  1891. skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
  1892. SCHED_LOAD_SCALE_FUZZ;
  1893. if (skip_for_load && p->prio < this_best_prio)
  1894. skip_for_load = !best_prio_seen && p->prio == best_prio;
  1895. if (skip_for_load ||
  1896. !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
  1897. best_prio_seen |= p->prio == best_prio;
  1898. p = iterator->next(iterator->arg);
  1899. goto next;
  1900. }
  1901. pull_task(busiest, p, this_rq, this_cpu);
  1902. pulled++;
  1903. rem_load_move -= p->se.load.weight;
  1904. /*
  1905. * We only want to steal up to the prescribed number of tasks
  1906. * and the prescribed amount of weighted load.
  1907. */
  1908. if (pulled < max_nr_move && rem_load_move > 0) {
  1909. if (p->prio < this_best_prio)
  1910. this_best_prio = p->prio;
  1911. p = iterator->next(iterator->arg);
  1912. goto next;
  1913. }
  1914. out:
  1915. /*
  1916. * Right now, this is the only place pull_task() is called,
  1917. * so we can safely collect pull_task() stats here rather than
  1918. * inside pull_task().
  1919. */
  1920. schedstat_add(sd, lb_gained[idle], pulled);
  1921. if (all_pinned)
  1922. *all_pinned = pinned;
  1923. *load_moved = max_load_move - rem_load_move;
  1924. return pulled;
  1925. }
  1926. /*
  1927. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1928. * load from busiest to this_rq, as part of a balancing operation within
  1929. * "domain". Returns the number of tasks moved.
  1930. *
  1931. * Called with both runqueues locked.
  1932. */
  1933. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1934. unsigned long max_nr_move, unsigned long max_load_move,
  1935. struct sched_domain *sd, enum cpu_idle_type idle,
  1936. int *all_pinned)
  1937. {
  1938. struct sched_class *class = sched_class_highest;
  1939. unsigned long load_moved, total_nr_moved = 0, nr_moved;
  1940. long rem_load_move = max_load_move;
  1941. do {
  1942. nr_moved = class->load_balance(this_rq, this_cpu, busiest,
  1943. max_nr_move, (unsigned long)rem_load_move,
  1944. sd, idle, all_pinned, &load_moved);
  1945. total_nr_moved += nr_moved;
  1946. max_nr_move -= nr_moved;
  1947. rem_load_move -= load_moved;
  1948. class = class->next;
  1949. } while (class && max_nr_move && rem_load_move > 0);
  1950. return total_nr_moved;
  1951. }
  1952. /*
  1953. * find_busiest_group finds and returns the busiest CPU group within the
  1954. * domain. It calculates and returns the amount of weighted load which
  1955. * should be moved to restore balance via the imbalance parameter.
  1956. */
  1957. static struct sched_group *
  1958. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1959. unsigned long *imbalance, enum cpu_idle_type idle,
  1960. int *sd_idle, cpumask_t *cpus, int *balance)
  1961. {
  1962. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1963. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1964. unsigned long max_pull;
  1965. unsigned long busiest_load_per_task, busiest_nr_running;
  1966. unsigned long this_load_per_task, this_nr_running;
  1967. int load_idx;
  1968. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  1969. int power_savings_balance = 1;
  1970. unsigned long leader_nr_running = 0, min_load_per_task = 0;
  1971. unsigned long min_nr_running = ULONG_MAX;
  1972. struct sched_group *group_min = NULL, *group_leader = NULL;
  1973. #endif
  1974. max_load = this_load = total_load = total_pwr = 0;
  1975. busiest_load_per_task = busiest_nr_running = 0;
  1976. this_load_per_task = this_nr_running = 0;
  1977. if (idle == CPU_NOT_IDLE)
  1978. load_idx = sd->busy_idx;
  1979. else if (idle == CPU_NEWLY_IDLE)
  1980. load_idx = sd->newidle_idx;
  1981. else
  1982. load_idx = sd->idle_idx;
  1983. do {
  1984. unsigned long load, group_capacity;
  1985. int local_group;
  1986. int i;
  1987. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  1988. unsigned long sum_nr_running, sum_weighted_load;
  1989. local_group = cpu_isset(this_cpu, group->cpumask);
  1990. if (local_group)
  1991. balance_cpu = first_cpu(group->cpumask);
  1992. /* Tally up the load of all CPUs in the group */
  1993. sum_weighted_load = sum_nr_running = avg_load = 0;
  1994. for_each_cpu_mask(i, group->cpumask) {
  1995. struct rq *rq;
  1996. if (!cpu_isset(i, *cpus))
  1997. continue;
  1998. rq = cpu_rq(i);
  1999. if (*sd_idle && !idle_cpu(i))
  2000. *sd_idle = 0;
  2001. /* Bias balancing toward cpus of our domain */
  2002. if (local_group) {
  2003. if (idle_cpu(i) && !first_idle_cpu) {
  2004. first_idle_cpu = 1;
  2005. balance_cpu = i;
  2006. }
  2007. load = target_load(i, load_idx);
  2008. } else
  2009. load = source_load(i, load_idx);
  2010. avg_load += load;
  2011. sum_nr_running += rq->nr_running;
  2012. sum_weighted_load += weighted_cpuload(i);
  2013. }
  2014. /*
  2015. * First idle cpu or the first cpu(busiest) in this sched group
  2016. * is eligible for doing load balancing at this and above
  2017. * domains.
  2018. */
  2019. if (local_group && balance_cpu != this_cpu && balance) {
  2020. *balance = 0;
  2021. goto ret;
  2022. }
  2023. total_load += avg_load;
  2024. total_pwr += group->__cpu_power;
  2025. /* Adjust by relative CPU power of the group */
  2026. avg_load = sg_div_cpu_power(group,
  2027. avg_load * SCHED_LOAD_SCALE);
  2028. group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
  2029. if (local_group) {
  2030. this_load = avg_load;
  2031. this = group;
  2032. this_nr_running = sum_nr_running;
  2033. this_load_per_task = sum_weighted_load;
  2034. } else if (avg_load > max_load &&
  2035. sum_nr_running > group_capacity) {
  2036. max_load = avg_load;
  2037. busiest = group;
  2038. busiest_nr_running = sum_nr_running;
  2039. busiest_load_per_task = sum_weighted_load;
  2040. }
  2041. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2042. /*
  2043. * Busy processors will not participate in power savings
  2044. * balance.
  2045. */
  2046. if (idle == CPU_NOT_IDLE ||
  2047. !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2048. goto group_next;
  2049. /*
  2050. * If the local group is idle or completely loaded
  2051. * no need to do power savings balance at this domain
  2052. */
  2053. if (local_group && (this_nr_running >= group_capacity ||
  2054. !this_nr_running))
  2055. power_savings_balance = 0;
  2056. /*
  2057. * If a group is already running at full capacity or idle,
  2058. * don't include that group in power savings calculations
  2059. */
  2060. if (!power_savings_balance || sum_nr_running >= group_capacity
  2061. || !sum_nr_running)
  2062. goto group_next;
  2063. /*
  2064. * Calculate the group which has the least non-idle load.
  2065. * This is the group from where we need to pick up the load
  2066. * for saving power
  2067. */
  2068. if ((sum_nr_running < min_nr_running) ||
  2069. (sum_nr_running == min_nr_running &&
  2070. first_cpu(group->cpumask) <
  2071. first_cpu(group_min->cpumask))) {
  2072. group_min = group;
  2073. min_nr_running = sum_nr_running;
  2074. min_load_per_task = sum_weighted_load /
  2075. sum_nr_running;
  2076. }
  2077. /*
  2078. * Calculate the group which is almost near its
  2079. * capacity but still has some space to pick up some load
  2080. * from other group and save more power
  2081. */
  2082. if (sum_nr_running <= group_capacity - 1) {
  2083. if (sum_nr_running > leader_nr_running ||
  2084. (sum_nr_running == leader_nr_running &&
  2085. first_cpu(group->cpumask) >
  2086. first_cpu(group_leader->cpumask))) {
  2087. group_leader = group;
  2088. leader_nr_running = sum_nr_running;
  2089. }
  2090. }
  2091. group_next:
  2092. #endif
  2093. group = group->next;
  2094. } while (group != sd->groups);
  2095. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  2096. goto out_balanced;
  2097. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  2098. if (this_load >= avg_load ||
  2099. 100*max_load <= sd->imbalance_pct*this_load)
  2100. goto out_balanced;
  2101. busiest_load_per_task /= busiest_nr_running;
  2102. /*
  2103. * We're trying to get all the cpus to the average_load, so we don't
  2104. * want to push ourselves above the average load, nor do we wish to
  2105. * reduce the max loaded cpu below the average load, as either of these
  2106. * actions would just result in more rebalancing later, and ping-pong
  2107. * tasks around. Thus we look for the minimum possible imbalance.
  2108. * Negative imbalances (*we* are more loaded than anyone else) will
  2109. * be counted as no imbalance for these purposes -- we can't fix that
  2110. * by pulling tasks to us. Be careful of negative numbers as they'll
  2111. * appear as very large values with unsigned longs.
  2112. */
  2113. if (max_load <= busiest_load_per_task)
  2114. goto out_balanced;
  2115. /*
  2116. * In the presence of smp nice balancing, certain scenarios can have
  2117. * max load less than avg load(as we skip the groups at or below
  2118. * its cpu_power, while calculating max_load..)
  2119. */
  2120. if (max_load < avg_load) {
  2121. *imbalance = 0;
  2122. goto small_imbalance;
  2123. }
  2124. /* Don't want to pull so many tasks that a group would go idle */
  2125. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  2126. /* How much load to actually move to equalise the imbalance */
  2127. *imbalance = min(max_pull * busiest->__cpu_power,
  2128. (avg_load - this_load) * this->__cpu_power)
  2129. / SCHED_LOAD_SCALE;
  2130. /*
  2131. * if *imbalance is less than the average load per runnable task
  2132. * there is no gaurantee that any tasks will be moved so we'll have
  2133. * a think about bumping its value to force at least one task to be
  2134. * moved
  2135. */
  2136. if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
  2137. unsigned long tmp, pwr_now, pwr_move;
  2138. unsigned int imbn;
  2139. small_imbalance:
  2140. pwr_move = pwr_now = 0;
  2141. imbn = 2;
  2142. if (this_nr_running) {
  2143. this_load_per_task /= this_nr_running;
  2144. if (busiest_load_per_task > this_load_per_task)
  2145. imbn = 1;
  2146. } else
  2147. this_load_per_task = SCHED_LOAD_SCALE;
  2148. if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
  2149. busiest_load_per_task * imbn) {
  2150. *imbalance = busiest_load_per_task;
  2151. return busiest;
  2152. }
  2153. /*
  2154. * OK, we don't have enough imbalance to justify moving tasks,
  2155. * however we may be able to increase total CPU power used by
  2156. * moving them.
  2157. */
  2158. pwr_now += busiest->__cpu_power *
  2159. min(busiest_load_per_task, max_load);
  2160. pwr_now += this->__cpu_power *
  2161. min(this_load_per_task, this_load);
  2162. pwr_now /= SCHED_LOAD_SCALE;
  2163. /* Amount of load we'd subtract */
  2164. tmp = sg_div_cpu_power(busiest,
  2165. busiest_load_per_task * SCHED_LOAD_SCALE);
  2166. if (max_load > tmp)
  2167. pwr_move += busiest->__cpu_power *
  2168. min(busiest_load_per_task, max_load - tmp);
  2169. /* Amount of load we'd add */
  2170. if (max_load * busiest->__cpu_power <
  2171. busiest_load_per_task * SCHED_LOAD_SCALE)
  2172. tmp = sg_div_cpu_power(this,
  2173. max_load * busiest->__cpu_power);
  2174. else
  2175. tmp = sg_div_cpu_power(this,
  2176. busiest_load_per_task * SCHED_LOAD_SCALE);
  2177. pwr_move += this->__cpu_power *
  2178. min(this_load_per_task, this_load + tmp);
  2179. pwr_move /= SCHED_LOAD_SCALE;
  2180. /* Move if we gain throughput */
  2181. if (pwr_move <= pwr_now)
  2182. goto out_balanced;
  2183. *imbalance = busiest_load_per_task;
  2184. }
  2185. return busiest;
  2186. out_balanced:
  2187. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2188. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2189. goto ret;
  2190. if (this == group_leader && group_leader != group_min) {
  2191. *imbalance = min_load_per_task;
  2192. return group_min;
  2193. }
  2194. #endif
  2195. ret:
  2196. *imbalance = 0;
  2197. return NULL;
  2198. }
  2199. /*
  2200. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  2201. */
  2202. static struct rq *
  2203. find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
  2204. unsigned long imbalance, cpumask_t *cpus)
  2205. {
  2206. struct rq *busiest = NULL, *rq;
  2207. unsigned long max_load = 0;
  2208. int i;
  2209. for_each_cpu_mask(i, group->cpumask) {
  2210. unsigned long wl;
  2211. if (!cpu_isset(i, *cpus))
  2212. continue;
  2213. rq = cpu_rq(i);
  2214. wl = weighted_cpuload(i);
  2215. if (rq->nr_running == 1 && wl > imbalance)
  2216. continue;
  2217. if (wl > max_load) {
  2218. max_load = wl;
  2219. busiest = rq;
  2220. }
  2221. }
  2222. return busiest;
  2223. }
  2224. /*
  2225. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  2226. * so long as it is large enough.
  2227. */
  2228. #define MAX_PINNED_INTERVAL 512
  2229. static inline unsigned long minus_1_or_zero(unsigned long n)
  2230. {
  2231. return n > 0 ? n - 1 : 0;
  2232. }
  2233. /*
  2234. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2235. * tasks if there is an imbalance.
  2236. */
  2237. static int load_balance(int this_cpu, struct rq *this_rq,
  2238. struct sched_domain *sd, enum cpu_idle_type idle,
  2239. int *balance)
  2240. {
  2241. int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
  2242. struct sched_group *group;
  2243. unsigned long imbalance;
  2244. struct rq *busiest;
  2245. cpumask_t cpus = CPU_MASK_ALL;
  2246. unsigned long flags;
  2247. /*
  2248. * When power savings policy is enabled for the parent domain, idle
  2249. * sibling can pick up load irrespective of busy siblings. In this case,
  2250. * let the state of idle sibling percolate up as CPU_IDLE, instead of
  2251. * portraying it as CPU_NOT_IDLE.
  2252. */
  2253. if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
  2254. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2255. sd_idle = 1;
  2256. schedstat_inc(sd, lb_cnt[idle]);
  2257. redo:
  2258. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
  2259. &cpus, balance);
  2260. if (*balance == 0)
  2261. goto out_balanced;
  2262. if (!group) {
  2263. schedstat_inc(sd, lb_nobusyg[idle]);
  2264. goto out_balanced;
  2265. }
  2266. busiest = find_busiest_queue(group, idle, imbalance, &cpus);
  2267. if (!busiest) {
  2268. schedstat_inc(sd, lb_nobusyq[idle]);
  2269. goto out_balanced;
  2270. }
  2271. BUG_ON(busiest == this_rq);
  2272. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2273. nr_moved = 0;
  2274. if (busiest->nr_running > 1) {
  2275. /*
  2276. * Attempt to move tasks. If find_busiest_group has found
  2277. * an imbalance but busiest->nr_running <= 1, the group is
  2278. * still unbalanced. nr_moved simply stays zero, so it is
  2279. * correctly treated as an imbalance.
  2280. */
  2281. local_irq_save(flags);
  2282. double_rq_lock(this_rq, busiest);
  2283. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2284. minus_1_or_zero(busiest->nr_running),
  2285. imbalance, sd, idle, &all_pinned);
  2286. double_rq_unlock(this_rq, busiest);
  2287. local_irq_restore(flags);
  2288. /*
  2289. * some other cpu did the load balance for us.
  2290. */
  2291. if (nr_moved && this_cpu != smp_processor_id())
  2292. resched_cpu(this_cpu);
  2293. /* All tasks on this runqueue were pinned by CPU affinity */
  2294. if (unlikely(all_pinned)) {
  2295. cpu_clear(cpu_of(busiest), cpus);
  2296. if (!cpus_empty(cpus))
  2297. goto redo;
  2298. goto out_balanced;
  2299. }
  2300. }
  2301. if (!nr_moved) {
  2302. schedstat_inc(sd, lb_failed[idle]);
  2303. sd->nr_balance_failed++;
  2304. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2305. spin_lock_irqsave(&busiest->lock, flags);
  2306. /* don't kick the migration_thread, if the curr
  2307. * task on busiest cpu can't be moved to this_cpu
  2308. */
  2309. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2310. spin_unlock_irqrestore(&busiest->lock, flags);
  2311. all_pinned = 1;
  2312. goto out_one_pinned;
  2313. }
  2314. if (!busiest->active_balance) {
  2315. busiest->active_balance = 1;
  2316. busiest->push_cpu = this_cpu;
  2317. active_balance = 1;
  2318. }
  2319. spin_unlock_irqrestore(&busiest->lock, flags);
  2320. if (active_balance)
  2321. wake_up_process(busiest->migration_thread);
  2322. /*
  2323. * We've kicked active balancing, reset the failure
  2324. * counter.
  2325. */
  2326. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2327. }
  2328. } else
  2329. sd->nr_balance_failed = 0;
  2330. if (likely(!active_balance)) {
  2331. /* We were unbalanced, so reset the balancing interval */
  2332. sd->balance_interval = sd->min_interval;
  2333. } else {
  2334. /*
  2335. * If we've begun active balancing, start to back off. This
  2336. * case may not be covered by the all_pinned logic if there
  2337. * is only 1 task on the busy runqueue (because we don't call
  2338. * move_tasks).
  2339. */
  2340. if (sd->balance_interval < sd->max_interval)
  2341. sd->balance_interval *= 2;
  2342. }
  2343. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2344. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2345. return -1;
  2346. return nr_moved;
  2347. out_balanced:
  2348. schedstat_inc(sd, lb_balanced[idle]);
  2349. sd->nr_balance_failed = 0;
  2350. out_one_pinned:
  2351. /* tune up the balancing interval */
  2352. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2353. (sd->balance_interval < sd->max_interval))
  2354. sd->balance_interval *= 2;
  2355. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2356. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2357. return -1;
  2358. return 0;
  2359. }
  2360. /*
  2361. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2362. * tasks if there is an imbalance.
  2363. *
  2364. * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
  2365. * this_rq is locked.
  2366. */
  2367. static int
  2368. load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
  2369. {
  2370. struct sched_group *group;
  2371. struct rq *busiest = NULL;
  2372. unsigned long imbalance;
  2373. int nr_moved = 0;
  2374. int sd_idle = 0;
  2375. cpumask_t cpus = CPU_MASK_ALL;
  2376. /*
  2377. * When power savings policy is enabled for the parent domain, idle
  2378. * sibling can pick up load irrespective of busy siblings. In this case,
  2379. * let the state of idle sibling percolate up as IDLE, instead of
  2380. * portraying it as CPU_NOT_IDLE.
  2381. */
  2382. if (sd->flags & SD_SHARE_CPUPOWER &&
  2383. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2384. sd_idle = 1;
  2385. schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
  2386. redo:
  2387. group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
  2388. &sd_idle, &cpus, NULL);
  2389. if (!group) {
  2390. schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
  2391. goto out_balanced;
  2392. }
  2393. busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
  2394. &cpus);
  2395. if (!busiest) {
  2396. schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
  2397. goto out_balanced;
  2398. }
  2399. BUG_ON(busiest == this_rq);
  2400. schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
  2401. nr_moved = 0;
  2402. if (busiest->nr_running > 1) {
  2403. /* Attempt to move tasks */
  2404. double_lock_balance(this_rq, busiest);
  2405. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2406. minus_1_or_zero(busiest->nr_running),
  2407. imbalance, sd, CPU_NEWLY_IDLE, NULL);
  2408. spin_unlock(&busiest->lock);
  2409. if (!nr_moved) {
  2410. cpu_clear(cpu_of(busiest), cpus);
  2411. if (!cpus_empty(cpus))
  2412. goto redo;
  2413. }
  2414. }
  2415. if (!nr_moved) {
  2416. schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
  2417. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2418. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2419. return -1;
  2420. } else
  2421. sd->nr_balance_failed = 0;
  2422. return nr_moved;
  2423. out_balanced:
  2424. schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
  2425. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
  2426. !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
  2427. return -1;
  2428. sd->nr_balance_failed = 0;
  2429. return 0;
  2430. }
  2431. /*
  2432. * idle_balance is called by schedule() if this_cpu is about to become
  2433. * idle. Attempts to pull tasks from other CPUs.
  2434. */
  2435. static void idle_balance(int this_cpu, struct rq *this_rq)
  2436. {
  2437. struct sched_domain *sd;
  2438. int pulled_task = -1;
  2439. unsigned long next_balance = jiffies + HZ;
  2440. for_each_domain(this_cpu, sd) {
  2441. unsigned long interval;
  2442. if (!(sd->flags & SD_LOAD_BALANCE))
  2443. continue;
  2444. if (sd->flags & SD_BALANCE_NEWIDLE)
  2445. /* If we've pulled tasks over stop searching: */
  2446. pulled_task = load_balance_newidle(this_cpu,
  2447. this_rq, sd);
  2448. interval = msecs_to_jiffies(sd->balance_interval);
  2449. if (time_after(next_balance, sd->last_balance + interval))
  2450. next_balance = sd->last_balance + interval;
  2451. if (pulled_task)
  2452. break;
  2453. }
  2454. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  2455. /*
  2456. * We are going idle. next_balance may be set based on
  2457. * a busy processor. So reset next_balance.
  2458. */
  2459. this_rq->next_balance = next_balance;
  2460. }
  2461. }
  2462. /*
  2463. * active_load_balance is run by migration threads. It pushes running tasks
  2464. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2465. * running on each physical CPU where possible, and avoids physical /
  2466. * logical imbalances.
  2467. *
  2468. * Called with busiest_rq locked.
  2469. */
  2470. static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
  2471. {
  2472. int target_cpu = busiest_rq->push_cpu;
  2473. struct sched_domain *sd;
  2474. struct rq *target_rq;
  2475. /* Is there any task to move? */
  2476. if (busiest_rq->nr_running <= 1)
  2477. return;
  2478. target_rq = cpu_rq(target_cpu);
  2479. /*
  2480. * This condition is "impossible", if it occurs
  2481. * we need to fix it. Originally reported by
  2482. * Bjorn Helgaas on a 128-cpu setup.
  2483. */
  2484. BUG_ON(busiest_rq == target_rq);
  2485. /* move a task from busiest_rq to target_rq */
  2486. double_lock_balance(busiest_rq, target_rq);
  2487. /* Search for an sd spanning us and the target CPU. */
  2488. for_each_domain(target_cpu, sd) {
  2489. if ((sd->flags & SD_LOAD_BALANCE) &&
  2490. cpu_isset(busiest_cpu, sd->span))
  2491. break;
  2492. }
  2493. if (likely(sd)) {
  2494. schedstat_inc(sd, alb_cnt);
  2495. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2496. RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
  2497. NULL))
  2498. schedstat_inc(sd, alb_pushed);
  2499. else
  2500. schedstat_inc(sd, alb_failed);
  2501. }
  2502. spin_unlock(&target_rq->lock);
  2503. }
  2504. #ifdef CONFIG_NO_HZ
  2505. static struct {
  2506. atomic_t load_balancer;
  2507. cpumask_t cpu_mask;
  2508. } nohz ____cacheline_aligned = {
  2509. .load_balancer = ATOMIC_INIT(-1),
  2510. .cpu_mask = CPU_MASK_NONE,
  2511. };
  2512. /*
  2513. * This routine will try to nominate the ilb (idle load balancing)
  2514. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  2515. * load balancing on behalf of all those cpus. If all the cpus in the system
  2516. * go into this tickless mode, then there will be no ilb owner (as there is
  2517. * no need for one) and all the cpus will sleep till the next wakeup event
  2518. * arrives...
  2519. *
  2520. * For the ilb owner, tick is not stopped. And this tick will be used
  2521. * for idle load balancing. ilb owner will still be part of
  2522. * nohz.cpu_mask..
  2523. *
  2524. * While stopping the tick, this cpu will become the ilb owner if there
  2525. * is no other owner. And will be the owner till that cpu becomes busy
  2526. * or if all cpus in the system stop their ticks at which point
  2527. * there is no need for ilb owner.
  2528. *
  2529. * When the ilb owner becomes busy, it nominates another owner, during the
  2530. * next busy scheduler_tick()
  2531. */
  2532. int select_nohz_load_balancer(int stop_tick)
  2533. {
  2534. int cpu = smp_processor_id();
  2535. if (stop_tick) {
  2536. cpu_set(cpu, nohz.cpu_mask);
  2537. cpu_rq(cpu)->in_nohz_recently = 1;
  2538. /*
  2539. * If we are going offline and still the leader, give up!
  2540. */
  2541. if (cpu_is_offline(cpu) &&
  2542. atomic_read(&nohz.load_balancer) == cpu) {
  2543. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2544. BUG();
  2545. return 0;
  2546. }
  2547. /* time for ilb owner also to sleep */
  2548. if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2549. if (atomic_read(&nohz.load_balancer) == cpu)
  2550. atomic_set(&nohz.load_balancer, -1);
  2551. return 0;
  2552. }
  2553. if (atomic_read(&nohz.load_balancer) == -1) {
  2554. /* make me the ilb owner */
  2555. if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
  2556. return 1;
  2557. } else if (atomic_read(&nohz.load_balancer) == cpu)
  2558. return 1;
  2559. } else {
  2560. if (!cpu_isset(cpu, nohz.cpu_mask))
  2561. return 0;
  2562. cpu_clear(cpu, nohz.cpu_mask);
  2563. if (atomic_read(&nohz.load_balancer) == cpu)
  2564. if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
  2565. BUG();
  2566. }
  2567. return 0;
  2568. }
  2569. #endif
  2570. static DEFINE_SPINLOCK(balancing);
  2571. /*
  2572. * It checks each scheduling domain to see if it is due to be balanced,
  2573. * and initiates a balancing operation if so.
  2574. *
  2575. * Balancing parameters are set up in arch_init_sched_domains.
  2576. */
  2577. static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
  2578. {
  2579. int balance = 1;
  2580. struct rq *rq = cpu_rq(cpu);
  2581. unsigned long interval;
  2582. struct sched_domain *sd;
  2583. /* Earliest time when we have to do rebalance again */
  2584. unsigned long next_balance = jiffies + 60*HZ;
  2585. for_each_domain(cpu, sd) {
  2586. if (!(sd->flags & SD_LOAD_BALANCE))
  2587. continue;
  2588. interval = sd->balance_interval;
  2589. if (idle != CPU_IDLE)
  2590. interval *= sd->busy_factor;
  2591. /* scale ms to jiffies */
  2592. interval = msecs_to_jiffies(interval);
  2593. if (unlikely(!interval))
  2594. interval = 1;
  2595. if (interval > HZ*NR_CPUS/10)
  2596. interval = HZ*NR_CPUS/10;
  2597. if (sd->flags & SD_SERIALIZE) {
  2598. if (!spin_trylock(&balancing))
  2599. goto out;
  2600. }
  2601. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  2602. if (load_balance(cpu, rq, sd, idle, &balance)) {
  2603. /*
  2604. * We've pulled tasks over so either we're no
  2605. * longer idle, or one of our SMT siblings is
  2606. * not idle.
  2607. */
  2608. idle = CPU_NOT_IDLE;
  2609. }
  2610. sd->last_balance = jiffies;
  2611. }
  2612. if (sd->flags & SD_SERIALIZE)
  2613. spin_unlock(&balancing);
  2614. out:
  2615. if (time_after(next_balance, sd->last_balance + interval))
  2616. next_balance = sd->last_balance + interval;
  2617. /*
  2618. * Stop the load balance at this level. There is another
  2619. * CPU in our sched group which is doing load balancing more
  2620. * actively.
  2621. */
  2622. if (!balance)
  2623. break;
  2624. }
  2625. rq->next_balance = next_balance;
  2626. }
  2627. /*
  2628. * run_rebalance_domains is triggered when needed from the scheduler tick.
  2629. * In CONFIG_NO_HZ case, the idle load balance owner will do the
  2630. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  2631. */
  2632. static void run_rebalance_domains(struct softirq_action *h)
  2633. {
  2634. int this_cpu = smp_processor_id();
  2635. struct rq *this_rq = cpu_rq(this_cpu);
  2636. enum cpu_idle_type idle = this_rq->idle_at_tick ?
  2637. CPU_IDLE : CPU_NOT_IDLE;
  2638. rebalance_domains(this_cpu, idle);
  2639. #ifdef CONFIG_NO_HZ
  2640. /*
  2641. * If this cpu is the owner for idle load balancing, then do the
  2642. * balancing on behalf of the other idle cpus whose ticks are
  2643. * stopped.
  2644. */
  2645. if (this_rq->idle_at_tick &&
  2646. atomic_read(&nohz.load_balancer) == this_cpu) {
  2647. cpumask_t cpus = nohz.cpu_mask;
  2648. struct rq *rq;
  2649. int balance_cpu;
  2650. cpu_clear(this_cpu, cpus);
  2651. for_each_cpu_mask(balance_cpu, cpus) {
  2652. /*
  2653. * If this cpu gets work to do, stop the load balancing
  2654. * work being done for other cpus. Next load
  2655. * balancing owner will pick it up.
  2656. */
  2657. if (need_resched())
  2658. break;
  2659. rebalance_domains(balance_cpu, SCHED_IDLE);
  2660. rq = cpu_rq(balance_cpu);
  2661. if (time_after(this_rq->next_balance, rq->next_balance))
  2662. this_rq->next_balance = rq->next_balance;
  2663. }
  2664. }
  2665. #endif
  2666. }
  2667. /*
  2668. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  2669. *
  2670. * In case of CONFIG_NO_HZ, this is the place where we nominate a new
  2671. * idle load balancing owner or decide to stop the periodic load balancing,
  2672. * if the whole system is idle.
  2673. */
  2674. static inline void trigger_load_balance(struct rq *rq, int cpu)
  2675. {
  2676. #ifdef CONFIG_NO_HZ
  2677. /*
  2678. * If we were in the nohz mode recently and busy at the current
  2679. * scheduler tick, then check if we need to nominate new idle
  2680. * load balancer.
  2681. */
  2682. if (rq->in_nohz_recently && !rq->idle_at_tick) {
  2683. rq->in_nohz_recently = 0;
  2684. if (atomic_read(&nohz.load_balancer) == cpu) {
  2685. cpu_clear(cpu, nohz.cpu_mask);
  2686. atomic_set(&nohz.load_balancer, -1);
  2687. }
  2688. if (atomic_read(&nohz.load_balancer) == -1) {
  2689. /*
  2690. * simple selection for now: Nominate the
  2691. * first cpu in the nohz list to be the next
  2692. * ilb owner.
  2693. *
  2694. * TBD: Traverse the sched domains and nominate
  2695. * the nearest cpu in the nohz.cpu_mask.
  2696. */
  2697. int ilb = first_cpu(nohz.cpu_mask);
  2698. if (ilb != NR_CPUS)
  2699. resched_cpu(ilb);
  2700. }
  2701. }
  2702. /*
  2703. * If this cpu is idle and doing idle load balancing for all the
  2704. * cpus with ticks stopped, is it time for that to stop?
  2705. */
  2706. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
  2707. cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
  2708. resched_cpu(cpu);
  2709. return;
  2710. }
  2711. /*
  2712. * If this cpu is idle and the idle load balancing is done by
  2713. * someone else, then no need raise the SCHED_SOFTIRQ
  2714. */
  2715. if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
  2716. cpu_isset(cpu, nohz.cpu_mask))
  2717. return;
  2718. #endif
  2719. if (time_after_eq(jiffies, rq->next_balance))
  2720. raise_softirq(SCHED_SOFTIRQ);
  2721. }
  2722. #else /* CONFIG_SMP */
  2723. /*
  2724. * on UP we do not need to balance between CPUs:
  2725. */
  2726. static inline void idle_balance(int cpu, struct rq *rq)
  2727. {
  2728. }
  2729. /* Avoid "used but not defined" warning on UP */
  2730. static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2731. unsigned long max_nr_move, unsigned long max_load_move,
  2732. struct sched_domain *sd, enum cpu_idle_type idle,
  2733. int *all_pinned, unsigned long *load_moved,
  2734. int this_best_prio, int best_prio, int best_prio_seen,
  2735. struct rq_iterator *iterator)
  2736. {
  2737. *load_moved = 0;
  2738. return 0;
  2739. }
  2740. #endif
  2741. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2742. EXPORT_PER_CPU_SYMBOL(kstat);
  2743. /*
  2744. * Return p->sum_exec_runtime plus any more ns on the sched_clock
  2745. * that have not yet been banked in case the task is currently running.
  2746. */
  2747. unsigned long long task_sched_runtime(struct task_struct *p)
  2748. {
  2749. unsigned long flags;
  2750. u64 ns, delta_exec;
  2751. struct rq *rq;
  2752. rq = task_rq_lock(p, &flags);
  2753. ns = p->se.sum_exec_runtime;
  2754. if (rq->curr == p) {
  2755. delta_exec = rq_clock(rq) - p->se.exec_start;
  2756. if ((s64)delta_exec > 0)
  2757. ns += delta_exec;
  2758. }
  2759. task_rq_unlock(rq, &flags);
  2760. return ns;
  2761. }
  2762. /*
  2763. * Account user cpu time to a process.
  2764. * @p: the process that the cpu time gets accounted to
  2765. * @hardirq_offset: the offset to subtract from hardirq_count()
  2766. * @cputime: the cpu time spent in user space since the last update
  2767. */
  2768. void account_user_time(struct task_struct *p, cputime_t cputime)
  2769. {
  2770. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2771. cputime64_t tmp;
  2772. p->utime = cputime_add(p->utime, cputime);
  2773. /* Add user time to cpustat. */
  2774. tmp = cputime_to_cputime64(cputime);
  2775. if (TASK_NICE(p) > 0)
  2776. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2777. else
  2778. cpustat->user = cputime64_add(cpustat->user, tmp);
  2779. }
  2780. /*
  2781. * Account system cpu time to a process.
  2782. * @p: the process that the cpu time gets accounted to
  2783. * @hardirq_offset: the offset to subtract from hardirq_count()
  2784. * @cputime: the cpu time spent in kernel space since the last update
  2785. */
  2786. void account_system_time(struct task_struct *p, int hardirq_offset,
  2787. cputime_t cputime)
  2788. {
  2789. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2790. struct rq *rq = this_rq();
  2791. cputime64_t tmp;
  2792. p->stime = cputime_add(p->stime, cputime);
  2793. /* Add system time to cpustat. */
  2794. tmp = cputime_to_cputime64(cputime);
  2795. if (hardirq_count() - hardirq_offset)
  2796. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2797. else if (softirq_count())
  2798. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2799. else if (p != rq->idle)
  2800. cpustat->system = cputime64_add(cpustat->system, tmp);
  2801. else if (atomic_read(&rq->nr_iowait) > 0)
  2802. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2803. else
  2804. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2805. /* Account for system time used */
  2806. acct_update_integrals(p);
  2807. }
  2808. /*
  2809. * Account for involuntary wait time.
  2810. * @p: the process from which the cpu time has been stolen
  2811. * @steal: the cpu time spent in involuntary wait
  2812. */
  2813. void account_steal_time(struct task_struct *p, cputime_t steal)
  2814. {
  2815. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2816. cputime64_t tmp = cputime_to_cputime64(steal);
  2817. struct rq *rq = this_rq();
  2818. if (p == rq->idle) {
  2819. p->stime = cputime_add(p->stime, steal);
  2820. if (atomic_read(&rq->nr_iowait) > 0)
  2821. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2822. else
  2823. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2824. } else
  2825. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2826. }
  2827. /*
  2828. * This function gets called by the timer code, with HZ frequency.
  2829. * We call it with interrupts disabled.
  2830. *
  2831. * It also gets called by the fork code, when changing the parent's
  2832. * timeslices.
  2833. */
  2834. void scheduler_tick(void)
  2835. {
  2836. int cpu = smp_processor_id();
  2837. struct rq *rq = cpu_rq(cpu);
  2838. struct task_struct *curr = rq->curr;
  2839. spin_lock(&rq->lock);
  2840. if (curr != rq->idle) /* FIXME: needed? */
  2841. curr->sched_class->task_tick(rq, curr);
  2842. update_cpu_load(rq);
  2843. spin_unlock(&rq->lock);
  2844. #ifdef CONFIG_SMP
  2845. rq->idle_at_tick = idle_cpu(cpu);
  2846. trigger_load_balance(rq, cpu);
  2847. #endif
  2848. }
  2849. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2850. void fastcall add_preempt_count(int val)
  2851. {
  2852. /*
  2853. * Underflow?
  2854. */
  2855. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2856. return;
  2857. preempt_count() += val;
  2858. /*
  2859. * Spinlock count overflowing soon?
  2860. */
  2861. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2862. PREEMPT_MASK - 10);
  2863. }
  2864. EXPORT_SYMBOL(add_preempt_count);
  2865. void fastcall sub_preempt_count(int val)
  2866. {
  2867. /*
  2868. * Underflow?
  2869. */
  2870. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2871. return;
  2872. /*
  2873. * Is the spinlock portion underflowing?
  2874. */
  2875. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2876. !(preempt_count() & PREEMPT_MASK)))
  2877. return;
  2878. preempt_count() -= val;
  2879. }
  2880. EXPORT_SYMBOL(sub_preempt_count);
  2881. #endif
  2882. /*
  2883. * Print scheduling while atomic bug:
  2884. */
  2885. static noinline void __schedule_bug(struct task_struct *prev)
  2886. {
  2887. printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
  2888. prev->comm, preempt_count(), prev->pid);
  2889. debug_show_held_locks(prev);
  2890. if (irqs_disabled())
  2891. print_irqtrace_events(prev);
  2892. dump_stack();
  2893. }
  2894. /*
  2895. * Various schedule()-time debugging checks and statistics:
  2896. */
  2897. static inline void schedule_debug(struct task_struct *prev)
  2898. {
  2899. /*
  2900. * Test if we are atomic. Since do_exit() needs to call into
  2901. * schedule() atomically, we ignore that path for now.
  2902. * Otherwise, whine if we are scheduling when we should not be.
  2903. */
  2904. if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
  2905. __schedule_bug(prev);
  2906. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2907. schedstat_inc(this_rq(), sched_cnt);
  2908. }
  2909. /*
  2910. * Pick up the highest-prio task:
  2911. */
  2912. static inline struct task_struct *
  2913. pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
  2914. {
  2915. struct sched_class *class;
  2916. struct task_struct *p;
  2917. /*
  2918. * Optimization: we know that if all tasks are in
  2919. * the fair class we can call that function directly:
  2920. */
  2921. if (likely(rq->nr_running == rq->cfs.nr_running)) {
  2922. p = fair_sched_class.pick_next_task(rq, now);
  2923. if (likely(p))
  2924. return p;
  2925. }
  2926. class = sched_class_highest;
  2927. for ( ; ; ) {
  2928. p = class->pick_next_task(rq, now);
  2929. if (p)
  2930. return p;
  2931. /*
  2932. * Will never be NULL as the idle class always
  2933. * returns a non-NULL p:
  2934. */
  2935. class = class->next;
  2936. }
  2937. }
  2938. /*
  2939. * schedule() is the main scheduler function.
  2940. */
  2941. asmlinkage void __sched schedule(void)
  2942. {
  2943. struct task_struct *prev, *next;
  2944. long *switch_count;
  2945. struct rq *rq;
  2946. u64 now;
  2947. int cpu;
  2948. need_resched:
  2949. preempt_disable();
  2950. cpu = smp_processor_id();
  2951. rq = cpu_rq(cpu);
  2952. rcu_qsctr_inc(cpu);
  2953. prev = rq->curr;
  2954. switch_count = &prev->nivcsw;
  2955. release_kernel_lock(prev);
  2956. need_resched_nonpreemptible:
  2957. schedule_debug(prev);
  2958. spin_lock_irq(&rq->lock);
  2959. clear_tsk_need_resched(prev);
  2960. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2961. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2962. unlikely(signal_pending(prev)))) {
  2963. prev->state = TASK_RUNNING;
  2964. } else {
  2965. deactivate_task(rq, prev, 1);
  2966. }
  2967. switch_count = &prev->nvcsw;
  2968. }
  2969. if (unlikely(!rq->nr_running))
  2970. idle_balance(cpu, rq);
  2971. now = __rq_clock(rq);
  2972. prev->sched_class->put_prev_task(rq, prev, now);
  2973. next = pick_next_task(rq, prev, now);
  2974. sched_info_switch(prev, next);
  2975. if (likely(prev != next)) {
  2976. rq->nr_switches++;
  2977. rq->curr = next;
  2978. ++*switch_count;
  2979. context_switch(rq, prev, next); /* unlocks the rq */
  2980. } else
  2981. spin_unlock_irq(&rq->lock);
  2982. if (unlikely(reacquire_kernel_lock(current) < 0)) {
  2983. cpu = smp_processor_id();
  2984. rq = cpu_rq(cpu);
  2985. goto need_resched_nonpreemptible;
  2986. }
  2987. preempt_enable_no_resched();
  2988. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2989. goto need_resched;
  2990. }
  2991. EXPORT_SYMBOL(schedule);
  2992. #ifdef CONFIG_PREEMPT
  2993. /*
  2994. * this is the entry point to schedule() from in-kernel preemption
  2995. * off of preempt_enable. Kernel preemptions off return from interrupt
  2996. * occur there and call schedule directly.
  2997. */
  2998. asmlinkage void __sched preempt_schedule(void)
  2999. {
  3000. struct thread_info *ti = current_thread_info();
  3001. #ifdef CONFIG_PREEMPT_BKL
  3002. struct task_struct *task = current;
  3003. int saved_lock_depth;
  3004. #endif
  3005. /*
  3006. * If there is a non-zero preempt_count or interrupts are disabled,
  3007. * we do not want to preempt the current task. Just return..
  3008. */
  3009. if (likely(ti->preempt_count || irqs_disabled()))
  3010. return;
  3011. need_resched:
  3012. add_preempt_count(PREEMPT_ACTIVE);
  3013. /*
  3014. * We keep the big kernel semaphore locked, but we
  3015. * clear ->lock_depth so that schedule() doesnt
  3016. * auto-release the semaphore:
  3017. */
  3018. #ifdef CONFIG_PREEMPT_BKL
  3019. saved_lock_depth = task->lock_depth;
  3020. task->lock_depth = -1;
  3021. #endif
  3022. schedule();
  3023. #ifdef CONFIG_PREEMPT_BKL
  3024. task->lock_depth = saved_lock_depth;
  3025. #endif
  3026. sub_preempt_count(PREEMPT_ACTIVE);
  3027. /* we could miss a preemption opportunity between schedule and now */
  3028. barrier();
  3029. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3030. goto need_resched;
  3031. }
  3032. EXPORT_SYMBOL(preempt_schedule);
  3033. /*
  3034. * this is the entry point to schedule() from kernel preemption
  3035. * off of irq context.
  3036. * Note, that this is called and return with irqs disabled. This will
  3037. * protect us against recursive calling from irq.
  3038. */
  3039. asmlinkage void __sched preempt_schedule_irq(void)
  3040. {
  3041. struct thread_info *ti = current_thread_info();
  3042. #ifdef CONFIG_PREEMPT_BKL
  3043. struct task_struct *task = current;
  3044. int saved_lock_depth;
  3045. #endif
  3046. /* Catch callers which need to be fixed */
  3047. BUG_ON(ti->preempt_count || !irqs_disabled());
  3048. need_resched:
  3049. add_preempt_count(PREEMPT_ACTIVE);
  3050. /*
  3051. * We keep the big kernel semaphore locked, but we
  3052. * clear ->lock_depth so that schedule() doesnt
  3053. * auto-release the semaphore:
  3054. */
  3055. #ifdef CONFIG_PREEMPT_BKL
  3056. saved_lock_depth = task->lock_depth;
  3057. task->lock_depth = -1;
  3058. #endif
  3059. local_irq_enable();
  3060. schedule();
  3061. local_irq_disable();
  3062. #ifdef CONFIG_PREEMPT_BKL
  3063. task->lock_depth = saved_lock_depth;
  3064. #endif
  3065. sub_preempt_count(PREEMPT_ACTIVE);
  3066. /* we could miss a preemption opportunity between schedule and now */
  3067. barrier();
  3068. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  3069. goto need_resched;
  3070. }
  3071. #endif /* CONFIG_PREEMPT */
  3072. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  3073. void *key)
  3074. {
  3075. return try_to_wake_up(curr->private, mode, sync);
  3076. }
  3077. EXPORT_SYMBOL(default_wake_function);
  3078. /*
  3079. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  3080. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  3081. * number) then we wake all the non-exclusive tasks and one exclusive task.
  3082. *
  3083. * There are circumstances in which we can try to wake a task which has already
  3084. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  3085. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  3086. */
  3087. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  3088. int nr_exclusive, int sync, void *key)
  3089. {
  3090. struct list_head *tmp, *next;
  3091. list_for_each_safe(tmp, next, &q->task_list) {
  3092. wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
  3093. unsigned flags = curr->flags;
  3094. if (curr->func(curr, mode, sync, key) &&
  3095. (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
  3096. break;
  3097. }
  3098. }
  3099. /**
  3100. * __wake_up - wake up threads blocked on a waitqueue.
  3101. * @q: the waitqueue
  3102. * @mode: which threads
  3103. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3104. * @key: is directly passed to the wakeup function
  3105. */
  3106. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  3107. int nr_exclusive, void *key)
  3108. {
  3109. unsigned long flags;
  3110. spin_lock_irqsave(&q->lock, flags);
  3111. __wake_up_common(q, mode, nr_exclusive, 0, key);
  3112. spin_unlock_irqrestore(&q->lock, flags);
  3113. }
  3114. EXPORT_SYMBOL(__wake_up);
  3115. /*
  3116. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  3117. */
  3118. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  3119. {
  3120. __wake_up_common(q, mode, 1, 0, NULL);
  3121. }
  3122. /**
  3123. * __wake_up_sync - wake up threads blocked on a waitqueue.
  3124. * @q: the waitqueue
  3125. * @mode: which threads
  3126. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  3127. *
  3128. * The sync wakeup differs that the waker knows that it will schedule
  3129. * away soon, so while the target thread will be woken up, it will not
  3130. * be migrated to another CPU - ie. the two threads are 'synchronized'
  3131. * with each other. This can prevent needless bouncing between CPUs.
  3132. *
  3133. * On UP it can prevent extra preemption.
  3134. */
  3135. void fastcall
  3136. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  3137. {
  3138. unsigned long flags;
  3139. int sync = 1;
  3140. if (unlikely(!q))
  3141. return;
  3142. if (unlikely(!nr_exclusive))
  3143. sync = 0;
  3144. spin_lock_irqsave(&q->lock, flags);
  3145. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  3146. spin_unlock_irqrestore(&q->lock, flags);
  3147. }
  3148. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  3149. void fastcall complete(struct completion *x)
  3150. {
  3151. unsigned long flags;
  3152. spin_lock_irqsave(&x->wait.lock, flags);
  3153. x->done++;
  3154. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3155. 1, 0, NULL);
  3156. spin_unlock_irqrestore(&x->wait.lock, flags);
  3157. }
  3158. EXPORT_SYMBOL(complete);
  3159. void fastcall complete_all(struct completion *x)
  3160. {
  3161. unsigned long flags;
  3162. spin_lock_irqsave(&x->wait.lock, flags);
  3163. x->done += UINT_MAX/2;
  3164. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  3165. 0, 0, NULL);
  3166. spin_unlock_irqrestore(&x->wait.lock, flags);
  3167. }
  3168. EXPORT_SYMBOL(complete_all);
  3169. void fastcall __sched wait_for_completion(struct completion *x)
  3170. {
  3171. might_sleep();
  3172. spin_lock_irq(&x->wait.lock);
  3173. if (!x->done) {
  3174. DECLARE_WAITQUEUE(wait, current);
  3175. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3176. __add_wait_queue_tail(&x->wait, &wait);
  3177. do {
  3178. __set_current_state(TASK_UNINTERRUPTIBLE);
  3179. spin_unlock_irq(&x->wait.lock);
  3180. schedule();
  3181. spin_lock_irq(&x->wait.lock);
  3182. } while (!x->done);
  3183. __remove_wait_queue(&x->wait, &wait);
  3184. }
  3185. x->done--;
  3186. spin_unlock_irq(&x->wait.lock);
  3187. }
  3188. EXPORT_SYMBOL(wait_for_completion);
  3189. unsigned long fastcall __sched
  3190. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  3191. {
  3192. might_sleep();
  3193. spin_lock_irq(&x->wait.lock);
  3194. if (!x->done) {
  3195. DECLARE_WAITQUEUE(wait, current);
  3196. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3197. __add_wait_queue_tail(&x->wait, &wait);
  3198. do {
  3199. __set_current_state(TASK_UNINTERRUPTIBLE);
  3200. spin_unlock_irq(&x->wait.lock);
  3201. timeout = schedule_timeout(timeout);
  3202. spin_lock_irq(&x->wait.lock);
  3203. if (!timeout) {
  3204. __remove_wait_queue(&x->wait, &wait);
  3205. goto out;
  3206. }
  3207. } while (!x->done);
  3208. __remove_wait_queue(&x->wait, &wait);
  3209. }
  3210. x->done--;
  3211. out:
  3212. spin_unlock_irq(&x->wait.lock);
  3213. return timeout;
  3214. }
  3215. EXPORT_SYMBOL(wait_for_completion_timeout);
  3216. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3217. {
  3218. int ret = 0;
  3219. might_sleep();
  3220. spin_lock_irq(&x->wait.lock);
  3221. if (!x->done) {
  3222. DECLARE_WAITQUEUE(wait, current);
  3223. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3224. __add_wait_queue_tail(&x->wait, &wait);
  3225. do {
  3226. if (signal_pending(current)) {
  3227. ret = -ERESTARTSYS;
  3228. __remove_wait_queue(&x->wait, &wait);
  3229. goto out;
  3230. }
  3231. __set_current_state(TASK_INTERRUPTIBLE);
  3232. spin_unlock_irq(&x->wait.lock);
  3233. schedule();
  3234. spin_lock_irq(&x->wait.lock);
  3235. } while (!x->done);
  3236. __remove_wait_queue(&x->wait, &wait);
  3237. }
  3238. x->done--;
  3239. out:
  3240. spin_unlock_irq(&x->wait.lock);
  3241. return ret;
  3242. }
  3243. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3244. unsigned long fastcall __sched
  3245. wait_for_completion_interruptible_timeout(struct completion *x,
  3246. unsigned long timeout)
  3247. {
  3248. might_sleep();
  3249. spin_lock_irq(&x->wait.lock);
  3250. if (!x->done) {
  3251. DECLARE_WAITQUEUE(wait, current);
  3252. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3253. __add_wait_queue_tail(&x->wait, &wait);
  3254. do {
  3255. if (signal_pending(current)) {
  3256. timeout = -ERESTARTSYS;
  3257. __remove_wait_queue(&x->wait, &wait);
  3258. goto out;
  3259. }
  3260. __set_current_state(TASK_INTERRUPTIBLE);
  3261. spin_unlock_irq(&x->wait.lock);
  3262. timeout = schedule_timeout(timeout);
  3263. spin_lock_irq(&x->wait.lock);
  3264. if (!timeout) {
  3265. __remove_wait_queue(&x->wait, &wait);
  3266. goto out;
  3267. }
  3268. } while (!x->done);
  3269. __remove_wait_queue(&x->wait, &wait);
  3270. }
  3271. x->done--;
  3272. out:
  3273. spin_unlock_irq(&x->wait.lock);
  3274. return timeout;
  3275. }
  3276. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3277. #define SLEEP_ON_VAR \
  3278. unsigned long flags; \
  3279. wait_queue_t wait; \
  3280. init_waitqueue_entry(&wait, current);
  3281. #define SLEEP_ON_HEAD \
  3282. spin_lock_irqsave(&q->lock,flags); \
  3283. __add_wait_queue(q, &wait); \
  3284. spin_unlock(&q->lock);
  3285. #define SLEEP_ON_TAIL \
  3286. spin_lock_irq(&q->lock); \
  3287. __remove_wait_queue(q, &wait); \
  3288. spin_unlock_irqrestore(&q->lock, flags);
  3289. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3290. {
  3291. SLEEP_ON_VAR
  3292. current->state = TASK_INTERRUPTIBLE;
  3293. SLEEP_ON_HEAD
  3294. schedule();
  3295. SLEEP_ON_TAIL
  3296. }
  3297. EXPORT_SYMBOL(interruptible_sleep_on);
  3298. long fastcall __sched
  3299. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3300. {
  3301. SLEEP_ON_VAR
  3302. current->state = TASK_INTERRUPTIBLE;
  3303. SLEEP_ON_HEAD
  3304. timeout = schedule_timeout(timeout);
  3305. SLEEP_ON_TAIL
  3306. return timeout;
  3307. }
  3308. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3309. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3310. {
  3311. SLEEP_ON_VAR
  3312. current->state = TASK_UNINTERRUPTIBLE;
  3313. SLEEP_ON_HEAD
  3314. schedule();
  3315. SLEEP_ON_TAIL
  3316. }
  3317. EXPORT_SYMBOL(sleep_on);
  3318. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3319. {
  3320. SLEEP_ON_VAR
  3321. current->state = TASK_UNINTERRUPTIBLE;
  3322. SLEEP_ON_HEAD
  3323. timeout = schedule_timeout(timeout);
  3324. SLEEP_ON_TAIL
  3325. return timeout;
  3326. }
  3327. EXPORT_SYMBOL(sleep_on_timeout);
  3328. #ifdef CONFIG_RT_MUTEXES
  3329. /*
  3330. * rt_mutex_setprio - set the current priority of a task
  3331. * @p: task
  3332. * @prio: prio value (kernel-internal form)
  3333. *
  3334. * This function changes the 'effective' priority of a task. It does
  3335. * not touch ->normal_prio like __setscheduler().
  3336. *
  3337. * Used by the rt_mutex code to implement priority inheritance logic.
  3338. */
  3339. void rt_mutex_setprio(struct task_struct *p, int prio)
  3340. {
  3341. unsigned long flags;
  3342. int oldprio, on_rq;
  3343. struct rq *rq;
  3344. u64 now;
  3345. BUG_ON(prio < 0 || prio > MAX_PRIO);
  3346. rq = task_rq_lock(p, &flags);
  3347. now = rq_clock(rq);
  3348. oldprio = p->prio;
  3349. on_rq = p->se.on_rq;
  3350. if (on_rq)
  3351. dequeue_task(rq, p, 0, now);
  3352. if (rt_prio(prio))
  3353. p->sched_class = &rt_sched_class;
  3354. else
  3355. p->sched_class = &fair_sched_class;
  3356. p->prio = prio;
  3357. if (on_rq) {
  3358. enqueue_task(rq, p, 0, now);
  3359. /*
  3360. * Reschedule if we are currently running on this runqueue and
  3361. * our priority decreased, or if we are not currently running on
  3362. * this runqueue and our priority is higher than the current's
  3363. */
  3364. if (task_running(rq, p)) {
  3365. if (p->prio > oldprio)
  3366. resched_task(rq->curr);
  3367. } else {
  3368. check_preempt_curr(rq, p);
  3369. }
  3370. }
  3371. task_rq_unlock(rq, &flags);
  3372. }
  3373. #endif
  3374. void set_user_nice(struct task_struct *p, long nice)
  3375. {
  3376. int old_prio, delta, on_rq;
  3377. unsigned long flags;
  3378. struct rq *rq;
  3379. u64 now;
  3380. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3381. return;
  3382. /*
  3383. * We have to be careful, if called from sys_setpriority(),
  3384. * the task might be in the middle of scheduling on another CPU.
  3385. */
  3386. rq = task_rq_lock(p, &flags);
  3387. now = rq_clock(rq);
  3388. /*
  3389. * The RT priorities are set via sched_setscheduler(), but we still
  3390. * allow the 'normal' nice value to be set - but as expected
  3391. * it wont have any effect on scheduling until the task is
  3392. * SCHED_FIFO/SCHED_RR:
  3393. */
  3394. if (task_has_rt_policy(p)) {
  3395. p->static_prio = NICE_TO_PRIO(nice);
  3396. goto out_unlock;
  3397. }
  3398. on_rq = p->se.on_rq;
  3399. if (on_rq) {
  3400. dequeue_task(rq, p, 0, now);
  3401. dec_load(rq, p, now);
  3402. }
  3403. p->static_prio = NICE_TO_PRIO(nice);
  3404. set_load_weight(p);
  3405. old_prio = p->prio;
  3406. p->prio = effective_prio(p);
  3407. delta = p->prio - old_prio;
  3408. if (on_rq) {
  3409. enqueue_task(rq, p, 0, now);
  3410. inc_load(rq, p, now);
  3411. /*
  3412. * If the task increased its priority or is running and
  3413. * lowered its priority, then reschedule its CPU:
  3414. */
  3415. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3416. resched_task(rq->curr);
  3417. }
  3418. out_unlock:
  3419. task_rq_unlock(rq, &flags);
  3420. }
  3421. EXPORT_SYMBOL(set_user_nice);
  3422. /*
  3423. * can_nice - check if a task can reduce its nice value
  3424. * @p: task
  3425. * @nice: nice value
  3426. */
  3427. int can_nice(const struct task_struct *p, const int nice)
  3428. {
  3429. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3430. int nice_rlim = 20 - nice;
  3431. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3432. capable(CAP_SYS_NICE));
  3433. }
  3434. #ifdef __ARCH_WANT_SYS_NICE
  3435. /*
  3436. * sys_nice - change the priority of the current process.
  3437. * @increment: priority increment
  3438. *
  3439. * sys_setpriority is a more generic, but much slower function that
  3440. * does similar things.
  3441. */
  3442. asmlinkage long sys_nice(int increment)
  3443. {
  3444. long nice, retval;
  3445. /*
  3446. * Setpriority might change our priority at the same moment.
  3447. * We don't have to worry. Conceptually one call occurs first
  3448. * and we have a single winner.
  3449. */
  3450. if (increment < -40)
  3451. increment = -40;
  3452. if (increment > 40)
  3453. increment = 40;
  3454. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3455. if (nice < -20)
  3456. nice = -20;
  3457. if (nice > 19)
  3458. nice = 19;
  3459. if (increment < 0 && !can_nice(current, nice))
  3460. return -EPERM;
  3461. retval = security_task_setnice(current, nice);
  3462. if (retval)
  3463. return retval;
  3464. set_user_nice(current, nice);
  3465. return 0;
  3466. }
  3467. #endif
  3468. /**
  3469. * task_prio - return the priority value of a given task.
  3470. * @p: the task in question.
  3471. *
  3472. * This is the priority value as seen by users in /proc.
  3473. * RT tasks are offset by -200. Normal tasks are centered
  3474. * around 0, value goes from -16 to +15.
  3475. */
  3476. int task_prio(const struct task_struct *p)
  3477. {
  3478. return p->prio - MAX_RT_PRIO;
  3479. }
  3480. /**
  3481. * task_nice - return the nice value of a given task.
  3482. * @p: the task in question.
  3483. */
  3484. int task_nice(const struct task_struct *p)
  3485. {
  3486. return TASK_NICE(p);
  3487. }
  3488. EXPORT_SYMBOL_GPL(task_nice);
  3489. /**
  3490. * idle_cpu - is a given cpu idle currently?
  3491. * @cpu: the processor in question.
  3492. */
  3493. int idle_cpu(int cpu)
  3494. {
  3495. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3496. }
  3497. /**
  3498. * idle_task - return the idle task for a given cpu.
  3499. * @cpu: the processor in question.
  3500. */
  3501. struct task_struct *idle_task(int cpu)
  3502. {
  3503. return cpu_rq(cpu)->idle;
  3504. }
  3505. /**
  3506. * find_process_by_pid - find a process with a matching PID value.
  3507. * @pid: the pid in question.
  3508. */
  3509. static inline struct task_struct *find_process_by_pid(pid_t pid)
  3510. {
  3511. return pid ? find_task_by_pid(pid) : current;
  3512. }
  3513. /* Actually do priority change: must hold rq lock. */
  3514. static void
  3515. __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
  3516. {
  3517. BUG_ON(p->se.on_rq);
  3518. p->policy = policy;
  3519. switch (p->policy) {
  3520. case SCHED_NORMAL:
  3521. case SCHED_BATCH:
  3522. case SCHED_IDLE:
  3523. p->sched_class = &fair_sched_class;
  3524. break;
  3525. case SCHED_FIFO:
  3526. case SCHED_RR:
  3527. p->sched_class = &rt_sched_class;
  3528. break;
  3529. }
  3530. p->rt_priority = prio;
  3531. p->normal_prio = normal_prio(p);
  3532. /* we are holding p->pi_lock already */
  3533. p->prio = rt_mutex_getprio(p);
  3534. set_load_weight(p);
  3535. }
  3536. /**
  3537. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3538. * @p: the task in question.
  3539. * @policy: new policy.
  3540. * @param: structure containing the new RT priority.
  3541. *
  3542. * NOTE that the task may be already dead.
  3543. */
  3544. int sched_setscheduler(struct task_struct *p, int policy,
  3545. struct sched_param *param)
  3546. {
  3547. int retval, oldprio, oldpolicy = -1, on_rq;
  3548. unsigned long flags;
  3549. struct rq *rq;
  3550. /* may grab non-irq protected spin_locks */
  3551. BUG_ON(in_interrupt());
  3552. recheck:
  3553. /* double check policy once rq lock held */
  3554. if (policy < 0)
  3555. policy = oldpolicy = p->policy;
  3556. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3557. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  3558. policy != SCHED_IDLE)
  3559. return -EINVAL;
  3560. /*
  3561. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3562. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3563. * SCHED_BATCH and SCHED_IDLE is 0.
  3564. */
  3565. if (param->sched_priority < 0 ||
  3566. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3567. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3568. return -EINVAL;
  3569. if (rt_policy(policy) != (param->sched_priority != 0))
  3570. return -EINVAL;
  3571. /*
  3572. * Allow unprivileged RT tasks to decrease priority:
  3573. */
  3574. if (!capable(CAP_SYS_NICE)) {
  3575. if (rt_policy(policy)) {
  3576. unsigned long rlim_rtprio;
  3577. if (!lock_task_sighand(p, &flags))
  3578. return -ESRCH;
  3579. rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
  3580. unlock_task_sighand(p, &flags);
  3581. /* can't set/change the rt policy */
  3582. if (policy != p->policy && !rlim_rtprio)
  3583. return -EPERM;
  3584. /* can't increase priority */
  3585. if (param->sched_priority > p->rt_priority &&
  3586. param->sched_priority > rlim_rtprio)
  3587. return -EPERM;
  3588. }
  3589. /*
  3590. * Like positive nice levels, dont allow tasks to
  3591. * move out of SCHED_IDLE either:
  3592. */
  3593. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
  3594. return -EPERM;
  3595. /* can't change other user's priorities */
  3596. if ((current->euid != p->euid) &&
  3597. (current->euid != p->uid))
  3598. return -EPERM;
  3599. }
  3600. retval = security_task_setscheduler(p, policy, param);
  3601. if (retval)
  3602. return retval;
  3603. /*
  3604. * make sure no PI-waiters arrive (or leave) while we are
  3605. * changing the priority of the task:
  3606. */
  3607. spin_lock_irqsave(&p->pi_lock, flags);
  3608. /*
  3609. * To be able to change p->policy safely, the apropriate
  3610. * runqueue lock must be held.
  3611. */
  3612. rq = __task_rq_lock(p);
  3613. /* recheck policy now with rq lock held */
  3614. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3615. policy = oldpolicy = -1;
  3616. __task_rq_unlock(rq);
  3617. spin_unlock_irqrestore(&p->pi_lock, flags);
  3618. goto recheck;
  3619. }
  3620. on_rq = p->se.on_rq;
  3621. if (on_rq)
  3622. deactivate_task(rq, p, 0);
  3623. oldprio = p->prio;
  3624. __setscheduler(rq, p, policy, param->sched_priority);
  3625. if (on_rq) {
  3626. activate_task(rq, p, 0);
  3627. /*
  3628. * Reschedule if we are currently running on this runqueue and
  3629. * our priority decreased, or if we are not currently running on
  3630. * this runqueue and our priority is higher than the current's
  3631. */
  3632. if (task_running(rq, p)) {
  3633. if (p->prio > oldprio)
  3634. resched_task(rq->curr);
  3635. } else {
  3636. check_preempt_curr(rq, p);
  3637. }
  3638. }
  3639. __task_rq_unlock(rq);
  3640. spin_unlock_irqrestore(&p->pi_lock, flags);
  3641. rt_mutex_adjust_pi(p);
  3642. return 0;
  3643. }
  3644. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3645. static int
  3646. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3647. {
  3648. struct sched_param lparam;
  3649. struct task_struct *p;
  3650. int retval;
  3651. if (!param || pid < 0)
  3652. return -EINVAL;
  3653. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3654. return -EFAULT;
  3655. rcu_read_lock();
  3656. retval = -ESRCH;
  3657. p = find_process_by_pid(pid);
  3658. if (p != NULL)
  3659. retval = sched_setscheduler(p, policy, &lparam);
  3660. rcu_read_unlock();
  3661. return retval;
  3662. }
  3663. /**
  3664. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3665. * @pid: the pid in question.
  3666. * @policy: new policy.
  3667. * @param: structure containing the new RT priority.
  3668. */
  3669. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3670. struct sched_param __user *param)
  3671. {
  3672. /* negative values for policy are not valid */
  3673. if (policy < 0)
  3674. return -EINVAL;
  3675. return do_sched_setscheduler(pid, policy, param);
  3676. }
  3677. /**
  3678. * sys_sched_setparam - set/change the RT priority of a thread
  3679. * @pid: the pid in question.
  3680. * @param: structure containing the new RT priority.
  3681. */
  3682. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3683. {
  3684. return do_sched_setscheduler(pid, -1, param);
  3685. }
  3686. /**
  3687. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3688. * @pid: the pid in question.
  3689. */
  3690. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3691. {
  3692. struct task_struct *p;
  3693. int retval = -EINVAL;
  3694. if (pid < 0)
  3695. goto out_nounlock;
  3696. retval = -ESRCH;
  3697. read_lock(&tasklist_lock);
  3698. p = find_process_by_pid(pid);
  3699. if (p) {
  3700. retval = security_task_getscheduler(p);
  3701. if (!retval)
  3702. retval = p->policy;
  3703. }
  3704. read_unlock(&tasklist_lock);
  3705. out_nounlock:
  3706. return retval;
  3707. }
  3708. /**
  3709. * sys_sched_getscheduler - get the RT priority of a thread
  3710. * @pid: the pid in question.
  3711. * @param: structure containing the RT priority.
  3712. */
  3713. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3714. {
  3715. struct sched_param lp;
  3716. struct task_struct *p;
  3717. int retval = -EINVAL;
  3718. if (!param || pid < 0)
  3719. goto out_nounlock;
  3720. read_lock(&tasklist_lock);
  3721. p = find_process_by_pid(pid);
  3722. retval = -ESRCH;
  3723. if (!p)
  3724. goto out_unlock;
  3725. retval = security_task_getscheduler(p);
  3726. if (retval)
  3727. goto out_unlock;
  3728. lp.sched_priority = p->rt_priority;
  3729. read_unlock(&tasklist_lock);
  3730. /*
  3731. * This one might sleep, we cannot do it with a spinlock held ...
  3732. */
  3733. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3734. out_nounlock:
  3735. return retval;
  3736. out_unlock:
  3737. read_unlock(&tasklist_lock);
  3738. return retval;
  3739. }
  3740. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3741. {
  3742. cpumask_t cpus_allowed;
  3743. struct task_struct *p;
  3744. int retval;
  3745. mutex_lock(&sched_hotcpu_mutex);
  3746. read_lock(&tasklist_lock);
  3747. p = find_process_by_pid(pid);
  3748. if (!p) {
  3749. read_unlock(&tasklist_lock);
  3750. mutex_unlock(&sched_hotcpu_mutex);
  3751. return -ESRCH;
  3752. }
  3753. /*
  3754. * It is not safe to call set_cpus_allowed with the
  3755. * tasklist_lock held. We will bump the task_struct's
  3756. * usage count and then drop tasklist_lock.
  3757. */
  3758. get_task_struct(p);
  3759. read_unlock(&tasklist_lock);
  3760. retval = -EPERM;
  3761. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3762. !capable(CAP_SYS_NICE))
  3763. goto out_unlock;
  3764. retval = security_task_setscheduler(p, 0, NULL);
  3765. if (retval)
  3766. goto out_unlock;
  3767. cpus_allowed = cpuset_cpus_allowed(p);
  3768. cpus_and(new_mask, new_mask, cpus_allowed);
  3769. retval = set_cpus_allowed(p, new_mask);
  3770. out_unlock:
  3771. put_task_struct(p);
  3772. mutex_unlock(&sched_hotcpu_mutex);
  3773. return retval;
  3774. }
  3775. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3776. cpumask_t *new_mask)
  3777. {
  3778. if (len < sizeof(cpumask_t)) {
  3779. memset(new_mask, 0, sizeof(cpumask_t));
  3780. } else if (len > sizeof(cpumask_t)) {
  3781. len = sizeof(cpumask_t);
  3782. }
  3783. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3784. }
  3785. /**
  3786. * sys_sched_setaffinity - set the cpu affinity of a process
  3787. * @pid: pid of the process
  3788. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3789. * @user_mask_ptr: user-space pointer to the new cpu mask
  3790. */
  3791. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3792. unsigned long __user *user_mask_ptr)
  3793. {
  3794. cpumask_t new_mask;
  3795. int retval;
  3796. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3797. if (retval)
  3798. return retval;
  3799. return sched_setaffinity(pid, new_mask);
  3800. }
  3801. /*
  3802. * Represents all cpu's present in the system
  3803. * In systems capable of hotplug, this map could dynamically grow
  3804. * as new cpu's are detected in the system via any platform specific
  3805. * method, such as ACPI for e.g.
  3806. */
  3807. cpumask_t cpu_present_map __read_mostly;
  3808. EXPORT_SYMBOL(cpu_present_map);
  3809. #ifndef CONFIG_SMP
  3810. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3811. EXPORT_SYMBOL(cpu_online_map);
  3812. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3813. EXPORT_SYMBOL(cpu_possible_map);
  3814. #endif
  3815. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3816. {
  3817. struct task_struct *p;
  3818. int retval;
  3819. mutex_lock(&sched_hotcpu_mutex);
  3820. read_lock(&tasklist_lock);
  3821. retval = -ESRCH;
  3822. p = find_process_by_pid(pid);
  3823. if (!p)
  3824. goto out_unlock;
  3825. retval = security_task_getscheduler(p);
  3826. if (retval)
  3827. goto out_unlock;
  3828. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3829. out_unlock:
  3830. read_unlock(&tasklist_lock);
  3831. mutex_unlock(&sched_hotcpu_mutex);
  3832. if (retval)
  3833. return retval;
  3834. return 0;
  3835. }
  3836. /**
  3837. * sys_sched_getaffinity - get the cpu affinity of a process
  3838. * @pid: pid of the process
  3839. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3840. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3841. */
  3842. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3843. unsigned long __user *user_mask_ptr)
  3844. {
  3845. int ret;
  3846. cpumask_t mask;
  3847. if (len < sizeof(cpumask_t))
  3848. return -EINVAL;
  3849. ret = sched_getaffinity(pid, &mask);
  3850. if (ret < 0)
  3851. return ret;
  3852. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3853. return -EFAULT;
  3854. return sizeof(cpumask_t);
  3855. }
  3856. /**
  3857. * sys_sched_yield - yield the current processor to other threads.
  3858. *
  3859. * This function yields the current CPU to other tasks. If there are no
  3860. * other threads running on this CPU then this function will return.
  3861. */
  3862. asmlinkage long sys_sched_yield(void)
  3863. {
  3864. struct rq *rq = this_rq_lock();
  3865. schedstat_inc(rq, yld_cnt);
  3866. if (unlikely(rq->nr_running == 1))
  3867. schedstat_inc(rq, yld_act_empty);
  3868. else
  3869. current->sched_class->yield_task(rq, current);
  3870. /*
  3871. * Since we are going to call schedule() anyway, there's
  3872. * no need to preempt or enable interrupts:
  3873. */
  3874. __release(rq->lock);
  3875. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3876. _raw_spin_unlock(&rq->lock);
  3877. preempt_enable_no_resched();
  3878. schedule();
  3879. return 0;
  3880. }
  3881. static void __cond_resched(void)
  3882. {
  3883. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3884. __might_sleep(__FILE__, __LINE__);
  3885. #endif
  3886. /*
  3887. * The BKS might be reacquired before we have dropped
  3888. * PREEMPT_ACTIVE, which could trigger a second
  3889. * cond_resched() call.
  3890. */
  3891. do {
  3892. add_preempt_count(PREEMPT_ACTIVE);
  3893. schedule();
  3894. sub_preempt_count(PREEMPT_ACTIVE);
  3895. } while (need_resched());
  3896. }
  3897. int __sched cond_resched(void)
  3898. {
  3899. if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
  3900. system_state == SYSTEM_RUNNING) {
  3901. __cond_resched();
  3902. return 1;
  3903. }
  3904. return 0;
  3905. }
  3906. EXPORT_SYMBOL(cond_resched);
  3907. /*
  3908. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3909. * call schedule, and on return reacquire the lock.
  3910. *
  3911. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3912. * operations here to prevent schedule() from being called twice (once via
  3913. * spin_unlock(), once by hand).
  3914. */
  3915. int cond_resched_lock(spinlock_t *lock)
  3916. {
  3917. int ret = 0;
  3918. if (need_lockbreak(lock)) {
  3919. spin_unlock(lock);
  3920. cpu_relax();
  3921. ret = 1;
  3922. spin_lock(lock);
  3923. }
  3924. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3925. spin_release(&lock->dep_map, 1, _THIS_IP_);
  3926. _raw_spin_unlock(lock);
  3927. preempt_enable_no_resched();
  3928. __cond_resched();
  3929. ret = 1;
  3930. spin_lock(lock);
  3931. }
  3932. return ret;
  3933. }
  3934. EXPORT_SYMBOL(cond_resched_lock);
  3935. int __sched cond_resched_softirq(void)
  3936. {
  3937. BUG_ON(!in_softirq());
  3938. if (need_resched() && system_state == SYSTEM_RUNNING) {
  3939. local_bh_enable();
  3940. __cond_resched();
  3941. local_bh_disable();
  3942. return 1;
  3943. }
  3944. return 0;
  3945. }
  3946. EXPORT_SYMBOL(cond_resched_softirq);
  3947. /**
  3948. * yield - yield the current processor to other threads.
  3949. *
  3950. * This is a shortcut for kernel-space yielding - it marks the
  3951. * thread runnable and calls sys_sched_yield().
  3952. */
  3953. void __sched yield(void)
  3954. {
  3955. set_current_state(TASK_RUNNING);
  3956. sys_sched_yield();
  3957. }
  3958. EXPORT_SYMBOL(yield);
  3959. /*
  3960. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3961. * that process accounting knows that this is a task in IO wait state.
  3962. *
  3963. * But don't do that if it is a deliberate, throttling IO wait (this task
  3964. * has set its backing_dev_info: the queue against which it should throttle)
  3965. */
  3966. void __sched io_schedule(void)
  3967. {
  3968. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3969. delayacct_blkio_start();
  3970. atomic_inc(&rq->nr_iowait);
  3971. schedule();
  3972. atomic_dec(&rq->nr_iowait);
  3973. delayacct_blkio_end();
  3974. }
  3975. EXPORT_SYMBOL(io_schedule);
  3976. long __sched io_schedule_timeout(long timeout)
  3977. {
  3978. struct rq *rq = &__raw_get_cpu_var(runqueues);
  3979. long ret;
  3980. delayacct_blkio_start();
  3981. atomic_inc(&rq->nr_iowait);
  3982. ret = schedule_timeout(timeout);
  3983. atomic_dec(&rq->nr_iowait);
  3984. delayacct_blkio_end();
  3985. return ret;
  3986. }
  3987. /**
  3988. * sys_sched_get_priority_max - return maximum RT priority.
  3989. * @policy: scheduling class.
  3990. *
  3991. * this syscall returns the maximum rt_priority that can be used
  3992. * by a given scheduling class.
  3993. */
  3994. asmlinkage long sys_sched_get_priority_max(int policy)
  3995. {
  3996. int ret = -EINVAL;
  3997. switch (policy) {
  3998. case SCHED_FIFO:
  3999. case SCHED_RR:
  4000. ret = MAX_USER_RT_PRIO-1;
  4001. break;
  4002. case SCHED_NORMAL:
  4003. case SCHED_BATCH:
  4004. case SCHED_IDLE:
  4005. ret = 0;
  4006. break;
  4007. }
  4008. return ret;
  4009. }
  4010. /**
  4011. * sys_sched_get_priority_min - return minimum RT priority.
  4012. * @policy: scheduling class.
  4013. *
  4014. * this syscall returns the minimum rt_priority that can be used
  4015. * by a given scheduling class.
  4016. */
  4017. asmlinkage long sys_sched_get_priority_min(int policy)
  4018. {
  4019. int ret = -EINVAL;
  4020. switch (policy) {
  4021. case SCHED_FIFO:
  4022. case SCHED_RR:
  4023. ret = 1;
  4024. break;
  4025. case SCHED_NORMAL:
  4026. case SCHED_BATCH:
  4027. case SCHED_IDLE:
  4028. ret = 0;
  4029. }
  4030. return ret;
  4031. }
  4032. /**
  4033. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4034. * @pid: pid of the process.
  4035. * @interval: userspace pointer to the timeslice value.
  4036. *
  4037. * this syscall writes the default timeslice value of a given process
  4038. * into the user-space timespec buffer. A value of '0' means infinity.
  4039. */
  4040. asmlinkage
  4041. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  4042. {
  4043. struct task_struct *p;
  4044. int retval = -EINVAL;
  4045. struct timespec t;
  4046. if (pid < 0)
  4047. goto out_nounlock;
  4048. retval = -ESRCH;
  4049. read_lock(&tasklist_lock);
  4050. p = find_process_by_pid(pid);
  4051. if (!p)
  4052. goto out_unlock;
  4053. retval = security_task_getscheduler(p);
  4054. if (retval)
  4055. goto out_unlock;
  4056. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  4057. 0 : static_prio_timeslice(p->static_prio), &t);
  4058. read_unlock(&tasklist_lock);
  4059. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4060. out_nounlock:
  4061. return retval;
  4062. out_unlock:
  4063. read_unlock(&tasklist_lock);
  4064. return retval;
  4065. }
  4066. static const char stat_nam[] = "RSDTtZX";
  4067. static void show_task(struct task_struct *p)
  4068. {
  4069. unsigned long free = 0;
  4070. unsigned state;
  4071. state = p->state ? __ffs(p->state) + 1 : 0;
  4072. printk("%-13.13s %c", p->comm,
  4073. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4074. #if (BITS_PER_LONG == 32)
  4075. if (state == TASK_RUNNING)
  4076. printk(" running ");
  4077. else
  4078. printk(" %08lX ", thread_saved_pc(p));
  4079. #else
  4080. if (state == TASK_RUNNING)
  4081. printk(" running task ");
  4082. else
  4083. printk(" %016lx ", thread_saved_pc(p));
  4084. #endif
  4085. #ifdef CONFIG_DEBUG_STACK_USAGE
  4086. {
  4087. unsigned long *n = end_of_stack(p);
  4088. while (!*n)
  4089. n++;
  4090. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  4091. }
  4092. #endif
  4093. printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
  4094. if (!p->mm)
  4095. printk(" (L-TLB)\n");
  4096. else
  4097. printk(" (NOTLB)\n");
  4098. if (state != TASK_RUNNING)
  4099. show_stack(p, NULL);
  4100. }
  4101. void show_state_filter(unsigned long state_filter)
  4102. {
  4103. struct task_struct *g, *p;
  4104. #if (BITS_PER_LONG == 32)
  4105. printk("\n"
  4106. " free sibling\n");
  4107. printk(" task PC stack pid father child younger older\n");
  4108. #else
  4109. printk("\n"
  4110. " free sibling\n");
  4111. printk(" task PC stack pid father child younger older\n");
  4112. #endif
  4113. read_lock(&tasklist_lock);
  4114. do_each_thread(g, p) {
  4115. /*
  4116. * reset the NMI-timeout, listing all files on a slow
  4117. * console might take alot of time:
  4118. */
  4119. touch_nmi_watchdog();
  4120. if (!state_filter || (p->state & state_filter))
  4121. show_task(p);
  4122. } while_each_thread(g, p);
  4123. touch_all_softlockup_watchdogs();
  4124. #ifdef CONFIG_SCHED_DEBUG
  4125. sysrq_sched_debug_show();
  4126. #endif
  4127. read_unlock(&tasklist_lock);
  4128. /*
  4129. * Only show locks if all tasks are dumped:
  4130. */
  4131. if (state_filter == -1)
  4132. debug_show_all_locks();
  4133. }
  4134. void __cpuinit init_idle_bootup_task(struct task_struct *idle)
  4135. {
  4136. idle->sched_class = &idle_sched_class;
  4137. }
  4138. /**
  4139. * init_idle - set up an idle thread for a given CPU
  4140. * @idle: task in question
  4141. * @cpu: cpu the idle task belongs to
  4142. *
  4143. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4144. * flag, to make booting more robust.
  4145. */
  4146. void __cpuinit init_idle(struct task_struct *idle, int cpu)
  4147. {
  4148. struct rq *rq = cpu_rq(cpu);
  4149. unsigned long flags;
  4150. __sched_fork(idle);
  4151. idle->se.exec_start = sched_clock();
  4152. idle->prio = idle->normal_prio = MAX_PRIO;
  4153. idle->cpus_allowed = cpumask_of_cpu(cpu);
  4154. __set_task_cpu(idle, cpu);
  4155. spin_lock_irqsave(&rq->lock, flags);
  4156. rq->curr = rq->idle = idle;
  4157. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  4158. idle->oncpu = 1;
  4159. #endif
  4160. spin_unlock_irqrestore(&rq->lock, flags);
  4161. /* Set the preempt count _outside_ the spinlocks! */
  4162. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  4163. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  4164. #else
  4165. task_thread_info(idle)->preempt_count = 0;
  4166. #endif
  4167. /*
  4168. * The idle tasks have their own, simple scheduling class:
  4169. */
  4170. idle->sched_class = &idle_sched_class;
  4171. }
  4172. /*
  4173. * In a system that switches off the HZ timer nohz_cpu_mask
  4174. * indicates which cpus entered this state. This is used
  4175. * in the rcu update to wait only for active cpus. For system
  4176. * which do not switch off the HZ timer nohz_cpu_mask should
  4177. * always be CPU_MASK_NONE.
  4178. */
  4179. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  4180. /*
  4181. * Increase the granularity value when there are more CPUs,
  4182. * because with more CPUs the 'effective latency' as visible
  4183. * to users decreases. But the relationship is not linear,
  4184. * so pick a second-best guess by going with the log2 of the
  4185. * number of CPUs.
  4186. *
  4187. * This idea comes from the SD scheduler of Con Kolivas:
  4188. */
  4189. static inline void sched_init_granularity(void)
  4190. {
  4191. unsigned int factor = 1 + ilog2(num_online_cpus());
  4192. const unsigned long gran_limit = 10000000;
  4193. sysctl_sched_granularity *= factor;
  4194. if (sysctl_sched_granularity > gran_limit)
  4195. sysctl_sched_granularity = gran_limit;
  4196. sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
  4197. sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
  4198. }
  4199. #ifdef CONFIG_SMP
  4200. /*
  4201. * This is how migration works:
  4202. *
  4203. * 1) we queue a struct migration_req structure in the source CPU's
  4204. * runqueue and wake up that CPU's migration thread.
  4205. * 2) we down() the locked semaphore => thread blocks.
  4206. * 3) migration thread wakes up (implicitly it forces the migrated
  4207. * thread off the CPU)
  4208. * 4) it gets the migration request and checks whether the migrated
  4209. * task is still in the wrong runqueue.
  4210. * 5) if it's in the wrong runqueue then the migration thread removes
  4211. * it and puts it into the right queue.
  4212. * 6) migration thread up()s the semaphore.
  4213. * 7) we wake up and the migration is done.
  4214. */
  4215. /*
  4216. * Change a given task's CPU affinity. Migrate the thread to a
  4217. * proper CPU and schedule it away if the CPU it's executing on
  4218. * is removed from the allowed bitmask.
  4219. *
  4220. * NOTE: the caller must have a valid reference to the task, the
  4221. * task must not exit() & deallocate itself prematurely. The
  4222. * call is not atomic; no spinlocks may be held.
  4223. */
  4224. int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
  4225. {
  4226. struct migration_req req;
  4227. unsigned long flags;
  4228. struct rq *rq;
  4229. int ret = 0;
  4230. rq = task_rq_lock(p, &flags);
  4231. if (!cpus_intersects(new_mask, cpu_online_map)) {
  4232. ret = -EINVAL;
  4233. goto out;
  4234. }
  4235. p->cpus_allowed = new_mask;
  4236. /* Can the task run on the task's current CPU? If so, we're done */
  4237. if (cpu_isset(task_cpu(p), new_mask))
  4238. goto out;
  4239. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  4240. /* Need help from migration thread: drop lock and wait. */
  4241. task_rq_unlock(rq, &flags);
  4242. wake_up_process(rq->migration_thread);
  4243. wait_for_completion(&req.done);
  4244. tlb_migrate_finish(p->mm);
  4245. return 0;
  4246. }
  4247. out:
  4248. task_rq_unlock(rq, &flags);
  4249. return ret;
  4250. }
  4251. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  4252. /*
  4253. * Move (not current) task off this cpu, onto dest cpu. We're doing
  4254. * this because either it can't run here any more (set_cpus_allowed()
  4255. * away from this CPU, or CPU going down), or because we're
  4256. * attempting to rebalance this task on exec (sched_exec).
  4257. *
  4258. * So we race with normal scheduler movements, but that's OK, as long
  4259. * as the task is no longer on this CPU.
  4260. *
  4261. * Returns non-zero if task was successfully migrated.
  4262. */
  4263. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4264. {
  4265. struct rq *rq_dest, *rq_src;
  4266. int ret = 0, on_rq;
  4267. if (unlikely(cpu_is_offline(dest_cpu)))
  4268. return ret;
  4269. rq_src = cpu_rq(src_cpu);
  4270. rq_dest = cpu_rq(dest_cpu);
  4271. double_rq_lock(rq_src, rq_dest);
  4272. /* Already moved. */
  4273. if (task_cpu(p) != src_cpu)
  4274. goto out;
  4275. /* Affinity changed (again). */
  4276. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4277. goto out;
  4278. on_rq = p->se.on_rq;
  4279. if (on_rq)
  4280. deactivate_task(rq_src, p, 0);
  4281. set_task_cpu(p, dest_cpu);
  4282. if (on_rq) {
  4283. activate_task(rq_dest, p, 0);
  4284. check_preempt_curr(rq_dest, p);
  4285. }
  4286. ret = 1;
  4287. out:
  4288. double_rq_unlock(rq_src, rq_dest);
  4289. return ret;
  4290. }
  4291. /*
  4292. * migration_thread - this is a highprio system thread that performs
  4293. * thread migration by bumping thread off CPU then 'pushing' onto
  4294. * another runqueue.
  4295. */
  4296. static int migration_thread(void *data)
  4297. {
  4298. int cpu = (long)data;
  4299. struct rq *rq;
  4300. rq = cpu_rq(cpu);
  4301. BUG_ON(rq->migration_thread != current);
  4302. set_current_state(TASK_INTERRUPTIBLE);
  4303. while (!kthread_should_stop()) {
  4304. struct migration_req *req;
  4305. struct list_head *head;
  4306. try_to_freeze();
  4307. spin_lock_irq(&rq->lock);
  4308. if (cpu_is_offline(cpu)) {
  4309. spin_unlock_irq(&rq->lock);
  4310. goto wait_to_die;
  4311. }
  4312. if (rq->active_balance) {
  4313. active_load_balance(rq, cpu);
  4314. rq->active_balance = 0;
  4315. }
  4316. head = &rq->migration_queue;
  4317. if (list_empty(head)) {
  4318. spin_unlock_irq(&rq->lock);
  4319. schedule();
  4320. set_current_state(TASK_INTERRUPTIBLE);
  4321. continue;
  4322. }
  4323. req = list_entry(head->next, struct migration_req, list);
  4324. list_del_init(head->next);
  4325. spin_unlock(&rq->lock);
  4326. __migrate_task(req->task, cpu, req->dest_cpu);
  4327. local_irq_enable();
  4328. complete(&req->done);
  4329. }
  4330. __set_current_state(TASK_RUNNING);
  4331. return 0;
  4332. wait_to_die:
  4333. /* Wait for kthread_stop */
  4334. set_current_state(TASK_INTERRUPTIBLE);
  4335. while (!kthread_should_stop()) {
  4336. schedule();
  4337. set_current_state(TASK_INTERRUPTIBLE);
  4338. }
  4339. __set_current_state(TASK_RUNNING);
  4340. return 0;
  4341. }
  4342. #ifdef CONFIG_HOTPLUG_CPU
  4343. /*
  4344. * Figure out where task on dead CPU should go, use force if neccessary.
  4345. * NOTE: interrupts should be disabled by the caller
  4346. */
  4347. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
  4348. {
  4349. unsigned long flags;
  4350. cpumask_t mask;
  4351. struct rq *rq;
  4352. int dest_cpu;
  4353. restart:
  4354. /* On same node? */
  4355. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4356. cpus_and(mask, mask, p->cpus_allowed);
  4357. dest_cpu = any_online_cpu(mask);
  4358. /* On any allowed CPU? */
  4359. if (dest_cpu == NR_CPUS)
  4360. dest_cpu = any_online_cpu(p->cpus_allowed);
  4361. /* No more Mr. Nice Guy. */
  4362. if (dest_cpu == NR_CPUS) {
  4363. rq = task_rq_lock(p, &flags);
  4364. cpus_setall(p->cpus_allowed);
  4365. dest_cpu = any_online_cpu(p->cpus_allowed);
  4366. task_rq_unlock(rq, &flags);
  4367. /*
  4368. * Don't tell them about moving exiting tasks or
  4369. * kernel threads (both mm NULL), since they never
  4370. * leave kernel.
  4371. */
  4372. if (p->mm && printk_ratelimit())
  4373. printk(KERN_INFO "process %d (%s) no "
  4374. "longer affine to cpu%d\n",
  4375. p->pid, p->comm, dead_cpu);
  4376. }
  4377. if (!__migrate_task(p, dead_cpu, dest_cpu))
  4378. goto restart;
  4379. }
  4380. /*
  4381. * While a dead CPU has no uninterruptible tasks queued at this point,
  4382. * it might still have a nonzero ->nr_uninterruptible counter, because
  4383. * for performance reasons the counter is not stricly tracking tasks to
  4384. * their home CPUs. So we just add the counter to another CPU's counter,
  4385. * to keep the global sum constant after CPU-down:
  4386. */
  4387. static void migrate_nr_uninterruptible(struct rq *rq_src)
  4388. {
  4389. struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4390. unsigned long flags;
  4391. local_irq_save(flags);
  4392. double_rq_lock(rq_src, rq_dest);
  4393. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4394. rq_src->nr_uninterruptible = 0;
  4395. double_rq_unlock(rq_src, rq_dest);
  4396. local_irq_restore(flags);
  4397. }
  4398. /* Run through task list and migrate tasks from the dead cpu. */
  4399. static void migrate_live_tasks(int src_cpu)
  4400. {
  4401. struct task_struct *p, *t;
  4402. write_lock_irq(&tasklist_lock);
  4403. do_each_thread(t, p) {
  4404. if (p == current)
  4405. continue;
  4406. if (task_cpu(p) == src_cpu)
  4407. move_task_off_dead_cpu(src_cpu, p);
  4408. } while_each_thread(t, p);
  4409. write_unlock_irq(&tasklist_lock);
  4410. }
  4411. /*
  4412. * Schedules idle task to be the next runnable task on current CPU.
  4413. * It does so by boosting its priority to highest possible and adding it to
  4414. * the _front_ of the runqueue. Used by CPU offline code.
  4415. */
  4416. void sched_idle_next(void)
  4417. {
  4418. int this_cpu = smp_processor_id();
  4419. struct rq *rq = cpu_rq(this_cpu);
  4420. struct task_struct *p = rq->idle;
  4421. unsigned long flags;
  4422. /* cpu has to be offline */
  4423. BUG_ON(cpu_online(this_cpu));
  4424. /*
  4425. * Strictly not necessary since rest of the CPUs are stopped by now
  4426. * and interrupts disabled on the current cpu.
  4427. */
  4428. spin_lock_irqsave(&rq->lock, flags);
  4429. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4430. /* Add idle task to the _front_ of its priority queue: */
  4431. activate_idle_task(p, rq);
  4432. spin_unlock_irqrestore(&rq->lock, flags);
  4433. }
  4434. /*
  4435. * Ensures that the idle task is using init_mm right before its cpu goes
  4436. * offline.
  4437. */
  4438. void idle_task_exit(void)
  4439. {
  4440. struct mm_struct *mm = current->active_mm;
  4441. BUG_ON(cpu_online(smp_processor_id()));
  4442. if (mm != &init_mm)
  4443. switch_mm(mm, &init_mm, current);
  4444. mmdrop(mm);
  4445. }
  4446. /* called under rq->lock with disabled interrupts */
  4447. static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
  4448. {
  4449. struct rq *rq = cpu_rq(dead_cpu);
  4450. /* Must be exiting, otherwise would be on tasklist. */
  4451. BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
  4452. /* Cannot have done final schedule yet: would have vanished. */
  4453. BUG_ON(p->state == TASK_DEAD);
  4454. get_task_struct(p);
  4455. /*
  4456. * Drop lock around migration; if someone else moves it,
  4457. * that's OK. No task can be added to this CPU, so iteration is
  4458. * fine.
  4459. * NOTE: interrupts should be left disabled --dev@
  4460. */
  4461. spin_unlock(&rq->lock);
  4462. move_task_off_dead_cpu(dead_cpu, p);
  4463. spin_lock(&rq->lock);
  4464. put_task_struct(p);
  4465. }
  4466. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4467. static void migrate_dead_tasks(unsigned int dead_cpu)
  4468. {
  4469. struct rq *rq = cpu_rq(dead_cpu);
  4470. struct task_struct *next;
  4471. for ( ; ; ) {
  4472. if (!rq->nr_running)
  4473. break;
  4474. next = pick_next_task(rq, rq->curr, rq_clock(rq));
  4475. if (!next)
  4476. break;
  4477. migrate_dead(dead_cpu, next);
  4478. }
  4479. }
  4480. #endif /* CONFIG_HOTPLUG_CPU */
  4481. /*
  4482. * migration_call - callback that gets triggered when a CPU is added.
  4483. * Here we can start up the necessary migration thread for the new CPU.
  4484. */
  4485. static int __cpuinit
  4486. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4487. {
  4488. struct task_struct *p;
  4489. int cpu = (long)hcpu;
  4490. unsigned long flags;
  4491. struct rq *rq;
  4492. switch (action) {
  4493. case CPU_LOCK_ACQUIRE:
  4494. mutex_lock(&sched_hotcpu_mutex);
  4495. break;
  4496. case CPU_UP_PREPARE:
  4497. case CPU_UP_PREPARE_FROZEN:
  4498. p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
  4499. if (IS_ERR(p))
  4500. return NOTIFY_BAD;
  4501. p->flags |= PF_NOFREEZE;
  4502. kthread_bind(p, cpu);
  4503. /* Must be high prio: stop_machine expects to yield to it. */
  4504. rq = task_rq_lock(p, &flags);
  4505. __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
  4506. task_rq_unlock(rq, &flags);
  4507. cpu_rq(cpu)->migration_thread = p;
  4508. break;
  4509. case CPU_ONLINE:
  4510. case CPU_ONLINE_FROZEN:
  4511. /* Strictly unneccessary, as first user will wake it. */
  4512. wake_up_process(cpu_rq(cpu)->migration_thread);
  4513. break;
  4514. #ifdef CONFIG_HOTPLUG_CPU
  4515. case CPU_UP_CANCELED:
  4516. case CPU_UP_CANCELED_FROZEN:
  4517. if (!cpu_rq(cpu)->migration_thread)
  4518. break;
  4519. /* Unbind it from offline cpu so it can run. Fall thru. */
  4520. kthread_bind(cpu_rq(cpu)->migration_thread,
  4521. any_online_cpu(cpu_online_map));
  4522. kthread_stop(cpu_rq(cpu)->migration_thread);
  4523. cpu_rq(cpu)->migration_thread = NULL;
  4524. break;
  4525. case CPU_DEAD:
  4526. case CPU_DEAD_FROZEN:
  4527. migrate_live_tasks(cpu);
  4528. rq = cpu_rq(cpu);
  4529. kthread_stop(rq->migration_thread);
  4530. rq->migration_thread = NULL;
  4531. /* Idle task back to normal (off runqueue, low prio) */
  4532. rq = task_rq_lock(rq->idle, &flags);
  4533. deactivate_task(rq, rq->idle, 0);
  4534. rq->idle->static_prio = MAX_PRIO;
  4535. __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
  4536. rq->idle->sched_class = &idle_sched_class;
  4537. migrate_dead_tasks(cpu);
  4538. task_rq_unlock(rq, &flags);
  4539. migrate_nr_uninterruptible(rq);
  4540. BUG_ON(rq->nr_running != 0);
  4541. /* No need to migrate the tasks: it was best-effort if
  4542. * they didn't take sched_hotcpu_mutex. Just wake up
  4543. * the requestors. */
  4544. spin_lock_irq(&rq->lock);
  4545. while (!list_empty(&rq->migration_queue)) {
  4546. struct migration_req *req;
  4547. req = list_entry(rq->migration_queue.next,
  4548. struct migration_req, list);
  4549. list_del_init(&req->list);
  4550. complete(&req->done);
  4551. }
  4552. spin_unlock_irq(&rq->lock);
  4553. break;
  4554. #endif
  4555. case CPU_LOCK_RELEASE:
  4556. mutex_unlock(&sched_hotcpu_mutex);
  4557. break;
  4558. }
  4559. return NOTIFY_OK;
  4560. }
  4561. /* Register at highest priority so that task migration (migrate_all_tasks)
  4562. * happens before everything else.
  4563. */
  4564. static struct notifier_block __cpuinitdata migration_notifier = {
  4565. .notifier_call = migration_call,
  4566. .priority = 10
  4567. };
  4568. int __init migration_init(void)
  4569. {
  4570. void *cpu = (void *)(long)smp_processor_id();
  4571. int err;
  4572. /* Start one for the boot CPU: */
  4573. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4574. BUG_ON(err == NOTIFY_BAD);
  4575. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4576. register_cpu_notifier(&migration_notifier);
  4577. return 0;
  4578. }
  4579. #endif
  4580. #ifdef CONFIG_SMP
  4581. /* Number of possible processor ids */
  4582. int nr_cpu_ids __read_mostly = NR_CPUS;
  4583. EXPORT_SYMBOL(nr_cpu_ids);
  4584. #undef SCHED_DOMAIN_DEBUG
  4585. #ifdef SCHED_DOMAIN_DEBUG
  4586. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4587. {
  4588. int level = 0;
  4589. if (!sd) {
  4590. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4591. return;
  4592. }
  4593. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4594. do {
  4595. int i;
  4596. char str[NR_CPUS];
  4597. struct sched_group *group = sd->groups;
  4598. cpumask_t groupmask;
  4599. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4600. cpus_clear(groupmask);
  4601. printk(KERN_DEBUG);
  4602. for (i = 0; i < level + 1; i++)
  4603. printk(" ");
  4604. printk("domain %d: ", level);
  4605. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4606. printk("does not load-balance\n");
  4607. if (sd->parent)
  4608. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4609. " has parent");
  4610. break;
  4611. }
  4612. printk("span %s\n", str);
  4613. if (!cpu_isset(cpu, sd->span))
  4614. printk(KERN_ERR "ERROR: domain->span does not contain "
  4615. "CPU%d\n", cpu);
  4616. if (!cpu_isset(cpu, group->cpumask))
  4617. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4618. " CPU%d\n", cpu);
  4619. printk(KERN_DEBUG);
  4620. for (i = 0; i < level + 2; i++)
  4621. printk(" ");
  4622. printk("groups:");
  4623. do {
  4624. if (!group) {
  4625. printk("\n");
  4626. printk(KERN_ERR "ERROR: group is NULL\n");
  4627. break;
  4628. }
  4629. if (!group->__cpu_power) {
  4630. printk("\n");
  4631. printk(KERN_ERR "ERROR: domain->cpu_power not "
  4632. "set\n");
  4633. }
  4634. if (!cpus_weight(group->cpumask)) {
  4635. printk("\n");
  4636. printk(KERN_ERR "ERROR: empty group\n");
  4637. }
  4638. if (cpus_intersects(groupmask, group->cpumask)) {
  4639. printk("\n");
  4640. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4641. }
  4642. cpus_or(groupmask, groupmask, group->cpumask);
  4643. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4644. printk(" %s", str);
  4645. group = group->next;
  4646. } while (group != sd->groups);
  4647. printk("\n");
  4648. if (!cpus_equal(sd->span, groupmask))
  4649. printk(KERN_ERR "ERROR: groups don't span "
  4650. "domain->span\n");
  4651. level++;
  4652. sd = sd->parent;
  4653. if (!sd)
  4654. continue;
  4655. if (!cpus_subset(groupmask, sd->span))
  4656. printk(KERN_ERR "ERROR: parent span is not a superset "
  4657. "of domain->span\n");
  4658. } while (sd);
  4659. }
  4660. #else
  4661. # define sched_domain_debug(sd, cpu) do { } while (0)
  4662. #endif
  4663. static int sd_degenerate(struct sched_domain *sd)
  4664. {
  4665. if (cpus_weight(sd->span) == 1)
  4666. return 1;
  4667. /* Following flags need at least 2 groups */
  4668. if (sd->flags & (SD_LOAD_BALANCE |
  4669. SD_BALANCE_NEWIDLE |
  4670. SD_BALANCE_FORK |
  4671. SD_BALANCE_EXEC |
  4672. SD_SHARE_CPUPOWER |
  4673. SD_SHARE_PKG_RESOURCES)) {
  4674. if (sd->groups != sd->groups->next)
  4675. return 0;
  4676. }
  4677. /* Following flags don't use groups */
  4678. if (sd->flags & (SD_WAKE_IDLE |
  4679. SD_WAKE_AFFINE |
  4680. SD_WAKE_BALANCE))
  4681. return 0;
  4682. return 1;
  4683. }
  4684. static int
  4685. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4686. {
  4687. unsigned long cflags = sd->flags, pflags = parent->flags;
  4688. if (sd_degenerate(parent))
  4689. return 1;
  4690. if (!cpus_equal(sd->span, parent->span))
  4691. return 0;
  4692. /* Does parent contain flags not in child? */
  4693. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4694. if (cflags & SD_WAKE_AFFINE)
  4695. pflags &= ~SD_WAKE_BALANCE;
  4696. /* Flags needing groups don't count if only 1 group in parent */
  4697. if (parent->groups == parent->groups->next) {
  4698. pflags &= ~(SD_LOAD_BALANCE |
  4699. SD_BALANCE_NEWIDLE |
  4700. SD_BALANCE_FORK |
  4701. SD_BALANCE_EXEC |
  4702. SD_SHARE_CPUPOWER |
  4703. SD_SHARE_PKG_RESOURCES);
  4704. }
  4705. if (~cflags & pflags)
  4706. return 0;
  4707. return 1;
  4708. }
  4709. /*
  4710. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4711. * hold the hotplug lock.
  4712. */
  4713. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4714. {
  4715. struct rq *rq = cpu_rq(cpu);
  4716. struct sched_domain *tmp;
  4717. /* Remove the sched domains which do not contribute to scheduling. */
  4718. for (tmp = sd; tmp; tmp = tmp->parent) {
  4719. struct sched_domain *parent = tmp->parent;
  4720. if (!parent)
  4721. break;
  4722. if (sd_parent_degenerate(tmp, parent)) {
  4723. tmp->parent = parent->parent;
  4724. if (parent->parent)
  4725. parent->parent->child = tmp;
  4726. }
  4727. }
  4728. if (sd && sd_degenerate(sd)) {
  4729. sd = sd->parent;
  4730. if (sd)
  4731. sd->child = NULL;
  4732. }
  4733. sched_domain_debug(sd, cpu);
  4734. rcu_assign_pointer(rq->sd, sd);
  4735. }
  4736. /* cpus with isolated domains */
  4737. static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
  4738. /* Setup the mask of cpus configured for isolated domains */
  4739. static int __init isolated_cpu_setup(char *str)
  4740. {
  4741. int ints[NR_CPUS], i;
  4742. str = get_options(str, ARRAY_SIZE(ints), ints);
  4743. cpus_clear(cpu_isolated_map);
  4744. for (i = 1; i <= ints[0]; i++)
  4745. if (ints[i] < NR_CPUS)
  4746. cpu_set(ints[i], cpu_isolated_map);
  4747. return 1;
  4748. }
  4749. __setup ("isolcpus=", isolated_cpu_setup);
  4750. /*
  4751. * init_sched_build_groups takes the cpumask we wish to span, and a pointer
  4752. * to a function which identifies what group(along with sched group) a CPU
  4753. * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
  4754. * (due to the fact that we keep track of groups covered with a cpumask_t).
  4755. *
  4756. * init_sched_build_groups will build a circular linked list of the groups
  4757. * covered by the given span, and will set each group's ->cpumask correctly,
  4758. * and ->cpu_power to 0.
  4759. */
  4760. static void
  4761. init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
  4762. int (*group_fn)(int cpu, const cpumask_t *cpu_map,
  4763. struct sched_group **sg))
  4764. {
  4765. struct sched_group *first = NULL, *last = NULL;
  4766. cpumask_t covered = CPU_MASK_NONE;
  4767. int i;
  4768. for_each_cpu_mask(i, span) {
  4769. struct sched_group *sg;
  4770. int group = group_fn(i, cpu_map, &sg);
  4771. int j;
  4772. if (cpu_isset(i, covered))
  4773. continue;
  4774. sg->cpumask = CPU_MASK_NONE;
  4775. sg->__cpu_power = 0;
  4776. for_each_cpu_mask(j, span) {
  4777. if (group_fn(j, cpu_map, NULL) != group)
  4778. continue;
  4779. cpu_set(j, covered);
  4780. cpu_set(j, sg->cpumask);
  4781. }
  4782. if (!first)
  4783. first = sg;
  4784. if (last)
  4785. last->next = sg;
  4786. last = sg;
  4787. }
  4788. last->next = first;
  4789. }
  4790. #define SD_NODES_PER_DOMAIN 16
  4791. #ifdef CONFIG_NUMA
  4792. /**
  4793. * find_next_best_node - find the next node to include in a sched_domain
  4794. * @node: node whose sched_domain we're building
  4795. * @used_nodes: nodes already in the sched_domain
  4796. *
  4797. * Find the next node to include in a given scheduling domain. Simply
  4798. * finds the closest node not already in the @used_nodes map.
  4799. *
  4800. * Should use nodemask_t.
  4801. */
  4802. static int find_next_best_node(int node, unsigned long *used_nodes)
  4803. {
  4804. int i, n, val, min_val, best_node = 0;
  4805. min_val = INT_MAX;
  4806. for (i = 0; i < MAX_NUMNODES; i++) {
  4807. /* Start at @node */
  4808. n = (node + i) % MAX_NUMNODES;
  4809. if (!nr_cpus_node(n))
  4810. continue;
  4811. /* Skip already used nodes */
  4812. if (test_bit(n, used_nodes))
  4813. continue;
  4814. /* Simple min distance search */
  4815. val = node_distance(node, n);
  4816. if (val < min_val) {
  4817. min_val = val;
  4818. best_node = n;
  4819. }
  4820. }
  4821. set_bit(best_node, used_nodes);
  4822. return best_node;
  4823. }
  4824. /**
  4825. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4826. * @node: node whose cpumask we're constructing
  4827. * @size: number of nodes to include in this span
  4828. *
  4829. * Given a node, construct a good cpumask for its sched_domain to span. It
  4830. * should be one that prevents unnecessary balancing, but also spreads tasks
  4831. * out optimally.
  4832. */
  4833. static cpumask_t sched_domain_node_span(int node)
  4834. {
  4835. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4836. cpumask_t span, nodemask;
  4837. int i;
  4838. cpus_clear(span);
  4839. bitmap_zero(used_nodes, MAX_NUMNODES);
  4840. nodemask = node_to_cpumask(node);
  4841. cpus_or(span, span, nodemask);
  4842. set_bit(node, used_nodes);
  4843. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4844. int next_node = find_next_best_node(node, used_nodes);
  4845. nodemask = node_to_cpumask(next_node);
  4846. cpus_or(span, span, nodemask);
  4847. }
  4848. return span;
  4849. }
  4850. #endif
  4851. int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
  4852. /*
  4853. * SMT sched-domains:
  4854. */
  4855. #ifdef CONFIG_SCHED_SMT
  4856. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4857. static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
  4858. static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
  4859. struct sched_group **sg)
  4860. {
  4861. if (sg)
  4862. *sg = &per_cpu(sched_group_cpus, cpu);
  4863. return cpu;
  4864. }
  4865. #endif
  4866. /*
  4867. * multi-core sched-domains:
  4868. */
  4869. #ifdef CONFIG_SCHED_MC
  4870. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4871. static DEFINE_PER_CPU(struct sched_group, sched_group_core);
  4872. #endif
  4873. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4874. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4875. struct sched_group **sg)
  4876. {
  4877. int group;
  4878. cpumask_t mask = cpu_sibling_map[cpu];
  4879. cpus_and(mask, mask, *cpu_map);
  4880. group = first_cpu(mask);
  4881. if (sg)
  4882. *sg = &per_cpu(sched_group_core, group);
  4883. return group;
  4884. }
  4885. #elif defined(CONFIG_SCHED_MC)
  4886. static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
  4887. struct sched_group **sg)
  4888. {
  4889. if (sg)
  4890. *sg = &per_cpu(sched_group_core, cpu);
  4891. return cpu;
  4892. }
  4893. #endif
  4894. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  4895. static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
  4896. static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
  4897. struct sched_group **sg)
  4898. {
  4899. int group;
  4900. #ifdef CONFIG_SCHED_MC
  4901. cpumask_t mask = cpu_coregroup_map(cpu);
  4902. cpus_and(mask, mask, *cpu_map);
  4903. group = first_cpu(mask);
  4904. #elif defined(CONFIG_SCHED_SMT)
  4905. cpumask_t mask = cpu_sibling_map[cpu];
  4906. cpus_and(mask, mask, *cpu_map);
  4907. group = first_cpu(mask);
  4908. #else
  4909. group = cpu;
  4910. #endif
  4911. if (sg)
  4912. *sg = &per_cpu(sched_group_phys, group);
  4913. return group;
  4914. }
  4915. #ifdef CONFIG_NUMA
  4916. /*
  4917. * The init_sched_build_groups can't handle what we want to do with node
  4918. * groups, so roll our own. Now each node has its own list of groups which
  4919. * gets dynamically allocated.
  4920. */
  4921. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  4922. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  4923. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  4924. static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
  4925. static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
  4926. struct sched_group **sg)
  4927. {
  4928. cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
  4929. int group;
  4930. cpus_and(nodemask, nodemask, *cpu_map);
  4931. group = first_cpu(nodemask);
  4932. if (sg)
  4933. *sg = &per_cpu(sched_group_allnodes, group);
  4934. return group;
  4935. }
  4936. static void init_numa_sched_groups_power(struct sched_group *group_head)
  4937. {
  4938. struct sched_group *sg = group_head;
  4939. int j;
  4940. if (!sg)
  4941. return;
  4942. next_sg:
  4943. for_each_cpu_mask(j, sg->cpumask) {
  4944. struct sched_domain *sd;
  4945. sd = &per_cpu(phys_domains, j);
  4946. if (j != first_cpu(sd->groups->cpumask)) {
  4947. /*
  4948. * Only add "power" once for each
  4949. * physical package.
  4950. */
  4951. continue;
  4952. }
  4953. sg_inc_cpu_power(sg, sd->groups->__cpu_power);
  4954. }
  4955. sg = sg->next;
  4956. if (sg != group_head)
  4957. goto next_sg;
  4958. }
  4959. #endif
  4960. #ifdef CONFIG_NUMA
  4961. /* Free memory allocated for various sched_group structures */
  4962. static void free_sched_groups(const cpumask_t *cpu_map)
  4963. {
  4964. int cpu, i;
  4965. for_each_cpu_mask(cpu, *cpu_map) {
  4966. struct sched_group **sched_group_nodes
  4967. = sched_group_nodes_bycpu[cpu];
  4968. if (!sched_group_nodes)
  4969. continue;
  4970. for (i = 0; i < MAX_NUMNODES; i++) {
  4971. cpumask_t nodemask = node_to_cpumask(i);
  4972. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  4973. cpus_and(nodemask, nodemask, *cpu_map);
  4974. if (cpus_empty(nodemask))
  4975. continue;
  4976. if (sg == NULL)
  4977. continue;
  4978. sg = sg->next;
  4979. next_sg:
  4980. oldsg = sg;
  4981. sg = sg->next;
  4982. kfree(oldsg);
  4983. if (oldsg != sched_group_nodes[i])
  4984. goto next_sg;
  4985. }
  4986. kfree(sched_group_nodes);
  4987. sched_group_nodes_bycpu[cpu] = NULL;
  4988. }
  4989. }
  4990. #else
  4991. static void free_sched_groups(const cpumask_t *cpu_map)
  4992. {
  4993. }
  4994. #endif
  4995. /*
  4996. * Initialize sched groups cpu_power.
  4997. *
  4998. * cpu_power indicates the capacity of sched group, which is used while
  4999. * distributing the load between different sched groups in a sched domain.
  5000. * Typically cpu_power for all the groups in a sched domain will be same unless
  5001. * there are asymmetries in the topology. If there are asymmetries, group
  5002. * having more cpu_power will pickup more load compared to the group having
  5003. * less cpu_power.
  5004. *
  5005. * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
  5006. * the maximum number of tasks a group can handle in the presence of other idle
  5007. * or lightly loaded groups in the same sched domain.
  5008. */
  5009. static void init_sched_groups_power(int cpu, struct sched_domain *sd)
  5010. {
  5011. struct sched_domain *child;
  5012. struct sched_group *group;
  5013. WARN_ON(!sd || !sd->groups);
  5014. if (cpu != first_cpu(sd->groups->cpumask))
  5015. return;
  5016. child = sd->child;
  5017. sd->groups->__cpu_power = 0;
  5018. /*
  5019. * For perf policy, if the groups in child domain share resources
  5020. * (for example cores sharing some portions of the cache hierarchy
  5021. * or SMT), then set this domain groups cpu_power such that each group
  5022. * can handle only one task, when there are other idle groups in the
  5023. * same sched domain.
  5024. */
  5025. if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
  5026. (child->flags &
  5027. (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
  5028. sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
  5029. return;
  5030. }
  5031. /*
  5032. * add cpu_power of each child group to this groups cpu_power
  5033. */
  5034. group = child->groups;
  5035. do {
  5036. sg_inc_cpu_power(sd->groups, group->__cpu_power);
  5037. group = group->next;
  5038. } while (group != child->groups);
  5039. }
  5040. /*
  5041. * Build sched domains for a given set of cpus and attach the sched domains
  5042. * to the individual cpus
  5043. */
  5044. static int build_sched_domains(const cpumask_t *cpu_map)
  5045. {
  5046. int i;
  5047. #ifdef CONFIG_NUMA
  5048. struct sched_group **sched_group_nodes = NULL;
  5049. int sd_allnodes = 0;
  5050. /*
  5051. * Allocate the per-node list of sched groups
  5052. */
  5053. sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
  5054. GFP_KERNEL);
  5055. if (!sched_group_nodes) {
  5056. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5057. return -ENOMEM;
  5058. }
  5059. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5060. #endif
  5061. /*
  5062. * Set up domains for cpus specified by the cpu_map.
  5063. */
  5064. for_each_cpu_mask(i, *cpu_map) {
  5065. struct sched_domain *sd = NULL, *p;
  5066. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5067. cpus_and(nodemask, nodemask, *cpu_map);
  5068. #ifdef CONFIG_NUMA
  5069. if (cpus_weight(*cpu_map) >
  5070. SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5071. sd = &per_cpu(allnodes_domains, i);
  5072. *sd = SD_ALLNODES_INIT;
  5073. sd->span = *cpu_map;
  5074. cpu_to_allnodes_group(i, cpu_map, &sd->groups);
  5075. p = sd;
  5076. sd_allnodes = 1;
  5077. } else
  5078. p = NULL;
  5079. sd = &per_cpu(node_domains, i);
  5080. *sd = SD_NODE_INIT;
  5081. sd->span = sched_domain_node_span(cpu_to_node(i));
  5082. sd->parent = p;
  5083. if (p)
  5084. p->child = sd;
  5085. cpus_and(sd->span, sd->span, *cpu_map);
  5086. #endif
  5087. p = sd;
  5088. sd = &per_cpu(phys_domains, i);
  5089. *sd = SD_CPU_INIT;
  5090. sd->span = nodemask;
  5091. sd->parent = p;
  5092. if (p)
  5093. p->child = sd;
  5094. cpu_to_phys_group(i, cpu_map, &sd->groups);
  5095. #ifdef CONFIG_SCHED_MC
  5096. p = sd;
  5097. sd = &per_cpu(core_domains, i);
  5098. *sd = SD_MC_INIT;
  5099. sd->span = cpu_coregroup_map(i);
  5100. cpus_and(sd->span, sd->span, *cpu_map);
  5101. sd->parent = p;
  5102. p->child = sd;
  5103. cpu_to_core_group(i, cpu_map, &sd->groups);
  5104. #endif
  5105. #ifdef CONFIG_SCHED_SMT
  5106. p = sd;
  5107. sd = &per_cpu(cpu_domains, i);
  5108. *sd = SD_SIBLING_INIT;
  5109. sd->span = cpu_sibling_map[i];
  5110. cpus_and(sd->span, sd->span, *cpu_map);
  5111. sd->parent = p;
  5112. p->child = sd;
  5113. cpu_to_cpu_group(i, cpu_map, &sd->groups);
  5114. #endif
  5115. }
  5116. #ifdef CONFIG_SCHED_SMT
  5117. /* Set up CPU (sibling) groups */
  5118. for_each_cpu_mask(i, *cpu_map) {
  5119. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5120. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5121. if (i != first_cpu(this_sibling_map))
  5122. continue;
  5123. init_sched_build_groups(this_sibling_map, cpu_map,
  5124. &cpu_to_cpu_group);
  5125. }
  5126. #endif
  5127. #ifdef CONFIG_SCHED_MC
  5128. /* Set up multi-core groups */
  5129. for_each_cpu_mask(i, *cpu_map) {
  5130. cpumask_t this_core_map = cpu_coregroup_map(i);
  5131. cpus_and(this_core_map, this_core_map, *cpu_map);
  5132. if (i != first_cpu(this_core_map))
  5133. continue;
  5134. init_sched_build_groups(this_core_map, cpu_map,
  5135. &cpu_to_core_group);
  5136. }
  5137. #endif
  5138. /* Set up physical groups */
  5139. for (i = 0; i < MAX_NUMNODES; i++) {
  5140. cpumask_t nodemask = node_to_cpumask(i);
  5141. cpus_and(nodemask, nodemask, *cpu_map);
  5142. if (cpus_empty(nodemask))
  5143. continue;
  5144. init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
  5145. }
  5146. #ifdef CONFIG_NUMA
  5147. /* Set up node groups */
  5148. if (sd_allnodes)
  5149. init_sched_build_groups(*cpu_map, cpu_map,
  5150. &cpu_to_allnodes_group);
  5151. for (i = 0; i < MAX_NUMNODES; i++) {
  5152. /* Set up node groups */
  5153. struct sched_group *sg, *prev;
  5154. cpumask_t nodemask = node_to_cpumask(i);
  5155. cpumask_t domainspan;
  5156. cpumask_t covered = CPU_MASK_NONE;
  5157. int j;
  5158. cpus_and(nodemask, nodemask, *cpu_map);
  5159. if (cpus_empty(nodemask)) {
  5160. sched_group_nodes[i] = NULL;
  5161. continue;
  5162. }
  5163. domainspan = sched_domain_node_span(i);
  5164. cpus_and(domainspan, domainspan, *cpu_map);
  5165. sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
  5166. if (!sg) {
  5167. printk(KERN_WARNING "Can not alloc domain group for "
  5168. "node %d\n", i);
  5169. goto error;
  5170. }
  5171. sched_group_nodes[i] = sg;
  5172. for_each_cpu_mask(j, nodemask) {
  5173. struct sched_domain *sd;
  5174. sd = &per_cpu(node_domains, j);
  5175. sd->groups = sg;
  5176. }
  5177. sg->__cpu_power = 0;
  5178. sg->cpumask = nodemask;
  5179. sg->next = sg;
  5180. cpus_or(covered, covered, nodemask);
  5181. prev = sg;
  5182. for (j = 0; j < MAX_NUMNODES; j++) {
  5183. cpumask_t tmp, notcovered;
  5184. int n = (i + j) % MAX_NUMNODES;
  5185. cpus_complement(notcovered, covered);
  5186. cpus_and(tmp, notcovered, *cpu_map);
  5187. cpus_and(tmp, tmp, domainspan);
  5188. if (cpus_empty(tmp))
  5189. break;
  5190. nodemask = node_to_cpumask(n);
  5191. cpus_and(tmp, tmp, nodemask);
  5192. if (cpus_empty(tmp))
  5193. continue;
  5194. sg = kmalloc_node(sizeof(struct sched_group),
  5195. GFP_KERNEL, i);
  5196. if (!sg) {
  5197. printk(KERN_WARNING
  5198. "Can not alloc domain group for node %d\n", j);
  5199. goto error;
  5200. }
  5201. sg->__cpu_power = 0;
  5202. sg->cpumask = tmp;
  5203. sg->next = prev->next;
  5204. cpus_or(covered, covered, tmp);
  5205. prev->next = sg;
  5206. prev = sg;
  5207. }
  5208. }
  5209. #endif
  5210. /* Calculate CPU power for physical packages and nodes */
  5211. #ifdef CONFIG_SCHED_SMT
  5212. for_each_cpu_mask(i, *cpu_map) {
  5213. struct sched_domain *sd = &per_cpu(cpu_domains, i);
  5214. init_sched_groups_power(i, sd);
  5215. }
  5216. #endif
  5217. #ifdef CONFIG_SCHED_MC
  5218. for_each_cpu_mask(i, *cpu_map) {
  5219. struct sched_domain *sd = &per_cpu(core_domains, i);
  5220. init_sched_groups_power(i, sd);
  5221. }
  5222. #endif
  5223. for_each_cpu_mask(i, *cpu_map) {
  5224. struct sched_domain *sd = &per_cpu(phys_domains, i);
  5225. init_sched_groups_power(i, sd);
  5226. }
  5227. #ifdef CONFIG_NUMA
  5228. for (i = 0; i < MAX_NUMNODES; i++)
  5229. init_numa_sched_groups_power(sched_group_nodes[i]);
  5230. if (sd_allnodes) {
  5231. struct sched_group *sg;
  5232. cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
  5233. init_numa_sched_groups_power(sg);
  5234. }
  5235. #endif
  5236. /* Attach the domains */
  5237. for_each_cpu_mask(i, *cpu_map) {
  5238. struct sched_domain *sd;
  5239. #ifdef CONFIG_SCHED_SMT
  5240. sd = &per_cpu(cpu_domains, i);
  5241. #elif defined(CONFIG_SCHED_MC)
  5242. sd = &per_cpu(core_domains, i);
  5243. #else
  5244. sd = &per_cpu(phys_domains, i);
  5245. #endif
  5246. cpu_attach_domain(sd, i);
  5247. }
  5248. return 0;
  5249. #ifdef CONFIG_NUMA
  5250. error:
  5251. free_sched_groups(cpu_map);
  5252. return -ENOMEM;
  5253. #endif
  5254. }
  5255. /*
  5256. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5257. */
  5258. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5259. {
  5260. cpumask_t cpu_default_map;
  5261. int err;
  5262. /*
  5263. * Setup mask for cpus without special case scheduling requirements.
  5264. * For now this just excludes isolated cpus, but could be used to
  5265. * exclude other special cases in the future.
  5266. */
  5267. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5268. err = build_sched_domains(&cpu_default_map);
  5269. return err;
  5270. }
  5271. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5272. {
  5273. free_sched_groups(cpu_map);
  5274. }
  5275. /*
  5276. * Detach sched domains from a group of cpus specified in cpu_map
  5277. * These cpus will now be attached to the NULL domain
  5278. */
  5279. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5280. {
  5281. int i;
  5282. for_each_cpu_mask(i, *cpu_map)
  5283. cpu_attach_domain(NULL, i);
  5284. synchronize_sched();
  5285. arch_destroy_sched_domains(cpu_map);
  5286. }
  5287. /*
  5288. * Partition sched domains as specified by the cpumasks below.
  5289. * This attaches all cpus from the cpumasks to the NULL domain,
  5290. * waits for a RCU quiescent period, recalculates sched
  5291. * domain information and then attaches them back to the
  5292. * correct sched domains
  5293. * Call with hotplug lock held
  5294. */
  5295. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5296. {
  5297. cpumask_t change_map;
  5298. int err = 0;
  5299. cpus_and(*partition1, *partition1, cpu_online_map);
  5300. cpus_and(*partition2, *partition2, cpu_online_map);
  5301. cpus_or(change_map, *partition1, *partition2);
  5302. /* Detach sched domains from all of the affected cpus */
  5303. detach_destroy_domains(&change_map);
  5304. if (!cpus_empty(*partition1))
  5305. err = build_sched_domains(partition1);
  5306. if (!err && !cpus_empty(*partition2))
  5307. err = build_sched_domains(partition2);
  5308. return err;
  5309. }
  5310. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  5311. int arch_reinit_sched_domains(void)
  5312. {
  5313. int err;
  5314. mutex_lock(&sched_hotcpu_mutex);
  5315. detach_destroy_domains(&cpu_online_map);
  5316. err = arch_init_sched_domains(&cpu_online_map);
  5317. mutex_unlock(&sched_hotcpu_mutex);
  5318. return err;
  5319. }
  5320. static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
  5321. {
  5322. int ret;
  5323. if (buf[0] != '0' && buf[0] != '1')
  5324. return -EINVAL;
  5325. if (smt)
  5326. sched_smt_power_savings = (buf[0] == '1');
  5327. else
  5328. sched_mc_power_savings = (buf[0] == '1');
  5329. ret = arch_reinit_sched_domains();
  5330. return ret ? ret : count;
  5331. }
  5332. int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
  5333. {
  5334. int err = 0;
  5335. #ifdef CONFIG_SCHED_SMT
  5336. if (smt_capable())
  5337. err = sysfs_create_file(&cls->kset.kobj,
  5338. &attr_sched_smt_power_savings.attr);
  5339. #endif
  5340. #ifdef CONFIG_SCHED_MC
  5341. if (!err && mc_capable())
  5342. err = sysfs_create_file(&cls->kset.kobj,
  5343. &attr_sched_mc_power_savings.attr);
  5344. #endif
  5345. return err;
  5346. }
  5347. #endif
  5348. #ifdef CONFIG_SCHED_MC
  5349. static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
  5350. {
  5351. return sprintf(page, "%u\n", sched_mc_power_savings);
  5352. }
  5353. static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
  5354. const char *buf, size_t count)
  5355. {
  5356. return sched_power_savings_store(buf, count, 0);
  5357. }
  5358. SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
  5359. sched_mc_power_savings_store);
  5360. #endif
  5361. #ifdef CONFIG_SCHED_SMT
  5362. static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
  5363. {
  5364. return sprintf(page, "%u\n", sched_smt_power_savings);
  5365. }
  5366. static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
  5367. const char *buf, size_t count)
  5368. {
  5369. return sched_power_savings_store(buf, count, 1);
  5370. }
  5371. SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
  5372. sched_smt_power_savings_store);
  5373. #endif
  5374. /*
  5375. * Force a reinitialization of the sched domains hierarchy. The domains
  5376. * and groups cannot be updated in place without racing with the balancing
  5377. * code, so we temporarily attach all running cpus to the NULL domain
  5378. * which will prevent rebalancing while the sched domains are recalculated.
  5379. */
  5380. static int update_sched_domains(struct notifier_block *nfb,
  5381. unsigned long action, void *hcpu)
  5382. {
  5383. switch (action) {
  5384. case CPU_UP_PREPARE:
  5385. case CPU_UP_PREPARE_FROZEN:
  5386. case CPU_DOWN_PREPARE:
  5387. case CPU_DOWN_PREPARE_FROZEN:
  5388. detach_destroy_domains(&cpu_online_map);
  5389. return NOTIFY_OK;
  5390. case CPU_UP_CANCELED:
  5391. case CPU_UP_CANCELED_FROZEN:
  5392. case CPU_DOWN_FAILED:
  5393. case CPU_DOWN_FAILED_FROZEN:
  5394. case CPU_ONLINE:
  5395. case CPU_ONLINE_FROZEN:
  5396. case CPU_DEAD:
  5397. case CPU_DEAD_FROZEN:
  5398. /*
  5399. * Fall through and re-initialise the domains.
  5400. */
  5401. break;
  5402. default:
  5403. return NOTIFY_DONE;
  5404. }
  5405. /* The hotplug lock is already held by cpu_up/cpu_down */
  5406. arch_init_sched_domains(&cpu_online_map);
  5407. return NOTIFY_OK;
  5408. }
  5409. void __init sched_init_smp(void)
  5410. {
  5411. cpumask_t non_isolated_cpus;
  5412. mutex_lock(&sched_hotcpu_mutex);
  5413. arch_init_sched_domains(&cpu_online_map);
  5414. cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
  5415. if (cpus_empty(non_isolated_cpus))
  5416. cpu_set(smp_processor_id(), non_isolated_cpus);
  5417. mutex_unlock(&sched_hotcpu_mutex);
  5418. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5419. hotcpu_notifier(update_sched_domains, 0);
  5420. /* Move init over to a non-isolated CPU */
  5421. if (set_cpus_allowed(current, non_isolated_cpus) < 0)
  5422. BUG();
  5423. sched_init_granularity();
  5424. }
  5425. #else
  5426. void __init sched_init_smp(void)
  5427. {
  5428. sched_init_granularity();
  5429. }
  5430. #endif /* CONFIG_SMP */
  5431. int in_sched_functions(unsigned long addr)
  5432. {
  5433. /* Linker adds these: start and end of __sched functions */
  5434. extern char __sched_text_start[], __sched_text_end[];
  5435. return in_lock_functions(addr) ||
  5436. (addr >= (unsigned long)__sched_text_start
  5437. && addr < (unsigned long)__sched_text_end);
  5438. }
  5439. static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
  5440. {
  5441. cfs_rq->tasks_timeline = RB_ROOT;
  5442. cfs_rq->fair_clock = 1;
  5443. #ifdef CONFIG_FAIR_GROUP_SCHED
  5444. cfs_rq->rq = rq;
  5445. #endif
  5446. }
  5447. void __init sched_init(void)
  5448. {
  5449. u64 now = sched_clock();
  5450. int highest_cpu = 0;
  5451. int i, j;
  5452. /*
  5453. * Link up the scheduling class hierarchy:
  5454. */
  5455. rt_sched_class.next = &fair_sched_class;
  5456. fair_sched_class.next = &idle_sched_class;
  5457. idle_sched_class.next = NULL;
  5458. for_each_possible_cpu(i) {
  5459. struct rt_prio_array *array;
  5460. struct rq *rq;
  5461. rq = cpu_rq(i);
  5462. spin_lock_init(&rq->lock);
  5463. lockdep_set_class(&rq->lock, &rq->rq_lock_key);
  5464. rq->nr_running = 0;
  5465. rq->clock = 1;
  5466. init_cfs_rq(&rq->cfs, rq);
  5467. #ifdef CONFIG_FAIR_GROUP_SCHED
  5468. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5469. list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
  5470. #endif
  5471. rq->ls.load_update_last = now;
  5472. rq->ls.load_update_start = now;
  5473. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5474. rq->cpu_load[j] = 0;
  5475. #ifdef CONFIG_SMP
  5476. rq->sd = NULL;
  5477. rq->active_balance = 0;
  5478. rq->next_balance = jiffies;
  5479. rq->push_cpu = 0;
  5480. rq->cpu = i;
  5481. rq->migration_thread = NULL;
  5482. INIT_LIST_HEAD(&rq->migration_queue);
  5483. #endif
  5484. atomic_set(&rq->nr_iowait, 0);
  5485. array = &rq->rt.active;
  5486. for (j = 0; j < MAX_RT_PRIO; j++) {
  5487. INIT_LIST_HEAD(array->queue + j);
  5488. __clear_bit(j, array->bitmap);
  5489. }
  5490. highest_cpu = i;
  5491. /* delimiter for bitsearch: */
  5492. __set_bit(MAX_RT_PRIO, array->bitmap);
  5493. }
  5494. set_load_weight(&init_task);
  5495. #ifdef CONFIG_SMP
  5496. nr_cpu_ids = highest_cpu + 1;
  5497. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
  5498. #endif
  5499. #ifdef CONFIG_RT_MUTEXES
  5500. plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
  5501. #endif
  5502. /*
  5503. * The boot idle thread does lazy MMU switching as well:
  5504. */
  5505. atomic_inc(&init_mm.mm_count);
  5506. enter_lazy_tlb(&init_mm, current);
  5507. /*
  5508. * Make us the idle thread. Technically, schedule() should not be
  5509. * called from this thread, however somewhere below it might be,
  5510. * but because we are the idle thread, we just pick up running again
  5511. * when this runqueue becomes "idle".
  5512. */
  5513. init_idle(current, smp_processor_id());
  5514. /*
  5515. * During early bootup we pretend to be a normal task:
  5516. */
  5517. current->sched_class = &fair_sched_class;
  5518. }
  5519. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5520. void __might_sleep(char *file, int line)
  5521. {
  5522. #ifdef in_atomic
  5523. static unsigned long prev_jiffy; /* ratelimiting */
  5524. if ((in_atomic() || irqs_disabled()) &&
  5525. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5526. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5527. return;
  5528. prev_jiffy = jiffies;
  5529. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5530. " context at %s:%d\n", file, line);
  5531. printk("in_atomic():%d, irqs_disabled():%d\n",
  5532. in_atomic(), irqs_disabled());
  5533. debug_show_held_locks(current);
  5534. if (irqs_disabled())
  5535. print_irqtrace_events(current);
  5536. dump_stack();
  5537. }
  5538. #endif
  5539. }
  5540. EXPORT_SYMBOL(__might_sleep);
  5541. #endif
  5542. #ifdef CONFIG_MAGIC_SYSRQ
  5543. void normalize_rt_tasks(void)
  5544. {
  5545. struct task_struct *g, *p;
  5546. unsigned long flags;
  5547. struct rq *rq;
  5548. int on_rq;
  5549. read_lock_irq(&tasklist_lock);
  5550. do_each_thread(g, p) {
  5551. p->se.fair_key = 0;
  5552. p->se.wait_runtime = 0;
  5553. p->se.wait_start_fair = 0;
  5554. p->se.wait_start = 0;
  5555. p->se.exec_start = 0;
  5556. p->se.sleep_start = 0;
  5557. p->se.sleep_start_fair = 0;
  5558. p->se.block_start = 0;
  5559. task_rq(p)->cfs.fair_clock = 0;
  5560. task_rq(p)->clock = 0;
  5561. if (!rt_task(p)) {
  5562. /*
  5563. * Renice negative nice level userspace
  5564. * tasks back to 0:
  5565. */
  5566. if (TASK_NICE(p) < 0 && p->mm)
  5567. set_user_nice(p, 0);
  5568. continue;
  5569. }
  5570. spin_lock_irqsave(&p->pi_lock, flags);
  5571. rq = __task_rq_lock(p);
  5572. #ifdef CONFIG_SMP
  5573. /*
  5574. * Do not touch the migration thread:
  5575. */
  5576. if (p == rq->migration_thread)
  5577. goto out_unlock;
  5578. #endif
  5579. on_rq = p->se.on_rq;
  5580. if (on_rq)
  5581. deactivate_task(task_rq(p), p, 0);
  5582. __setscheduler(rq, p, SCHED_NORMAL, 0);
  5583. if (on_rq) {
  5584. activate_task(task_rq(p), p, 0);
  5585. resched_task(rq->curr);
  5586. }
  5587. #ifdef CONFIG_SMP
  5588. out_unlock:
  5589. #endif
  5590. __task_rq_unlock(rq);
  5591. spin_unlock_irqrestore(&p->pi_lock, flags);
  5592. } while_each_thread(g, p);
  5593. read_unlock_irq(&tasklist_lock);
  5594. }
  5595. #endif /* CONFIG_MAGIC_SYSRQ */
  5596. #ifdef CONFIG_IA64
  5597. /*
  5598. * These functions are only useful for the IA64 MCA handling.
  5599. *
  5600. * They can only be called when the whole system has been
  5601. * stopped - every CPU needs to be quiescent, and no scheduling
  5602. * activity can take place. Using them for anything else would
  5603. * be a serious bug, and as a result, they aren't even visible
  5604. * under any other configuration.
  5605. */
  5606. /**
  5607. * curr_task - return the current task for a given cpu.
  5608. * @cpu: the processor in question.
  5609. *
  5610. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5611. */
  5612. struct task_struct *curr_task(int cpu)
  5613. {
  5614. return cpu_curr(cpu);
  5615. }
  5616. /**
  5617. * set_curr_task - set the current task for a given cpu.
  5618. * @cpu: the processor in question.
  5619. * @p: the task pointer to set.
  5620. *
  5621. * Description: This function must only be used when non-maskable interrupts
  5622. * are serviced on a separate stack. It allows the architecture to switch the
  5623. * notion of the current task on a cpu in a non-blocking manner. This function
  5624. * must be called with all CPU's synchronized, and interrupts disabled, the
  5625. * and caller must save the original value of the current task (see
  5626. * curr_task() above) and restore that value before reenabling interrupts and
  5627. * re-starting the system.
  5628. *
  5629. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5630. */
  5631. void set_curr_task(int cpu, struct task_struct *p)
  5632. {
  5633. cpu_curr(cpu) = p;
  5634. }
  5635. #endif