uv_hub.h 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV architectural definitions
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #ifndef __ASM_X86_UV_HUB_H__
  11. #define __ASM_X86_UV_HUB_H__
  12. #include <linux/numa.h>
  13. #include <linux/percpu.h>
  14. #include <asm/types.h>
  15. #include <asm/percpu.h>
  16. /*
  17. * Addressing Terminology
  18. *
  19. * M - The low M bits of a physical address represent the offset
  20. * into the blade local memory. RAM memory on a blade is physically
  21. * contiguous (although various IO spaces may punch holes in
  22. * it)..
  23. *
  24. * N - Number of bits in the node portion of a socket physical
  25. * address.
  26. *
  27. * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
  28. * routers always have low bit of 1, C/MBricks have low bit
  29. * equal to 0. Most addressing macros that target UV hub chips
  30. * right shift the NASID by 1 to exclude the always-zero bit.
  31. * NASIDs contain up to 15 bits.
  32. *
  33. * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
  34. * of nasids.
  35. *
  36. * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
  37. * of the nasid for socket usage.
  38. *
  39. *
  40. * NumaLink Global Physical Address Format:
  41. * +--------------------------------+---------------------+
  42. * |00..000| GNODE | NodeOffset |
  43. * +--------------------------------+---------------------+
  44. * |<-------53 - M bits --->|<--------M bits ----->
  45. *
  46. * M - number of node offset bits (35 .. 40)
  47. *
  48. *
  49. * Memory/UV-HUB Processor Socket Address Format:
  50. * +----------------+---------------+---------------------+
  51. * |00..000000000000| PNODE | NodeOffset |
  52. * +----------------+---------------+---------------------+
  53. * <--- N bits --->|<--------M bits ----->
  54. *
  55. * M - number of node offset bits (35 .. 40)
  56. * N - number of PNODE bits (0 .. 10)
  57. *
  58. * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
  59. * The actual values are configuration dependent and are set at
  60. * boot time. M & N values are set by the hardware/BIOS at boot.
  61. *
  62. *
  63. * APICID format
  64. * NOTE!!!!!! This is the current format of the APICID. However, code
  65. * should assume that this will change in the future. Use functions
  66. * in this file for all APICID bit manipulations and conversion.
  67. *
  68. * 1111110000000000
  69. * 5432109876543210
  70. * pppppppppplc0cch
  71. * sssssssssss
  72. *
  73. * p = pnode bits
  74. * l = socket number on board
  75. * c = core
  76. * h = hyperthread
  77. * s = bits that are in the SOCKET_ID CSR
  78. *
  79. * Note: Processor only supports 12 bits in the APICID register. The ACPI
  80. * tables hold all 16 bits. Software needs to be aware of this.
  81. *
  82. * Unless otherwise specified, all references to APICID refer to
  83. * the FULL value contained in ACPI tables, not the subset in the
  84. * processor APICID register.
  85. */
  86. /*
  87. * Maximum number of bricks in all partitions and in all coherency domains.
  88. * This is the total number of bricks accessible in the numalink fabric. It
  89. * includes all C & M bricks. Routers are NOT included.
  90. *
  91. * This value is also the value of the maximum number of non-router NASIDs
  92. * in the numalink fabric.
  93. *
  94. * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
  95. */
  96. #define UV_MAX_NUMALINK_BLADES 16384
  97. /*
  98. * Maximum number of C/Mbricks within a software SSI (hardware may support
  99. * more).
  100. */
  101. #define UV_MAX_SSI_BLADES 256
  102. /*
  103. * The largest possible NASID of a C or M brick (+ 2)
  104. */
  105. #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
  106. /*
  107. * The following defines attributes of the HUB chip. These attributes are
  108. * frequently referenced and are kept in the per-cpu data areas of each cpu.
  109. * They are kept together in a struct to minimize cache misses.
  110. */
  111. struct uv_hub_info_s {
  112. unsigned long global_mmr_base;
  113. unsigned long gpa_mask;
  114. unsigned long gnode_upper;
  115. unsigned long lowmem_remap_top;
  116. unsigned long lowmem_remap_base;
  117. unsigned short pnode;
  118. unsigned short pnode_mask;
  119. unsigned short coherency_domain_number;
  120. unsigned short numa_blade_id;
  121. unsigned char blade_processor_id;
  122. unsigned char m_val;
  123. unsigned char n_val;
  124. };
  125. DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  126. #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
  127. #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
  128. /*
  129. * Local & Global MMR space macros.
  130. * Note: macros are intended to be used ONLY by inline functions
  131. * in this file - not by other kernel code.
  132. * n - NASID (full 15-bit global nasid)
  133. * g - GNODE (full 15-bit global nasid, right shifted 1)
  134. * p - PNODE (local part of nsids, right shifted 1)
  135. */
  136. #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
  137. #define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
  138. #define UV_LOCAL_MMR_BASE 0xf4000000UL
  139. #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
  140. #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
  141. #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
  142. #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
  143. #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
  144. #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
  145. ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
  146. #define UV_APIC_PNODE_SHIFT 6
  147. /*
  148. * Macros for converting between kernel virtual addresses, socket local physical
  149. * addresses, and UV global physical addresses.
  150. * Note: use the standard __pa() & __va() macros for converting
  151. * between socket virtual and socket physical addresses.
  152. */
  153. /* socket phys RAM --> UV global physical address */
  154. static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
  155. {
  156. if (paddr < uv_hub_info->lowmem_remap_top)
  157. paddr += uv_hub_info->lowmem_remap_base;
  158. return paddr | uv_hub_info->gnode_upper;
  159. }
  160. /* socket virtual --> UV global physical address */
  161. static inline unsigned long uv_gpa(void *v)
  162. {
  163. return __pa(v) | uv_hub_info->gnode_upper;
  164. }
  165. /* socket virtual --> UV global physical address */
  166. static inline void *uv_vgpa(void *v)
  167. {
  168. return (void *)uv_gpa(v);
  169. }
  170. /* UV global physical address --> socket virtual */
  171. static inline void *uv_va(unsigned long gpa)
  172. {
  173. return __va(gpa & uv_hub_info->gpa_mask);
  174. }
  175. /* pnode, offset --> socket virtual */
  176. static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
  177. {
  178. return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
  179. }
  180. /*
  181. * Extract a PNODE from an APICID (full apicid, not processor subset)
  182. */
  183. static inline int uv_apicid_to_pnode(int apicid)
  184. {
  185. return (apicid >> UV_APIC_PNODE_SHIFT);
  186. }
  187. /*
  188. * Access global MMRs using the low memory MMR32 space. This region supports
  189. * faster MMR access but not all MMRs are accessible in this space.
  190. */
  191. static inline unsigned long *uv_global_mmr32_address(int pnode,
  192. unsigned long offset)
  193. {
  194. return __va(UV_GLOBAL_MMR32_BASE |
  195. UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
  196. }
  197. static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
  198. unsigned long val)
  199. {
  200. *uv_global_mmr32_address(pnode, offset) = val;
  201. }
  202. static inline unsigned long uv_read_global_mmr32(int pnode,
  203. unsigned long offset)
  204. {
  205. return *uv_global_mmr32_address(pnode, offset);
  206. }
  207. /*
  208. * Access Global MMR space using the MMR space located at the top of physical
  209. * memory.
  210. */
  211. static inline unsigned long *uv_global_mmr64_address(int pnode,
  212. unsigned long offset)
  213. {
  214. return __va(UV_GLOBAL_MMR64_BASE |
  215. UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
  216. }
  217. static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
  218. unsigned long val)
  219. {
  220. *uv_global_mmr64_address(pnode, offset) = val;
  221. }
  222. static inline unsigned long uv_read_global_mmr64(int pnode,
  223. unsigned long offset)
  224. {
  225. return *uv_global_mmr64_address(pnode, offset);
  226. }
  227. /*
  228. * Access hub local MMRs. Faster than using global space but only local MMRs
  229. * are accessible.
  230. */
  231. static inline unsigned long *uv_local_mmr_address(unsigned long offset)
  232. {
  233. return __va(UV_LOCAL_MMR_BASE | offset);
  234. }
  235. static inline unsigned long uv_read_local_mmr(unsigned long offset)
  236. {
  237. return *uv_local_mmr_address(offset);
  238. }
  239. static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
  240. {
  241. *uv_local_mmr_address(offset) = val;
  242. }
  243. /*
  244. * Structures and definitions for converting between cpu, node, pnode, and blade
  245. * numbers.
  246. */
  247. struct uv_blade_info {
  248. unsigned short nr_possible_cpus;
  249. unsigned short nr_online_cpus;
  250. unsigned short pnode;
  251. };
  252. extern struct uv_blade_info *uv_blade_info;
  253. extern short *uv_node_to_blade;
  254. extern short *uv_cpu_to_blade;
  255. extern short uv_possible_blades;
  256. /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
  257. static inline int uv_blade_processor_id(void)
  258. {
  259. return uv_hub_info->blade_processor_id;
  260. }
  261. /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
  262. static inline int uv_numa_blade_id(void)
  263. {
  264. return uv_hub_info->numa_blade_id;
  265. }
  266. /* Convert a cpu number to the the UV blade number */
  267. static inline int uv_cpu_to_blade_id(int cpu)
  268. {
  269. return uv_cpu_to_blade[cpu];
  270. }
  271. /* Convert linux node number to the UV blade number */
  272. static inline int uv_node_to_blade_id(int nid)
  273. {
  274. return uv_node_to_blade[nid];
  275. }
  276. /* Convert a blade id to the PNODE of the blade */
  277. static inline int uv_blade_to_pnode(int bid)
  278. {
  279. return uv_blade_info[bid].pnode;
  280. }
  281. /* Determine the number of possible cpus on a blade */
  282. static inline int uv_blade_nr_possible_cpus(int bid)
  283. {
  284. return uv_blade_info[bid].nr_possible_cpus;
  285. }
  286. /* Determine the number of online cpus on a blade */
  287. static inline int uv_blade_nr_online_cpus(int bid)
  288. {
  289. return uv_blade_info[bid].nr_online_cpus;
  290. }
  291. /* Convert a cpu id to the PNODE of the blade containing the cpu */
  292. static inline int uv_cpu_to_pnode(int cpu)
  293. {
  294. return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
  295. }
  296. /* Convert a linux node number to the PNODE of the blade */
  297. static inline int uv_node_to_pnode(int nid)
  298. {
  299. return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
  300. }
  301. /* Maximum possible number of blades */
  302. static inline int uv_num_possible_blades(void)
  303. {
  304. return uv_possible_blades;
  305. }
  306. #endif /* __ASM_X86_UV_HUB__ */