process_32.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. *
  4. * Pentium III FXSR, SSE support
  5. * Gareth Hughes <gareth@valinux.com>, May 2000
  6. */
  7. /*
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <stdarg.h>
  11. #include <linux/cpu.h>
  12. #include <linux/errno.h>
  13. #include <linux/sched.h>
  14. #include <linux/fs.h>
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/elfcore.h>
  18. #include <linux/smp.h>
  19. #include <linux/stddef.h>
  20. #include <linux/slab.h>
  21. #include <linux/vmalloc.h>
  22. #include <linux/user.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/utsname.h>
  25. #include <linux/delay.h>
  26. #include <linux/reboot.h>
  27. #include <linux/init.h>
  28. #include <linux/mc146818rtc.h>
  29. #include <linux/module.h>
  30. #include <linux/kallsyms.h>
  31. #include <linux/ptrace.h>
  32. #include <linux/random.h>
  33. #include <linux/personality.h>
  34. #include <linux/tick.h>
  35. #include <linux/percpu.h>
  36. #include <linux/prctl.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/pgtable.h>
  39. #include <asm/system.h>
  40. #include <asm/io.h>
  41. #include <asm/ldt.h>
  42. #include <asm/processor.h>
  43. #include <asm/i387.h>
  44. #include <asm/desc.h>
  45. #ifdef CONFIG_MATH_EMULATION
  46. #include <asm/math_emu.h>
  47. #endif
  48. #include <linux/err.h>
  49. #include <asm/tlbflush.h>
  50. #include <asm/cpu.h>
  51. #include <asm/kdebug.h>
  52. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  53. DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
  54. EXPORT_PER_CPU_SYMBOL(current_task);
  55. DEFINE_PER_CPU(int, cpu_number);
  56. EXPORT_PER_CPU_SYMBOL(cpu_number);
  57. /*
  58. * Return saved PC of a blocked thread.
  59. */
  60. unsigned long thread_saved_pc(struct task_struct *tsk)
  61. {
  62. return ((unsigned long *)tsk->thread.sp)[3];
  63. }
  64. #ifdef CONFIG_HOTPLUG_CPU
  65. #include <asm/nmi.h>
  66. static void cpu_exit_clear(void)
  67. {
  68. int cpu = raw_smp_processor_id();
  69. idle_task_exit();
  70. cpu_uninit();
  71. irq_ctx_exit(cpu);
  72. cpu_clear(cpu, cpu_callout_map);
  73. cpu_clear(cpu, cpu_callin_map);
  74. numa_remove_cpu(cpu);
  75. }
  76. /* We don't actually take CPU down, just spin without interrupts. */
  77. static inline void play_dead(void)
  78. {
  79. /* This must be done before dead CPU ack */
  80. cpu_exit_clear();
  81. wbinvd();
  82. mb();
  83. /* Ack it */
  84. __get_cpu_var(cpu_state) = CPU_DEAD;
  85. /*
  86. * With physical CPU hotplug, we should halt the cpu
  87. */
  88. local_irq_disable();
  89. while (1)
  90. halt();
  91. }
  92. #else
  93. static inline void play_dead(void)
  94. {
  95. BUG();
  96. }
  97. #endif /* CONFIG_HOTPLUG_CPU */
  98. /*
  99. * The idle thread. There's no useful work to be
  100. * done, so just try to conserve power and have a
  101. * low exit latency (ie sit in a loop waiting for
  102. * somebody to say that they'd like to reschedule)
  103. */
  104. void cpu_idle(void)
  105. {
  106. int cpu = smp_processor_id();
  107. current_thread_info()->status |= TS_POLLING;
  108. /* endless idle loop with no priority at all */
  109. while (1) {
  110. tick_nohz_stop_sched_tick();
  111. while (!need_resched()) {
  112. check_pgt_cache();
  113. rmb();
  114. if (rcu_pending(cpu))
  115. rcu_check_callbacks(cpu, 0);
  116. if (cpu_is_offline(cpu))
  117. play_dead();
  118. local_irq_disable();
  119. __get_cpu_var(irq_stat).idle_timestamp = jiffies;
  120. pm_idle();
  121. }
  122. tick_nohz_restart_sched_tick();
  123. preempt_enable_no_resched();
  124. schedule();
  125. preempt_disable();
  126. }
  127. }
  128. void __show_registers(struct pt_regs *regs, int all)
  129. {
  130. unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  131. unsigned long d0, d1, d2, d3, d6, d7;
  132. unsigned long sp;
  133. unsigned short ss, gs;
  134. if (user_mode_vm(regs)) {
  135. sp = regs->sp;
  136. ss = regs->ss & 0xffff;
  137. savesegment(gs, gs);
  138. } else {
  139. sp = (unsigned long) (&regs->sp);
  140. savesegment(ss, ss);
  141. savesegment(gs, gs);
  142. }
  143. printk("\n");
  144. printk("Pid: %d, comm: %s %s (%s %.*s)\n",
  145. task_pid_nr(current), current->comm,
  146. print_tainted(), init_utsname()->release,
  147. (int)strcspn(init_utsname()->version, " "),
  148. init_utsname()->version);
  149. printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
  150. (u16)regs->cs, regs->ip, regs->flags,
  151. smp_processor_id());
  152. print_symbol("EIP is at %s\n", regs->ip);
  153. printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  154. regs->ax, regs->bx, regs->cx, regs->dx);
  155. printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  156. regs->si, regs->di, regs->bp, sp);
  157. printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
  158. (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
  159. if (!all)
  160. return;
  161. cr0 = read_cr0();
  162. cr2 = read_cr2();
  163. cr3 = read_cr3();
  164. cr4 = read_cr4_safe();
  165. printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
  166. cr0, cr2, cr3, cr4);
  167. get_debugreg(d0, 0);
  168. get_debugreg(d1, 1);
  169. get_debugreg(d2, 2);
  170. get_debugreg(d3, 3);
  171. printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
  172. d0, d1, d2, d3);
  173. get_debugreg(d6, 6);
  174. get_debugreg(d7, 7);
  175. printk("DR6: %08lx DR7: %08lx\n",
  176. d6, d7);
  177. }
  178. void show_regs(struct pt_regs *regs)
  179. {
  180. __show_registers(regs, 1);
  181. show_trace(NULL, regs, &regs->sp, regs->bp);
  182. }
  183. /*
  184. * This gets run with %bx containing the
  185. * function to call, and %dx containing
  186. * the "args".
  187. */
  188. extern void kernel_thread_helper(void);
  189. /*
  190. * Create a kernel thread
  191. */
  192. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  193. {
  194. struct pt_regs regs;
  195. memset(&regs, 0, sizeof(regs));
  196. regs.bx = (unsigned long) fn;
  197. regs.dx = (unsigned long) arg;
  198. regs.ds = __USER_DS;
  199. regs.es = __USER_DS;
  200. regs.fs = __KERNEL_PERCPU;
  201. regs.orig_ax = -1;
  202. regs.ip = (unsigned long) kernel_thread_helper;
  203. regs.cs = __KERNEL_CS | get_kernel_rpl();
  204. regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
  205. /* Ok, create the new process.. */
  206. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  207. }
  208. EXPORT_SYMBOL(kernel_thread);
  209. /*
  210. * Free current thread data structures etc..
  211. */
  212. void exit_thread(void)
  213. {
  214. /* The process may have allocated an io port bitmap... nuke it. */
  215. if (unlikely(test_thread_flag(TIF_IO_BITMAP))) {
  216. struct task_struct *tsk = current;
  217. struct thread_struct *t = &tsk->thread;
  218. int cpu = get_cpu();
  219. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  220. kfree(t->io_bitmap_ptr);
  221. t->io_bitmap_ptr = NULL;
  222. clear_thread_flag(TIF_IO_BITMAP);
  223. /*
  224. * Careful, clear this in the TSS too:
  225. */
  226. memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
  227. t->io_bitmap_max = 0;
  228. tss->io_bitmap_owner = NULL;
  229. tss->io_bitmap_max = 0;
  230. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  231. put_cpu();
  232. }
  233. }
  234. void flush_thread(void)
  235. {
  236. struct task_struct *tsk = current;
  237. tsk->thread.debugreg0 = 0;
  238. tsk->thread.debugreg1 = 0;
  239. tsk->thread.debugreg2 = 0;
  240. tsk->thread.debugreg3 = 0;
  241. tsk->thread.debugreg6 = 0;
  242. tsk->thread.debugreg7 = 0;
  243. memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
  244. clear_tsk_thread_flag(tsk, TIF_DEBUG);
  245. /*
  246. * Forget coprocessor state..
  247. */
  248. tsk->fpu_counter = 0;
  249. clear_fpu(tsk);
  250. clear_used_math();
  251. }
  252. void release_thread(struct task_struct *dead_task)
  253. {
  254. BUG_ON(dead_task->mm);
  255. release_vm86_irqs(dead_task);
  256. }
  257. /*
  258. * This gets called before we allocate a new thread and copy
  259. * the current task into it.
  260. */
  261. void prepare_to_copy(struct task_struct *tsk)
  262. {
  263. unlazy_fpu(tsk);
  264. }
  265. int copy_thread(int nr, unsigned long clone_flags, unsigned long sp,
  266. unsigned long unused,
  267. struct task_struct * p, struct pt_regs * regs)
  268. {
  269. struct pt_regs * childregs;
  270. struct task_struct *tsk;
  271. int err;
  272. childregs = task_pt_regs(p);
  273. *childregs = *regs;
  274. childregs->ax = 0;
  275. childregs->sp = sp;
  276. p->thread.sp = (unsigned long) childregs;
  277. p->thread.sp0 = (unsigned long) (childregs+1);
  278. p->thread.ip = (unsigned long) ret_from_fork;
  279. savesegment(gs, p->thread.gs);
  280. tsk = current;
  281. if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
  282. p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
  283. IO_BITMAP_BYTES, GFP_KERNEL);
  284. if (!p->thread.io_bitmap_ptr) {
  285. p->thread.io_bitmap_max = 0;
  286. return -ENOMEM;
  287. }
  288. set_tsk_thread_flag(p, TIF_IO_BITMAP);
  289. }
  290. err = 0;
  291. /*
  292. * Set a new TLS for the child thread?
  293. */
  294. if (clone_flags & CLONE_SETTLS)
  295. err = do_set_thread_area(p, -1,
  296. (struct user_desc __user *)childregs->si, 0);
  297. if (err && p->thread.io_bitmap_ptr) {
  298. kfree(p->thread.io_bitmap_ptr);
  299. p->thread.io_bitmap_max = 0;
  300. }
  301. return err;
  302. }
  303. void
  304. start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  305. {
  306. __asm__("movl %0, %%gs" :: "r"(0));
  307. regs->fs = 0;
  308. set_fs(USER_DS);
  309. regs->ds = __USER_DS;
  310. regs->es = __USER_DS;
  311. regs->ss = __USER_DS;
  312. regs->cs = __USER_CS;
  313. regs->ip = new_ip;
  314. regs->sp = new_sp;
  315. /*
  316. * Free the old FP and other extended state
  317. */
  318. free_thread_xstate(current);
  319. }
  320. EXPORT_SYMBOL_GPL(start_thread);
  321. static void hard_disable_TSC(void)
  322. {
  323. write_cr4(read_cr4() | X86_CR4_TSD);
  324. }
  325. void disable_TSC(void)
  326. {
  327. preempt_disable();
  328. if (!test_and_set_thread_flag(TIF_NOTSC))
  329. /*
  330. * Must flip the CPU state synchronously with
  331. * TIF_NOTSC in the current running context.
  332. */
  333. hard_disable_TSC();
  334. preempt_enable();
  335. }
  336. static void hard_enable_TSC(void)
  337. {
  338. write_cr4(read_cr4() & ~X86_CR4_TSD);
  339. }
  340. static void enable_TSC(void)
  341. {
  342. preempt_disable();
  343. if (test_and_clear_thread_flag(TIF_NOTSC))
  344. /*
  345. * Must flip the CPU state synchronously with
  346. * TIF_NOTSC in the current running context.
  347. */
  348. hard_enable_TSC();
  349. preempt_enable();
  350. }
  351. int get_tsc_mode(unsigned long adr)
  352. {
  353. unsigned int val;
  354. if (test_thread_flag(TIF_NOTSC))
  355. val = PR_TSC_SIGSEGV;
  356. else
  357. val = PR_TSC_ENABLE;
  358. return put_user(val, (unsigned int __user *)adr);
  359. }
  360. int set_tsc_mode(unsigned int val)
  361. {
  362. if (val == PR_TSC_SIGSEGV)
  363. disable_TSC();
  364. else if (val == PR_TSC_ENABLE)
  365. enable_TSC();
  366. else
  367. return -EINVAL;
  368. return 0;
  369. }
  370. static noinline void
  371. __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
  372. struct tss_struct *tss)
  373. {
  374. struct thread_struct *prev, *next;
  375. unsigned long debugctl;
  376. prev = &prev_p->thread;
  377. next = &next_p->thread;
  378. debugctl = prev->debugctlmsr;
  379. if (next->ds_area_msr != prev->ds_area_msr) {
  380. /* we clear debugctl to make sure DS
  381. * is not in use when we change it */
  382. debugctl = 0;
  383. update_debugctlmsr(0);
  384. wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0);
  385. }
  386. if (next->debugctlmsr != debugctl)
  387. update_debugctlmsr(next->debugctlmsr);
  388. if (test_tsk_thread_flag(next_p, TIF_DEBUG)) {
  389. set_debugreg(next->debugreg0, 0);
  390. set_debugreg(next->debugreg1, 1);
  391. set_debugreg(next->debugreg2, 2);
  392. set_debugreg(next->debugreg3, 3);
  393. /* no 4 and 5 */
  394. set_debugreg(next->debugreg6, 6);
  395. set_debugreg(next->debugreg7, 7);
  396. }
  397. if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
  398. test_tsk_thread_flag(next_p, TIF_NOTSC)) {
  399. /* prev and next are different */
  400. if (test_tsk_thread_flag(next_p, TIF_NOTSC))
  401. hard_disable_TSC();
  402. else
  403. hard_enable_TSC();
  404. }
  405. #ifdef X86_BTS
  406. if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS))
  407. ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS);
  408. if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS))
  409. ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES);
  410. #endif
  411. if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
  412. /*
  413. * Disable the bitmap via an invalid offset. We still cache
  414. * the previous bitmap owner and the IO bitmap contents:
  415. */
  416. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
  417. return;
  418. }
  419. if (likely(next == tss->io_bitmap_owner)) {
  420. /*
  421. * Previous owner of the bitmap (hence the bitmap content)
  422. * matches the next task, we dont have to do anything but
  423. * to set a valid offset in the TSS:
  424. */
  425. tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
  426. return;
  427. }
  428. /*
  429. * Lazy TSS's I/O bitmap copy. We set an invalid offset here
  430. * and we let the task to get a GPF in case an I/O instruction
  431. * is performed. The handler of the GPF will verify that the
  432. * faulting task has a valid I/O bitmap and, it true, does the
  433. * real copy and restart the instruction. This will save us
  434. * redundant copies when the currently switched task does not
  435. * perform any I/O during its timeslice.
  436. */
  437. tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
  438. }
  439. /*
  440. * switch_to(x,yn) should switch tasks from x to y.
  441. *
  442. * We fsave/fwait so that an exception goes off at the right time
  443. * (as a call from the fsave or fwait in effect) rather than to
  444. * the wrong process. Lazy FP saving no longer makes any sense
  445. * with modern CPU's, and this simplifies a lot of things (SMP
  446. * and UP become the same).
  447. *
  448. * NOTE! We used to use the x86 hardware context switching. The
  449. * reason for not using it any more becomes apparent when you
  450. * try to recover gracefully from saved state that is no longer
  451. * valid (stale segment register values in particular). With the
  452. * hardware task-switch, there is no way to fix up bad state in
  453. * a reasonable manner.
  454. *
  455. * The fact that Intel documents the hardware task-switching to
  456. * be slow is a fairly red herring - this code is not noticeably
  457. * faster. However, there _is_ some room for improvement here,
  458. * so the performance issues may eventually be a valid point.
  459. * More important, however, is the fact that this allows us much
  460. * more flexibility.
  461. *
  462. * The return value (in %ax) will be the "prev" task after
  463. * the task-switch, and shows up in ret_from_fork in entry.S,
  464. * for example.
  465. */
  466. struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
  467. {
  468. struct thread_struct *prev = &prev_p->thread,
  469. *next = &next_p->thread;
  470. int cpu = smp_processor_id();
  471. struct tss_struct *tss = &per_cpu(init_tss, cpu);
  472. /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
  473. __unlazy_fpu(prev_p);
  474. /* we're going to use this soon, after a few expensive things */
  475. if (next_p->fpu_counter > 5)
  476. prefetch(next->xstate);
  477. /*
  478. * Reload esp0.
  479. */
  480. load_sp0(tss, next);
  481. /*
  482. * Save away %gs. No need to save %fs, as it was saved on the
  483. * stack on entry. No need to save %es and %ds, as those are
  484. * always kernel segments while inside the kernel. Doing this
  485. * before setting the new TLS descriptors avoids the situation
  486. * where we temporarily have non-reloadable segments in %fs
  487. * and %gs. This could be an issue if the NMI handler ever
  488. * used %fs or %gs (it does not today), or if the kernel is
  489. * running inside of a hypervisor layer.
  490. */
  491. savesegment(gs, prev->gs);
  492. /*
  493. * Load the per-thread Thread-Local Storage descriptor.
  494. */
  495. load_TLS(next, cpu);
  496. /*
  497. * Restore IOPL if needed. In normal use, the flags restore
  498. * in the switch assembly will handle this. But if the kernel
  499. * is running virtualized at a non-zero CPL, the popf will
  500. * not restore flags, so it must be done in a separate step.
  501. */
  502. if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
  503. set_iopl_mask(next->iopl);
  504. /*
  505. * Now maybe handle debug registers and/or IO bitmaps
  506. */
  507. if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
  508. task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
  509. __switch_to_xtra(prev_p, next_p, tss);
  510. /*
  511. * Leave lazy mode, flushing any hypercalls made here.
  512. * This must be done before restoring TLS segments so
  513. * the GDT and LDT are properly updated, and must be
  514. * done before math_state_restore, so the TS bit is up
  515. * to date.
  516. */
  517. arch_leave_lazy_cpu_mode();
  518. /* If the task has used fpu the last 5 timeslices, just do a full
  519. * restore of the math state immediately to avoid the trap; the
  520. * chances of needing FPU soon are obviously high now
  521. *
  522. * tsk_used_math() checks prevent calling math_state_restore(),
  523. * which can sleep in the case of !tsk_used_math()
  524. */
  525. if (tsk_used_math(next_p) && next_p->fpu_counter > 5)
  526. math_state_restore();
  527. /*
  528. * Restore %gs if needed (which is common)
  529. */
  530. if (prev->gs | next->gs)
  531. loadsegment(gs, next->gs);
  532. x86_write_percpu(current_task, next_p);
  533. return prev_p;
  534. }
  535. asmlinkage int sys_fork(struct pt_regs regs)
  536. {
  537. return do_fork(SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  538. }
  539. asmlinkage int sys_clone(struct pt_regs regs)
  540. {
  541. unsigned long clone_flags;
  542. unsigned long newsp;
  543. int __user *parent_tidptr, *child_tidptr;
  544. clone_flags = regs.bx;
  545. newsp = regs.cx;
  546. parent_tidptr = (int __user *)regs.dx;
  547. child_tidptr = (int __user *)regs.di;
  548. if (!newsp)
  549. newsp = regs.sp;
  550. return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
  551. }
  552. /*
  553. * This is trivial, and on the face of it looks like it
  554. * could equally well be done in user mode.
  555. *
  556. * Not so, for quite unobvious reasons - register pressure.
  557. * In user mode vfork() cannot have a stack frame, and if
  558. * done by calling the "clone()" system call directly, you
  559. * do not have enough call-clobbered registers to hold all
  560. * the information you need.
  561. */
  562. asmlinkage int sys_vfork(struct pt_regs regs)
  563. {
  564. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, &regs, 0, NULL, NULL);
  565. }
  566. /*
  567. * sys_execve() executes a new program.
  568. */
  569. asmlinkage int sys_execve(struct pt_regs regs)
  570. {
  571. int error;
  572. char * filename;
  573. filename = getname((char __user *) regs.bx);
  574. error = PTR_ERR(filename);
  575. if (IS_ERR(filename))
  576. goto out;
  577. error = do_execve(filename,
  578. (char __user * __user *) regs.cx,
  579. (char __user * __user *) regs.dx,
  580. &regs);
  581. if (error == 0) {
  582. /* Make sure we don't return using sysenter.. */
  583. set_thread_flag(TIF_IRET);
  584. }
  585. putname(filename);
  586. out:
  587. return error;
  588. }
  589. #define top_esp (THREAD_SIZE - sizeof(unsigned long))
  590. #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
  591. unsigned long get_wchan(struct task_struct *p)
  592. {
  593. unsigned long bp, sp, ip;
  594. unsigned long stack_page;
  595. int count = 0;
  596. if (!p || p == current || p->state == TASK_RUNNING)
  597. return 0;
  598. stack_page = (unsigned long)task_stack_page(p);
  599. sp = p->thread.sp;
  600. if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
  601. return 0;
  602. /* include/asm-i386/system.h:switch_to() pushes bp last. */
  603. bp = *(unsigned long *) sp;
  604. do {
  605. if (bp < stack_page || bp > top_ebp+stack_page)
  606. return 0;
  607. ip = *(unsigned long *) (bp+4);
  608. if (!in_sched_functions(ip))
  609. return ip;
  610. bp = *(unsigned long *) bp;
  611. } while (count++ < 16);
  612. return 0;
  613. }
  614. unsigned long arch_align_stack(unsigned long sp)
  615. {
  616. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  617. sp -= get_random_int() % 8192;
  618. return sp & ~0xf;
  619. }
  620. unsigned long arch_randomize_brk(struct mm_struct *mm)
  621. {
  622. unsigned long range_end = mm->brk + 0x02000000;
  623. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  624. }