intel_display.c 267 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. typedef struct {
  46. int min, max;
  47. } intel_range_t;
  48. typedef struct {
  49. int dot_limit;
  50. int p2_slow, p2_fast;
  51. } intel_p2_t;
  52. #define INTEL_P2_NUM 2
  53. typedef struct intel_limit intel_limit_t;
  54. struct intel_limit {
  55. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  56. intel_p2_t p2;
  57. /**
  58. * find_pll() - Find the best values for the PLL
  59. * @limit: limits for the PLL
  60. * @crtc: current CRTC
  61. * @target: target frequency in kHz
  62. * @refclk: reference clock frequency in kHz
  63. * @match_clock: if provided, @best_clock P divider must
  64. * match the P divider from @match_clock
  65. * used for LVDS downclocking
  66. * @best_clock: best PLL values found
  67. *
  68. * Returns true on success, false on failure.
  69. */
  70. bool (*find_pll)(const intel_limit_t *limit,
  71. struct drm_crtc *crtc,
  72. int target, int refclk,
  73. intel_clock_t *match_clock,
  74. intel_clock_t *best_clock);
  75. };
  76. /* FDI */
  77. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  78. int
  79. intel_pch_rawclk(struct drm_device *dev)
  80. {
  81. struct drm_i915_private *dev_priv = dev->dev_private;
  82. WARN_ON(!HAS_PCH_SPLIT(dev));
  83. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  84. }
  85. static bool
  86. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  87. int target, int refclk, intel_clock_t *match_clock,
  88. intel_clock_t *best_clock);
  89. static bool
  90. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  91. int target, int refclk, intel_clock_t *match_clock,
  92. intel_clock_t *best_clock);
  93. static bool
  94. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  95. int target, int refclk, intel_clock_t *match_clock,
  96. intel_clock_t *best_clock);
  97. static inline u32 /* units of 100MHz */
  98. intel_fdi_link_freq(struct drm_device *dev)
  99. {
  100. if (IS_GEN5(dev)) {
  101. struct drm_i915_private *dev_priv = dev->dev_private;
  102. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  103. } else
  104. return 27;
  105. }
  106. static const intel_limit_t intel_limits_i8xx_dvo = {
  107. .dot = { .min = 25000, .max = 350000 },
  108. .vco = { .min = 930000, .max = 1400000 },
  109. .n = { .min = 3, .max = 16 },
  110. .m = { .min = 96, .max = 140 },
  111. .m1 = { .min = 18, .max = 26 },
  112. .m2 = { .min = 6, .max = 16 },
  113. .p = { .min = 4, .max = 128 },
  114. .p1 = { .min = 2, .max = 33 },
  115. .p2 = { .dot_limit = 165000,
  116. .p2_slow = 4, .p2_fast = 2 },
  117. .find_pll = intel_find_best_PLL,
  118. };
  119. static const intel_limit_t intel_limits_i8xx_lvds = {
  120. .dot = { .min = 25000, .max = 350000 },
  121. .vco = { .min = 930000, .max = 1400000 },
  122. .n = { .min = 3, .max = 16 },
  123. .m = { .min = 96, .max = 140 },
  124. .m1 = { .min = 18, .max = 26 },
  125. .m2 = { .min = 6, .max = 16 },
  126. .p = { .min = 4, .max = 128 },
  127. .p1 = { .min = 1, .max = 6 },
  128. .p2 = { .dot_limit = 165000,
  129. .p2_slow = 14, .p2_fast = 7 },
  130. .find_pll = intel_find_best_PLL,
  131. };
  132. static const intel_limit_t intel_limits_i9xx_sdvo = {
  133. .dot = { .min = 20000, .max = 400000 },
  134. .vco = { .min = 1400000, .max = 2800000 },
  135. .n = { .min = 1, .max = 6 },
  136. .m = { .min = 70, .max = 120 },
  137. .m1 = { .min = 8, .max = 18 },
  138. .m2 = { .min = 3, .max = 7 },
  139. .p = { .min = 5, .max = 80 },
  140. .p1 = { .min = 1, .max = 8 },
  141. .p2 = { .dot_limit = 200000,
  142. .p2_slow = 10, .p2_fast = 5 },
  143. .find_pll = intel_find_best_PLL,
  144. };
  145. static const intel_limit_t intel_limits_i9xx_lvds = {
  146. .dot = { .min = 20000, .max = 400000 },
  147. .vco = { .min = 1400000, .max = 2800000 },
  148. .n = { .min = 1, .max = 6 },
  149. .m = { .min = 70, .max = 120 },
  150. .m1 = { .min = 8, .max = 18 },
  151. .m2 = { .min = 3, .max = 7 },
  152. .p = { .min = 7, .max = 98 },
  153. .p1 = { .min = 1, .max = 8 },
  154. .p2 = { .dot_limit = 112000,
  155. .p2_slow = 14, .p2_fast = 7 },
  156. .find_pll = intel_find_best_PLL,
  157. };
  158. static const intel_limit_t intel_limits_g4x_sdvo = {
  159. .dot = { .min = 25000, .max = 270000 },
  160. .vco = { .min = 1750000, .max = 3500000},
  161. .n = { .min = 1, .max = 4 },
  162. .m = { .min = 104, .max = 138 },
  163. .m1 = { .min = 17, .max = 23 },
  164. .m2 = { .min = 5, .max = 11 },
  165. .p = { .min = 10, .max = 30 },
  166. .p1 = { .min = 1, .max = 3},
  167. .p2 = { .dot_limit = 270000,
  168. .p2_slow = 10,
  169. .p2_fast = 10
  170. },
  171. .find_pll = intel_g4x_find_best_PLL,
  172. };
  173. static const intel_limit_t intel_limits_g4x_hdmi = {
  174. .dot = { .min = 22000, .max = 400000 },
  175. .vco = { .min = 1750000, .max = 3500000},
  176. .n = { .min = 1, .max = 4 },
  177. .m = { .min = 104, .max = 138 },
  178. .m1 = { .min = 16, .max = 23 },
  179. .m2 = { .min = 5, .max = 11 },
  180. .p = { .min = 5, .max = 80 },
  181. .p1 = { .min = 1, .max = 8},
  182. .p2 = { .dot_limit = 165000,
  183. .p2_slow = 10, .p2_fast = 5 },
  184. .find_pll = intel_g4x_find_best_PLL,
  185. };
  186. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  187. .dot = { .min = 20000, .max = 115000 },
  188. .vco = { .min = 1750000, .max = 3500000 },
  189. .n = { .min = 1, .max = 3 },
  190. .m = { .min = 104, .max = 138 },
  191. .m1 = { .min = 17, .max = 23 },
  192. .m2 = { .min = 5, .max = 11 },
  193. .p = { .min = 28, .max = 112 },
  194. .p1 = { .min = 2, .max = 8 },
  195. .p2 = { .dot_limit = 0,
  196. .p2_slow = 14, .p2_fast = 14
  197. },
  198. .find_pll = intel_g4x_find_best_PLL,
  199. };
  200. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  201. .dot = { .min = 80000, .max = 224000 },
  202. .vco = { .min = 1750000, .max = 3500000 },
  203. .n = { .min = 1, .max = 3 },
  204. .m = { .min = 104, .max = 138 },
  205. .m1 = { .min = 17, .max = 23 },
  206. .m2 = { .min = 5, .max = 11 },
  207. .p = { .min = 14, .max = 42 },
  208. .p1 = { .min = 2, .max = 6 },
  209. .p2 = { .dot_limit = 0,
  210. .p2_slow = 7, .p2_fast = 7
  211. },
  212. .find_pll = intel_g4x_find_best_PLL,
  213. };
  214. static const intel_limit_t intel_limits_pineview_sdvo = {
  215. .dot = { .min = 20000, .max = 400000},
  216. .vco = { .min = 1700000, .max = 3500000 },
  217. /* Pineview's Ncounter is a ring counter */
  218. .n = { .min = 3, .max = 6 },
  219. .m = { .min = 2, .max = 256 },
  220. /* Pineview only has one combined m divider, which we treat as m2. */
  221. .m1 = { .min = 0, .max = 0 },
  222. .m2 = { .min = 0, .max = 254 },
  223. .p = { .min = 5, .max = 80 },
  224. .p1 = { .min = 1, .max = 8 },
  225. .p2 = { .dot_limit = 200000,
  226. .p2_slow = 10, .p2_fast = 5 },
  227. .find_pll = intel_find_best_PLL,
  228. };
  229. static const intel_limit_t intel_limits_pineview_lvds = {
  230. .dot = { .min = 20000, .max = 400000 },
  231. .vco = { .min = 1700000, .max = 3500000 },
  232. .n = { .min = 3, .max = 6 },
  233. .m = { .min = 2, .max = 256 },
  234. .m1 = { .min = 0, .max = 0 },
  235. .m2 = { .min = 0, .max = 254 },
  236. .p = { .min = 7, .max = 112 },
  237. .p1 = { .min = 1, .max = 8 },
  238. .p2 = { .dot_limit = 112000,
  239. .p2_slow = 14, .p2_fast = 14 },
  240. .find_pll = intel_find_best_PLL,
  241. };
  242. /* Ironlake / Sandybridge
  243. *
  244. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  245. * the range value for them is (actual_value - 2).
  246. */
  247. static const intel_limit_t intel_limits_ironlake_dac = {
  248. .dot = { .min = 25000, .max = 350000 },
  249. .vco = { .min = 1760000, .max = 3510000 },
  250. .n = { .min = 1, .max = 5 },
  251. .m = { .min = 79, .max = 127 },
  252. .m1 = { .min = 12, .max = 22 },
  253. .m2 = { .min = 5, .max = 9 },
  254. .p = { .min = 5, .max = 80 },
  255. .p1 = { .min = 1, .max = 8 },
  256. .p2 = { .dot_limit = 225000,
  257. .p2_slow = 10, .p2_fast = 5 },
  258. .find_pll = intel_g4x_find_best_PLL,
  259. };
  260. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  261. .dot = { .min = 25000, .max = 350000 },
  262. .vco = { .min = 1760000, .max = 3510000 },
  263. .n = { .min = 1, .max = 3 },
  264. .m = { .min = 79, .max = 118 },
  265. .m1 = { .min = 12, .max = 22 },
  266. .m2 = { .min = 5, .max = 9 },
  267. .p = { .min = 28, .max = 112 },
  268. .p1 = { .min = 2, .max = 8 },
  269. .p2 = { .dot_limit = 225000,
  270. .p2_slow = 14, .p2_fast = 14 },
  271. .find_pll = intel_g4x_find_best_PLL,
  272. };
  273. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  274. .dot = { .min = 25000, .max = 350000 },
  275. .vco = { .min = 1760000, .max = 3510000 },
  276. .n = { .min = 1, .max = 3 },
  277. .m = { .min = 79, .max = 127 },
  278. .m1 = { .min = 12, .max = 22 },
  279. .m2 = { .min = 5, .max = 9 },
  280. .p = { .min = 14, .max = 56 },
  281. .p1 = { .min = 2, .max = 8 },
  282. .p2 = { .dot_limit = 225000,
  283. .p2_slow = 7, .p2_fast = 7 },
  284. .find_pll = intel_g4x_find_best_PLL,
  285. };
  286. /* LVDS 100mhz refclk limits. */
  287. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  288. .dot = { .min = 25000, .max = 350000 },
  289. .vco = { .min = 1760000, .max = 3510000 },
  290. .n = { .min = 1, .max = 2 },
  291. .m = { .min = 79, .max = 126 },
  292. .m1 = { .min = 12, .max = 22 },
  293. .m2 = { .min = 5, .max = 9 },
  294. .p = { .min = 28, .max = 112 },
  295. .p1 = { .min = 2, .max = 8 },
  296. .p2 = { .dot_limit = 225000,
  297. .p2_slow = 14, .p2_fast = 14 },
  298. .find_pll = intel_g4x_find_best_PLL,
  299. };
  300. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  301. .dot = { .min = 25000, .max = 350000 },
  302. .vco = { .min = 1760000, .max = 3510000 },
  303. .n = { .min = 1, .max = 3 },
  304. .m = { .min = 79, .max = 126 },
  305. .m1 = { .min = 12, .max = 22 },
  306. .m2 = { .min = 5, .max = 9 },
  307. .p = { .min = 14, .max = 42 },
  308. .p1 = { .min = 2, .max = 6 },
  309. .p2 = { .dot_limit = 225000,
  310. .p2_slow = 7, .p2_fast = 7 },
  311. .find_pll = intel_g4x_find_best_PLL,
  312. };
  313. static const intel_limit_t intel_limits_vlv_dac = {
  314. .dot = { .min = 25000, .max = 270000 },
  315. .vco = { .min = 4000000, .max = 6000000 },
  316. .n = { .min = 1, .max = 7 },
  317. .m = { .min = 22, .max = 450 }, /* guess */
  318. .m1 = { .min = 2, .max = 3 },
  319. .m2 = { .min = 11, .max = 156 },
  320. .p = { .min = 10, .max = 30 },
  321. .p1 = { .min = 1, .max = 3 },
  322. .p2 = { .dot_limit = 270000,
  323. .p2_slow = 2, .p2_fast = 20 },
  324. .find_pll = intel_vlv_find_best_pll,
  325. };
  326. static const intel_limit_t intel_limits_vlv_hdmi = {
  327. .dot = { .min = 25000, .max = 270000 },
  328. .vco = { .min = 4000000, .max = 6000000 },
  329. .n = { .min = 1, .max = 7 },
  330. .m = { .min = 60, .max = 300 }, /* guess */
  331. .m1 = { .min = 2, .max = 3 },
  332. .m2 = { .min = 11, .max = 156 },
  333. .p = { .min = 10, .max = 30 },
  334. .p1 = { .min = 2, .max = 3 },
  335. .p2 = { .dot_limit = 270000,
  336. .p2_slow = 2, .p2_fast = 20 },
  337. .find_pll = intel_vlv_find_best_pll,
  338. };
  339. static const intel_limit_t intel_limits_vlv_dp = {
  340. .dot = { .min = 25000, .max = 270000 },
  341. .vco = { .min = 4000000, .max = 6000000 },
  342. .n = { .min = 1, .max = 7 },
  343. .m = { .min = 22, .max = 450 },
  344. .m1 = { .min = 2, .max = 3 },
  345. .m2 = { .min = 11, .max = 156 },
  346. .p = { .min = 10, .max = 30 },
  347. .p1 = { .min = 1, .max = 3 },
  348. .p2 = { .dot_limit = 270000,
  349. .p2_slow = 2, .p2_fast = 20 },
  350. .find_pll = intel_vlv_find_best_pll,
  351. };
  352. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  353. int refclk)
  354. {
  355. struct drm_device *dev = crtc->dev;
  356. const intel_limit_t *limit;
  357. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  358. if (intel_is_dual_link_lvds(dev)) {
  359. if (refclk == 100000)
  360. limit = &intel_limits_ironlake_dual_lvds_100m;
  361. else
  362. limit = &intel_limits_ironlake_dual_lvds;
  363. } else {
  364. if (refclk == 100000)
  365. limit = &intel_limits_ironlake_single_lvds_100m;
  366. else
  367. limit = &intel_limits_ironlake_single_lvds;
  368. }
  369. } else
  370. limit = &intel_limits_ironlake_dac;
  371. return limit;
  372. }
  373. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  374. {
  375. struct drm_device *dev = crtc->dev;
  376. const intel_limit_t *limit;
  377. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  378. if (intel_is_dual_link_lvds(dev))
  379. limit = &intel_limits_g4x_dual_channel_lvds;
  380. else
  381. limit = &intel_limits_g4x_single_channel_lvds;
  382. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  383. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  384. limit = &intel_limits_g4x_hdmi;
  385. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  386. limit = &intel_limits_g4x_sdvo;
  387. } else /* The option is for other outputs */
  388. limit = &intel_limits_i9xx_sdvo;
  389. return limit;
  390. }
  391. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  392. {
  393. struct drm_device *dev = crtc->dev;
  394. const intel_limit_t *limit;
  395. if (HAS_PCH_SPLIT(dev))
  396. limit = intel_ironlake_limit(crtc, refclk);
  397. else if (IS_G4X(dev)) {
  398. limit = intel_g4x_limit(crtc);
  399. } else if (IS_PINEVIEW(dev)) {
  400. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  401. limit = &intel_limits_pineview_lvds;
  402. else
  403. limit = &intel_limits_pineview_sdvo;
  404. } else if (IS_VALLEYVIEW(dev)) {
  405. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  406. limit = &intel_limits_vlv_dac;
  407. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  408. limit = &intel_limits_vlv_hdmi;
  409. else
  410. limit = &intel_limits_vlv_dp;
  411. } else if (!IS_GEN2(dev)) {
  412. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  413. limit = &intel_limits_i9xx_lvds;
  414. else
  415. limit = &intel_limits_i9xx_sdvo;
  416. } else {
  417. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  418. limit = &intel_limits_i8xx_lvds;
  419. else
  420. limit = &intel_limits_i8xx_dvo;
  421. }
  422. return limit;
  423. }
  424. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  425. static void pineview_clock(int refclk, intel_clock_t *clock)
  426. {
  427. clock->m = clock->m2 + 2;
  428. clock->p = clock->p1 * clock->p2;
  429. clock->vco = refclk * clock->m / clock->n;
  430. clock->dot = clock->vco / clock->p;
  431. }
  432. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  433. {
  434. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  435. }
  436. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  437. {
  438. if (IS_PINEVIEW(dev)) {
  439. pineview_clock(refclk, clock);
  440. return;
  441. }
  442. clock->m = i9xx_dpll_compute_m(clock);
  443. clock->p = clock->p1 * clock->p2;
  444. clock->vco = refclk * clock->m / (clock->n + 2);
  445. clock->dot = clock->vco / clock->p;
  446. }
  447. /**
  448. * Returns whether any output on the specified pipe is of the specified type
  449. */
  450. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  451. {
  452. struct drm_device *dev = crtc->dev;
  453. struct intel_encoder *encoder;
  454. for_each_encoder_on_crtc(dev, crtc, encoder)
  455. if (encoder->type == type)
  456. return true;
  457. return false;
  458. }
  459. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  460. /**
  461. * Returns whether the given set of divisors are valid for a given refclk with
  462. * the given connectors.
  463. */
  464. static bool intel_PLL_is_valid(struct drm_device *dev,
  465. const intel_limit_t *limit,
  466. const intel_clock_t *clock)
  467. {
  468. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  469. INTELPllInvalid("p1 out of range\n");
  470. if (clock->p < limit->p.min || limit->p.max < clock->p)
  471. INTELPllInvalid("p out of range\n");
  472. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  473. INTELPllInvalid("m2 out of range\n");
  474. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  475. INTELPllInvalid("m1 out of range\n");
  476. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  477. INTELPllInvalid("m1 <= m2\n");
  478. if (clock->m < limit->m.min || limit->m.max < clock->m)
  479. INTELPllInvalid("m out of range\n");
  480. if (clock->n < limit->n.min || limit->n.max < clock->n)
  481. INTELPllInvalid("n out of range\n");
  482. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  483. INTELPllInvalid("vco out of range\n");
  484. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  485. * connector, etc., rather than just a single range.
  486. */
  487. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  488. INTELPllInvalid("dot out of range\n");
  489. return true;
  490. }
  491. static bool
  492. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  493. int target, int refclk, intel_clock_t *match_clock,
  494. intel_clock_t *best_clock)
  495. {
  496. struct drm_device *dev = crtc->dev;
  497. intel_clock_t clock;
  498. int err = target;
  499. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  500. /*
  501. * For LVDS just rely on its current settings for dual-channel.
  502. * We haven't figured out how to reliably set up different
  503. * single/dual channel state, if we even can.
  504. */
  505. if (intel_is_dual_link_lvds(dev))
  506. clock.p2 = limit->p2.p2_fast;
  507. else
  508. clock.p2 = limit->p2.p2_slow;
  509. } else {
  510. if (target < limit->p2.dot_limit)
  511. clock.p2 = limit->p2.p2_slow;
  512. else
  513. clock.p2 = limit->p2.p2_fast;
  514. }
  515. memset(best_clock, 0, sizeof(*best_clock));
  516. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  517. clock.m1++) {
  518. for (clock.m2 = limit->m2.min;
  519. clock.m2 <= limit->m2.max; clock.m2++) {
  520. /* m1 is always 0 in Pineview */
  521. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  522. break;
  523. for (clock.n = limit->n.min;
  524. clock.n <= limit->n.max; clock.n++) {
  525. for (clock.p1 = limit->p1.min;
  526. clock.p1 <= limit->p1.max; clock.p1++) {
  527. int this_err;
  528. intel_clock(dev, refclk, &clock);
  529. if (!intel_PLL_is_valid(dev, limit,
  530. &clock))
  531. continue;
  532. if (match_clock &&
  533. clock.p != match_clock->p)
  534. continue;
  535. this_err = abs(clock.dot - target);
  536. if (this_err < err) {
  537. *best_clock = clock;
  538. err = this_err;
  539. }
  540. }
  541. }
  542. }
  543. }
  544. return (err != target);
  545. }
  546. static bool
  547. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  548. int target, int refclk, intel_clock_t *match_clock,
  549. intel_clock_t *best_clock)
  550. {
  551. struct drm_device *dev = crtc->dev;
  552. intel_clock_t clock;
  553. int max_n;
  554. bool found;
  555. /* approximately equals target * 0.00585 */
  556. int err_most = (target >> 8) + (target >> 9);
  557. found = false;
  558. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  559. if (intel_is_dual_link_lvds(dev))
  560. clock.p2 = limit->p2.p2_fast;
  561. else
  562. clock.p2 = limit->p2.p2_slow;
  563. } else {
  564. if (target < limit->p2.dot_limit)
  565. clock.p2 = limit->p2.p2_slow;
  566. else
  567. clock.p2 = limit->p2.p2_fast;
  568. }
  569. memset(best_clock, 0, sizeof(*best_clock));
  570. max_n = limit->n.max;
  571. /* based on hardware requirement, prefer smaller n to precision */
  572. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  573. /* based on hardware requirement, prefere larger m1,m2 */
  574. for (clock.m1 = limit->m1.max;
  575. clock.m1 >= limit->m1.min; clock.m1--) {
  576. for (clock.m2 = limit->m2.max;
  577. clock.m2 >= limit->m2.min; clock.m2--) {
  578. for (clock.p1 = limit->p1.max;
  579. clock.p1 >= limit->p1.min; clock.p1--) {
  580. int this_err;
  581. intel_clock(dev, refclk, &clock);
  582. if (!intel_PLL_is_valid(dev, limit,
  583. &clock))
  584. continue;
  585. this_err = abs(clock.dot - target);
  586. if (this_err < err_most) {
  587. *best_clock = clock;
  588. err_most = this_err;
  589. max_n = clock.n;
  590. found = true;
  591. }
  592. }
  593. }
  594. }
  595. }
  596. return found;
  597. }
  598. static bool
  599. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  600. int target, int refclk, intel_clock_t *match_clock,
  601. intel_clock_t *best_clock)
  602. {
  603. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  604. u32 m, n, fastclk;
  605. u32 updrate, minupdate, fracbits, p;
  606. unsigned long bestppm, ppm, absppm;
  607. int dotclk, flag;
  608. flag = 0;
  609. dotclk = target * 1000;
  610. bestppm = 1000000;
  611. ppm = absppm = 0;
  612. fastclk = dotclk / (2*100);
  613. updrate = 0;
  614. minupdate = 19200;
  615. fracbits = 1;
  616. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  617. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  618. /* based on hardware requirement, prefer smaller n to precision */
  619. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  620. updrate = refclk / n;
  621. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  622. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  623. if (p2 > 10)
  624. p2 = p2 - 1;
  625. p = p1 * p2;
  626. /* based on hardware requirement, prefer bigger m1,m2 values */
  627. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  628. m2 = (((2*(fastclk * p * n / m1 )) +
  629. refclk) / (2*refclk));
  630. m = m1 * m2;
  631. vco = updrate * m;
  632. if (vco >= limit->vco.min && vco < limit->vco.max) {
  633. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  634. absppm = (ppm > 0) ? ppm : (-ppm);
  635. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  636. bestppm = 0;
  637. flag = 1;
  638. }
  639. if (absppm < bestppm - 10) {
  640. bestppm = absppm;
  641. flag = 1;
  642. }
  643. if (flag) {
  644. bestn = n;
  645. bestm1 = m1;
  646. bestm2 = m2;
  647. bestp1 = p1;
  648. bestp2 = p2;
  649. flag = 0;
  650. }
  651. }
  652. }
  653. }
  654. }
  655. }
  656. best_clock->n = bestn;
  657. best_clock->m1 = bestm1;
  658. best_clock->m2 = bestm2;
  659. best_clock->p1 = bestp1;
  660. best_clock->p2 = bestp2;
  661. return true;
  662. }
  663. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  664. enum pipe pipe)
  665. {
  666. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  667. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  668. return intel_crtc->config.cpu_transcoder;
  669. }
  670. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  671. {
  672. struct drm_i915_private *dev_priv = dev->dev_private;
  673. u32 frame, frame_reg = PIPEFRAME(pipe);
  674. frame = I915_READ(frame_reg);
  675. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  676. DRM_DEBUG_KMS("vblank wait timed out\n");
  677. }
  678. /**
  679. * intel_wait_for_vblank - wait for vblank on a given pipe
  680. * @dev: drm device
  681. * @pipe: pipe to wait for
  682. *
  683. * Wait for vblank to occur on a given pipe. Needed for various bits of
  684. * mode setting code.
  685. */
  686. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  687. {
  688. struct drm_i915_private *dev_priv = dev->dev_private;
  689. int pipestat_reg = PIPESTAT(pipe);
  690. if (INTEL_INFO(dev)->gen >= 5) {
  691. ironlake_wait_for_vblank(dev, pipe);
  692. return;
  693. }
  694. /* Clear existing vblank status. Note this will clear any other
  695. * sticky status fields as well.
  696. *
  697. * This races with i915_driver_irq_handler() with the result
  698. * that either function could miss a vblank event. Here it is not
  699. * fatal, as we will either wait upon the next vblank interrupt or
  700. * timeout. Generally speaking intel_wait_for_vblank() is only
  701. * called during modeset at which time the GPU should be idle and
  702. * should *not* be performing page flips and thus not waiting on
  703. * vblanks...
  704. * Currently, the result of us stealing a vblank from the irq
  705. * handler is that a single frame will be skipped during swapbuffers.
  706. */
  707. I915_WRITE(pipestat_reg,
  708. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  709. /* Wait for vblank interrupt bit to set */
  710. if (wait_for(I915_READ(pipestat_reg) &
  711. PIPE_VBLANK_INTERRUPT_STATUS,
  712. 50))
  713. DRM_DEBUG_KMS("vblank wait timed out\n");
  714. }
  715. /*
  716. * intel_wait_for_pipe_off - wait for pipe to turn off
  717. * @dev: drm device
  718. * @pipe: pipe to wait for
  719. *
  720. * After disabling a pipe, we can't wait for vblank in the usual way,
  721. * spinning on the vblank interrupt status bit, since we won't actually
  722. * see an interrupt when the pipe is disabled.
  723. *
  724. * On Gen4 and above:
  725. * wait for the pipe register state bit to turn off
  726. *
  727. * Otherwise:
  728. * wait for the display line value to settle (it usually
  729. * ends up stopping at the start of the next frame).
  730. *
  731. */
  732. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  733. {
  734. struct drm_i915_private *dev_priv = dev->dev_private;
  735. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  736. pipe);
  737. if (INTEL_INFO(dev)->gen >= 4) {
  738. int reg = PIPECONF(cpu_transcoder);
  739. /* Wait for the Pipe State to go off */
  740. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  741. 100))
  742. WARN(1, "pipe_off wait timed out\n");
  743. } else {
  744. u32 last_line, line_mask;
  745. int reg = PIPEDSL(pipe);
  746. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  747. if (IS_GEN2(dev))
  748. line_mask = DSL_LINEMASK_GEN2;
  749. else
  750. line_mask = DSL_LINEMASK_GEN3;
  751. /* Wait for the display line to settle */
  752. do {
  753. last_line = I915_READ(reg) & line_mask;
  754. mdelay(5);
  755. } while (((I915_READ(reg) & line_mask) != last_line) &&
  756. time_after(timeout, jiffies));
  757. if (time_after(jiffies, timeout))
  758. WARN(1, "pipe_off wait timed out\n");
  759. }
  760. }
  761. /*
  762. * ibx_digital_port_connected - is the specified port connected?
  763. * @dev_priv: i915 private structure
  764. * @port: the port to test
  765. *
  766. * Returns true if @port is connected, false otherwise.
  767. */
  768. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  769. struct intel_digital_port *port)
  770. {
  771. u32 bit;
  772. if (HAS_PCH_IBX(dev_priv->dev)) {
  773. switch(port->port) {
  774. case PORT_B:
  775. bit = SDE_PORTB_HOTPLUG;
  776. break;
  777. case PORT_C:
  778. bit = SDE_PORTC_HOTPLUG;
  779. break;
  780. case PORT_D:
  781. bit = SDE_PORTD_HOTPLUG;
  782. break;
  783. default:
  784. return true;
  785. }
  786. } else {
  787. switch(port->port) {
  788. case PORT_B:
  789. bit = SDE_PORTB_HOTPLUG_CPT;
  790. break;
  791. case PORT_C:
  792. bit = SDE_PORTC_HOTPLUG_CPT;
  793. break;
  794. case PORT_D:
  795. bit = SDE_PORTD_HOTPLUG_CPT;
  796. break;
  797. default:
  798. return true;
  799. }
  800. }
  801. return I915_READ(SDEISR) & bit;
  802. }
  803. static const char *state_string(bool enabled)
  804. {
  805. return enabled ? "on" : "off";
  806. }
  807. /* Only for pre-ILK configs */
  808. static void assert_pll(struct drm_i915_private *dev_priv,
  809. enum pipe pipe, bool state)
  810. {
  811. int reg;
  812. u32 val;
  813. bool cur_state;
  814. reg = DPLL(pipe);
  815. val = I915_READ(reg);
  816. cur_state = !!(val & DPLL_VCO_ENABLE);
  817. WARN(cur_state != state,
  818. "PLL state assertion failure (expected %s, current %s)\n",
  819. state_string(state), state_string(cur_state));
  820. }
  821. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  822. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  823. /* For ILK+ */
  824. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  825. struct intel_pch_pll *pll,
  826. struct intel_crtc *crtc,
  827. bool state)
  828. {
  829. u32 val;
  830. bool cur_state;
  831. if (HAS_PCH_LPT(dev_priv->dev)) {
  832. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  833. return;
  834. }
  835. if (WARN (!pll,
  836. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  837. return;
  838. val = I915_READ(pll->pll_reg);
  839. cur_state = !!(val & DPLL_VCO_ENABLE);
  840. WARN(cur_state != state,
  841. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  842. pll->pll_reg, state_string(state), state_string(cur_state), val);
  843. /* Make sure the selected PLL is correctly attached to the transcoder */
  844. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  845. u32 pch_dpll;
  846. pch_dpll = I915_READ(PCH_DPLL_SEL);
  847. cur_state = pll->pll_reg == _PCH_DPLL_B;
  848. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  849. "PLL[%d] not attached to this transcoder %c: %08x\n",
  850. cur_state, pipe_name(crtc->pipe), pch_dpll)) {
  851. cur_state = !!(val >> (4*crtc->pipe + 3));
  852. WARN(cur_state != state,
  853. "PLL[%d] not %s on this transcoder %c: %08x\n",
  854. pll->pll_reg == _PCH_DPLL_B,
  855. state_string(state),
  856. pipe_name(crtc->pipe),
  857. val);
  858. }
  859. }
  860. }
  861. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  862. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  863. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  864. enum pipe pipe, bool state)
  865. {
  866. int reg;
  867. u32 val;
  868. bool cur_state;
  869. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  870. pipe);
  871. if (HAS_DDI(dev_priv->dev)) {
  872. /* DDI does not have a specific FDI_TX register */
  873. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  874. val = I915_READ(reg);
  875. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  876. } else {
  877. reg = FDI_TX_CTL(pipe);
  878. val = I915_READ(reg);
  879. cur_state = !!(val & FDI_TX_ENABLE);
  880. }
  881. WARN(cur_state != state,
  882. "FDI TX state assertion failure (expected %s, current %s)\n",
  883. state_string(state), state_string(cur_state));
  884. }
  885. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  886. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  887. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  888. enum pipe pipe, bool state)
  889. {
  890. int reg;
  891. u32 val;
  892. bool cur_state;
  893. reg = FDI_RX_CTL(pipe);
  894. val = I915_READ(reg);
  895. cur_state = !!(val & FDI_RX_ENABLE);
  896. WARN(cur_state != state,
  897. "FDI RX state assertion failure (expected %s, current %s)\n",
  898. state_string(state), state_string(cur_state));
  899. }
  900. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  901. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  902. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  903. enum pipe pipe)
  904. {
  905. int reg;
  906. u32 val;
  907. /* ILK FDI PLL is always enabled */
  908. if (dev_priv->info->gen == 5)
  909. return;
  910. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  911. if (HAS_DDI(dev_priv->dev))
  912. return;
  913. reg = FDI_TX_CTL(pipe);
  914. val = I915_READ(reg);
  915. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  916. }
  917. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  918. enum pipe pipe)
  919. {
  920. int reg;
  921. u32 val;
  922. reg = FDI_RX_CTL(pipe);
  923. val = I915_READ(reg);
  924. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  925. }
  926. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  927. enum pipe pipe)
  928. {
  929. int pp_reg, lvds_reg;
  930. u32 val;
  931. enum pipe panel_pipe = PIPE_A;
  932. bool locked = true;
  933. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  934. pp_reg = PCH_PP_CONTROL;
  935. lvds_reg = PCH_LVDS;
  936. } else {
  937. pp_reg = PP_CONTROL;
  938. lvds_reg = LVDS;
  939. }
  940. val = I915_READ(pp_reg);
  941. if (!(val & PANEL_POWER_ON) ||
  942. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  943. locked = false;
  944. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  945. panel_pipe = PIPE_B;
  946. WARN(panel_pipe == pipe && locked,
  947. "panel assertion failure, pipe %c regs locked\n",
  948. pipe_name(pipe));
  949. }
  950. void assert_pipe(struct drm_i915_private *dev_priv,
  951. enum pipe pipe, bool state)
  952. {
  953. int reg;
  954. u32 val;
  955. bool cur_state;
  956. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  957. pipe);
  958. /* if we need the pipe A quirk it must be always on */
  959. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  960. state = true;
  961. if (!intel_display_power_enabled(dev_priv->dev,
  962. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  963. cur_state = false;
  964. } else {
  965. reg = PIPECONF(cpu_transcoder);
  966. val = I915_READ(reg);
  967. cur_state = !!(val & PIPECONF_ENABLE);
  968. }
  969. WARN(cur_state != state,
  970. "pipe %c assertion failure (expected %s, current %s)\n",
  971. pipe_name(pipe), state_string(state), state_string(cur_state));
  972. }
  973. static void assert_plane(struct drm_i915_private *dev_priv,
  974. enum plane plane, bool state)
  975. {
  976. int reg;
  977. u32 val;
  978. bool cur_state;
  979. reg = DSPCNTR(plane);
  980. val = I915_READ(reg);
  981. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  982. WARN(cur_state != state,
  983. "plane %c assertion failure (expected %s, current %s)\n",
  984. plane_name(plane), state_string(state), state_string(cur_state));
  985. }
  986. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  987. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  988. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  989. enum pipe pipe)
  990. {
  991. int reg, i;
  992. u32 val;
  993. int cur_pipe;
  994. /* Planes are fixed to pipes on ILK+ */
  995. if (HAS_PCH_SPLIT(dev_priv->dev) || IS_VALLEYVIEW(dev_priv->dev)) {
  996. reg = DSPCNTR(pipe);
  997. val = I915_READ(reg);
  998. WARN((val & DISPLAY_PLANE_ENABLE),
  999. "plane %c assertion failure, should be disabled but not\n",
  1000. plane_name(pipe));
  1001. return;
  1002. }
  1003. /* Need to check both planes against the pipe */
  1004. for (i = 0; i < 2; i++) {
  1005. reg = DSPCNTR(i);
  1006. val = I915_READ(reg);
  1007. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1008. DISPPLANE_SEL_PIPE_SHIFT;
  1009. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1010. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1011. plane_name(i), pipe_name(pipe));
  1012. }
  1013. }
  1014. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1015. enum pipe pipe)
  1016. {
  1017. int reg, i;
  1018. u32 val;
  1019. if (!IS_VALLEYVIEW(dev_priv->dev))
  1020. return;
  1021. /* Need to check both planes against the pipe */
  1022. for (i = 0; i < dev_priv->num_plane; i++) {
  1023. reg = SPCNTR(pipe, i);
  1024. val = I915_READ(reg);
  1025. WARN((val & SP_ENABLE),
  1026. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1027. sprite_name(pipe, i), pipe_name(pipe));
  1028. }
  1029. }
  1030. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1031. {
  1032. u32 val;
  1033. bool enabled;
  1034. if (HAS_PCH_LPT(dev_priv->dev)) {
  1035. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1036. return;
  1037. }
  1038. val = I915_READ(PCH_DREF_CONTROL);
  1039. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1040. DREF_SUPERSPREAD_SOURCE_MASK));
  1041. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1042. }
  1043. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1044. enum pipe pipe)
  1045. {
  1046. int reg;
  1047. u32 val;
  1048. bool enabled;
  1049. reg = PCH_TRANSCONF(pipe);
  1050. val = I915_READ(reg);
  1051. enabled = !!(val & TRANS_ENABLE);
  1052. WARN(enabled,
  1053. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1054. pipe_name(pipe));
  1055. }
  1056. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1057. enum pipe pipe, u32 port_sel, u32 val)
  1058. {
  1059. if ((val & DP_PORT_EN) == 0)
  1060. return false;
  1061. if (HAS_PCH_CPT(dev_priv->dev)) {
  1062. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1063. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1064. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1065. return false;
  1066. } else {
  1067. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1068. return false;
  1069. }
  1070. return true;
  1071. }
  1072. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1073. enum pipe pipe, u32 val)
  1074. {
  1075. if ((val & SDVO_ENABLE) == 0)
  1076. return false;
  1077. if (HAS_PCH_CPT(dev_priv->dev)) {
  1078. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1079. return false;
  1080. } else {
  1081. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1082. return false;
  1083. }
  1084. return true;
  1085. }
  1086. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1087. enum pipe pipe, u32 val)
  1088. {
  1089. if ((val & LVDS_PORT_EN) == 0)
  1090. return false;
  1091. if (HAS_PCH_CPT(dev_priv->dev)) {
  1092. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1093. return false;
  1094. } else {
  1095. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1096. return false;
  1097. }
  1098. return true;
  1099. }
  1100. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1101. enum pipe pipe, u32 val)
  1102. {
  1103. if ((val & ADPA_DAC_ENABLE) == 0)
  1104. return false;
  1105. if (HAS_PCH_CPT(dev_priv->dev)) {
  1106. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1107. return false;
  1108. } else {
  1109. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1110. return false;
  1111. }
  1112. return true;
  1113. }
  1114. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1115. enum pipe pipe, int reg, u32 port_sel)
  1116. {
  1117. u32 val = I915_READ(reg);
  1118. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1119. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1120. reg, pipe_name(pipe));
  1121. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1122. && (val & DP_PIPEB_SELECT),
  1123. "IBX PCH dp port still using transcoder B\n");
  1124. }
  1125. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1126. enum pipe pipe, int reg)
  1127. {
  1128. u32 val = I915_READ(reg);
  1129. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1130. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1131. reg, pipe_name(pipe));
  1132. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1133. && (val & SDVO_PIPE_B_SELECT),
  1134. "IBX PCH hdmi port still using transcoder B\n");
  1135. }
  1136. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1137. enum pipe pipe)
  1138. {
  1139. int reg;
  1140. u32 val;
  1141. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1142. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1143. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1144. reg = PCH_ADPA;
  1145. val = I915_READ(reg);
  1146. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1147. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1148. pipe_name(pipe));
  1149. reg = PCH_LVDS;
  1150. val = I915_READ(reg);
  1151. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1152. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1153. pipe_name(pipe));
  1154. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1155. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1156. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1157. }
  1158. /**
  1159. * intel_enable_pll - enable a PLL
  1160. * @dev_priv: i915 private structure
  1161. * @pipe: pipe PLL to enable
  1162. *
  1163. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1164. * make sure the PLL reg is writable first though, since the panel write
  1165. * protect mechanism may be enabled.
  1166. *
  1167. * Note! This is for pre-ILK only.
  1168. *
  1169. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1170. */
  1171. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1172. {
  1173. int reg;
  1174. u32 val;
  1175. assert_pipe_disabled(dev_priv, pipe);
  1176. /* No really, not for ILK+ */
  1177. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1178. /* PLL is protected by panel, make sure we can write it */
  1179. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1180. assert_panel_unlocked(dev_priv, pipe);
  1181. reg = DPLL(pipe);
  1182. val = I915_READ(reg);
  1183. val |= DPLL_VCO_ENABLE;
  1184. /* We do this three times for luck */
  1185. I915_WRITE(reg, val);
  1186. POSTING_READ(reg);
  1187. udelay(150); /* wait for warmup */
  1188. I915_WRITE(reg, val);
  1189. POSTING_READ(reg);
  1190. udelay(150); /* wait for warmup */
  1191. I915_WRITE(reg, val);
  1192. POSTING_READ(reg);
  1193. udelay(150); /* wait for warmup */
  1194. }
  1195. /**
  1196. * intel_disable_pll - disable a PLL
  1197. * @dev_priv: i915 private structure
  1198. * @pipe: pipe PLL to disable
  1199. *
  1200. * Disable the PLL for @pipe, making sure the pipe is off first.
  1201. *
  1202. * Note! This is for pre-ILK only.
  1203. */
  1204. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1205. {
  1206. int reg;
  1207. u32 val;
  1208. /* Don't disable pipe A or pipe A PLLs if needed */
  1209. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1210. return;
  1211. /* Make sure the pipe isn't still relying on us */
  1212. assert_pipe_disabled(dev_priv, pipe);
  1213. reg = DPLL(pipe);
  1214. val = I915_READ(reg);
  1215. val &= ~DPLL_VCO_ENABLE;
  1216. I915_WRITE(reg, val);
  1217. POSTING_READ(reg);
  1218. }
  1219. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1220. {
  1221. u32 port_mask;
  1222. if (!port)
  1223. port_mask = DPLL_PORTB_READY_MASK;
  1224. else
  1225. port_mask = DPLL_PORTC_READY_MASK;
  1226. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1227. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1228. 'B' + port, I915_READ(DPLL(0)));
  1229. }
  1230. /**
  1231. * ironlake_enable_pch_pll - enable PCH PLL
  1232. * @dev_priv: i915 private structure
  1233. * @pipe: pipe PLL to enable
  1234. *
  1235. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1236. * drives the transcoder clock.
  1237. */
  1238. static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
  1239. {
  1240. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1241. struct intel_pch_pll *pll;
  1242. int reg;
  1243. u32 val;
  1244. /* PCH PLLs only available on ILK, SNB and IVB */
  1245. BUG_ON(dev_priv->info->gen < 5);
  1246. pll = intel_crtc->pch_pll;
  1247. if (pll == NULL)
  1248. return;
  1249. if (WARN_ON(pll->refcount == 0))
  1250. return;
  1251. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1252. pll->pll_reg, pll->active, pll->on,
  1253. intel_crtc->base.base.id);
  1254. /* PCH refclock must be enabled first */
  1255. assert_pch_refclk_enabled(dev_priv);
  1256. if (pll->active++ && pll->on) {
  1257. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1258. return;
  1259. }
  1260. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1261. reg = pll->pll_reg;
  1262. val = I915_READ(reg);
  1263. val |= DPLL_VCO_ENABLE;
  1264. I915_WRITE(reg, val);
  1265. POSTING_READ(reg);
  1266. udelay(200);
  1267. pll->on = true;
  1268. }
  1269. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1270. {
  1271. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1272. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1273. int reg;
  1274. u32 val;
  1275. /* PCH only available on ILK+ */
  1276. BUG_ON(dev_priv->info->gen < 5);
  1277. if (pll == NULL)
  1278. return;
  1279. if (WARN_ON(pll->refcount == 0))
  1280. return;
  1281. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1282. pll->pll_reg, pll->active, pll->on,
  1283. intel_crtc->base.base.id);
  1284. if (WARN_ON(pll->active == 0)) {
  1285. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1286. return;
  1287. }
  1288. if (--pll->active) {
  1289. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1290. return;
  1291. }
  1292. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1293. /* Make sure transcoder isn't still depending on us */
  1294. assert_pch_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1295. reg = pll->pll_reg;
  1296. val = I915_READ(reg);
  1297. val &= ~DPLL_VCO_ENABLE;
  1298. I915_WRITE(reg, val);
  1299. POSTING_READ(reg);
  1300. udelay(200);
  1301. pll->on = false;
  1302. }
  1303. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1304. enum pipe pipe)
  1305. {
  1306. struct drm_device *dev = dev_priv->dev;
  1307. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1308. uint32_t reg, val, pipeconf_val;
  1309. /* PCH only available on ILK+ */
  1310. BUG_ON(dev_priv->info->gen < 5);
  1311. /* Make sure PCH DPLL is enabled */
  1312. assert_pch_pll_enabled(dev_priv,
  1313. to_intel_crtc(crtc)->pch_pll,
  1314. to_intel_crtc(crtc));
  1315. /* FDI must be feeding us bits for PCH ports */
  1316. assert_fdi_tx_enabled(dev_priv, pipe);
  1317. assert_fdi_rx_enabled(dev_priv, pipe);
  1318. if (HAS_PCH_CPT(dev)) {
  1319. /* Workaround: Set the timing override bit before enabling the
  1320. * pch transcoder. */
  1321. reg = TRANS_CHICKEN2(pipe);
  1322. val = I915_READ(reg);
  1323. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1324. I915_WRITE(reg, val);
  1325. }
  1326. reg = PCH_TRANSCONF(pipe);
  1327. val = I915_READ(reg);
  1328. pipeconf_val = I915_READ(PIPECONF(pipe));
  1329. if (HAS_PCH_IBX(dev_priv->dev)) {
  1330. /*
  1331. * make the BPC in transcoder be consistent with
  1332. * that in pipeconf reg.
  1333. */
  1334. val &= ~PIPECONF_BPC_MASK;
  1335. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1336. }
  1337. val &= ~TRANS_INTERLACE_MASK;
  1338. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1339. if (HAS_PCH_IBX(dev_priv->dev) &&
  1340. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1341. val |= TRANS_LEGACY_INTERLACED_ILK;
  1342. else
  1343. val |= TRANS_INTERLACED;
  1344. else
  1345. val |= TRANS_PROGRESSIVE;
  1346. I915_WRITE(reg, val | TRANS_ENABLE);
  1347. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1348. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1349. }
  1350. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1351. enum transcoder cpu_transcoder)
  1352. {
  1353. u32 val, pipeconf_val;
  1354. /* PCH only available on ILK+ */
  1355. BUG_ON(dev_priv->info->gen < 5);
  1356. /* FDI must be feeding us bits for PCH ports */
  1357. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1358. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1359. /* Workaround: set timing override bit. */
  1360. val = I915_READ(_TRANSA_CHICKEN2);
  1361. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1362. I915_WRITE(_TRANSA_CHICKEN2, val);
  1363. val = TRANS_ENABLE;
  1364. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1365. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1366. PIPECONF_INTERLACED_ILK)
  1367. val |= TRANS_INTERLACED;
  1368. else
  1369. val |= TRANS_PROGRESSIVE;
  1370. I915_WRITE(LPT_TRANSCONF, val);
  1371. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1372. DRM_ERROR("Failed to enable PCH transcoder\n");
  1373. }
  1374. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1375. enum pipe pipe)
  1376. {
  1377. struct drm_device *dev = dev_priv->dev;
  1378. uint32_t reg, val;
  1379. /* FDI relies on the transcoder */
  1380. assert_fdi_tx_disabled(dev_priv, pipe);
  1381. assert_fdi_rx_disabled(dev_priv, pipe);
  1382. /* Ports must be off as well */
  1383. assert_pch_ports_disabled(dev_priv, pipe);
  1384. reg = PCH_TRANSCONF(pipe);
  1385. val = I915_READ(reg);
  1386. val &= ~TRANS_ENABLE;
  1387. I915_WRITE(reg, val);
  1388. /* wait for PCH transcoder off, transcoder state */
  1389. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1390. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1391. if (!HAS_PCH_IBX(dev)) {
  1392. /* Workaround: Clear the timing override chicken bit again. */
  1393. reg = TRANS_CHICKEN2(pipe);
  1394. val = I915_READ(reg);
  1395. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1396. I915_WRITE(reg, val);
  1397. }
  1398. }
  1399. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1400. {
  1401. u32 val;
  1402. val = I915_READ(LPT_TRANSCONF);
  1403. val &= ~TRANS_ENABLE;
  1404. I915_WRITE(LPT_TRANSCONF, val);
  1405. /* wait for PCH transcoder off, transcoder state */
  1406. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1407. DRM_ERROR("Failed to disable PCH transcoder\n");
  1408. /* Workaround: clear timing override bit. */
  1409. val = I915_READ(_TRANSA_CHICKEN2);
  1410. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1411. I915_WRITE(_TRANSA_CHICKEN2, val);
  1412. }
  1413. /**
  1414. * intel_enable_pipe - enable a pipe, asserting requirements
  1415. * @dev_priv: i915 private structure
  1416. * @pipe: pipe to enable
  1417. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1418. *
  1419. * Enable @pipe, making sure that various hardware specific requirements
  1420. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1421. *
  1422. * @pipe should be %PIPE_A or %PIPE_B.
  1423. *
  1424. * Will wait until the pipe is actually running (i.e. first vblank) before
  1425. * returning.
  1426. */
  1427. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1428. bool pch_port)
  1429. {
  1430. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1431. pipe);
  1432. enum pipe pch_transcoder;
  1433. int reg;
  1434. u32 val;
  1435. assert_planes_disabled(dev_priv, pipe);
  1436. assert_sprites_disabled(dev_priv, pipe);
  1437. if (HAS_PCH_LPT(dev_priv->dev))
  1438. pch_transcoder = TRANSCODER_A;
  1439. else
  1440. pch_transcoder = pipe;
  1441. /*
  1442. * A pipe without a PLL won't actually be able to drive bits from
  1443. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1444. * need the check.
  1445. */
  1446. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1447. assert_pll_enabled(dev_priv, pipe);
  1448. else {
  1449. if (pch_port) {
  1450. /* if driving the PCH, we need FDI enabled */
  1451. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1452. assert_fdi_tx_pll_enabled(dev_priv,
  1453. (enum pipe) cpu_transcoder);
  1454. }
  1455. /* FIXME: assert CPU port conditions for SNB+ */
  1456. }
  1457. reg = PIPECONF(cpu_transcoder);
  1458. val = I915_READ(reg);
  1459. if (val & PIPECONF_ENABLE)
  1460. return;
  1461. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1462. intel_wait_for_vblank(dev_priv->dev, pipe);
  1463. }
  1464. /**
  1465. * intel_disable_pipe - disable a pipe, asserting requirements
  1466. * @dev_priv: i915 private structure
  1467. * @pipe: pipe to disable
  1468. *
  1469. * Disable @pipe, making sure that various hardware specific requirements
  1470. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1471. *
  1472. * @pipe should be %PIPE_A or %PIPE_B.
  1473. *
  1474. * Will wait until the pipe has shut down before returning.
  1475. */
  1476. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1477. enum pipe pipe)
  1478. {
  1479. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1480. pipe);
  1481. int reg;
  1482. u32 val;
  1483. /*
  1484. * Make sure planes won't keep trying to pump pixels to us,
  1485. * or we might hang the display.
  1486. */
  1487. assert_planes_disabled(dev_priv, pipe);
  1488. assert_sprites_disabled(dev_priv, pipe);
  1489. /* Don't disable pipe A or pipe A PLLs if needed */
  1490. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1491. return;
  1492. reg = PIPECONF(cpu_transcoder);
  1493. val = I915_READ(reg);
  1494. if ((val & PIPECONF_ENABLE) == 0)
  1495. return;
  1496. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1497. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1498. }
  1499. /*
  1500. * Plane regs are double buffered, going from enabled->disabled needs a
  1501. * trigger in order to latch. The display address reg provides this.
  1502. */
  1503. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1504. enum plane plane)
  1505. {
  1506. if (dev_priv->info->gen >= 4)
  1507. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1508. else
  1509. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1510. }
  1511. /**
  1512. * intel_enable_plane - enable a display plane on a given pipe
  1513. * @dev_priv: i915 private structure
  1514. * @plane: plane to enable
  1515. * @pipe: pipe being fed
  1516. *
  1517. * Enable @plane on @pipe, making sure that @pipe is running first.
  1518. */
  1519. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1520. enum plane plane, enum pipe pipe)
  1521. {
  1522. int reg;
  1523. u32 val;
  1524. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1525. assert_pipe_enabled(dev_priv, pipe);
  1526. reg = DSPCNTR(plane);
  1527. val = I915_READ(reg);
  1528. if (val & DISPLAY_PLANE_ENABLE)
  1529. return;
  1530. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1531. intel_flush_display_plane(dev_priv, plane);
  1532. intel_wait_for_vblank(dev_priv->dev, pipe);
  1533. }
  1534. /**
  1535. * intel_disable_plane - disable a display plane
  1536. * @dev_priv: i915 private structure
  1537. * @plane: plane to disable
  1538. * @pipe: pipe consuming the data
  1539. *
  1540. * Disable @plane; should be an independent operation.
  1541. */
  1542. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1543. enum plane plane, enum pipe pipe)
  1544. {
  1545. int reg;
  1546. u32 val;
  1547. reg = DSPCNTR(plane);
  1548. val = I915_READ(reg);
  1549. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1550. return;
  1551. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1552. intel_flush_display_plane(dev_priv, plane);
  1553. intel_wait_for_vblank(dev_priv->dev, pipe);
  1554. }
  1555. static bool need_vtd_wa(struct drm_device *dev)
  1556. {
  1557. #ifdef CONFIG_INTEL_IOMMU
  1558. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1559. return true;
  1560. #endif
  1561. return false;
  1562. }
  1563. int
  1564. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1565. struct drm_i915_gem_object *obj,
  1566. struct intel_ring_buffer *pipelined)
  1567. {
  1568. struct drm_i915_private *dev_priv = dev->dev_private;
  1569. u32 alignment;
  1570. int ret;
  1571. switch (obj->tiling_mode) {
  1572. case I915_TILING_NONE:
  1573. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1574. alignment = 128 * 1024;
  1575. else if (INTEL_INFO(dev)->gen >= 4)
  1576. alignment = 4 * 1024;
  1577. else
  1578. alignment = 64 * 1024;
  1579. break;
  1580. case I915_TILING_X:
  1581. /* pin() will align the object as required by fence */
  1582. alignment = 0;
  1583. break;
  1584. case I915_TILING_Y:
  1585. /* Despite that we check this in framebuffer_init userspace can
  1586. * screw us over and change the tiling after the fact. Only
  1587. * pinned buffers can't change their tiling. */
  1588. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1589. return -EINVAL;
  1590. default:
  1591. BUG();
  1592. }
  1593. /* Note that the w/a also requires 64 PTE of padding following the
  1594. * bo. We currently fill all unused PTE with the shadow page and so
  1595. * we should always have valid PTE following the scanout preventing
  1596. * the VT-d warning.
  1597. */
  1598. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1599. alignment = 256 * 1024;
  1600. dev_priv->mm.interruptible = false;
  1601. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1602. if (ret)
  1603. goto err_interruptible;
  1604. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1605. * fence, whereas 965+ only requires a fence if using
  1606. * framebuffer compression. For simplicity, we always install
  1607. * a fence as the cost is not that onerous.
  1608. */
  1609. ret = i915_gem_object_get_fence(obj);
  1610. if (ret)
  1611. goto err_unpin;
  1612. i915_gem_object_pin_fence(obj);
  1613. dev_priv->mm.interruptible = true;
  1614. return 0;
  1615. err_unpin:
  1616. i915_gem_object_unpin(obj);
  1617. err_interruptible:
  1618. dev_priv->mm.interruptible = true;
  1619. return ret;
  1620. }
  1621. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1622. {
  1623. i915_gem_object_unpin_fence(obj);
  1624. i915_gem_object_unpin(obj);
  1625. }
  1626. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1627. * is assumed to be a power-of-two. */
  1628. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1629. unsigned int tiling_mode,
  1630. unsigned int cpp,
  1631. unsigned int pitch)
  1632. {
  1633. if (tiling_mode != I915_TILING_NONE) {
  1634. unsigned int tile_rows, tiles;
  1635. tile_rows = *y / 8;
  1636. *y %= 8;
  1637. tiles = *x / (512/cpp);
  1638. *x %= 512/cpp;
  1639. return tile_rows * pitch * 8 + tiles * 4096;
  1640. } else {
  1641. unsigned int offset;
  1642. offset = *y * pitch + *x * cpp;
  1643. *y = 0;
  1644. *x = (offset & 4095) / cpp;
  1645. return offset & -4096;
  1646. }
  1647. }
  1648. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1649. int x, int y)
  1650. {
  1651. struct drm_device *dev = crtc->dev;
  1652. struct drm_i915_private *dev_priv = dev->dev_private;
  1653. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1654. struct intel_framebuffer *intel_fb;
  1655. struct drm_i915_gem_object *obj;
  1656. int plane = intel_crtc->plane;
  1657. unsigned long linear_offset;
  1658. u32 dspcntr;
  1659. u32 reg;
  1660. switch (plane) {
  1661. case 0:
  1662. case 1:
  1663. break;
  1664. default:
  1665. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1666. return -EINVAL;
  1667. }
  1668. intel_fb = to_intel_framebuffer(fb);
  1669. obj = intel_fb->obj;
  1670. reg = DSPCNTR(plane);
  1671. dspcntr = I915_READ(reg);
  1672. /* Mask out pixel format bits in case we change it */
  1673. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1674. switch (fb->pixel_format) {
  1675. case DRM_FORMAT_C8:
  1676. dspcntr |= DISPPLANE_8BPP;
  1677. break;
  1678. case DRM_FORMAT_XRGB1555:
  1679. case DRM_FORMAT_ARGB1555:
  1680. dspcntr |= DISPPLANE_BGRX555;
  1681. break;
  1682. case DRM_FORMAT_RGB565:
  1683. dspcntr |= DISPPLANE_BGRX565;
  1684. break;
  1685. case DRM_FORMAT_XRGB8888:
  1686. case DRM_FORMAT_ARGB8888:
  1687. dspcntr |= DISPPLANE_BGRX888;
  1688. break;
  1689. case DRM_FORMAT_XBGR8888:
  1690. case DRM_FORMAT_ABGR8888:
  1691. dspcntr |= DISPPLANE_RGBX888;
  1692. break;
  1693. case DRM_FORMAT_XRGB2101010:
  1694. case DRM_FORMAT_ARGB2101010:
  1695. dspcntr |= DISPPLANE_BGRX101010;
  1696. break;
  1697. case DRM_FORMAT_XBGR2101010:
  1698. case DRM_FORMAT_ABGR2101010:
  1699. dspcntr |= DISPPLANE_RGBX101010;
  1700. break;
  1701. default:
  1702. BUG();
  1703. }
  1704. if (INTEL_INFO(dev)->gen >= 4) {
  1705. if (obj->tiling_mode != I915_TILING_NONE)
  1706. dspcntr |= DISPPLANE_TILED;
  1707. else
  1708. dspcntr &= ~DISPPLANE_TILED;
  1709. }
  1710. I915_WRITE(reg, dspcntr);
  1711. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1712. if (INTEL_INFO(dev)->gen >= 4) {
  1713. intel_crtc->dspaddr_offset =
  1714. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1715. fb->bits_per_pixel / 8,
  1716. fb->pitches[0]);
  1717. linear_offset -= intel_crtc->dspaddr_offset;
  1718. } else {
  1719. intel_crtc->dspaddr_offset = linear_offset;
  1720. }
  1721. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1722. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1723. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1724. if (INTEL_INFO(dev)->gen >= 4) {
  1725. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1726. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1727. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1728. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1729. } else
  1730. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1731. POSTING_READ(reg);
  1732. return 0;
  1733. }
  1734. static int ironlake_update_plane(struct drm_crtc *crtc,
  1735. struct drm_framebuffer *fb, int x, int y)
  1736. {
  1737. struct drm_device *dev = crtc->dev;
  1738. struct drm_i915_private *dev_priv = dev->dev_private;
  1739. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1740. struct intel_framebuffer *intel_fb;
  1741. struct drm_i915_gem_object *obj;
  1742. int plane = intel_crtc->plane;
  1743. unsigned long linear_offset;
  1744. u32 dspcntr;
  1745. u32 reg;
  1746. switch (plane) {
  1747. case 0:
  1748. case 1:
  1749. case 2:
  1750. break;
  1751. default:
  1752. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1753. return -EINVAL;
  1754. }
  1755. intel_fb = to_intel_framebuffer(fb);
  1756. obj = intel_fb->obj;
  1757. reg = DSPCNTR(plane);
  1758. dspcntr = I915_READ(reg);
  1759. /* Mask out pixel format bits in case we change it */
  1760. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1761. switch (fb->pixel_format) {
  1762. case DRM_FORMAT_C8:
  1763. dspcntr |= DISPPLANE_8BPP;
  1764. break;
  1765. case DRM_FORMAT_RGB565:
  1766. dspcntr |= DISPPLANE_BGRX565;
  1767. break;
  1768. case DRM_FORMAT_XRGB8888:
  1769. case DRM_FORMAT_ARGB8888:
  1770. dspcntr |= DISPPLANE_BGRX888;
  1771. break;
  1772. case DRM_FORMAT_XBGR8888:
  1773. case DRM_FORMAT_ABGR8888:
  1774. dspcntr |= DISPPLANE_RGBX888;
  1775. break;
  1776. case DRM_FORMAT_XRGB2101010:
  1777. case DRM_FORMAT_ARGB2101010:
  1778. dspcntr |= DISPPLANE_BGRX101010;
  1779. break;
  1780. case DRM_FORMAT_XBGR2101010:
  1781. case DRM_FORMAT_ABGR2101010:
  1782. dspcntr |= DISPPLANE_RGBX101010;
  1783. break;
  1784. default:
  1785. BUG();
  1786. }
  1787. if (obj->tiling_mode != I915_TILING_NONE)
  1788. dspcntr |= DISPPLANE_TILED;
  1789. else
  1790. dspcntr &= ~DISPPLANE_TILED;
  1791. /* must disable */
  1792. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1793. I915_WRITE(reg, dspcntr);
  1794. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1795. intel_crtc->dspaddr_offset =
  1796. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1797. fb->bits_per_pixel / 8,
  1798. fb->pitches[0]);
  1799. linear_offset -= intel_crtc->dspaddr_offset;
  1800. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1801. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1802. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1803. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1804. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1805. if (IS_HASWELL(dev)) {
  1806. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1807. } else {
  1808. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1809. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1810. }
  1811. POSTING_READ(reg);
  1812. return 0;
  1813. }
  1814. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1815. static int
  1816. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1817. int x, int y, enum mode_set_atomic state)
  1818. {
  1819. struct drm_device *dev = crtc->dev;
  1820. struct drm_i915_private *dev_priv = dev->dev_private;
  1821. if (dev_priv->display.disable_fbc)
  1822. dev_priv->display.disable_fbc(dev);
  1823. intel_increase_pllclock(crtc);
  1824. return dev_priv->display.update_plane(crtc, fb, x, y);
  1825. }
  1826. void intel_display_handle_reset(struct drm_device *dev)
  1827. {
  1828. struct drm_i915_private *dev_priv = dev->dev_private;
  1829. struct drm_crtc *crtc;
  1830. /*
  1831. * Flips in the rings have been nuked by the reset,
  1832. * so complete all pending flips so that user space
  1833. * will get its events and not get stuck.
  1834. *
  1835. * Also update the base address of all primary
  1836. * planes to the the last fb to make sure we're
  1837. * showing the correct fb after a reset.
  1838. *
  1839. * Need to make two loops over the crtcs so that we
  1840. * don't try to grab a crtc mutex before the
  1841. * pending_flip_queue really got woken up.
  1842. */
  1843. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1844. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1845. enum plane plane = intel_crtc->plane;
  1846. intel_prepare_page_flip(dev, plane);
  1847. intel_finish_page_flip_plane(dev, plane);
  1848. }
  1849. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1850. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1851. mutex_lock(&crtc->mutex);
  1852. if (intel_crtc->active)
  1853. dev_priv->display.update_plane(crtc, crtc->fb,
  1854. crtc->x, crtc->y);
  1855. mutex_unlock(&crtc->mutex);
  1856. }
  1857. }
  1858. static int
  1859. intel_finish_fb(struct drm_framebuffer *old_fb)
  1860. {
  1861. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1862. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1863. bool was_interruptible = dev_priv->mm.interruptible;
  1864. int ret;
  1865. /* Big Hammer, we also need to ensure that any pending
  1866. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1867. * current scanout is retired before unpinning the old
  1868. * framebuffer.
  1869. *
  1870. * This should only fail upon a hung GPU, in which case we
  1871. * can safely continue.
  1872. */
  1873. dev_priv->mm.interruptible = false;
  1874. ret = i915_gem_object_finish_gpu(obj);
  1875. dev_priv->mm.interruptible = was_interruptible;
  1876. return ret;
  1877. }
  1878. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1879. {
  1880. struct drm_device *dev = crtc->dev;
  1881. struct drm_i915_master_private *master_priv;
  1882. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1883. if (!dev->primary->master)
  1884. return;
  1885. master_priv = dev->primary->master->driver_priv;
  1886. if (!master_priv->sarea_priv)
  1887. return;
  1888. switch (intel_crtc->pipe) {
  1889. case 0:
  1890. master_priv->sarea_priv->pipeA_x = x;
  1891. master_priv->sarea_priv->pipeA_y = y;
  1892. break;
  1893. case 1:
  1894. master_priv->sarea_priv->pipeB_x = x;
  1895. master_priv->sarea_priv->pipeB_y = y;
  1896. break;
  1897. default:
  1898. break;
  1899. }
  1900. }
  1901. static int
  1902. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1903. struct drm_framebuffer *fb)
  1904. {
  1905. struct drm_device *dev = crtc->dev;
  1906. struct drm_i915_private *dev_priv = dev->dev_private;
  1907. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1908. struct drm_framebuffer *old_fb;
  1909. int ret;
  1910. /* no fb bound */
  1911. if (!fb) {
  1912. DRM_ERROR("No FB bound\n");
  1913. return 0;
  1914. }
  1915. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1916. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1917. plane_name(intel_crtc->plane),
  1918. INTEL_INFO(dev)->num_pipes);
  1919. return -EINVAL;
  1920. }
  1921. mutex_lock(&dev->struct_mutex);
  1922. ret = intel_pin_and_fence_fb_obj(dev,
  1923. to_intel_framebuffer(fb)->obj,
  1924. NULL);
  1925. if (ret != 0) {
  1926. mutex_unlock(&dev->struct_mutex);
  1927. DRM_ERROR("pin & fence failed\n");
  1928. return ret;
  1929. }
  1930. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1931. if (ret) {
  1932. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  1933. mutex_unlock(&dev->struct_mutex);
  1934. DRM_ERROR("failed to update base address\n");
  1935. return ret;
  1936. }
  1937. old_fb = crtc->fb;
  1938. crtc->fb = fb;
  1939. crtc->x = x;
  1940. crtc->y = y;
  1941. if (old_fb) {
  1942. if (intel_crtc->active && old_fb != fb)
  1943. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1944. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1945. }
  1946. intel_update_fbc(dev);
  1947. mutex_unlock(&dev->struct_mutex);
  1948. intel_crtc_update_sarea_pos(crtc, x, y);
  1949. return 0;
  1950. }
  1951. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  1952. {
  1953. struct drm_device *dev = crtc->dev;
  1954. struct drm_i915_private *dev_priv = dev->dev_private;
  1955. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1956. int pipe = intel_crtc->pipe;
  1957. u32 reg, temp;
  1958. /* enable normal train */
  1959. reg = FDI_TX_CTL(pipe);
  1960. temp = I915_READ(reg);
  1961. if (IS_IVYBRIDGE(dev)) {
  1962. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  1963. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  1964. } else {
  1965. temp &= ~FDI_LINK_TRAIN_NONE;
  1966. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  1967. }
  1968. I915_WRITE(reg, temp);
  1969. reg = FDI_RX_CTL(pipe);
  1970. temp = I915_READ(reg);
  1971. if (HAS_PCH_CPT(dev)) {
  1972. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  1973. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  1974. } else {
  1975. temp &= ~FDI_LINK_TRAIN_NONE;
  1976. temp |= FDI_LINK_TRAIN_NONE;
  1977. }
  1978. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  1979. /* wait one idle pattern time */
  1980. POSTING_READ(reg);
  1981. udelay(1000);
  1982. /* IVB wants error correction enabled */
  1983. if (IS_IVYBRIDGE(dev))
  1984. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  1985. FDI_FE_ERRC_ENABLE);
  1986. }
  1987. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  1988. {
  1989. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  1990. }
  1991. static void ivb_modeset_global_resources(struct drm_device *dev)
  1992. {
  1993. struct drm_i915_private *dev_priv = dev->dev_private;
  1994. struct intel_crtc *pipe_B_crtc =
  1995. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  1996. struct intel_crtc *pipe_C_crtc =
  1997. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  1998. uint32_t temp;
  1999. /*
  2000. * When everything is off disable fdi C so that we could enable fdi B
  2001. * with all lanes. Note that we don't care about enabled pipes without
  2002. * an enabled pch encoder.
  2003. */
  2004. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2005. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2006. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2007. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2008. temp = I915_READ(SOUTH_CHICKEN1);
  2009. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2010. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2011. I915_WRITE(SOUTH_CHICKEN1, temp);
  2012. }
  2013. }
  2014. /* The FDI link training functions for ILK/Ibexpeak. */
  2015. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2016. {
  2017. struct drm_device *dev = crtc->dev;
  2018. struct drm_i915_private *dev_priv = dev->dev_private;
  2019. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2020. int pipe = intel_crtc->pipe;
  2021. int plane = intel_crtc->plane;
  2022. u32 reg, temp, tries;
  2023. /* FDI needs bits from pipe & plane first */
  2024. assert_pipe_enabled(dev_priv, pipe);
  2025. assert_plane_enabled(dev_priv, plane);
  2026. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2027. for train result */
  2028. reg = FDI_RX_IMR(pipe);
  2029. temp = I915_READ(reg);
  2030. temp &= ~FDI_RX_SYMBOL_LOCK;
  2031. temp &= ~FDI_RX_BIT_LOCK;
  2032. I915_WRITE(reg, temp);
  2033. I915_READ(reg);
  2034. udelay(150);
  2035. /* enable CPU FDI TX and PCH FDI RX */
  2036. reg = FDI_TX_CTL(pipe);
  2037. temp = I915_READ(reg);
  2038. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2039. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2040. temp &= ~FDI_LINK_TRAIN_NONE;
  2041. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2042. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2043. reg = FDI_RX_CTL(pipe);
  2044. temp = I915_READ(reg);
  2045. temp &= ~FDI_LINK_TRAIN_NONE;
  2046. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2047. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2048. POSTING_READ(reg);
  2049. udelay(150);
  2050. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2051. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2052. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2053. FDI_RX_PHASE_SYNC_POINTER_EN);
  2054. reg = FDI_RX_IIR(pipe);
  2055. for (tries = 0; tries < 5; tries++) {
  2056. temp = I915_READ(reg);
  2057. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2058. if ((temp & FDI_RX_BIT_LOCK)) {
  2059. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2060. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2061. break;
  2062. }
  2063. }
  2064. if (tries == 5)
  2065. DRM_ERROR("FDI train 1 fail!\n");
  2066. /* Train 2 */
  2067. reg = FDI_TX_CTL(pipe);
  2068. temp = I915_READ(reg);
  2069. temp &= ~FDI_LINK_TRAIN_NONE;
  2070. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2071. I915_WRITE(reg, temp);
  2072. reg = FDI_RX_CTL(pipe);
  2073. temp = I915_READ(reg);
  2074. temp &= ~FDI_LINK_TRAIN_NONE;
  2075. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2076. I915_WRITE(reg, temp);
  2077. POSTING_READ(reg);
  2078. udelay(150);
  2079. reg = FDI_RX_IIR(pipe);
  2080. for (tries = 0; tries < 5; tries++) {
  2081. temp = I915_READ(reg);
  2082. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2083. if (temp & FDI_RX_SYMBOL_LOCK) {
  2084. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2085. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2086. break;
  2087. }
  2088. }
  2089. if (tries == 5)
  2090. DRM_ERROR("FDI train 2 fail!\n");
  2091. DRM_DEBUG_KMS("FDI train done\n");
  2092. }
  2093. static const int snb_b_fdi_train_param[] = {
  2094. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2095. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2096. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2097. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2098. };
  2099. /* The FDI link training functions for SNB/Cougarpoint. */
  2100. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2101. {
  2102. struct drm_device *dev = crtc->dev;
  2103. struct drm_i915_private *dev_priv = dev->dev_private;
  2104. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2105. int pipe = intel_crtc->pipe;
  2106. u32 reg, temp, i, retry;
  2107. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2108. for train result */
  2109. reg = FDI_RX_IMR(pipe);
  2110. temp = I915_READ(reg);
  2111. temp &= ~FDI_RX_SYMBOL_LOCK;
  2112. temp &= ~FDI_RX_BIT_LOCK;
  2113. I915_WRITE(reg, temp);
  2114. POSTING_READ(reg);
  2115. udelay(150);
  2116. /* enable CPU FDI TX and PCH FDI RX */
  2117. reg = FDI_TX_CTL(pipe);
  2118. temp = I915_READ(reg);
  2119. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2120. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2121. temp &= ~FDI_LINK_TRAIN_NONE;
  2122. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2123. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2124. /* SNB-B */
  2125. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2126. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2127. I915_WRITE(FDI_RX_MISC(pipe),
  2128. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2129. reg = FDI_RX_CTL(pipe);
  2130. temp = I915_READ(reg);
  2131. if (HAS_PCH_CPT(dev)) {
  2132. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2133. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2134. } else {
  2135. temp &= ~FDI_LINK_TRAIN_NONE;
  2136. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2137. }
  2138. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2139. POSTING_READ(reg);
  2140. udelay(150);
  2141. for (i = 0; i < 4; i++) {
  2142. reg = FDI_TX_CTL(pipe);
  2143. temp = I915_READ(reg);
  2144. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2145. temp |= snb_b_fdi_train_param[i];
  2146. I915_WRITE(reg, temp);
  2147. POSTING_READ(reg);
  2148. udelay(500);
  2149. for (retry = 0; retry < 5; retry++) {
  2150. reg = FDI_RX_IIR(pipe);
  2151. temp = I915_READ(reg);
  2152. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2153. if (temp & FDI_RX_BIT_LOCK) {
  2154. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2155. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2156. break;
  2157. }
  2158. udelay(50);
  2159. }
  2160. if (retry < 5)
  2161. break;
  2162. }
  2163. if (i == 4)
  2164. DRM_ERROR("FDI train 1 fail!\n");
  2165. /* Train 2 */
  2166. reg = FDI_TX_CTL(pipe);
  2167. temp = I915_READ(reg);
  2168. temp &= ~FDI_LINK_TRAIN_NONE;
  2169. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2170. if (IS_GEN6(dev)) {
  2171. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2172. /* SNB-B */
  2173. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2174. }
  2175. I915_WRITE(reg, temp);
  2176. reg = FDI_RX_CTL(pipe);
  2177. temp = I915_READ(reg);
  2178. if (HAS_PCH_CPT(dev)) {
  2179. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2180. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2181. } else {
  2182. temp &= ~FDI_LINK_TRAIN_NONE;
  2183. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2184. }
  2185. I915_WRITE(reg, temp);
  2186. POSTING_READ(reg);
  2187. udelay(150);
  2188. for (i = 0; i < 4; i++) {
  2189. reg = FDI_TX_CTL(pipe);
  2190. temp = I915_READ(reg);
  2191. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2192. temp |= snb_b_fdi_train_param[i];
  2193. I915_WRITE(reg, temp);
  2194. POSTING_READ(reg);
  2195. udelay(500);
  2196. for (retry = 0; retry < 5; retry++) {
  2197. reg = FDI_RX_IIR(pipe);
  2198. temp = I915_READ(reg);
  2199. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2200. if (temp & FDI_RX_SYMBOL_LOCK) {
  2201. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2202. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2203. break;
  2204. }
  2205. udelay(50);
  2206. }
  2207. if (retry < 5)
  2208. break;
  2209. }
  2210. if (i == 4)
  2211. DRM_ERROR("FDI train 2 fail!\n");
  2212. DRM_DEBUG_KMS("FDI train done.\n");
  2213. }
  2214. /* Manual link training for Ivy Bridge A0 parts */
  2215. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2216. {
  2217. struct drm_device *dev = crtc->dev;
  2218. struct drm_i915_private *dev_priv = dev->dev_private;
  2219. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2220. int pipe = intel_crtc->pipe;
  2221. u32 reg, temp, i;
  2222. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2223. for train result */
  2224. reg = FDI_RX_IMR(pipe);
  2225. temp = I915_READ(reg);
  2226. temp &= ~FDI_RX_SYMBOL_LOCK;
  2227. temp &= ~FDI_RX_BIT_LOCK;
  2228. I915_WRITE(reg, temp);
  2229. POSTING_READ(reg);
  2230. udelay(150);
  2231. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2232. I915_READ(FDI_RX_IIR(pipe)));
  2233. /* enable CPU FDI TX and PCH FDI RX */
  2234. reg = FDI_TX_CTL(pipe);
  2235. temp = I915_READ(reg);
  2236. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2237. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2238. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2239. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2240. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2241. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2242. temp |= FDI_COMPOSITE_SYNC;
  2243. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2244. I915_WRITE(FDI_RX_MISC(pipe),
  2245. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2246. reg = FDI_RX_CTL(pipe);
  2247. temp = I915_READ(reg);
  2248. temp &= ~FDI_LINK_TRAIN_AUTO;
  2249. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2250. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2251. temp |= FDI_COMPOSITE_SYNC;
  2252. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2253. POSTING_READ(reg);
  2254. udelay(150);
  2255. for (i = 0; i < 4; i++) {
  2256. reg = FDI_TX_CTL(pipe);
  2257. temp = I915_READ(reg);
  2258. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2259. temp |= snb_b_fdi_train_param[i];
  2260. I915_WRITE(reg, temp);
  2261. POSTING_READ(reg);
  2262. udelay(500);
  2263. reg = FDI_RX_IIR(pipe);
  2264. temp = I915_READ(reg);
  2265. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2266. if (temp & FDI_RX_BIT_LOCK ||
  2267. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2268. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2269. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
  2270. break;
  2271. }
  2272. }
  2273. if (i == 4)
  2274. DRM_ERROR("FDI train 1 fail!\n");
  2275. /* Train 2 */
  2276. reg = FDI_TX_CTL(pipe);
  2277. temp = I915_READ(reg);
  2278. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2279. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2280. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2281. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2282. I915_WRITE(reg, temp);
  2283. reg = FDI_RX_CTL(pipe);
  2284. temp = I915_READ(reg);
  2285. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2286. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2287. I915_WRITE(reg, temp);
  2288. POSTING_READ(reg);
  2289. udelay(150);
  2290. for (i = 0; i < 4; i++) {
  2291. reg = FDI_TX_CTL(pipe);
  2292. temp = I915_READ(reg);
  2293. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2294. temp |= snb_b_fdi_train_param[i];
  2295. I915_WRITE(reg, temp);
  2296. POSTING_READ(reg);
  2297. udelay(500);
  2298. reg = FDI_RX_IIR(pipe);
  2299. temp = I915_READ(reg);
  2300. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2301. if (temp & FDI_RX_SYMBOL_LOCK) {
  2302. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2303. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
  2304. break;
  2305. }
  2306. }
  2307. if (i == 4)
  2308. DRM_ERROR("FDI train 2 fail!\n");
  2309. DRM_DEBUG_KMS("FDI train done.\n");
  2310. }
  2311. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2312. {
  2313. struct drm_device *dev = intel_crtc->base.dev;
  2314. struct drm_i915_private *dev_priv = dev->dev_private;
  2315. int pipe = intel_crtc->pipe;
  2316. u32 reg, temp;
  2317. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2318. reg = FDI_RX_CTL(pipe);
  2319. temp = I915_READ(reg);
  2320. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2321. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2322. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2323. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2324. POSTING_READ(reg);
  2325. udelay(200);
  2326. /* Switch from Rawclk to PCDclk */
  2327. temp = I915_READ(reg);
  2328. I915_WRITE(reg, temp | FDI_PCDCLK);
  2329. POSTING_READ(reg);
  2330. udelay(200);
  2331. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2332. reg = FDI_TX_CTL(pipe);
  2333. temp = I915_READ(reg);
  2334. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2335. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2336. POSTING_READ(reg);
  2337. udelay(100);
  2338. }
  2339. }
  2340. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2341. {
  2342. struct drm_device *dev = intel_crtc->base.dev;
  2343. struct drm_i915_private *dev_priv = dev->dev_private;
  2344. int pipe = intel_crtc->pipe;
  2345. u32 reg, temp;
  2346. /* Switch from PCDclk to Rawclk */
  2347. reg = FDI_RX_CTL(pipe);
  2348. temp = I915_READ(reg);
  2349. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2350. /* Disable CPU FDI TX PLL */
  2351. reg = FDI_TX_CTL(pipe);
  2352. temp = I915_READ(reg);
  2353. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2354. POSTING_READ(reg);
  2355. udelay(100);
  2356. reg = FDI_RX_CTL(pipe);
  2357. temp = I915_READ(reg);
  2358. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2359. /* Wait for the clocks to turn off. */
  2360. POSTING_READ(reg);
  2361. udelay(100);
  2362. }
  2363. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2364. {
  2365. struct drm_device *dev = crtc->dev;
  2366. struct drm_i915_private *dev_priv = dev->dev_private;
  2367. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2368. int pipe = intel_crtc->pipe;
  2369. u32 reg, temp;
  2370. /* disable CPU FDI tx and PCH FDI rx */
  2371. reg = FDI_TX_CTL(pipe);
  2372. temp = I915_READ(reg);
  2373. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2374. POSTING_READ(reg);
  2375. reg = FDI_RX_CTL(pipe);
  2376. temp = I915_READ(reg);
  2377. temp &= ~(0x7 << 16);
  2378. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2379. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2380. POSTING_READ(reg);
  2381. udelay(100);
  2382. /* Ironlake workaround, disable clock pointer after downing FDI */
  2383. if (HAS_PCH_IBX(dev)) {
  2384. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2385. }
  2386. /* still set train pattern 1 */
  2387. reg = FDI_TX_CTL(pipe);
  2388. temp = I915_READ(reg);
  2389. temp &= ~FDI_LINK_TRAIN_NONE;
  2390. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2391. I915_WRITE(reg, temp);
  2392. reg = FDI_RX_CTL(pipe);
  2393. temp = I915_READ(reg);
  2394. if (HAS_PCH_CPT(dev)) {
  2395. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2396. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2397. } else {
  2398. temp &= ~FDI_LINK_TRAIN_NONE;
  2399. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2400. }
  2401. /* BPC in FDI rx is consistent with that in PIPECONF */
  2402. temp &= ~(0x07 << 16);
  2403. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2404. I915_WRITE(reg, temp);
  2405. POSTING_READ(reg);
  2406. udelay(100);
  2407. }
  2408. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2409. {
  2410. struct drm_device *dev = crtc->dev;
  2411. struct drm_i915_private *dev_priv = dev->dev_private;
  2412. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2413. unsigned long flags;
  2414. bool pending;
  2415. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2416. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2417. return false;
  2418. spin_lock_irqsave(&dev->event_lock, flags);
  2419. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2420. spin_unlock_irqrestore(&dev->event_lock, flags);
  2421. return pending;
  2422. }
  2423. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2424. {
  2425. struct drm_device *dev = crtc->dev;
  2426. struct drm_i915_private *dev_priv = dev->dev_private;
  2427. if (crtc->fb == NULL)
  2428. return;
  2429. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2430. wait_event(dev_priv->pending_flip_queue,
  2431. !intel_crtc_has_pending_flip(crtc));
  2432. mutex_lock(&dev->struct_mutex);
  2433. intel_finish_fb(crtc->fb);
  2434. mutex_unlock(&dev->struct_mutex);
  2435. }
  2436. /* Program iCLKIP clock to the desired frequency */
  2437. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2438. {
  2439. struct drm_device *dev = crtc->dev;
  2440. struct drm_i915_private *dev_priv = dev->dev_private;
  2441. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2442. u32 temp;
  2443. mutex_lock(&dev_priv->dpio_lock);
  2444. /* It is necessary to ungate the pixclk gate prior to programming
  2445. * the divisors, and gate it back when it is done.
  2446. */
  2447. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2448. /* Disable SSCCTL */
  2449. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2450. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2451. SBI_SSCCTL_DISABLE,
  2452. SBI_ICLK);
  2453. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2454. if (crtc->mode.clock == 20000) {
  2455. auxdiv = 1;
  2456. divsel = 0x41;
  2457. phaseinc = 0x20;
  2458. } else {
  2459. /* The iCLK virtual clock root frequency is in MHz,
  2460. * but the crtc->mode.clock in in KHz. To get the divisors,
  2461. * it is necessary to divide one by another, so we
  2462. * convert the virtual clock precision to KHz here for higher
  2463. * precision.
  2464. */
  2465. u32 iclk_virtual_root_freq = 172800 * 1000;
  2466. u32 iclk_pi_range = 64;
  2467. u32 desired_divisor, msb_divisor_value, pi_value;
  2468. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2469. msb_divisor_value = desired_divisor / iclk_pi_range;
  2470. pi_value = desired_divisor % iclk_pi_range;
  2471. auxdiv = 0;
  2472. divsel = msb_divisor_value - 2;
  2473. phaseinc = pi_value;
  2474. }
  2475. /* This should not happen with any sane values */
  2476. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2477. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2478. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2479. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2480. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2481. crtc->mode.clock,
  2482. auxdiv,
  2483. divsel,
  2484. phasedir,
  2485. phaseinc);
  2486. /* Program SSCDIVINTPHASE6 */
  2487. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2488. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2489. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2490. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2491. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2492. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2493. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2494. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2495. /* Program SSCAUXDIV */
  2496. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2497. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2498. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2499. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2500. /* Enable modulator and associated divider */
  2501. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2502. temp &= ~SBI_SSCCTL_DISABLE;
  2503. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2504. /* Wait for initialization time */
  2505. udelay(24);
  2506. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2507. mutex_unlock(&dev_priv->dpio_lock);
  2508. }
  2509. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2510. enum pipe pch_transcoder)
  2511. {
  2512. struct drm_device *dev = crtc->base.dev;
  2513. struct drm_i915_private *dev_priv = dev->dev_private;
  2514. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2515. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2516. I915_READ(HTOTAL(cpu_transcoder)));
  2517. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2518. I915_READ(HBLANK(cpu_transcoder)));
  2519. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2520. I915_READ(HSYNC(cpu_transcoder)));
  2521. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2522. I915_READ(VTOTAL(cpu_transcoder)));
  2523. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2524. I915_READ(VBLANK(cpu_transcoder)));
  2525. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2526. I915_READ(VSYNC(cpu_transcoder)));
  2527. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2528. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2529. }
  2530. /*
  2531. * Enable PCH resources required for PCH ports:
  2532. * - PCH PLLs
  2533. * - FDI training & RX/TX
  2534. * - update transcoder timings
  2535. * - DP transcoding bits
  2536. * - transcoder
  2537. */
  2538. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2539. {
  2540. struct drm_device *dev = crtc->dev;
  2541. struct drm_i915_private *dev_priv = dev->dev_private;
  2542. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2543. int pipe = intel_crtc->pipe;
  2544. u32 reg, temp;
  2545. assert_pch_transcoder_disabled(dev_priv, pipe);
  2546. /* Write the TU size bits before fdi link training, so that error
  2547. * detection works. */
  2548. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2549. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2550. /* For PCH output, training FDI link */
  2551. dev_priv->display.fdi_link_train(crtc);
  2552. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2553. * transcoder, and we actually should do this to not upset any PCH
  2554. * transcoder that already use the clock when we share it.
  2555. *
  2556. * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
  2557. * unconditionally resets the pll - we need that to have the right LVDS
  2558. * enable sequence. */
  2559. ironlake_enable_pch_pll(intel_crtc);
  2560. if (HAS_PCH_CPT(dev)) {
  2561. u32 sel;
  2562. temp = I915_READ(PCH_DPLL_SEL);
  2563. switch (pipe) {
  2564. default:
  2565. case 0:
  2566. temp |= TRANSA_DPLL_ENABLE;
  2567. sel = TRANSA_DPLLB_SEL;
  2568. break;
  2569. case 1:
  2570. temp |= TRANSB_DPLL_ENABLE;
  2571. sel = TRANSB_DPLLB_SEL;
  2572. break;
  2573. case 2:
  2574. temp |= TRANSC_DPLL_ENABLE;
  2575. sel = TRANSC_DPLLB_SEL;
  2576. break;
  2577. }
  2578. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2579. temp |= sel;
  2580. else
  2581. temp &= ~sel;
  2582. I915_WRITE(PCH_DPLL_SEL, temp);
  2583. }
  2584. /* set transcoder timing, panel must allow it */
  2585. assert_panel_unlocked(dev_priv, pipe);
  2586. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2587. intel_fdi_normal_train(crtc);
  2588. /* For PCH DP, enable TRANS_DP_CTL */
  2589. if (HAS_PCH_CPT(dev) &&
  2590. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2591. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2592. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2593. reg = TRANS_DP_CTL(pipe);
  2594. temp = I915_READ(reg);
  2595. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2596. TRANS_DP_SYNC_MASK |
  2597. TRANS_DP_BPC_MASK);
  2598. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2599. TRANS_DP_ENH_FRAMING);
  2600. temp |= bpc << 9; /* same format but at 11:9 */
  2601. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2602. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2603. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2604. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2605. switch (intel_trans_dp_port_sel(crtc)) {
  2606. case PCH_DP_B:
  2607. temp |= TRANS_DP_PORT_SEL_B;
  2608. break;
  2609. case PCH_DP_C:
  2610. temp |= TRANS_DP_PORT_SEL_C;
  2611. break;
  2612. case PCH_DP_D:
  2613. temp |= TRANS_DP_PORT_SEL_D;
  2614. break;
  2615. default:
  2616. BUG();
  2617. }
  2618. I915_WRITE(reg, temp);
  2619. }
  2620. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2621. }
  2622. static void lpt_pch_enable(struct drm_crtc *crtc)
  2623. {
  2624. struct drm_device *dev = crtc->dev;
  2625. struct drm_i915_private *dev_priv = dev->dev_private;
  2626. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2627. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2628. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2629. lpt_program_iclkip(crtc);
  2630. /* Set transcoder timing. */
  2631. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2632. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2633. }
  2634. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2635. {
  2636. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2637. if (pll == NULL)
  2638. return;
  2639. if (pll->refcount == 0) {
  2640. WARN(1, "bad PCH PLL refcount\n");
  2641. return;
  2642. }
  2643. --pll->refcount;
  2644. intel_crtc->pch_pll = NULL;
  2645. }
  2646. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2647. {
  2648. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2649. struct intel_pch_pll *pll;
  2650. int i;
  2651. pll = intel_crtc->pch_pll;
  2652. if (pll) {
  2653. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2654. intel_crtc->base.base.id, pll->pll_reg);
  2655. goto prepare;
  2656. }
  2657. if (HAS_PCH_IBX(dev_priv->dev)) {
  2658. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2659. i = intel_crtc->pipe;
  2660. pll = &dev_priv->pch_plls[i];
  2661. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2662. intel_crtc->base.base.id, pll->pll_reg);
  2663. goto found;
  2664. }
  2665. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2666. pll = &dev_priv->pch_plls[i];
  2667. /* Only want to check enabled timings first */
  2668. if (pll->refcount == 0)
  2669. continue;
  2670. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2671. fp == I915_READ(pll->fp0_reg)) {
  2672. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2673. intel_crtc->base.base.id,
  2674. pll->pll_reg, pll->refcount, pll->active);
  2675. goto found;
  2676. }
  2677. }
  2678. /* Ok no matching timings, maybe there's a free one? */
  2679. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2680. pll = &dev_priv->pch_plls[i];
  2681. if (pll->refcount == 0) {
  2682. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2683. intel_crtc->base.base.id, pll->pll_reg);
  2684. goto found;
  2685. }
  2686. }
  2687. return NULL;
  2688. found:
  2689. intel_crtc->pch_pll = pll;
  2690. pll->refcount++;
  2691. DRM_DEBUG_DRIVER("using pll %d for pipe %c\n", i, pipe_name(intel_crtc->pipe));
  2692. prepare: /* separate function? */
  2693. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2694. /* Wait for the clocks to stabilize before rewriting the regs */
  2695. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2696. POSTING_READ(pll->pll_reg);
  2697. udelay(150);
  2698. I915_WRITE(pll->fp0_reg, fp);
  2699. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2700. pll->on = false;
  2701. return pll;
  2702. }
  2703. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2704. {
  2705. struct drm_i915_private *dev_priv = dev->dev_private;
  2706. int dslreg = PIPEDSL(pipe);
  2707. u32 temp;
  2708. temp = I915_READ(dslreg);
  2709. udelay(500);
  2710. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2711. if (wait_for(I915_READ(dslreg) != temp, 5))
  2712. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2713. }
  2714. }
  2715. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2716. {
  2717. struct drm_device *dev = crtc->base.dev;
  2718. struct drm_i915_private *dev_priv = dev->dev_private;
  2719. int pipe = crtc->pipe;
  2720. if (crtc->config.pch_pfit.size) {
  2721. /* Force use of hard-coded filter coefficients
  2722. * as some pre-programmed values are broken,
  2723. * e.g. x201.
  2724. */
  2725. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2726. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2727. PF_PIPE_SEL_IVB(pipe));
  2728. else
  2729. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2730. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2731. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2732. }
  2733. }
  2734. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2735. {
  2736. struct drm_device *dev = crtc->dev;
  2737. struct drm_i915_private *dev_priv = dev->dev_private;
  2738. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2739. struct intel_encoder *encoder;
  2740. int pipe = intel_crtc->pipe;
  2741. int plane = intel_crtc->plane;
  2742. u32 temp;
  2743. WARN_ON(!crtc->enabled);
  2744. if (intel_crtc->active)
  2745. return;
  2746. intel_crtc->active = true;
  2747. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2748. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2749. intel_update_watermarks(dev);
  2750. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2751. temp = I915_READ(PCH_LVDS);
  2752. if ((temp & LVDS_PORT_EN) == 0)
  2753. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2754. }
  2755. if (intel_crtc->config.has_pch_encoder) {
  2756. /* Note: FDI PLL enabling _must_ be done before we enable the
  2757. * cpu pipes, hence this is separate from all the other fdi/pch
  2758. * enabling. */
  2759. ironlake_fdi_pll_enable(intel_crtc);
  2760. } else {
  2761. assert_fdi_tx_disabled(dev_priv, pipe);
  2762. assert_fdi_rx_disabled(dev_priv, pipe);
  2763. }
  2764. for_each_encoder_on_crtc(dev, crtc, encoder)
  2765. if (encoder->pre_enable)
  2766. encoder->pre_enable(encoder);
  2767. /* Enable panel fitting for LVDS */
  2768. ironlake_pfit_enable(intel_crtc);
  2769. /*
  2770. * On ILK+ LUT must be loaded before the pipe is running but with
  2771. * clocks enabled
  2772. */
  2773. intel_crtc_load_lut(crtc);
  2774. intel_enable_pipe(dev_priv, pipe,
  2775. intel_crtc->config.has_pch_encoder);
  2776. intel_enable_plane(dev_priv, plane, pipe);
  2777. if (intel_crtc->config.has_pch_encoder)
  2778. ironlake_pch_enable(crtc);
  2779. mutex_lock(&dev->struct_mutex);
  2780. intel_update_fbc(dev);
  2781. mutex_unlock(&dev->struct_mutex);
  2782. intel_crtc_update_cursor(crtc, true);
  2783. for_each_encoder_on_crtc(dev, crtc, encoder)
  2784. encoder->enable(encoder);
  2785. if (HAS_PCH_CPT(dev))
  2786. cpt_verify_modeset(dev, intel_crtc->pipe);
  2787. /*
  2788. * There seems to be a race in PCH platform hw (at least on some
  2789. * outputs) where an enabled pipe still completes any pageflip right
  2790. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2791. * as the first vblank happend, everything works as expected. Hence just
  2792. * wait for one vblank before returning to avoid strange things
  2793. * happening.
  2794. */
  2795. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2796. }
  2797. /* IPS only exists on ULT machines and is tied to pipe A. */
  2798. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2799. {
  2800. return IS_ULT(crtc->base.dev) && crtc->pipe == PIPE_A;
  2801. }
  2802. static void hsw_enable_ips(struct intel_crtc *crtc)
  2803. {
  2804. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2805. if (!crtc->config.ips_enabled)
  2806. return;
  2807. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2808. * We guarantee that the plane is enabled by calling intel_enable_ips
  2809. * only after intel_enable_plane. And intel_enable_plane already waits
  2810. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2811. assert_plane_enabled(dev_priv, crtc->plane);
  2812. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2813. }
  2814. static void hsw_disable_ips(struct intel_crtc *crtc)
  2815. {
  2816. struct drm_device *dev = crtc->base.dev;
  2817. struct drm_i915_private *dev_priv = dev->dev_private;
  2818. if (!crtc->config.ips_enabled)
  2819. return;
  2820. assert_plane_enabled(dev_priv, crtc->plane);
  2821. I915_WRITE(IPS_CTL, 0);
  2822. /* We need to wait for a vblank before we can disable the plane. */
  2823. intel_wait_for_vblank(dev, crtc->pipe);
  2824. }
  2825. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2826. {
  2827. struct drm_device *dev = crtc->dev;
  2828. struct drm_i915_private *dev_priv = dev->dev_private;
  2829. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2830. struct intel_encoder *encoder;
  2831. int pipe = intel_crtc->pipe;
  2832. int plane = intel_crtc->plane;
  2833. WARN_ON(!crtc->enabled);
  2834. if (intel_crtc->active)
  2835. return;
  2836. intel_crtc->active = true;
  2837. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2838. if (intel_crtc->config.has_pch_encoder)
  2839. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2840. intel_update_watermarks(dev);
  2841. if (intel_crtc->config.has_pch_encoder)
  2842. dev_priv->display.fdi_link_train(crtc);
  2843. for_each_encoder_on_crtc(dev, crtc, encoder)
  2844. if (encoder->pre_enable)
  2845. encoder->pre_enable(encoder);
  2846. intel_ddi_enable_pipe_clock(intel_crtc);
  2847. /* Enable panel fitting for eDP */
  2848. ironlake_pfit_enable(intel_crtc);
  2849. /*
  2850. * On ILK+ LUT must be loaded before the pipe is running but with
  2851. * clocks enabled
  2852. */
  2853. intel_crtc_load_lut(crtc);
  2854. intel_ddi_set_pipe_settings(crtc);
  2855. intel_ddi_enable_transcoder_func(crtc);
  2856. intel_enable_pipe(dev_priv, pipe,
  2857. intel_crtc->config.has_pch_encoder);
  2858. intel_enable_plane(dev_priv, plane, pipe);
  2859. hsw_enable_ips(intel_crtc);
  2860. if (intel_crtc->config.has_pch_encoder)
  2861. lpt_pch_enable(crtc);
  2862. mutex_lock(&dev->struct_mutex);
  2863. intel_update_fbc(dev);
  2864. mutex_unlock(&dev->struct_mutex);
  2865. intel_crtc_update_cursor(crtc, true);
  2866. for_each_encoder_on_crtc(dev, crtc, encoder)
  2867. encoder->enable(encoder);
  2868. /*
  2869. * There seems to be a race in PCH platform hw (at least on some
  2870. * outputs) where an enabled pipe still completes any pageflip right
  2871. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2872. * as the first vblank happend, everything works as expected. Hence just
  2873. * wait for one vblank before returning to avoid strange things
  2874. * happening.
  2875. */
  2876. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2877. }
  2878. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2879. {
  2880. struct drm_device *dev = crtc->base.dev;
  2881. struct drm_i915_private *dev_priv = dev->dev_private;
  2882. int pipe = crtc->pipe;
  2883. /* To avoid upsetting the power well on haswell only disable the pfit if
  2884. * it's in use. The hw state code will make sure we get this right. */
  2885. if (crtc->config.pch_pfit.size) {
  2886. I915_WRITE(PF_CTL(pipe), 0);
  2887. I915_WRITE(PF_WIN_POS(pipe), 0);
  2888. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2889. }
  2890. }
  2891. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2892. {
  2893. struct drm_device *dev = crtc->dev;
  2894. struct drm_i915_private *dev_priv = dev->dev_private;
  2895. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2896. struct intel_encoder *encoder;
  2897. int pipe = intel_crtc->pipe;
  2898. int plane = intel_crtc->plane;
  2899. u32 reg, temp;
  2900. if (!intel_crtc->active)
  2901. return;
  2902. for_each_encoder_on_crtc(dev, crtc, encoder)
  2903. encoder->disable(encoder);
  2904. intel_crtc_wait_for_pending_flips(crtc);
  2905. drm_vblank_off(dev, pipe);
  2906. intel_crtc_update_cursor(crtc, false);
  2907. intel_disable_plane(dev_priv, plane, pipe);
  2908. if (dev_priv->cfb_plane == plane)
  2909. intel_disable_fbc(dev);
  2910. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2911. intel_disable_pipe(dev_priv, pipe);
  2912. ironlake_pfit_disable(intel_crtc);
  2913. for_each_encoder_on_crtc(dev, crtc, encoder)
  2914. if (encoder->post_disable)
  2915. encoder->post_disable(encoder);
  2916. ironlake_fdi_disable(crtc);
  2917. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2918. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2919. if (HAS_PCH_CPT(dev)) {
  2920. /* disable TRANS_DP_CTL */
  2921. reg = TRANS_DP_CTL(pipe);
  2922. temp = I915_READ(reg);
  2923. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2924. temp |= TRANS_DP_PORT_SEL_NONE;
  2925. I915_WRITE(reg, temp);
  2926. /* disable DPLL_SEL */
  2927. temp = I915_READ(PCH_DPLL_SEL);
  2928. switch (pipe) {
  2929. case 0:
  2930. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2931. break;
  2932. case 1:
  2933. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2934. break;
  2935. case 2:
  2936. /* C shares PLL A or B */
  2937. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2938. break;
  2939. default:
  2940. BUG(); /* wtf */
  2941. }
  2942. I915_WRITE(PCH_DPLL_SEL, temp);
  2943. }
  2944. /* disable PCH DPLL */
  2945. intel_disable_pch_pll(intel_crtc);
  2946. ironlake_fdi_pll_disable(intel_crtc);
  2947. intel_crtc->active = false;
  2948. intel_update_watermarks(dev);
  2949. mutex_lock(&dev->struct_mutex);
  2950. intel_update_fbc(dev);
  2951. mutex_unlock(&dev->struct_mutex);
  2952. }
  2953. static void haswell_crtc_disable(struct drm_crtc *crtc)
  2954. {
  2955. struct drm_device *dev = crtc->dev;
  2956. struct drm_i915_private *dev_priv = dev->dev_private;
  2957. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2958. struct intel_encoder *encoder;
  2959. int pipe = intel_crtc->pipe;
  2960. int plane = intel_crtc->plane;
  2961. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2962. if (!intel_crtc->active)
  2963. return;
  2964. for_each_encoder_on_crtc(dev, crtc, encoder)
  2965. encoder->disable(encoder);
  2966. intel_crtc_wait_for_pending_flips(crtc);
  2967. drm_vblank_off(dev, pipe);
  2968. intel_crtc_update_cursor(crtc, false);
  2969. /* FBC must be disabled before disabling the plane on HSW. */
  2970. if (dev_priv->cfb_plane == plane)
  2971. intel_disable_fbc(dev);
  2972. hsw_disable_ips(intel_crtc);
  2973. intel_disable_plane(dev_priv, plane, pipe);
  2974. if (intel_crtc->config.has_pch_encoder)
  2975. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  2976. intel_disable_pipe(dev_priv, pipe);
  2977. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  2978. ironlake_pfit_disable(intel_crtc);
  2979. intel_ddi_disable_pipe_clock(intel_crtc);
  2980. for_each_encoder_on_crtc(dev, crtc, encoder)
  2981. if (encoder->post_disable)
  2982. encoder->post_disable(encoder);
  2983. if (intel_crtc->config.has_pch_encoder) {
  2984. lpt_disable_pch_transcoder(dev_priv);
  2985. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2986. intel_ddi_fdi_disable(crtc);
  2987. }
  2988. intel_crtc->active = false;
  2989. intel_update_watermarks(dev);
  2990. mutex_lock(&dev->struct_mutex);
  2991. intel_update_fbc(dev);
  2992. mutex_unlock(&dev->struct_mutex);
  2993. }
  2994. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2995. {
  2996. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2997. intel_put_pch_pll(intel_crtc);
  2998. }
  2999. static void haswell_crtc_off(struct drm_crtc *crtc)
  3000. {
  3001. intel_ddi_put_crtc_pll(crtc);
  3002. }
  3003. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3004. {
  3005. if (!enable && intel_crtc->overlay) {
  3006. struct drm_device *dev = intel_crtc->base.dev;
  3007. struct drm_i915_private *dev_priv = dev->dev_private;
  3008. mutex_lock(&dev->struct_mutex);
  3009. dev_priv->mm.interruptible = false;
  3010. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3011. dev_priv->mm.interruptible = true;
  3012. mutex_unlock(&dev->struct_mutex);
  3013. }
  3014. /* Let userspace switch the overlay on again. In most cases userspace
  3015. * has to recompute where to put it anyway.
  3016. */
  3017. }
  3018. /**
  3019. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3020. * cursor plane briefly if not already running after enabling the display
  3021. * plane.
  3022. * This workaround avoids occasional blank screens when self refresh is
  3023. * enabled.
  3024. */
  3025. static void
  3026. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3027. {
  3028. u32 cntl = I915_READ(CURCNTR(pipe));
  3029. if ((cntl & CURSOR_MODE) == 0) {
  3030. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3031. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3032. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3033. intel_wait_for_vblank(dev_priv->dev, pipe);
  3034. I915_WRITE(CURCNTR(pipe), cntl);
  3035. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3036. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3037. }
  3038. }
  3039. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3040. {
  3041. struct drm_device *dev = crtc->base.dev;
  3042. struct drm_i915_private *dev_priv = dev->dev_private;
  3043. struct intel_crtc_config *pipe_config = &crtc->config;
  3044. if (!crtc->config.gmch_pfit.control)
  3045. return;
  3046. /*
  3047. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3048. * according to register description and PRM.
  3049. */
  3050. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3051. assert_pipe_disabled(dev_priv, crtc->pipe);
  3052. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3053. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3054. /* Border color in case we don't scale up to the full screen. Black by
  3055. * default, change to something else for debugging. */
  3056. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3057. }
  3058. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3059. {
  3060. struct drm_device *dev = crtc->dev;
  3061. struct drm_i915_private *dev_priv = dev->dev_private;
  3062. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3063. struct intel_encoder *encoder;
  3064. int pipe = intel_crtc->pipe;
  3065. int plane = intel_crtc->plane;
  3066. WARN_ON(!crtc->enabled);
  3067. if (intel_crtc->active)
  3068. return;
  3069. intel_crtc->active = true;
  3070. intel_update_watermarks(dev);
  3071. mutex_lock(&dev_priv->dpio_lock);
  3072. for_each_encoder_on_crtc(dev, crtc, encoder)
  3073. if (encoder->pre_pll_enable)
  3074. encoder->pre_pll_enable(encoder);
  3075. intel_enable_pll(dev_priv, pipe);
  3076. for_each_encoder_on_crtc(dev, crtc, encoder)
  3077. if (encoder->pre_enable)
  3078. encoder->pre_enable(encoder);
  3079. /* VLV wants encoder enabling _before_ the pipe is up. */
  3080. for_each_encoder_on_crtc(dev, crtc, encoder)
  3081. encoder->enable(encoder);
  3082. /* Enable panel fitting for eDP */
  3083. i9xx_pfit_enable(intel_crtc);
  3084. intel_enable_pipe(dev_priv, pipe, false);
  3085. intel_enable_plane(dev_priv, plane, pipe);
  3086. intel_crtc_load_lut(crtc);
  3087. intel_update_fbc(dev);
  3088. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3089. intel_crtc_dpms_overlay(intel_crtc, true);
  3090. intel_crtc_update_cursor(crtc, true);
  3091. mutex_unlock(&dev_priv->dpio_lock);
  3092. }
  3093. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3094. {
  3095. struct drm_device *dev = crtc->dev;
  3096. struct drm_i915_private *dev_priv = dev->dev_private;
  3097. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3098. struct intel_encoder *encoder;
  3099. int pipe = intel_crtc->pipe;
  3100. int plane = intel_crtc->plane;
  3101. WARN_ON(!crtc->enabled);
  3102. if (intel_crtc->active)
  3103. return;
  3104. intel_crtc->active = true;
  3105. intel_update_watermarks(dev);
  3106. intel_enable_pll(dev_priv, pipe);
  3107. for_each_encoder_on_crtc(dev, crtc, encoder)
  3108. if (encoder->pre_enable)
  3109. encoder->pre_enable(encoder);
  3110. /* Enable panel fitting for LVDS */
  3111. i9xx_pfit_enable(intel_crtc);
  3112. intel_enable_pipe(dev_priv, pipe, false);
  3113. intel_enable_plane(dev_priv, plane, pipe);
  3114. if (IS_G4X(dev))
  3115. g4x_fixup_plane(dev_priv, pipe);
  3116. intel_crtc_load_lut(crtc);
  3117. intel_update_fbc(dev);
  3118. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3119. intel_crtc_dpms_overlay(intel_crtc, true);
  3120. intel_crtc_update_cursor(crtc, true);
  3121. for_each_encoder_on_crtc(dev, crtc, encoder)
  3122. encoder->enable(encoder);
  3123. }
  3124. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3125. {
  3126. struct drm_device *dev = crtc->base.dev;
  3127. struct drm_i915_private *dev_priv = dev->dev_private;
  3128. if (!crtc->config.gmch_pfit.control)
  3129. return;
  3130. assert_pipe_disabled(dev_priv, crtc->pipe);
  3131. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3132. I915_READ(PFIT_CONTROL));
  3133. I915_WRITE(PFIT_CONTROL, 0);
  3134. }
  3135. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3136. {
  3137. struct drm_device *dev = crtc->dev;
  3138. struct drm_i915_private *dev_priv = dev->dev_private;
  3139. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3140. struct intel_encoder *encoder;
  3141. int pipe = intel_crtc->pipe;
  3142. int plane = intel_crtc->plane;
  3143. if (!intel_crtc->active)
  3144. return;
  3145. for_each_encoder_on_crtc(dev, crtc, encoder)
  3146. encoder->disable(encoder);
  3147. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3148. intel_crtc_wait_for_pending_flips(crtc);
  3149. drm_vblank_off(dev, pipe);
  3150. intel_crtc_dpms_overlay(intel_crtc, false);
  3151. intel_crtc_update_cursor(crtc, false);
  3152. if (dev_priv->cfb_plane == plane)
  3153. intel_disable_fbc(dev);
  3154. intel_disable_plane(dev_priv, plane, pipe);
  3155. intel_disable_pipe(dev_priv, pipe);
  3156. i9xx_pfit_disable(intel_crtc);
  3157. for_each_encoder_on_crtc(dev, crtc, encoder)
  3158. if (encoder->post_disable)
  3159. encoder->post_disable(encoder);
  3160. intel_disable_pll(dev_priv, pipe);
  3161. intel_crtc->active = false;
  3162. intel_update_fbc(dev);
  3163. intel_update_watermarks(dev);
  3164. }
  3165. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3166. {
  3167. }
  3168. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3169. bool enabled)
  3170. {
  3171. struct drm_device *dev = crtc->dev;
  3172. struct drm_i915_master_private *master_priv;
  3173. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3174. int pipe = intel_crtc->pipe;
  3175. if (!dev->primary->master)
  3176. return;
  3177. master_priv = dev->primary->master->driver_priv;
  3178. if (!master_priv->sarea_priv)
  3179. return;
  3180. switch (pipe) {
  3181. case 0:
  3182. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3183. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3184. break;
  3185. case 1:
  3186. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3187. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3188. break;
  3189. default:
  3190. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3191. break;
  3192. }
  3193. }
  3194. /**
  3195. * Sets the power management mode of the pipe and plane.
  3196. */
  3197. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3198. {
  3199. struct drm_device *dev = crtc->dev;
  3200. struct drm_i915_private *dev_priv = dev->dev_private;
  3201. struct intel_encoder *intel_encoder;
  3202. bool enable = false;
  3203. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3204. enable |= intel_encoder->connectors_active;
  3205. if (enable)
  3206. dev_priv->display.crtc_enable(crtc);
  3207. else
  3208. dev_priv->display.crtc_disable(crtc);
  3209. intel_crtc_update_sarea(crtc, enable);
  3210. }
  3211. static void intel_crtc_disable(struct drm_crtc *crtc)
  3212. {
  3213. struct drm_device *dev = crtc->dev;
  3214. struct drm_connector *connector;
  3215. struct drm_i915_private *dev_priv = dev->dev_private;
  3216. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3217. /* crtc should still be enabled when we disable it. */
  3218. WARN_ON(!crtc->enabled);
  3219. dev_priv->display.crtc_disable(crtc);
  3220. intel_crtc->eld_vld = false;
  3221. intel_crtc_update_sarea(crtc, false);
  3222. dev_priv->display.off(crtc);
  3223. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3224. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3225. if (crtc->fb) {
  3226. mutex_lock(&dev->struct_mutex);
  3227. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3228. mutex_unlock(&dev->struct_mutex);
  3229. crtc->fb = NULL;
  3230. }
  3231. /* Update computed state. */
  3232. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3233. if (!connector->encoder || !connector->encoder->crtc)
  3234. continue;
  3235. if (connector->encoder->crtc != crtc)
  3236. continue;
  3237. connector->dpms = DRM_MODE_DPMS_OFF;
  3238. to_intel_encoder(connector->encoder)->connectors_active = false;
  3239. }
  3240. }
  3241. void intel_modeset_disable(struct drm_device *dev)
  3242. {
  3243. struct drm_crtc *crtc;
  3244. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3245. if (crtc->enabled)
  3246. intel_crtc_disable(crtc);
  3247. }
  3248. }
  3249. void intel_encoder_destroy(struct drm_encoder *encoder)
  3250. {
  3251. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3252. drm_encoder_cleanup(encoder);
  3253. kfree(intel_encoder);
  3254. }
  3255. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3256. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3257. * state of the entire output pipe. */
  3258. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3259. {
  3260. if (mode == DRM_MODE_DPMS_ON) {
  3261. encoder->connectors_active = true;
  3262. intel_crtc_update_dpms(encoder->base.crtc);
  3263. } else {
  3264. encoder->connectors_active = false;
  3265. intel_crtc_update_dpms(encoder->base.crtc);
  3266. }
  3267. }
  3268. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3269. * internal consistency). */
  3270. static void intel_connector_check_state(struct intel_connector *connector)
  3271. {
  3272. if (connector->get_hw_state(connector)) {
  3273. struct intel_encoder *encoder = connector->encoder;
  3274. struct drm_crtc *crtc;
  3275. bool encoder_enabled;
  3276. enum pipe pipe;
  3277. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3278. connector->base.base.id,
  3279. drm_get_connector_name(&connector->base));
  3280. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3281. "wrong connector dpms state\n");
  3282. WARN(connector->base.encoder != &encoder->base,
  3283. "active connector not linked to encoder\n");
  3284. WARN(!encoder->connectors_active,
  3285. "encoder->connectors_active not set\n");
  3286. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3287. WARN(!encoder_enabled, "encoder not enabled\n");
  3288. if (WARN_ON(!encoder->base.crtc))
  3289. return;
  3290. crtc = encoder->base.crtc;
  3291. WARN(!crtc->enabled, "crtc not enabled\n");
  3292. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3293. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3294. "encoder active on the wrong pipe\n");
  3295. }
  3296. }
  3297. /* Even simpler default implementation, if there's really no special case to
  3298. * consider. */
  3299. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3300. {
  3301. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3302. /* All the simple cases only support two dpms states. */
  3303. if (mode != DRM_MODE_DPMS_ON)
  3304. mode = DRM_MODE_DPMS_OFF;
  3305. if (mode == connector->dpms)
  3306. return;
  3307. connector->dpms = mode;
  3308. /* Only need to change hw state when actually enabled */
  3309. if (encoder->base.crtc)
  3310. intel_encoder_dpms(encoder, mode);
  3311. else
  3312. WARN_ON(encoder->connectors_active != false);
  3313. intel_modeset_check_state(connector->dev);
  3314. }
  3315. /* Simple connector->get_hw_state implementation for encoders that support only
  3316. * one connector and no cloning and hence the encoder state determines the state
  3317. * of the connector. */
  3318. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3319. {
  3320. enum pipe pipe = 0;
  3321. struct intel_encoder *encoder = connector->encoder;
  3322. return encoder->get_hw_state(encoder, &pipe);
  3323. }
  3324. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3325. struct intel_crtc_config *pipe_config)
  3326. {
  3327. struct drm_i915_private *dev_priv = dev->dev_private;
  3328. struct intel_crtc *pipe_B_crtc =
  3329. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3330. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3331. pipe_name(pipe), pipe_config->fdi_lanes);
  3332. if (pipe_config->fdi_lanes > 4) {
  3333. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3334. pipe_name(pipe), pipe_config->fdi_lanes);
  3335. return false;
  3336. }
  3337. if (IS_HASWELL(dev)) {
  3338. if (pipe_config->fdi_lanes > 2) {
  3339. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3340. pipe_config->fdi_lanes);
  3341. return false;
  3342. } else {
  3343. return true;
  3344. }
  3345. }
  3346. if (INTEL_INFO(dev)->num_pipes == 2)
  3347. return true;
  3348. /* Ivybridge 3 pipe is really complicated */
  3349. switch (pipe) {
  3350. case PIPE_A:
  3351. return true;
  3352. case PIPE_B:
  3353. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3354. pipe_config->fdi_lanes > 2) {
  3355. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3356. pipe_name(pipe), pipe_config->fdi_lanes);
  3357. return false;
  3358. }
  3359. return true;
  3360. case PIPE_C:
  3361. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3362. pipe_B_crtc->config.fdi_lanes <= 2) {
  3363. if (pipe_config->fdi_lanes > 2) {
  3364. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3365. pipe_name(pipe), pipe_config->fdi_lanes);
  3366. return false;
  3367. }
  3368. } else {
  3369. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3370. return false;
  3371. }
  3372. return true;
  3373. default:
  3374. BUG();
  3375. }
  3376. }
  3377. #define RETRY 1
  3378. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3379. struct intel_crtc_config *pipe_config)
  3380. {
  3381. struct drm_device *dev = intel_crtc->base.dev;
  3382. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3383. int target_clock, lane, link_bw;
  3384. bool setup_ok, needs_recompute = false;
  3385. retry:
  3386. /* FDI is a binary signal running at ~2.7GHz, encoding
  3387. * each output octet as 10 bits. The actual frequency
  3388. * is stored as a divider into a 100MHz clock, and the
  3389. * mode pixel clock is stored in units of 1KHz.
  3390. * Hence the bw of each lane in terms of the mode signal
  3391. * is:
  3392. */
  3393. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3394. if (pipe_config->pixel_target_clock)
  3395. target_clock = pipe_config->pixel_target_clock;
  3396. else
  3397. target_clock = adjusted_mode->clock;
  3398. lane = ironlake_get_lanes_required(target_clock, link_bw,
  3399. pipe_config->pipe_bpp);
  3400. pipe_config->fdi_lanes = lane;
  3401. if (pipe_config->pixel_multiplier > 1)
  3402. link_bw *= pipe_config->pixel_multiplier;
  3403. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, target_clock,
  3404. link_bw, &pipe_config->fdi_m_n);
  3405. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3406. intel_crtc->pipe, pipe_config);
  3407. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3408. pipe_config->pipe_bpp -= 2*3;
  3409. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3410. pipe_config->pipe_bpp);
  3411. needs_recompute = true;
  3412. pipe_config->bw_constrained = true;
  3413. goto retry;
  3414. }
  3415. if (needs_recompute)
  3416. return RETRY;
  3417. return setup_ok ? 0 : -EINVAL;
  3418. }
  3419. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3420. struct intel_crtc_config *pipe_config)
  3421. {
  3422. pipe_config->ips_enabled = i915_enable_ips &&
  3423. hsw_crtc_supports_ips(crtc) &&
  3424. pipe_config->pipe_bpp == 24;
  3425. }
  3426. static int intel_crtc_compute_config(struct drm_crtc *crtc,
  3427. struct intel_crtc_config *pipe_config)
  3428. {
  3429. struct drm_device *dev = crtc->dev;
  3430. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3431. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3432. if (HAS_PCH_SPLIT(dev)) {
  3433. /* FDI link clock is fixed at 2.7G */
  3434. if (pipe_config->requested_mode.clock * 3
  3435. > IRONLAKE_FDI_FREQ * 4)
  3436. return -EINVAL;
  3437. }
  3438. /* All interlaced capable intel hw wants timings in frames. Note though
  3439. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3440. * timings, so we need to be careful not to clobber these.*/
  3441. if (!pipe_config->timings_set)
  3442. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3443. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3444. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3445. */
  3446. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3447. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3448. return -EINVAL;
  3449. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3450. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3451. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3452. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3453. * for lvds. */
  3454. pipe_config->pipe_bpp = 8*3;
  3455. }
  3456. if (IS_HASWELL(dev))
  3457. hsw_compute_ips_config(intel_crtc, pipe_config);
  3458. if (pipe_config->has_pch_encoder)
  3459. return ironlake_fdi_compute_config(intel_crtc, pipe_config);
  3460. return 0;
  3461. }
  3462. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3463. {
  3464. return 400000; /* FIXME */
  3465. }
  3466. static int i945_get_display_clock_speed(struct drm_device *dev)
  3467. {
  3468. return 400000;
  3469. }
  3470. static int i915_get_display_clock_speed(struct drm_device *dev)
  3471. {
  3472. return 333000;
  3473. }
  3474. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3475. {
  3476. return 200000;
  3477. }
  3478. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3479. {
  3480. u16 gcfgc = 0;
  3481. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3482. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3483. return 133000;
  3484. else {
  3485. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3486. case GC_DISPLAY_CLOCK_333_MHZ:
  3487. return 333000;
  3488. default:
  3489. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3490. return 190000;
  3491. }
  3492. }
  3493. }
  3494. static int i865_get_display_clock_speed(struct drm_device *dev)
  3495. {
  3496. return 266000;
  3497. }
  3498. static int i855_get_display_clock_speed(struct drm_device *dev)
  3499. {
  3500. u16 hpllcc = 0;
  3501. /* Assume that the hardware is in the high speed state. This
  3502. * should be the default.
  3503. */
  3504. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3505. case GC_CLOCK_133_200:
  3506. case GC_CLOCK_100_200:
  3507. return 200000;
  3508. case GC_CLOCK_166_250:
  3509. return 250000;
  3510. case GC_CLOCK_100_133:
  3511. return 133000;
  3512. }
  3513. /* Shouldn't happen */
  3514. return 0;
  3515. }
  3516. static int i830_get_display_clock_speed(struct drm_device *dev)
  3517. {
  3518. return 133000;
  3519. }
  3520. static void
  3521. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3522. {
  3523. while (*num > DATA_LINK_M_N_MASK ||
  3524. *den > DATA_LINK_M_N_MASK) {
  3525. *num >>= 1;
  3526. *den >>= 1;
  3527. }
  3528. }
  3529. static void compute_m_n(unsigned int m, unsigned int n,
  3530. uint32_t *ret_m, uint32_t *ret_n)
  3531. {
  3532. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3533. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3534. intel_reduce_m_n_ratio(ret_m, ret_n);
  3535. }
  3536. void
  3537. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3538. int pixel_clock, int link_clock,
  3539. struct intel_link_m_n *m_n)
  3540. {
  3541. m_n->tu = 64;
  3542. compute_m_n(bits_per_pixel * pixel_clock,
  3543. link_clock * nlanes * 8,
  3544. &m_n->gmch_m, &m_n->gmch_n);
  3545. compute_m_n(pixel_clock, link_clock,
  3546. &m_n->link_m, &m_n->link_n);
  3547. }
  3548. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3549. {
  3550. if (i915_panel_use_ssc >= 0)
  3551. return i915_panel_use_ssc != 0;
  3552. return dev_priv->vbt.lvds_use_ssc
  3553. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3554. }
  3555. static int vlv_get_refclk(struct drm_crtc *crtc)
  3556. {
  3557. struct drm_device *dev = crtc->dev;
  3558. struct drm_i915_private *dev_priv = dev->dev_private;
  3559. int refclk = 27000; /* for DP & HDMI */
  3560. return 100000; /* only one validated so far */
  3561. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3562. refclk = 96000;
  3563. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3564. if (intel_panel_use_ssc(dev_priv))
  3565. refclk = 100000;
  3566. else
  3567. refclk = 96000;
  3568. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3569. refclk = 100000;
  3570. }
  3571. return refclk;
  3572. }
  3573. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3574. {
  3575. struct drm_device *dev = crtc->dev;
  3576. struct drm_i915_private *dev_priv = dev->dev_private;
  3577. int refclk;
  3578. if (IS_VALLEYVIEW(dev)) {
  3579. refclk = vlv_get_refclk(crtc);
  3580. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3581. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3582. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3583. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3584. refclk / 1000);
  3585. } else if (!IS_GEN2(dev)) {
  3586. refclk = 96000;
  3587. } else {
  3588. refclk = 48000;
  3589. }
  3590. return refclk;
  3591. }
  3592. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3593. {
  3594. return (1 << dpll->n) << 16 | dpll->m1 << 8 | dpll->m2;
  3595. }
  3596. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3597. {
  3598. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3599. }
  3600. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3601. intel_clock_t *reduced_clock)
  3602. {
  3603. struct drm_device *dev = crtc->base.dev;
  3604. struct drm_i915_private *dev_priv = dev->dev_private;
  3605. int pipe = crtc->pipe;
  3606. u32 fp, fp2 = 0;
  3607. if (IS_PINEVIEW(dev)) {
  3608. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3609. if (reduced_clock)
  3610. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3611. } else {
  3612. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3613. if (reduced_clock)
  3614. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3615. }
  3616. I915_WRITE(FP0(pipe), fp);
  3617. crtc->lowfreq_avail = false;
  3618. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3619. reduced_clock && i915_powersave) {
  3620. I915_WRITE(FP1(pipe), fp2);
  3621. crtc->lowfreq_avail = true;
  3622. } else {
  3623. I915_WRITE(FP1(pipe), fp);
  3624. }
  3625. }
  3626. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv)
  3627. {
  3628. u32 reg_val;
  3629. /*
  3630. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3631. * and set it to a reasonable value instead.
  3632. */
  3633. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3634. reg_val &= 0xffffff00;
  3635. reg_val |= 0x00000030;
  3636. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3637. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3638. reg_val &= 0x8cffffff;
  3639. reg_val = 0x8c000000;
  3640. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3641. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF(1));
  3642. reg_val &= 0xffffff00;
  3643. vlv_dpio_write(dev_priv, DPIO_IREF(1), reg_val);
  3644. reg_val = vlv_dpio_read(dev_priv, DPIO_CALIBRATION);
  3645. reg_val &= 0x00ffffff;
  3646. reg_val |= 0xb0000000;
  3647. vlv_dpio_write(dev_priv, DPIO_CALIBRATION, reg_val);
  3648. }
  3649. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3650. struct intel_link_m_n *m_n)
  3651. {
  3652. struct drm_device *dev = crtc->base.dev;
  3653. struct drm_i915_private *dev_priv = dev->dev_private;
  3654. int pipe = crtc->pipe;
  3655. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3656. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3657. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3658. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3659. }
  3660. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3661. struct intel_link_m_n *m_n)
  3662. {
  3663. struct drm_device *dev = crtc->base.dev;
  3664. struct drm_i915_private *dev_priv = dev->dev_private;
  3665. int pipe = crtc->pipe;
  3666. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3667. if (INTEL_INFO(dev)->gen >= 5) {
  3668. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3669. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3670. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3671. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3672. } else {
  3673. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3674. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3675. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3676. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3677. }
  3678. }
  3679. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3680. {
  3681. if (crtc->config.has_pch_encoder)
  3682. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3683. else
  3684. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3685. }
  3686. static void vlv_update_pll(struct intel_crtc *crtc)
  3687. {
  3688. struct drm_device *dev = crtc->base.dev;
  3689. struct drm_i915_private *dev_priv = dev->dev_private;
  3690. struct drm_display_mode *adjusted_mode =
  3691. &crtc->config.adjusted_mode;
  3692. struct intel_encoder *encoder;
  3693. int pipe = crtc->pipe;
  3694. u32 dpll, mdiv;
  3695. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3696. bool is_hdmi;
  3697. u32 coreclk, reg_val, dpll_md;
  3698. mutex_lock(&dev_priv->dpio_lock);
  3699. is_hdmi = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3700. bestn = crtc->config.dpll.n;
  3701. bestm1 = crtc->config.dpll.m1;
  3702. bestm2 = crtc->config.dpll.m2;
  3703. bestp1 = crtc->config.dpll.p1;
  3704. bestp2 = crtc->config.dpll.p2;
  3705. /* See eDP HDMI DPIO driver vbios notes doc */
  3706. /* PLL B needs special handling */
  3707. if (pipe)
  3708. vlv_pllb_recal_opamp(dev_priv);
  3709. /* Set up Tx target for periodic Rcomp update */
  3710. vlv_dpio_write(dev_priv, DPIO_IREF_BCAST, 0x0100000f);
  3711. /* Disable target IRef on PLL */
  3712. reg_val = vlv_dpio_read(dev_priv, DPIO_IREF_CTL(pipe));
  3713. reg_val &= 0x00ffffff;
  3714. vlv_dpio_write(dev_priv, DPIO_IREF_CTL(pipe), reg_val);
  3715. /* Disable fast lock */
  3716. vlv_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x610);
  3717. /* Set idtafcrecal before PLL is enabled */
  3718. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3719. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3720. mdiv |= ((bestn << DPIO_N_SHIFT));
  3721. mdiv |= (1 << DPIO_K_SHIFT);
  3722. /*
  3723. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3724. * but we don't support that).
  3725. * Note: don't use the DAC post divider as it seems unstable.
  3726. */
  3727. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3728. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3729. mdiv |= DPIO_ENABLE_CALIBRATION;
  3730. vlv_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3731. /* Set HBR and RBR LPF coefficients */
  3732. if (adjusted_mode->clock == 162000 ||
  3733. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3734. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3735. 0x005f0021);
  3736. else
  3737. vlv_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe),
  3738. 0x00d0000f);
  3739. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3740. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3741. /* Use SSC source */
  3742. if (!pipe)
  3743. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3744. 0x0df40000);
  3745. else
  3746. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3747. 0x0df70000);
  3748. } else { /* HDMI or VGA */
  3749. /* Use bend source */
  3750. if (!pipe)
  3751. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3752. 0x0df70000);
  3753. else
  3754. vlv_dpio_write(dev_priv, DPIO_REFSFR(pipe),
  3755. 0x0df40000);
  3756. }
  3757. coreclk = vlv_dpio_read(dev_priv, DPIO_CORE_CLK(pipe));
  3758. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3759. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3760. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3761. coreclk |= 0x01000000;
  3762. vlv_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), coreclk);
  3763. vlv_dpio_write(dev_priv, DPIO_PLL_CML(pipe), 0x87871000);
  3764. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3765. if (encoder->pre_pll_enable)
  3766. encoder->pre_pll_enable(encoder);
  3767. /* Enable DPIO clock input */
  3768. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3769. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3770. if (pipe)
  3771. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3772. dpll |= DPLL_VCO_ENABLE;
  3773. I915_WRITE(DPLL(pipe), dpll);
  3774. POSTING_READ(DPLL(pipe));
  3775. udelay(150);
  3776. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3777. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3778. dpll_md = 0;
  3779. if (crtc->config.pixel_multiplier > 1) {
  3780. dpll_md = (crtc->config.pixel_multiplier - 1)
  3781. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3782. }
  3783. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3784. POSTING_READ(DPLL_MD(pipe));
  3785. if (crtc->config.has_dp_encoder)
  3786. intel_dp_set_m_n(crtc);
  3787. mutex_unlock(&dev_priv->dpio_lock);
  3788. }
  3789. static void i9xx_update_pll(struct intel_crtc *crtc,
  3790. intel_clock_t *reduced_clock,
  3791. int num_connectors)
  3792. {
  3793. struct drm_device *dev = crtc->base.dev;
  3794. struct drm_i915_private *dev_priv = dev->dev_private;
  3795. struct intel_encoder *encoder;
  3796. int pipe = crtc->pipe;
  3797. u32 dpll;
  3798. bool is_sdvo;
  3799. struct dpll *clock = &crtc->config.dpll;
  3800. i9xx_update_pll_dividers(crtc, reduced_clock);
  3801. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3802. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3803. dpll = DPLL_VGA_MODE_DIS;
  3804. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3805. dpll |= DPLLB_MODE_LVDS;
  3806. else
  3807. dpll |= DPLLB_MODE_DAC_SERIAL;
  3808. if ((crtc->config.pixel_multiplier > 1) &&
  3809. (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))) {
  3810. dpll |= (crtc->config.pixel_multiplier - 1)
  3811. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3812. }
  3813. if (is_sdvo)
  3814. dpll |= DPLL_DVO_HIGH_SPEED;
  3815. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3816. dpll |= DPLL_DVO_HIGH_SPEED;
  3817. /* compute bitmask from p1 value */
  3818. if (IS_PINEVIEW(dev))
  3819. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3820. else {
  3821. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3822. if (IS_G4X(dev) && reduced_clock)
  3823. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3824. }
  3825. switch (clock->p2) {
  3826. case 5:
  3827. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3828. break;
  3829. case 7:
  3830. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3831. break;
  3832. case 10:
  3833. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3834. break;
  3835. case 14:
  3836. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3837. break;
  3838. }
  3839. if (INTEL_INFO(dev)->gen >= 4)
  3840. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3841. if (crtc->config.sdvo_tv_clock)
  3842. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3843. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3844. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3845. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3846. else
  3847. dpll |= PLL_REF_INPUT_DREFCLK;
  3848. dpll |= DPLL_VCO_ENABLE;
  3849. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3850. POSTING_READ(DPLL(pipe));
  3851. udelay(150);
  3852. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3853. if (encoder->pre_pll_enable)
  3854. encoder->pre_pll_enable(encoder);
  3855. if (crtc->config.has_dp_encoder)
  3856. intel_dp_set_m_n(crtc);
  3857. I915_WRITE(DPLL(pipe), dpll);
  3858. /* Wait for the clocks to stabilize. */
  3859. POSTING_READ(DPLL(pipe));
  3860. udelay(150);
  3861. if (INTEL_INFO(dev)->gen >= 4) {
  3862. u32 dpll_md = 0;
  3863. if (crtc->config.pixel_multiplier > 1) {
  3864. dpll_md = (crtc->config.pixel_multiplier - 1)
  3865. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3866. }
  3867. I915_WRITE(DPLL_MD(pipe), dpll_md);
  3868. } else {
  3869. /* The pixel multiplier can only be updated once the
  3870. * DPLL is enabled and the clocks are stable.
  3871. *
  3872. * So write it again.
  3873. */
  3874. I915_WRITE(DPLL(pipe), dpll);
  3875. }
  3876. }
  3877. static void i8xx_update_pll(struct intel_crtc *crtc,
  3878. struct drm_display_mode *adjusted_mode,
  3879. intel_clock_t *reduced_clock,
  3880. int num_connectors)
  3881. {
  3882. struct drm_device *dev = crtc->base.dev;
  3883. struct drm_i915_private *dev_priv = dev->dev_private;
  3884. struct intel_encoder *encoder;
  3885. int pipe = crtc->pipe;
  3886. u32 dpll;
  3887. struct dpll *clock = &crtc->config.dpll;
  3888. i9xx_update_pll_dividers(crtc, reduced_clock);
  3889. dpll = DPLL_VGA_MODE_DIS;
  3890. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3891. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3892. } else {
  3893. if (clock->p1 == 2)
  3894. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3895. else
  3896. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3897. if (clock->p2 == 4)
  3898. dpll |= PLL_P2_DIVIDE_BY_4;
  3899. }
  3900. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3901. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3902. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3903. else
  3904. dpll |= PLL_REF_INPUT_DREFCLK;
  3905. dpll |= DPLL_VCO_ENABLE;
  3906. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3907. POSTING_READ(DPLL(pipe));
  3908. udelay(150);
  3909. for_each_encoder_on_crtc(dev, &crtc->base, encoder)
  3910. if (encoder->pre_pll_enable)
  3911. encoder->pre_pll_enable(encoder);
  3912. I915_WRITE(DPLL(pipe), dpll);
  3913. /* Wait for the clocks to stabilize. */
  3914. POSTING_READ(DPLL(pipe));
  3915. udelay(150);
  3916. /* The pixel multiplier can only be updated once the
  3917. * DPLL is enabled and the clocks are stable.
  3918. *
  3919. * So write it again.
  3920. */
  3921. I915_WRITE(DPLL(pipe), dpll);
  3922. }
  3923. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
  3924. struct drm_display_mode *mode,
  3925. struct drm_display_mode *adjusted_mode)
  3926. {
  3927. struct drm_device *dev = intel_crtc->base.dev;
  3928. struct drm_i915_private *dev_priv = dev->dev_private;
  3929. enum pipe pipe = intel_crtc->pipe;
  3930. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3931. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3932. /* We need to be careful not to changed the adjusted mode, for otherwise
  3933. * the hw state checker will get angry at the mismatch. */
  3934. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3935. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3936. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3937. /* the chip adds 2 halflines automatically */
  3938. crtc_vtotal -= 1;
  3939. crtc_vblank_end -= 1;
  3940. vsyncshift = adjusted_mode->crtc_hsync_start
  3941. - adjusted_mode->crtc_htotal / 2;
  3942. } else {
  3943. vsyncshift = 0;
  3944. }
  3945. if (INTEL_INFO(dev)->gen > 3)
  3946. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3947. I915_WRITE(HTOTAL(cpu_transcoder),
  3948. (adjusted_mode->crtc_hdisplay - 1) |
  3949. ((adjusted_mode->crtc_htotal - 1) << 16));
  3950. I915_WRITE(HBLANK(cpu_transcoder),
  3951. (adjusted_mode->crtc_hblank_start - 1) |
  3952. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3953. I915_WRITE(HSYNC(cpu_transcoder),
  3954. (adjusted_mode->crtc_hsync_start - 1) |
  3955. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3956. I915_WRITE(VTOTAL(cpu_transcoder),
  3957. (adjusted_mode->crtc_vdisplay - 1) |
  3958. ((crtc_vtotal - 1) << 16));
  3959. I915_WRITE(VBLANK(cpu_transcoder),
  3960. (adjusted_mode->crtc_vblank_start - 1) |
  3961. ((crtc_vblank_end - 1) << 16));
  3962. I915_WRITE(VSYNC(cpu_transcoder),
  3963. (adjusted_mode->crtc_vsync_start - 1) |
  3964. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3965. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3966. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3967. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3968. * bits. */
  3969. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3970. (pipe == PIPE_B || pipe == PIPE_C))
  3971. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3972. /* pipesrc controls the size that is scaled from, which should
  3973. * always be the user's requested size.
  3974. */
  3975. I915_WRITE(PIPESRC(pipe),
  3976. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3977. }
  3978. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  3979. struct intel_crtc_config *pipe_config)
  3980. {
  3981. struct drm_device *dev = crtc->base.dev;
  3982. struct drm_i915_private *dev_priv = dev->dev_private;
  3983. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  3984. uint32_t tmp;
  3985. tmp = I915_READ(HTOTAL(cpu_transcoder));
  3986. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  3987. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  3988. tmp = I915_READ(HBLANK(cpu_transcoder));
  3989. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  3990. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  3991. tmp = I915_READ(HSYNC(cpu_transcoder));
  3992. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  3993. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  3994. tmp = I915_READ(VTOTAL(cpu_transcoder));
  3995. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  3996. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  3997. tmp = I915_READ(VBLANK(cpu_transcoder));
  3998. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  3999. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4000. tmp = I915_READ(VSYNC(cpu_transcoder));
  4001. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4002. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4003. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4004. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4005. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4006. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4007. }
  4008. tmp = I915_READ(PIPESRC(crtc->pipe));
  4009. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4010. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4011. }
  4012. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4013. {
  4014. struct drm_device *dev = intel_crtc->base.dev;
  4015. struct drm_i915_private *dev_priv = dev->dev_private;
  4016. uint32_t pipeconf;
  4017. pipeconf = I915_READ(PIPECONF(intel_crtc->pipe));
  4018. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4019. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4020. * core speed.
  4021. *
  4022. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4023. * pipe == 0 check?
  4024. */
  4025. if (intel_crtc->config.requested_mode.clock >
  4026. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4027. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4028. else
  4029. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  4030. }
  4031. /* only g4x and later have fancy bpc/dither controls */
  4032. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4033. pipeconf &= ~(PIPECONF_BPC_MASK |
  4034. PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4035. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4036. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4037. pipeconf |= PIPECONF_DITHER_EN |
  4038. PIPECONF_DITHER_TYPE_SP;
  4039. switch (intel_crtc->config.pipe_bpp) {
  4040. case 18:
  4041. pipeconf |= PIPECONF_6BPC;
  4042. break;
  4043. case 24:
  4044. pipeconf |= PIPECONF_8BPC;
  4045. break;
  4046. case 30:
  4047. pipeconf |= PIPECONF_10BPC;
  4048. break;
  4049. default:
  4050. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4051. BUG();
  4052. }
  4053. }
  4054. if (HAS_PIPE_CXSR(dev)) {
  4055. if (intel_crtc->lowfreq_avail) {
  4056. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4057. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4058. } else {
  4059. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4060. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  4061. }
  4062. }
  4063. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4064. if (!IS_GEN2(dev) &&
  4065. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4066. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4067. else
  4068. pipeconf |= PIPECONF_PROGRESSIVE;
  4069. if (IS_VALLEYVIEW(dev)) {
  4070. if (intel_crtc->config.limited_color_range)
  4071. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4072. else
  4073. pipeconf &= ~PIPECONF_COLOR_RANGE_SELECT;
  4074. }
  4075. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4076. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4077. }
  4078. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4079. int x, int y,
  4080. struct drm_framebuffer *fb)
  4081. {
  4082. struct drm_device *dev = crtc->dev;
  4083. struct drm_i915_private *dev_priv = dev->dev_private;
  4084. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4085. struct drm_display_mode *adjusted_mode =
  4086. &intel_crtc->config.adjusted_mode;
  4087. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4088. int pipe = intel_crtc->pipe;
  4089. int plane = intel_crtc->plane;
  4090. int refclk, num_connectors = 0;
  4091. intel_clock_t clock, reduced_clock;
  4092. u32 dspcntr;
  4093. bool ok, has_reduced_clock = false;
  4094. bool is_lvds = false;
  4095. struct intel_encoder *encoder;
  4096. const intel_limit_t *limit;
  4097. int ret;
  4098. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4099. switch (encoder->type) {
  4100. case INTEL_OUTPUT_LVDS:
  4101. is_lvds = true;
  4102. break;
  4103. }
  4104. num_connectors++;
  4105. }
  4106. refclk = i9xx_get_refclk(crtc, num_connectors);
  4107. /*
  4108. * Returns a set of divisors for the desired target clock with the given
  4109. * refclk, or FALSE. The returned values represent the clock equation:
  4110. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4111. */
  4112. limit = intel_limit(crtc, refclk);
  4113. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4114. &clock);
  4115. if (!ok) {
  4116. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4117. return -EINVAL;
  4118. }
  4119. /* Ensure that the cursor is valid for the new mode before changing... */
  4120. intel_crtc_update_cursor(crtc, true);
  4121. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4122. /*
  4123. * Ensure we match the reduced clock's P to the target clock.
  4124. * If the clocks don't match, we can't switch the display clock
  4125. * by using the FP0/FP1. In such case we will disable the LVDS
  4126. * downclock feature.
  4127. */
  4128. has_reduced_clock = limit->find_pll(limit, crtc,
  4129. dev_priv->lvds_downclock,
  4130. refclk,
  4131. &clock,
  4132. &reduced_clock);
  4133. }
  4134. /* Compat-code for transition, will disappear. */
  4135. if (!intel_crtc->config.clock_set) {
  4136. intel_crtc->config.dpll.n = clock.n;
  4137. intel_crtc->config.dpll.m1 = clock.m1;
  4138. intel_crtc->config.dpll.m2 = clock.m2;
  4139. intel_crtc->config.dpll.p1 = clock.p1;
  4140. intel_crtc->config.dpll.p2 = clock.p2;
  4141. }
  4142. if (IS_GEN2(dev))
  4143. i8xx_update_pll(intel_crtc, adjusted_mode,
  4144. has_reduced_clock ? &reduced_clock : NULL,
  4145. num_connectors);
  4146. else if (IS_VALLEYVIEW(dev))
  4147. vlv_update_pll(intel_crtc);
  4148. else
  4149. i9xx_update_pll(intel_crtc,
  4150. has_reduced_clock ? &reduced_clock : NULL,
  4151. num_connectors);
  4152. /* Set up the display plane register */
  4153. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4154. if (!IS_VALLEYVIEW(dev)) {
  4155. if (pipe == 0)
  4156. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4157. else
  4158. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4159. }
  4160. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4161. /* pipesrc and dspsize control the size that is scaled from,
  4162. * which should always be the user's requested size.
  4163. */
  4164. I915_WRITE(DSPSIZE(plane),
  4165. ((mode->vdisplay - 1) << 16) |
  4166. (mode->hdisplay - 1));
  4167. I915_WRITE(DSPPOS(plane), 0);
  4168. i9xx_set_pipeconf(intel_crtc);
  4169. I915_WRITE(DSPCNTR(plane), dspcntr);
  4170. POSTING_READ(DSPCNTR(plane));
  4171. ret = intel_pipe_set_base(crtc, x, y, fb);
  4172. intel_update_watermarks(dev);
  4173. return ret;
  4174. }
  4175. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4176. struct intel_crtc_config *pipe_config)
  4177. {
  4178. struct drm_device *dev = crtc->base.dev;
  4179. struct drm_i915_private *dev_priv = dev->dev_private;
  4180. uint32_t tmp;
  4181. tmp = I915_READ(PFIT_CONTROL);
  4182. if (INTEL_INFO(dev)->gen < 4) {
  4183. if (crtc->pipe != PIPE_B)
  4184. return;
  4185. /* gen2/3 store dither state in pfit control, needs to match */
  4186. pipe_config->gmch_pfit.control = tmp & PANEL_8TO6_DITHER_ENABLE;
  4187. } else {
  4188. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4189. return;
  4190. }
  4191. if (!(tmp & PFIT_ENABLE))
  4192. return;
  4193. pipe_config->gmch_pfit.control = I915_READ(PFIT_CONTROL);
  4194. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4195. if (INTEL_INFO(dev)->gen < 5)
  4196. pipe_config->gmch_pfit.lvds_border_bits =
  4197. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4198. }
  4199. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4200. struct intel_crtc_config *pipe_config)
  4201. {
  4202. struct drm_device *dev = crtc->base.dev;
  4203. struct drm_i915_private *dev_priv = dev->dev_private;
  4204. uint32_t tmp;
  4205. pipe_config->cpu_transcoder = crtc->pipe;
  4206. tmp = I915_READ(PIPECONF(crtc->pipe));
  4207. if (!(tmp & PIPECONF_ENABLE))
  4208. return false;
  4209. intel_get_pipe_timings(crtc, pipe_config);
  4210. i9xx_get_pfit_config(crtc, pipe_config);
  4211. return true;
  4212. }
  4213. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4214. {
  4215. struct drm_i915_private *dev_priv = dev->dev_private;
  4216. struct drm_mode_config *mode_config = &dev->mode_config;
  4217. struct intel_encoder *encoder;
  4218. u32 val, final;
  4219. bool has_lvds = false;
  4220. bool has_cpu_edp = false;
  4221. bool has_panel = false;
  4222. bool has_ck505 = false;
  4223. bool can_ssc = false;
  4224. /* We need to take the global config into account */
  4225. list_for_each_entry(encoder, &mode_config->encoder_list,
  4226. base.head) {
  4227. switch (encoder->type) {
  4228. case INTEL_OUTPUT_LVDS:
  4229. has_panel = true;
  4230. has_lvds = true;
  4231. break;
  4232. case INTEL_OUTPUT_EDP:
  4233. has_panel = true;
  4234. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4235. has_cpu_edp = true;
  4236. break;
  4237. }
  4238. }
  4239. if (HAS_PCH_IBX(dev)) {
  4240. has_ck505 = dev_priv->vbt.display_clock_mode;
  4241. can_ssc = has_ck505;
  4242. } else {
  4243. has_ck505 = false;
  4244. can_ssc = true;
  4245. }
  4246. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4247. has_panel, has_lvds, has_ck505);
  4248. /* Ironlake: try to setup display ref clock before DPLL
  4249. * enabling. This is only under driver's control after
  4250. * PCH B stepping, previous chipset stepping should be
  4251. * ignoring this setting.
  4252. */
  4253. val = I915_READ(PCH_DREF_CONTROL);
  4254. /* As we must carefully and slowly disable/enable each source in turn,
  4255. * compute the final state we want first and check if we need to
  4256. * make any changes at all.
  4257. */
  4258. final = val;
  4259. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4260. if (has_ck505)
  4261. final |= DREF_NONSPREAD_CK505_ENABLE;
  4262. else
  4263. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4264. final &= ~DREF_SSC_SOURCE_MASK;
  4265. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4266. final &= ~DREF_SSC1_ENABLE;
  4267. if (has_panel) {
  4268. final |= DREF_SSC_SOURCE_ENABLE;
  4269. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4270. final |= DREF_SSC1_ENABLE;
  4271. if (has_cpu_edp) {
  4272. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4273. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4274. else
  4275. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4276. } else
  4277. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4278. } else {
  4279. final |= DREF_SSC_SOURCE_DISABLE;
  4280. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4281. }
  4282. if (final == val)
  4283. return;
  4284. /* Always enable nonspread source */
  4285. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4286. if (has_ck505)
  4287. val |= DREF_NONSPREAD_CK505_ENABLE;
  4288. else
  4289. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4290. if (has_panel) {
  4291. val &= ~DREF_SSC_SOURCE_MASK;
  4292. val |= DREF_SSC_SOURCE_ENABLE;
  4293. /* SSC must be turned on before enabling the CPU output */
  4294. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4295. DRM_DEBUG_KMS("Using SSC on panel\n");
  4296. val |= DREF_SSC1_ENABLE;
  4297. } else
  4298. val &= ~DREF_SSC1_ENABLE;
  4299. /* Get SSC going before enabling the outputs */
  4300. I915_WRITE(PCH_DREF_CONTROL, val);
  4301. POSTING_READ(PCH_DREF_CONTROL);
  4302. udelay(200);
  4303. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4304. /* Enable CPU source on CPU attached eDP */
  4305. if (has_cpu_edp) {
  4306. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4307. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4308. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4309. }
  4310. else
  4311. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4312. } else
  4313. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4314. I915_WRITE(PCH_DREF_CONTROL, val);
  4315. POSTING_READ(PCH_DREF_CONTROL);
  4316. udelay(200);
  4317. } else {
  4318. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4319. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4320. /* Turn off CPU output */
  4321. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4322. I915_WRITE(PCH_DREF_CONTROL, val);
  4323. POSTING_READ(PCH_DREF_CONTROL);
  4324. udelay(200);
  4325. /* Turn off the SSC source */
  4326. val &= ~DREF_SSC_SOURCE_MASK;
  4327. val |= DREF_SSC_SOURCE_DISABLE;
  4328. /* Turn off SSC1 */
  4329. val &= ~DREF_SSC1_ENABLE;
  4330. I915_WRITE(PCH_DREF_CONTROL, val);
  4331. POSTING_READ(PCH_DREF_CONTROL);
  4332. udelay(200);
  4333. }
  4334. BUG_ON(val != final);
  4335. }
  4336. /* Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O. */
  4337. static void lpt_init_pch_refclk(struct drm_device *dev)
  4338. {
  4339. struct drm_i915_private *dev_priv = dev->dev_private;
  4340. struct drm_mode_config *mode_config = &dev->mode_config;
  4341. struct intel_encoder *encoder;
  4342. bool has_vga = false;
  4343. bool is_sdv = false;
  4344. u32 tmp;
  4345. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4346. switch (encoder->type) {
  4347. case INTEL_OUTPUT_ANALOG:
  4348. has_vga = true;
  4349. break;
  4350. }
  4351. }
  4352. if (!has_vga)
  4353. return;
  4354. mutex_lock(&dev_priv->dpio_lock);
  4355. /* XXX: Rip out SDV support once Haswell ships for real. */
  4356. if (IS_HASWELL(dev) && (dev->pci_device & 0xFF00) == 0x0C00)
  4357. is_sdv = true;
  4358. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4359. tmp &= ~SBI_SSCCTL_DISABLE;
  4360. tmp |= SBI_SSCCTL_PATHALT;
  4361. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4362. udelay(24);
  4363. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4364. tmp &= ~SBI_SSCCTL_PATHALT;
  4365. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4366. if (!is_sdv) {
  4367. tmp = I915_READ(SOUTH_CHICKEN2);
  4368. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4369. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4370. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4371. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4372. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4373. tmp = I915_READ(SOUTH_CHICKEN2);
  4374. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4375. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4376. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4377. FDI_MPHY_IOSFSB_RESET_STATUS) == 0,
  4378. 100))
  4379. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4380. }
  4381. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4382. tmp &= ~(0xFF << 24);
  4383. tmp |= (0x12 << 24);
  4384. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4385. if (is_sdv) {
  4386. tmp = intel_sbi_read(dev_priv, 0x800C, SBI_MPHY);
  4387. tmp |= 0x7FFF;
  4388. intel_sbi_write(dev_priv, 0x800C, tmp, SBI_MPHY);
  4389. }
  4390. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4391. tmp |= (1 << 11);
  4392. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4393. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4394. tmp |= (1 << 11);
  4395. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4396. if (is_sdv) {
  4397. tmp = intel_sbi_read(dev_priv, 0x2038, SBI_MPHY);
  4398. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4399. intel_sbi_write(dev_priv, 0x2038, tmp, SBI_MPHY);
  4400. tmp = intel_sbi_read(dev_priv, 0x2138, SBI_MPHY);
  4401. tmp |= (0x3F << 24) | (0xF << 20) | (0xF << 16);
  4402. intel_sbi_write(dev_priv, 0x2138, tmp, SBI_MPHY);
  4403. tmp = intel_sbi_read(dev_priv, 0x203C, SBI_MPHY);
  4404. tmp |= (0x3F << 8);
  4405. intel_sbi_write(dev_priv, 0x203C, tmp, SBI_MPHY);
  4406. tmp = intel_sbi_read(dev_priv, 0x213C, SBI_MPHY);
  4407. tmp |= (0x3F << 8);
  4408. intel_sbi_write(dev_priv, 0x213C, tmp, SBI_MPHY);
  4409. }
  4410. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4411. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4412. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4413. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4414. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4415. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4416. if (!is_sdv) {
  4417. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4418. tmp &= ~(7 << 13);
  4419. tmp |= (5 << 13);
  4420. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4421. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4422. tmp &= ~(7 << 13);
  4423. tmp |= (5 << 13);
  4424. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4425. }
  4426. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4427. tmp &= ~0xFF;
  4428. tmp |= 0x1C;
  4429. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4430. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4431. tmp &= ~0xFF;
  4432. tmp |= 0x1C;
  4433. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4434. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4435. tmp &= ~(0xFF << 16);
  4436. tmp |= (0x1C << 16);
  4437. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4438. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4439. tmp &= ~(0xFF << 16);
  4440. tmp |= (0x1C << 16);
  4441. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4442. if (!is_sdv) {
  4443. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4444. tmp |= (1 << 27);
  4445. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4446. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4447. tmp |= (1 << 27);
  4448. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4449. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4450. tmp &= ~(0xF << 28);
  4451. tmp |= (4 << 28);
  4452. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4453. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4454. tmp &= ~(0xF << 28);
  4455. tmp |= (4 << 28);
  4456. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4457. }
  4458. /* ULT uses SBI_GEN0, but ULT doesn't have VGA, so we don't care. */
  4459. tmp = intel_sbi_read(dev_priv, SBI_DBUFF0, SBI_ICLK);
  4460. tmp |= SBI_DBUFF0_ENABLE;
  4461. intel_sbi_write(dev_priv, SBI_DBUFF0, tmp, SBI_ICLK);
  4462. mutex_unlock(&dev_priv->dpio_lock);
  4463. }
  4464. /*
  4465. * Initialize reference clocks when the driver loads
  4466. */
  4467. void intel_init_pch_refclk(struct drm_device *dev)
  4468. {
  4469. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4470. ironlake_init_pch_refclk(dev);
  4471. else if (HAS_PCH_LPT(dev))
  4472. lpt_init_pch_refclk(dev);
  4473. }
  4474. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4475. {
  4476. struct drm_device *dev = crtc->dev;
  4477. struct drm_i915_private *dev_priv = dev->dev_private;
  4478. struct intel_encoder *encoder;
  4479. int num_connectors = 0;
  4480. bool is_lvds = false;
  4481. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4482. switch (encoder->type) {
  4483. case INTEL_OUTPUT_LVDS:
  4484. is_lvds = true;
  4485. break;
  4486. }
  4487. num_connectors++;
  4488. }
  4489. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4490. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4491. dev_priv->vbt.lvds_ssc_freq);
  4492. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4493. }
  4494. return 120000;
  4495. }
  4496. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4497. {
  4498. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4499. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4500. int pipe = intel_crtc->pipe;
  4501. uint32_t val;
  4502. val = I915_READ(PIPECONF(pipe));
  4503. val &= ~PIPECONF_BPC_MASK;
  4504. switch (intel_crtc->config.pipe_bpp) {
  4505. case 18:
  4506. val |= PIPECONF_6BPC;
  4507. break;
  4508. case 24:
  4509. val |= PIPECONF_8BPC;
  4510. break;
  4511. case 30:
  4512. val |= PIPECONF_10BPC;
  4513. break;
  4514. case 36:
  4515. val |= PIPECONF_12BPC;
  4516. break;
  4517. default:
  4518. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4519. BUG();
  4520. }
  4521. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4522. if (intel_crtc->config.dither)
  4523. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4524. val &= ~PIPECONF_INTERLACE_MASK;
  4525. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4526. val |= PIPECONF_INTERLACED_ILK;
  4527. else
  4528. val |= PIPECONF_PROGRESSIVE;
  4529. if (intel_crtc->config.limited_color_range)
  4530. val |= PIPECONF_COLOR_RANGE_SELECT;
  4531. else
  4532. val &= ~PIPECONF_COLOR_RANGE_SELECT;
  4533. I915_WRITE(PIPECONF(pipe), val);
  4534. POSTING_READ(PIPECONF(pipe));
  4535. }
  4536. /*
  4537. * Set up the pipe CSC unit.
  4538. *
  4539. * Currently only full range RGB to limited range RGB conversion
  4540. * is supported, but eventually this should handle various
  4541. * RGB<->YCbCr scenarios as well.
  4542. */
  4543. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4544. {
  4545. struct drm_device *dev = crtc->dev;
  4546. struct drm_i915_private *dev_priv = dev->dev_private;
  4547. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4548. int pipe = intel_crtc->pipe;
  4549. uint16_t coeff = 0x7800; /* 1.0 */
  4550. /*
  4551. * TODO: Check what kind of values actually come out of the pipe
  4552. * with these coeff/postoff values and adjust to get the best
  4553. * accuracy. Perhaps we even need to take the bpc value into
  4554. * consideration.
  4555. */
  4556. if (intel_crtc->config.limited_color_range)
  4557. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4558. /*
  4559. * GY/GU and RY/RU should be the other way around according
  4560. * to BSpec, but reality doesn't agree. Just set them up in
  4561. * a way that results in the correct picture.
  4562. */
  4563. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4564. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4565. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4566. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4567. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4568. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4569. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4570. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4571. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4572. if (INTEL_INFO(dev)->gen > 6) {
  4573. uint16_t postoff = 0;
  4574. if (intel_crtc->config.limited_color_range)
  4575. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4576. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4577. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4578. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4579. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4580. } else {
  4581. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4582. if (intel_crtc->config.limited_color_range)
  4583. mode |= CSC_BLACK_SCREEN_OFFSET;
  4584. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4585. }
  4586. }
  4587. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4588. {
  4589. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4590. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4591. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4592. uint32_t val;
  4593. val = I915_READ(PIPECONF(cpu_transcoder));
  4594. val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
  4595. if (intel_crtc->config.dither)
  4596. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4597. val &= ~PIPECONF_INTERLACE_MASK_HSW;
  4598. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4599. val |= PIPECONF_INTERLACED_ILK;
  4600. else
  4601. val |= PIPECONF_PROGRESSIVE;
  4602. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4603. POSTING_READ(PIPECONF(cpu_transcoder));
  4604. }
  4605. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4606. struct drm_display_mode *adjusted_mode,
  4607. intel_clock_t *clock,
  4608. bool *has_reduced_clock,
  4609. intel_clock_t *reduced_clock)
  4610. {
  4611. struct drm_device *dev = crtc->dev;
  4612. struct drm_i915_private *dev_priv = dev->dev_private;
  4613. struct intel_encoder *intel_encoder;
  4614. int refclk;
  4615. const intel_limit_t *limit;
  4616. bool ret, is_lvds = false;
  4617. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4618. switch (intel_encoder->type) {
  4619. case INTEL_OUTPUT_LVDS:
  4620. is_lvds = true;
  4621. break;
  4622. }
  4623. }
  4624. refclk = ironlake_get_refclk(crtc);
  4625. /*
  4626. * Returns a set of divisors for the desired target clock with the given
  4627. * refclk, or FALSE. The returned values represent the clock equation:
  4628. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4629. */
  4630. limit = intel_limit(crtc, refclk);
  4631. ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  4632. clock);
  4633. if (!ret)
  4634. return false;
  4635. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4636. /*
  4637. * Ensure we match the reduced clock's P to the target clock.
  4638. * If the clocks don't match, we can't switch the display clock
  4639. * by using the FP0/FP1. In such case we will disable the LVDS
  4640. * downclock feature.
  4641. */
  4642. *has_reduced_clock = limit->find_pll(limit, crtc,
  4643. dev_priv->lvds_downclock,
  4644. refclk,
  4645. clock,
  4646. reduced_clock);
  4647. }
  4648. return true;
  4649. }
  4650. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4651. {
  4652. struct drm_i915_private *dev_priv = dev->dev_private;
  4653. uint32_t temp;
  4654. temp = I915_READ(SOUTH_CHICKEN1);
  4655. if (temp & FDI_BC_BIFURCATION_SELECT)
  4656. return;
  4657. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4658. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4659. temp |= FDI_BC_BIFURCATION_SELECT;
  4660. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4661. I915_WRITE(SOUTH_CHICKEN1, temp);
  4662. POSTING_READ(SOUTH_CHICKEN1);
  4663. }
  4664. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4665. {
  4666. struct drm_device *dev = intel_crtc->base.dev;
  4667. struct drm_i915_private *dev_priv = dev->dev_private;
  4668. switch (intel_crtc->pipe) {
  4669. case PIPE_A:
  4670. break;
  4671. case PIPE_B:
  4672. if (intel_crtc->config.fdi_lanes > 2)
  4673. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4674. else
  4675. cpt_enable_fdi_bc_bifurcation(dev);
  4676. break;
  4677. case PIPE_C:
  4678. cpt_enable_fdi_bc_bifurcation(dev);
  4679. break;
  4680. default:
  4681. BUG();
  4682. }
  4683. }
  4684. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4685. {
  4686. /*
  4687. * Account for spread spectrum to avoid
  4688. * oversubscribing the link. Max center spread
  4689. * is 2.5%; use 5% for safety's sake.
  4690. */
  4691. u32 bps = target_clock * bpp * 21 / 20;
  4692. return bps / (link_bw * 8) + 1;
  4693. }
  4694. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4695. {
  4696. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4697. }
  4698. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4699. u32 *fp,
  4700. intel_clock_t *reduced_clock, u32 *fp2)
  4701. {
  4702. struct drm_crtc *crtc = &intel_crtc->base;
  4703. struct drm_device *dev = crtc->dev;
  4704. struct drm_i915_private *dev_priv = dev->dev_private;
  4705. struct intel_encoder *intel_encoder;
  4706. uint32_t dpll;
  4707. int factor, num_connectors = 0;
  4708. bool is_lvds = false, is_sdvo = false;
  4709. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4710. switch (intel_encoder->type) {
  4711. case INTEL_OUTPUT_LVDS:
  4712. is_lvds = true;
  4713. break;
  4714. case INTEL_OUTPUT_SDVO:
  4715. case INTEL_OUTPUT_HDMI:
  4716. is_sdvo = true;
  4717. break;
  4718. }
  4719. num_connectors++;
  4720. }
  4721. /* Enable autotuning of the PLL clock (if permissible) */
  4722. factor = 21;
  4723. if (is_lvds) {
  4724. if ((intel_panel_use_ssc(dev_priv) &&
  4725. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4726. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4727. factor = 25;
  4728. } else if (intel_crtc->config.sdvo_tv_clock)
  4729. factor = 20;
  4730. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4731. *fp |= FP_CB_TUNE;
  4732. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4733. *fp2 |= FP_CB_TUNE;
  4734. dpll = 0;
  4735. if (is_lvds)
  4736. dpll |= DPLLB_MODE_LVDS;
  4737. else
  4738. dpll |= DPLLB_MODE_DAC_SERIAL;
  4739. if (intel_crtc->config.pixel_multiplier > 1) {
  4740. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4741. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4742. }
  4743. if (is_sdvo)
  4744. dpll |= DPLL_DVO_HIGH_SPEED;
  4745. if (intel_crtc->config.has_dp_encoder)
  4746. dpll |= DPLL_DVO_HIGH_SPEED;
  4747. /* compute bitmask from p1 value */
  4748. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4749. /* also FPA1 */
  4750. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4751. switch (intel_crtc->config.dpll.p2) {
  4752. case 5:
  4753. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4754. break;
  4755. case 7:
  4756. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4757. break;
  4758. case 10:
  4759. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4760. break;
  4761. case 14:
  4762. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4763. break;
  4764. }
  4765. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4766. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4767. else
  4768. dpll |= PLL_REF_INPUT_DREFCLK;
  4769. return dpll;
  4770. }
  4771. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4772. int x, int y,
  4773. struct drm_framebuffer *fb)
  4774. {
  4775. struct drm_device *dev = crtc->dev;
  4776. struct drm_i915_private *dev_priv = dev->dev_private;
  4777. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4778. struct drm_display_mode *adjusted_mode =
  4779. &intel_crtc->config.adjusted_mode;
  4780. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4781. int pipe = intel_crtc->pipe;
  4782. int plane = intel_crtc->plane;
  4783. int num_connectors = 0;
  4784. intel_clock_t clock, reduced_clock;
  4785. u32 dpll = 0, fp = 0, fp2 = 0;
  4786. bool ok, has_reduced_clock = false;
  4787. bool is_lvds = false;
  4788. struct intel_encoder *encoder;
  4789. int ret;
  4790. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4791. switch (encoder->type) {
  4792. case INTEL_OUTPUT_LVDS:
  4793. is_lvds = true;
  4794. break;
  4795. }
  4796. num_connectors++;
  4797. }
  4798. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4799. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4800. ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
  4801. &has_reduced_clock, &reduced_clock);
  4802. if (!ok) {
  4803. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4804. return -EINVAL;
  4805. }
  4806. /* Compat-code for transition, will disappear. */
  4807. if (!intel_crtc->config.clock_set) {
  4808. intel_crtc->config.dpll.n = clock.n;
  4809. intel_crtc->config.dpll.m1 = clock.m1;
  4810. intel_crtc->config.dpll.m2 = clock.m2;
  4811. intel_crtc->config.dpll.p1 = clock.p1;
  4812. intel_crtc->config.dpll.p2 = clock.p2;
  4813. }
  4814. /* Ensure that the cursor is valid for the new mode before changing... */
  4815. intel_crtc_update_cursor(crtc, true);
  4816. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4817. if (intel_crtc->config.has_pch_encoder) {
  4818. struct intel_pch_pll *pll;
  4819. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4820. if (has_reduced_clock)
  4821. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4822. dpll = ironlake_compute_dpll(intel_crtc,
  4823. &fp, &reduced_clock,
  4824. has_reduced_clock ? &fp2 : NULL);
  4825. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4826. if (pll == NULL) {
  4827. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4828. pipe_name(pipe));
  4829. return -EINVAL;
  4830. }
  4831. } else
  4832. intel_put_pch_pll(intel_crtc);
  4833. if (intel_crtc->config.has_dp_encoder)
  4834. intel_dp_set_m_n(intel_crtc);
  4835. for_each_encoder_on_crtc(dev, crtc, encoder)
  4836. if (encoder->pre_pll_enable)
  4837. encoder->pre_pll_enable(encoder);
  4838. if (intel_crtc->pch_pll) {
  4839. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4840. /* Wait for the clocks to stabilize. */
  4841. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4842. udelay(150);
  4843. /* The pixel multiplier can only be updated once the
  4844. * DPLL is enabled and the clocks are stable.
  4845. *
  4846. * So write it again.
  4847. */
  4848. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4849. }
  4850. intel_crtc->lowfreq_avail = false;
  4851. if (intel_crtc->pch_pll) {
  4852. if (is_lvds && has_reduced_clock && i915_powersave) {
  4853. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4854. intel_crtc->lowfreq_avail = true;
  4855. } else {
  4856. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4857. }
  4858. }
  4859. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4860. if (intel_crtc->config.has_pch_encoder) {
  4861. intel_cpu_transcoder_set_m_n(intel_crtc,
  4862. &intel_crtc->config.fdi_m_n);
  4863. }
  4864. if (IS_IVYBRIDGE(dev))
  4865. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4866. ironlake_set_pipeconf(crtc);
  4867. /* Set up the display plane register */
  4868. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4869. POSTING_READ(DSPCNTR(plane));
  4870. ret = intel_pipe_set_base(crtc, x, y, fb);
  4871. intel_update_watermarks(dev);
  4872. return ret;
  4873. }
  4874. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  4875. struct intel_crtc_config *pipe_config)
  4876. {
  4877. struct drm_device *dev = crtc->base.dev;
  4878. struct drm_i915_private *dev_priv = dev->dev_private;
  4879. enum transcoder transcoder = pipe_config->cpu_transcoder;
  4880. pipe_config->fdi_m_n.link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4881. pipe_config->fdi_m_n.link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4882. pipe_config->fdi_m_n.gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4883. & ~TU_SIZE_MASK;
  4884. pipe_config->fdi_m_n.gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4885. pipe_config->fdi_m_n.tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4886. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4887. }
  4888. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  4889. struct intel_crtc_config *pipe_config)
  4890. {
  4891. struct drm_device *dev = crtc->base.dev;
  4892. struct drm_i915_private *dev_priv = dev->dev_private;
  4893. uint32_t tmp;
  4894. tmp = I915_READ(PF_CTL(crtc->pipe));
  4895. if (tmp & PF_ENABLE) {
  4896. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  4897. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  4898. }
  4899. }
  4900. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  4901. struct intel_crtc_config *pipe_config)
  4902. {
  4903. struct drm_device *dev = crtc->base.dev;
  4904. struct drm_i915_private *dev_priv = dev->dev_private;
  4905. uint32_t tmp;
  4906. pipe_config->cpu_transcoder = crtc->pipe;
  4907. tmp = I915_READ(PIPECONF(crtc->pipe));
  4908. if (!(tmp & PIPECONF_ENABLE))
  4909. return false;
  4910. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  4911. pipe_config->has_pch_encoder = true;
  4912. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  4913. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  4914. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  4915. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  4916. }
  4917. intel_get_pipe_timings(crtc, pipe_config);
  4918. ironlake_get_pfit_config(crtc, pipe_config);
  4919. return true;
  4920. }
  4921. static void haswell_modeset_global_resources(struct drm_device *dev)
  4922. {
  4923. bool enable = false;
  4924. struct intel_crtc *crtc;
  4925. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  4926. if (!crtc->base.enabled)
  4927. continue;
  4928. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  4929. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  4930. enable = true;
  4931. }
  4932. intel_set_power_well(dev, enable);
  4933. }
  4934. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  4935. int x, int y,
  4936. struct drm_framebuffer *fb)
  4937. {
  4938. struct drm_device *dev = crtc->dev;
  4939. struct drm_i915_private *dev_priv = dev->dev_private;
  4940. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4941. struct drm_display_mode *adjusted_mode =
  4942. &intel_crtc->config.adjusted_mode;
  4943. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4944. int pipe = intel_crtc->pipe;
  4945. int plane = intel_crtc->plane;
  4946. int num_connectors = 0;
  4947. bool is_cpu_edp = false;
  4948. struct intel_encoder *encoder;
  4949. int ret;
  4950. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4951. switch (encoder->type) {
  4952. case INTEL_OUTPUT_EDP:
  4953. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4954. is_cpu_edp = true;
  4955. break;
  4956. }
  4957. num_connectors++;
  4958. }
  4959. WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
  4960. num_connectors, pipe_name(pipe));
  4961. if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
  4962. return -EINVAL;
  4963. /* Ensure that the cursor is valid for the new mode before changing... */
  4964. intel_crtc_update_cursor(crtc, true);
  4965. if (intel_crtc->config.has_dp_encoder)
  4966. intel_dp_set_m_n(intel_crtc);
  4967. intel_crtc->lowfreq_avail = false;
  4968. intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
  4969. if (intel_crtc->config.has_pch_encoder) {
  4970. intel_cpu_transcoder_set_m_n(intel_crtc,
  4971. &intel_crtc->config.fdi_m_n);
  4972. }
  4973. haswell_set_pipeconf(crtc);
  4974. intel_set_pipe_csc(crtc);
  4975. /* Set up the display plane register */
  4976. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  4977. POSTING_READ(DSPCNTR(plane));
  4978. ret = intel_pipe_set_base(crtc, x, y, fb);
  4979. intel_update_watermarks(dev);
  4980. return ret;
  4981. }
  4982. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  4983. struct intel_crtc_config *pipe_config)
  4984. {
  4985. struct drm_device *dev = crtc->base.dev;
  4986. struct drm_i915_private *dev_priv = dev->dev_private;
  4987. enum intel_display_power_domain pfit_domain;
  4988. uint32_t tmp;
  4989. pipe_config->cpu_transcoder = crtc->pipe;
  4990. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  4991. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  4992. enum pipe trans_edp_pipe;
  4993. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  4994. default:
  4995. WARN(1, "unknown pipe linked to edp transcoder\n");
  4996. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  4997. case TRANS_DDI_EDP_INPUT_A_ON:
  4998. trans_edp_pipe = PIPE_A;
  4999. break;
  5000. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5001. trans_edp_pipe = PIPE_B;
  5002. break;
  5003. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5004. trans_edp_pipe = PIPE_C;
  5005. break;
  5006. }
  5007. if (trans_edp_pipe == crtc->pipe)
  5008. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5009. }
  5010. if (!intel_display_power_enabled(dev,
  5011. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5012. return false;
  5013. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5014. if (!(tmp & PIPECONF_ENABLE))
  5015. return false;
  5016. /*
  5017. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5018. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5019. * the PCH transcoder is on.
  5020. */
  5021. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5022. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5023. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5024. pipe_config->has_pch_encoder = true;
  5025. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5026. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5027. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5028. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5029. }
  5030. intel_get_pipe_timings(crtc, pipe_config);
  5031. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5032. if (intel_display_power_enabled(dev, pfit_domain))
  5033. ironlake_get_pfit_config(crtc, pipe_config);
  5034. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5035. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5036. return true;
  5037. }
  5038. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5039. int x, int y,
  5040. struct drm_framebuffer *fb)
  5041. {
  5042. struct drm_device *dev = crtc->dev;
  5043. struct drm_i915_private *dev_priv = dev->dev_private;
  5044. struct drm_encoder_helper_funcs *encoder_funcs;
  5045. struct intel_encoder *encoder;
  5046. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5047. struct drm_display_mode *adjusted_mode =
  5048. &intel_crtc->config.adjusted_mode;
  5049. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5050. int pipe = intel_crtc->pipe;
  5051. int ret;
  5052. drm_vblank_pre_modeset(dev, pipe);
  5053. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5054. drm_vblank_post_modeset(dev, pipe);
  5055. if (ret != 0)
  5056. return ret;
  5057. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5058. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5059. encoder->base.base.id,
  5060. drm_get_encoder_name(&encoder->base),
  5061. mode->base.id, mode->name);
  5062. if (encoder->mode_set) {
  5063. encoder->mode_set(encoder);
  5064. } else {
  5065. encoder_funcs = encoder->base.helper_private;
  5066. encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
  5067. }
  5068. }
  5069. return 0;
  5070. }
  5071. static bool intel_eld_uptodate(struct drm_connector *connector,
  5072. int reg_eldv, uint32_t bits_eldv,
  5073. int reg_elda, uint32_t bits_elda,
  5074. int reg_edid)
  5075. {
  5076. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5077. uint8_t *eld = connector->eld;
  5078. uint32_t i;
  5079. i = I915_READ(reg_eldv);
  5080. i &= bits_eldv;
  5081. if (!eld[0])
  5082. return !i;
  5083. if (!i)
  5084. return false;
  5085. i = I915_READ(reg_elda);
  5086. i &= ~bits_elda;
  5087. I915_WRITE(reg_elda, i);
  5088. for (i = 0; i < eld[2]; i++)
  5089. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5090. return false;
  5091. return true;
  5092. }
  5093. static void g4x_write_eld(struct drm_connector *connector,
  5094. struct drm_crtc *crtc)
  5095. {
  5096. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5097. uint8_t *eld = connector->eld;
  5098. uint32_t eldv;
  5099. uint32_t len;
  5100. uint32_t i;
  5101. i = I915_READ(G4X_AUD_VID_DID);
  5102. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5103. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5104. else
  5105. eldv = G4X_ELDV_DEVCTG;
  5106. if (intel_eld_uptodate(connector,
  5107. G4X_AUD_CNTL_ST, eldv,
  5108. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5109. G4X_HDMIW_HDMIEDID))
  5110. return;
  5111. i = I915_READ(G4X_AUD_CNTL_ST);
  5112. i &= ~(eldv | G4X_ELD_ADDR);
  5113. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5114. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5115. if (!eld[0])
  5116. return;
  5117. len = min_t(uint8_t, eld[2], len);
  5118. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5119. for (i = 0; i < len; i++)
  5120. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5121. i = I915_READ(G4X_AUD_CNTL_ST);
  5122. i |= eldv;
  5123. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5124. }
  5125. static void haswell_write_eld(struct drm_connector *connector,
  5126. struct drm_crtc *crtc)
  5127. {
  5128. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5129. uint8_t *eld = connector->eld;
  5130. struct drm_device *dev = crtc->dev;
  5131. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5132. uint32_t eldv;
  5133. uint32_t i;
  5134. int len;
  5135. int pipe = to_intel_crtc(crtc)->pipe;
  5136. int tmp;
  5137. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5138. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5139. int aud_config = HSW_AUD_CFG(pipe);
  5140. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5141. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5142. /* Audio output enable */
  5143. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5144. tmp = I915_READ(aud_cntrl_st2);
  5145. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5146. I915_WRITE(aud_cntrl_st2, tmp);
  5147. /* Wait for 1 vertical blank */
  5148. intel_wait_for_vblank(dev, pipe);
  5149. /* Set ELD valid state */
  5150. tmp = I915_READ(aud_cntrl_st2);
  5151. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5152. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5153. I915_WRITE(aud_cntrl_st2, tmp);
  5154. tmp = I915_READ(aud_cntrl_st2);
  5155. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5156. /* Enable HDMI mode */
  5157. tmp = I915_READ(aud_config);
  5158. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5159. /* clear N_programing_enable and N_value_index */
  5160. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5161. I915_WRITE(aud_config, tmp);
  5162. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5163. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5164. intel_crtc->eld_vld = true;
  5165. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5166. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5167. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5168. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5169. } else
  5170. I915_WRITE(aud_config, 0);
  5171. if (intel_eld_uptodate(connector,
  5172. aud_cntrl_st2, eldv,
  5173. aud_cntl_st, IBX_ELD_ADDRESS,
  5174. hdmiw_hdmiedid))
  5175. return;
  5176. i = I915_READ(aud_cntrl_st2);
  5177. i &= ~eldv;
  5178. I915_WRITE(aud_cntrl_st2, i);
  5179. if (!eld[0])
  5180. return;
  5181. i = I915_READ(aud_cntl_st);
  5182. i &= ~IBX_ELD_ADDRESS;
  5183. I915_WRITE(aud_cntl_st, i);
  5184. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5185. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5186. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5187. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5188. for (i = 0; i < len; i++)
  5189. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5190. i = I915_READ(aud_cntrl_st2);
  5191. i |= eldv;
  5192. I915_WRITE(aud_cntrl_st2, i);
  5193. }
  5194. static void ironlake_write_eld(struct drm_connector *connector,
  5195. struct drm_crtc *crtc)
  5196. {
  5197. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5198. uint8_t *eld = connector->eld;
  5199. uint32_t eldv;
  5200. uint32_t i;
  5201. int len;
  5202. int hdmiw_hdmiedid;
  5203. int aud_config;
  5204. int aud_cntl_st;
  5205. int aud_cntrl_st2;
  5206. int pipe = to_intel_crtc(crtc)->pipe;
  5207. if (HAS_PCH_IBX(connector->dev)) {
  5208. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5209. aud_config = IBX_AUD_CFG(pipe);
  5210. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5211. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5212. } else {
  5213. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5214. aud_config = CPT_AUD_CFG(pipe);
  5215. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5216. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5217. }
  5218. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5219. i = I915_READ(aud_cntl_st);
  5220. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5221. if (!i) {
  5222. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5223. /* operate blindly on all ports */
  5224. eldv = IBX_ELD_VALIDB;
  5225. eldv |= IBX_ELD_VALIDB << 4;
  5226. eldv |= IBX_ELD_VALIDB << 8;
  5227. } else {
  5228. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5229. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5230. }
  5231. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5232. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5233. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5234. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5235. } else
  5236. I915_WRITE(aud_config, 0);
  5237. if (intel_eld_uptodate(connector,
  5238. aud_cntrl_st2, eldv,
  5239. aud_cntl_st, IBX_ELD_ADDRESS,
  5240. hdmiw_hdmiedid))
  5241. return;
  5242. i = I915_READ(aud_cntrl_st2);
  5243. i &= ~eldv;
  5244. I915_WRITE(aud_cntrl_st2, i);
  5245. if (!eld[0])
  5246. return;
  5247. i = I915_READ(aud_cntl_st);
  5248. i &= ~IBX_ELD_ADDRESS;
  5249. I915_WRITE(aud_cntl_st, i);
  5250. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5251. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5252. for (i = 0; i < len; i++)
  5253. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5254. i = I915_READ(aud_cntrl_st2);
  5255. i |= eldv;
  5256. I915_WRITE(aud_cntrl_st2, i);
  5257. }
  5258. void intel_write_eld(struct drm_encoder *encoder,
  5259. struct drm_display_mode *mode)
  5260. {
  5261. struct drm_crtc *crtc = encoder->crtc;
  5262. struct drm_connector *connector;
  5263. struct drm_device *dev = encoder->dev;
  5264. struct drm_i915_private *dev_priv = dev->dev_private;
  5265. connector = drm_select_eld(encoder, mode);
  5266. if (!connector)
  5267. return;
  5268. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5269. connector->base.id,
  5270. drm_get_connector_name(connector),
  5271. connector->encoder->base.id,
  5272. drm_get_encoder_name(connector->encoder));
  5273. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5274. if (dev_priv->display.write_eld)
  5275. dev_priv->display.write_eld(connector, crtc);
  5276. }
  5277. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5278. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5279. {
  5280. struct drm_device *dev = crtc->dev;
  5281. struct drm_i915_private *dev_priv = dev->dev_private;
  5282. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5283. enum pipe pipe = intel_crtc->pipe;
  5284. int palreg = PALETTE(pipe);
  5285. int i;
  5286. bool reenable_ips = false;
  5287. /* The clocks have to be on to load the palette. */
  5288. if (!crtc->enabled || !intel_crtc->active)
  5289. return;
  5290. /* use legacy palette for Ironlake */
  5291. if (HAS_PCH_SPLIT(dev))
  5292. palreg = LGC_PALETTE(pipe);
  5293. /* Workaround : Do not read or write the pipe palette/gamma data while
  5294. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5295. */
  5296. if (intel_crtc->config.ips_enabled &&
  5297. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5298. GAMMA_MODE_MODE_SPLIT)) {
  5299. hsw_disable_ips(intel_crtc);
  5300. reenable_ips = true;
  5301. }
  5302. for (i = 0; i < 256; i++) {
  5303. I915_WRITE(palreg + 4 * i,
  5304. (intel_crtc->lut_r[i] << 16) |
  5305. (intel_crtc->lut_g[i] << 8) |
  5306. intel_crtc->lut_b[i]);
  5307. }
  5308. if (reenable_ips)
  5309. hsw_enable_ips(intel_crtc);
  5310. }
  5311. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5312. {
  5313. struct drm_device *dev = crtc->dev;
  5314. struct drm_i915_private *dev_priv = dev->dev_private;
  5315. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5316. bool visible = base != 0;
  5317. u32 cntl;
  5318. if (intel_crtc->cursor_visible == visible)
  5319. return;
  5320. cntl = I915_READ(_CURACNTR);
  5321. if (visible) {
  5322. /* On these chipsets we can only modify the base whilst
  5323. * the cursor is disabled.
  5324. */
  5325. I915_WRITE(_CURABASE, base);
  5326. cntl &= ~(CURSOR_FORMAT_MASK);
  5327. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5328. cntl |= CURSOR_ENABLE |
  5329. CURSOR_GAMMA_ENABLE |
  5330. CURSOR_FORMAT_ARGB;
  5331. } else
  5332. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5333. I915_WRITE(_CURACNTR, cntl);
  5334. intel_crtc->cursor_visible = visible;
  5335. }
  5336. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5337. {
  5338. struct drm_device *dev = crtc->dev;
  5339. struct drm_i915_private *dev_priv = dev->dev_private;
  5340. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5341. int pipe = intel_crtc->pipe;
  5342. bool visible = base != 0;
  5343. if (intel_crtc->cursor_visible != visible) {
  5344. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5345. if (base) {
  5346. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5347. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5348. cntl |= pipe << 28; /* Connect to correct pipe */
  5349. } else {
  5350. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5351. cntl |= CURSOR_MODE_DISABLE;
  5352. }
  5353. I915_WRITE(CURCNTR(pipe), cntl);
  5354. intel_crtc->cursor_visible = visible;
  5355. }
  5356. /* and commit changes on next vblank */
  5357. I915_WRITE(CURBASE(pipe), base);
  5358. }
  5359. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5360. {
  5361. struct drm_device *dev = crtc->dev;
  5362. struct drm_i915_private *dev_priv = dev->dev_private;
  5363. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5364. int pipe = intel_crtc->pipe;
  5365. bool visible = base != 0;
  5366. if (intel_crtc->cursor_visible != visible) {
  5367. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5368. if (base) {
  5369. cntl &= ~CURSOR_MODE;
  5370. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5371. } else {
  5372. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5373. cntl |= CURSOR_MODE_DISABLE;
  5374. }
  5375. if (IS_HASWELL(dev))
  5376. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5377. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5378. intel_crtc->cursor_visible = visible;
  5379. }
  5380. /* and commit changes on next vblank */
  5381. I915_WRITE(CURBASE_IVB(pipe), base);
  5382. }
  5383. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5384. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5385. bool on)
  5386. {
  5387. struct drm_device *dev = crtc->dev;
  5388. struct drm_i915_private *dev_priv = dev->dev_private;
  5389. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5390. int pipe = intel_crtc->pipe;
  5391. int x = intel_crtc->cursor_x;
  5392. int y = intel_crtc->cursor_y;
  5393. u32 base, pos;
  5394. bool visible;
  5395. pos = 0;
  5396. if (on && crtc->enabled && crtc->fb) {
  5397. base = intel_crtc->cursor_addr;
  5398. if (x > (int) crtc->fb->width)
  5399. base = 0;
  5400. if (y > (int) crtc->fb->height)
  5401. base = 0;
  5402. } else
  5403. base = 0;
  5404. if (x < 0) {
  5405. if (x + intel_crtc->cursor_width < 0)
  5406. base = 0;
  5407. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5408. x = -x;
  5409. }
  5410. pos |= x << CURSOR_X_SHIFT;
  5411. if (y < 0) {
  5412. if (y + intel_crtc->cursor_height < 0)
  5413. base = 0;
  5414. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5415. y = -y;
  5416. }
  5417. pos |= y << CURSOR_Y_SHIFT;
  5418. visible = base != 0;
  5419. if (!visible && !intel_crtc->cursor_visible)
  5420. return;
  5421. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5422. I915_WRITE(CURPOS_IVB(pipe), pos);
  5423. ivb_update_cursor(crtc, base);
  5424. } else {
  5425. I915_WRITE(CURPOS(pipe), pos);
  5426. if (IS_845G(dev) || IS_I865G(dev))
  5427. i845_update_cursor(crtc, base);
  5428. else
  5429. i9xx_update_cursor(crtc, base);
  5430. }
  5431. }
  5432. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5433. struct drm_file *file,
  5434. uint32_t handle,
  5435. uint32_t width, uint32_t height)
  5436. {
  5437. struct drm_device *dev = crtc->dev;
  5438. struct drm_i915_private *dev_priv = dev->dev_private;
  5439. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5440. struct drm_i915_gem_object *obj;
  5441. uint32_t addr;
  5442. int ret;
  5443. /* if we want to turn off the cursor ignore width and height */
  5444. if (!handle) {
  5445. DRM_DEBUG_KMS("cursor off\n");
  5446. addr = 0;
  5447. obj = NULL;
  5448. mutex_lock(&dev->struct_mutex);
  5449. goto finish;
  5450. }
  5451. /* Currently we only support 64x64 cursors */
  5452. if (width != 64 || height != 64) {
  5453. DRM_ERROR("we currently only support 64x64 cursors\n");
  5454. return -EINVAL;
  5455. }
  5456. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5457. if (&obj->base == NULL)
  5458. return -ENOENT;
  5459. if (obj->base.size < width * height * 4) {
  5460. DRM_ERROR("buffer is to small\n");
  5461. ret = -ENOMEM;
  5462. goto fail;
  5463. }
  5464. /* we only need to pin inside GTT if cursor is non-phy */
  5465. mutex_lock(&dev->struct_mutex);
  5466. if (!dev_priv->info->cursor_needs_physical) {
  5467. unsigned alignment;
  5468. if (obj->tiling_mode) {
  5469. DRM_ERROR("cursor cannot be tiled\n");
  5470. ret = -EINVAL;
  5471. goto fail_locked;
  5472. }
  5473. /* Note that the w/a also requires 2 PTE of padding following
  5474. * the bo. We currently fill all unused PTE with the shadow
  5475. * page and so we should always have valid PTE following the
  5476. * cursor preventing the VT-d warning.
  5477. */
  5478. alignment = 0;
  5479. if (need_vtd_wa(dev))
  5480. alignment = 64*1024;
  5481. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5482. if (ret) {
  5483. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5484. goto fail_locked;
  5485. }
  5486. ret = i915_gem_object_put_fence(obj);
  5487. if (ret) {
  5488. DRM_ERROR("failed to release fence for cursor");
  5489. goto fail_unpin;
  5490. }
  5491. addr = obj->gtt_offset;
  5492. } else {
  5493. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5494. ret = i915_gem_attach_phys_object(dev, obj,
  5495. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5496. align);
  5497. if (ret) {
  5498. DRM_ERROR("failed to attach phys object\n");
  5499. goto fail_locked;
  5500. }
  5501. addr = obj->phys_obj->handle->busaddr;
  5502. }
  5503. if (IS_GEN2(dev))
  5504. I915_WRITE(CURSIZE, (height << 12) | width);
  5505. finish:
  5506. if (intel_crtc->cursor_bo) {
  5507. if (dev_priv->info->cursor_needs_physical) {
  5508. if (intel_crtc->cursor_bo != obj)
  5509. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5510. } else
  5511. i915_gem_object_unpin(intel_crtc->cursor_bo);
  5512. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5513. }
  5514. mutex_unlock(&dev->struct_mutex);
  5515. intel_crtc->cursor_addr = addr;
  5516. intel_crtc->cursor_bo = obj;
  5517. intel_crtc->cursor_width = width;
  5518. intel_crtc->cursor_height = height;
  5519. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5520. return 0;
  5521. fail_unpin:
  5522. i915_gem_object_unpin(obj);
  5523. fail_locked:
  5524. mutex_unlock(&dev->struct_mutex);
  5525. fail:
  5526. drm_gem_object_unreference_unlocked(&obj->base);
  5527. return ret;
  5528. }
  5529. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5530. {
  5531. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5532. intel_crtc->cursor_x = x;
  5533. intel_crtc->cursor_y = y;
  5534. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5535. return 0;
  5536. }
  5537. /** Sets the color ramps on behalf of RandR */
  5538. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5539. u16 blue, int regno)
  5540. {
  5541. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5542. intel_crtc->lut_r[regno] = red >> 8;
  5543. intel_crtc->lut_g[regno] = green >> 8;
  5544. intel_crtc->lut_b[regno] = blue >> 8;
  5545. }
  5546. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5547. u16 *blue, int regno)
  5548. {
  5549. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5550. *red = intel_crtc->lut_r[regno] << 8;
  5551. *green = intel_crtc->lut_g[regno] << 8;
  5552. *blue = intel_crtc->lut_b[regno] << 8;
  5553. }
  5554. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5555. u16 *blue, uint32_t start, uint32_t size)
  5556. {
  5557. int end = (start + size > 256) ? 256 : start + size, i;
  5558. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5559. for (i = start; i < end; i++) {
  5560. intel_crtc->lut_r[i] = red[i] >> 8;
  5561. intel_crtc->lut_g[i] = green[i] >> 8;
  5562. intel_crtc->lut_b[i] = blue[i] >> 8;
  5563. }
  5564. intel_crtc_load_lut(crtc);
  5565. }
  5566. /* VESA 640x480x72Hz mode to set on the pipe */
  5567. static struct drm_display_mode load_detect_mode = {
  5568. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5569. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5570. };
  5571. static struct drm_framebuffer *
  5572. intel_framebuffer_create(struct drm_device *dev,
  5573. struct drm_mode_fb_cmd2 *mode_cmd,
  5574. struct drm_i915_gem_object *obj)
  5575. {
  5576. struct intel_framebuffer *intel_fb;
  5577. int ret;
  5578. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5579. if (!intel_fb) {
  5580. drm_gem_object_unreference_unlocked(&obj->base);
  5581. return ERR_PTR(-ENOMEM);
  5582. }
  5583. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5584. if (ret) {
  5585. drm_gem_object_unreference_unlocked(&obj->base);
  5586. kfree(intel_fb);
  5587. return ERR_PTR(ret);
  5588. }
  5589. return &intel_fb->base;
  5590. }
  5591. static u32
  5592. intel_framebuffer_pitch_for_width(int width, int bpp)
  5593. {
  5594. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5595. return ALIGN(pitch, 64);
  5596. }
  5597. static u32
  5598. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5599. {
  5600. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5601. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5602. }
  5603. static struct drm_framebuffer *
  5604. intel_framebuffer_create_for_mode(struct drm_device *dev,
  5605. struct drm_display_mode *mode,
  5606. int depth, int bpp)
  5607. {
  5608. struct drm_i915_gem_object *obj;
  5609. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  5610. obj = i915_gem_alloc_object(dev,
  5611. intel_framebuffer_size_for_mode(mode, bpp));
  5612. if (obj == NULL)
  5613. return ERR_PTR(-ENOMEM);
  5614. mode_cmd.width = mode->hdisplay;
  5615. mode_cmd.height = mode->vdisplay;
  5616. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  5617. bpp);
  5618. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  5619. return intel_framebuffer_create(dev, &mode_cmd, obj);
  5620. }
  5621. static struct drm_framebuffer *
  5622. mode_fits_in_fbdev(struct drm_device *dev,
  5623. struct drm_display_mode *mode)
  5624. {
  5625. struct drm_i915_private *dev_priv = dev->dev_private;
  5626. struct drm_i915_gem_object *obj;
  5627. struct drm_framebuffer *fb;
  5628. if (dev_priv->fbdev == NULL)
  5629. return NULL;
  5630. obj = dev_priv->fbdev->ifb.obj;
  5631. if (obj == NULL)
  5632. return NULL;
  5633. fb = &dev_priv->fbdev->ifb.base;
  5634. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  5635. fb->bits_per_pixel))
  5636. return NULL;
  5637. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  5638. return NULL;
  5639. return fb;
  5640. }
  5641. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  5642. struct drm_display_mode *mode,
  5643. struct intel_load_detect_pipe *old)
  5644. {
  5645. struct intel_crtc *intel_crtc;
  5646. struct intel_encoder *intel_encoder =
  5647. intel_attached_encoder(connector);
  5648. struct drm_crtc *possible_crtc;
  5649. struct drm_encoder *encoder = &intel_encoder->base;
  5650. struct drm_crtc *crtc = NULL;
  5651. struct drm_device *dev = encoder->dev;
  5652. struct drm_framebuffer *fb;
  5653. int i = -1;
  5654. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5655. connector->base.id, drm_get_connector_name(connector),
  5656. encoder->base.id, drm_get_encoder_name(encoder));
  5657. /*
  5658. * Algorithm gets a little messy:
  5659. *
  5660. * - if the connector already has an assigned crtc, use it (but make
  5661. * sure it's on first)
  5662. *
  5663. * - try to find the first unused crtc that can drive this connector,
  5664. * and use that if we find one
  5665. */
  5666. /* See if we already have a CRTC for this connector */
  5667. if (encoder->crtc) {
  5668. crtc = encoder->crtc;
  5669. mutex_lock(&crtc->mutex);
  5670. old->dpms_mode = connector->dpms;
  5671. old->load_detect_temp = false;
  5672. /* Make sure the crtc and connector are running */
  5673. if (connector->dpms != DRM_MODE_DPMS_ON)
  5674. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  5675. return true;
  5676. }
  5677. /* Find an unused one (if possible) */
  5678. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  5679. i++;
  5680. if (!(encoder->possible_crtcs & (1 << i)))
  5681. continue;
  5682. if (!possible_crtc->enabled) {
  5683. crtc = possible_crtc;
  5684. break;
  5685. }
  5686. }
  5687. /*
  5688. * If we didn't find an unused CRTC, don't use any.
  5689. */
  5690. if (!crtc) {
  5691. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  5692. return false;
  5693. }
  5694. mutex_lock(&crtc->mutex);
  5695. intel_encoder->new_crtc = to_intel_crtc(crtc);
  5696. to_intel_connector(connector)->new_encoder = intel_encoder;
  5697. intel_crtc = to_intel_crtc(crtc);
  5698. old->dpms_mode = connector->dpms;
  5699. old->load_detect_temp = true;
  5700. old->release_fb = NULL;
  5701. if (!mode)
  5702. mode = &load_detect_mode;
  5703. /* We need a framebuffer large enough to accommodate all accesses
  5704. * that the plane may generate whilst we perform load detection.
  5705. * We can not rely on the fbcon either being present (we get called
  5706. * during its initialisation to detect all boot displays, or it may
  5707. * not even exist) or that it is large enough to satisfy the
  5708. * requested mode.
  5709. */
  5710. fb = mode_fits_in_fbdev(dev, mode);
  5711. if (fb == NULL) {
  5712. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  5713. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  5714. old->release_fb = fb;
  5715. } else
  5716. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  5717. if (IS_ERR(fb)) {
  5718. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  5719. mutex_unlock(&crtc->mutex);
  5720. return false;
  5721. }
  5722. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  5723. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  5724. if (old->release_fb)
  5725. old->release_fb->funcs->destroy(old->release_fb);
  5726. mutex_unlock(&crtc->mutex);
  5727. return false;
  5728. }
  5729. /* let the connector get through one full cycle before testing */
  5730. intel_wait_for_vblank(dev, intel_crtc->pipe);
  5731. return true;
  5732. }
  5733. void intel_release_load_detect_pipe(struct drm_connector *connector,
  5734. struct intel_load_detect_pipe *old)
  5735. {
  5736. struct intel_encoder *intel_encoder =
  5737. intel_attached_encoder(connector);
  5738. struct drm_encoder *encoder = &intel_encoder->base;
  5739. struct drm_crtc *crtc = encoder->crtc;
  5740. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5741. connector->base.id, drm_get_connector_name(connector),
  5742. encoder->base.id, drm_get_encoder_name(encoder));
  5743. if (old->load_detect_temp) {
  5744. to_intel_connector(connector)->new_encoder = NULL;
  5745. intel_encoder->new_crtc = NULL;
  5746. intel_set_mode(crtc, NULL, 0, 0, NULL);
  5747. if (old->release_fb) {
  5748. drm_framebuffer_unregister_private(old->release_fb);
  5749. drm_framebuffer_unreference(old->release_fb);
  5750. }
  5751. mutex_unlock(&crtc->mutex);
  5752. return;
  5753. }
  5754. /* Switch crtc and encoder back off if necessary */
  5755. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  5756. connector->funcs->dpms(connector, old->dpms_mode);
  5757. mutex_unlock(&crtc->mutex);
  5758. }
  5759. /* Returns the clock of the currently programmed mode of the given pipe. */
  5760. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  5761. {
  5762. struct drm_i915_private *dev_priv = dev->dev_private;
  5763. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5764. int pipe = intel_crtc->pipe;
  5765. u32 dpll = I915_READ(DPLL(pipe));
  5766. u32 fp;
  5767. intel_clock_t clock;
  5768. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  5769. fp = I915_READ(FP0(pipe));
  5770. else
  5771. fp = I915_READ(FP1(pipe));
  5772. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  5773. if (IS_PINEVIEW(dev)) {
  5774. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  5775. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5776. } else {
  5777. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5778. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5779. }
  5780. if (!IS_GEN2(dev)) {
  5781. if (IS_PINEVIEW(dev))
  5782. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5783. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5784. else
  5785. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5786. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5787. switch (dpll & DPLL_MODE_MASK) {
  5788. case DPLLB_MODE_DAC_SERIAL:
  5789. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5790. 5 : 10;
  5791. break;
  5792. case DPLLB_MODE_LVDS:
  5793. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5794. 7 : 14;
  5795. break;
  5796. default:
  5797. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5798. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5799. return 0;
  5800. }
  5801. /* XXX: Handle the 100Mhz refclk */
  5802. intel_clock(dev, 96000, &clock);
  5803. } else {
  5804. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5805. if (is_lvds) {
  5806. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5807. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5808. clock.p2 = 14;
  5809. if ((dpll & PLL_REF_INPUT_MASK) ==
  5810. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5811. /* XXX: might not be 66MHz */
  5812. intel_clock(dev, 66000, &clock);
  5813. } else
  5814. intel_clock(dev, 48000, &clock);
  5815. } else {
  5816. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5817. clock.p1 = 2;
  5818. else {
  5819. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5820. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5821. }
  5822. if (dpll & PLL_P2_DIVIDE_BY_4)
  5823. clock.p2 = 4;
  5824. else
  5825. clock.p2 = 2;
  5826. intel_clock(dev, 48000, &clock);
  5827. }
  5828. }
  5829. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5830. * i830PllIsValid() because it relies on the xf86_config connector
  5831. * configuration being accurate, which it isn't necessarily.
  5832. */
  5833. return clock.dot;
  5834. }
  5835. /** Returns the currently programmed mode of the given pipe. */
  5836. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5837. struct drm_crtc *crtc)
  5838. {
  5839. struct drm_i915_private *dev_priv = dev->dev_private;
  5840. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5841. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  5842. struct drm_display_mode *mode;
  5843. int htot = I915_READ(HTOTAL(cpu_transcoder));
  5844. int hsync = I915_READ(HSYNC(cpu_transcoder));
  5845. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  5846. int vsync = I915_READ(VSYNC(cpu_transcoder));
  5847. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5848. if (!mode)
  5849. return NULL;
  5850. mode->clock = intel_crtc_clock_get(dev, crtc);
  5851. mode->hdisplay = (htot & 0xffff) + 1;
  5852. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5853. mode->hsync_start = (hsync & 0xffff) + 1;
  5854. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5855. mode->vdisplay = (vtot & 0xffff) + 1;
  5856. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5857. mode->vsync_start = (vsync & 0xffff) + 1;
  5858. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5859. drm_mode_set_name(mode);
  5860. return mode;
  5861. }
  5862. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5863. {
  5864. struct drm_device *dev = crtc->dev;
  5865. drm_i915_private_t *dev_priv = dev->dev_private;
  5866. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5867. int pipe = intel_crtc->pipe;
  5868. int dpll_reg = DPLL(pipe);
  5869. int dpll;
  5870. if (HAS_PCH_SPLIT(dev))
  5871. return;
  5872. if (!dev_priv->lvds_downclock_avail)
  5873. return;
  5874. dpll = I915_READ(dpll_reg);
  5875. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5876. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5877. assert_panel_unlocked(dev_priv, pipe);
  5878. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5879. I915_WRITE(dpll_reg, dpll);
  5880. intel_wait_for_vblank(dev, pipe);
  5881. dpll = I915_READ(dpll_reg);
  5882. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5883. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5884. }
  5885. }
  5886. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5887. {
  5888. struct drm_device *dev = crtc->dev;
  5889. drm_i915_private_t *dev_priv = dev->dev_private;
  5890. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5891. if (HAS_PCH_SPLIT(dev))
  5892. return;
  5893. if (!dev_priv->lvds_downclock_avail)
  5894. return;
  5895. /*
  5896. * Since this is called by a timer, we should never get here in
  5897. * the manual case.
  5898. */
  5899. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5900. int pipe = intel_crtc->pipe;
  5901. int dpll_reg = DPLL(pipe);
  5902. int dpll;
  5903. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5904. assert_panel_unlocked(dev_priv, pipe);
  5905. dpll = I915_READ(dpll_reg);
  5906. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5907. I915_WRITE(dpll_reg, dpll);
  5908. intel_wait_for_vblank(dev, pipe);
  5909. dpll = I915_READ(dpll_reg);
  5910. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5911. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5912. }
  5913. }
  5914. void intel_mark_busy(struct drm_device *dev)
  5915. {
  5916. i915_update_gfx_val(dev->dev_private);
  5917. }
  5918. void intel_mark_idle(struct drm_device *dev)
  5919. {
  5920. struct drm_crtc *crtc;
  5921. if (!i915_powersave)
  5922. return;
  5923. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5924. if (!crtc->fb)
  5925. continue;
  5926. intel_decrease_pllclock(crtc);
  5927. }
  5928. }
  5929. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5930. {
  5931. struct drm_device *dev = obj->base.dev;
  5932. struct drm_crtc *crtc;
  5933. if (!i915_powersave)
  5934. return;
  5935. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5936. if (!crtc->fb)
  5937. continue;
  5938. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5939. intel_increase_pllclock(crtc);
  5940. }
  5941. }
  5942. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5943. {
  5944. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5945. struct drm_device *dev = crtc->dev;
  5946. struct intel_unpin_work *work;
  5947. unsigned long flags;
  5948. spin_lock_irqsave(&dev->event_lock, flags);
  5949. work = intel_crtc->unpin_work;
  5950. intel_crtc->unpin_work = NULL;
  5951. spin_unlock_irqrestore(&dev->event_lock, flags);
  5952. if (work) {
  5953. cancel_work_sync(&work->work);
  5954. kfree(work);
  5955. }
  5956. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  5957. drm_crtc_cleanup(crtc);
  5958. kfree(intel_crtc);
  5959. }
  5960. static void intel_unpin_work_fn(struct work_struct *__work)
  5961. {
  5962. struct intel_unpin_work *work =
  5963. container_of(__work, struct intel_unpin_work, work);
  5964. struct drm_device *dev = work->crtc->dev;
  5965. mutex_lock(&dev->struct_mutex);
  5966. intel_unpin_fb_obj(work->old_fb_obj);
  5967. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5968. drm_gem_object_unreference(&work->old_fb_obj->base);
  5969. intel_update_fbc(dev);
  5970. mutex_unlock(&dev->struct_mutex);
  5971. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  5972. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  5973. kfree(work);
  5974. }
  5975. static void do_intel_finish_page_flip(struct drm_device *dev,
  5976. struct drm_crtc *crtc)
  5977. {
  5978. drm_i915_private_t *dev_priv = dev->dev_private;
  5979. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5980. struct intel_unpin_work *work;
  5981. unsigned long flags;
  5982. /* Ignore early vblank irqs */
  5983. if (intel_crtc == NULL)
  5984. return;
  5985. spin_lock_irqsave(&dev->event_lock, flags);
  5986. work = intel_crtc->unpin_work;
  5987. /* Ensure we don't miss a work->pending update ... */
  5988. smp_rmb();
  5989. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  5990. spin_unlock_irqrestore(&dev->event_lock, flags);
  5991. return;
  5992. }
  5993. /* and that the unpin work is consistent wrt ->pending. */
  5994. smp_rmb();
  5995. intel_crtc->unpin_work = NULL;
  5996. if (work->event)
  5997. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  5998. drm_vblank_put(dev, intel_crtc->pipe);
  5999. spin_unlock_irqrestore(&dev->event_lock, flags);
  6000. wake_up_all(&dev_priv->pending_flip_queue);
  6001. queue_work(dev_priv->wq, &work->work);
  6002. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6003. }
  6004. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6005. {
  6006. drm_i915_private_t *dev_priv = dev->dev_private;
  6007. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6008. do_intel_finish_page_flip(dev, crtc);
  6009. }
  6010. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6011. {
  6012. drm_i915_private_t *dev_priv = dev->dev_private;
  6013. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6014. do_intel_finish_page_flip(dev, crtc);
  6015. }
  6016. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6017. {
  6018. drm_i915_private_t *dev_priv = dev->dev_private;
  6019. struct intel_crtc *intel_crtc =
  6020. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6021. unsigned long flags;
  6022. /* NB: An MMIO update of the plane base pointer will also
  6023. * generate a page-flip completion irq, i.e. every modeset
  6024. * is also accompanied by a spurious intel_prepare_page_flip().
  6025. */
  6026. spin_lock_irqsave(&dev->event_lock, flags);
  6027. if (intel_crtc->unpin_work)
  6028. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6029. spin_unlock_irqrestore(&dev->event_lock, flags);
  6030. }
  6031. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6032. {
  6033. /* Ensure that the work item is consistent when activating it ... */
  6034. smp_wmb();
  6035. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6036. /* and that it is marked active as soon as the irq could fire. */
  6037. smp_wmb();
  6038. }
  6039. static int intel_gen2_queue_flip(struct drm_device *dev,
  6040. struct drm_crtc *crtc,
  6041. struct drm_framebuffer *fb,
  6042. struct drm_i915_gem_object *obj)
  6043. {
  6044. struct drm_i915_private *dev_priv = dev->dev_private;
  6045. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6046. u32 flip_mask;
  6047. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6048. int ret;
  6049. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6050. if (ret)
  6051. goto err;
  6052. ret = intel_ring_begin(ring, 6);
  6053. if (ret)
  6054. goto err_unpin;
  6055. /* Can't queue multiple flips, so wait for the previous
  6056. * one to finish before executing the next.
  6057. */
  6058. if (intel_crtc->plane)
  6059. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6060. else
  6061. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6062. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6063. intel_ring_emit(ring, MI_NOOP);
  6064. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6065. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6066. intel_ring_emit(ring, fb->pitches[0]);
  6067. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6068. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6069. intel_mark_page_flip_active(intel_crtc);
  6070. intel_ring_advance(ring);
  6071. return 0;
  6072. err_unpin:
  6073. intel_unpin_fb_obj(obj);
  6074. err:
  6075. return ret;
  6076. }
  6077. static int intel_gen3_queue_flip(struct drm_device *dev,
  6078. struct drm_crtc *crtc,
  6079. struct drm_framebuffer *fb,
  6080. struct drm_i915_gem_object *obj)
  6081. {
  6082. struct drm_i915_private *dev_priv = dev->dev_private;
  6083. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6084. u32 flip_mask;
  6085. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6086. int ret;
  6087. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6088. if (ret)
  6089. goto err;
  6090. ret = intel_ring_begin(ring, 6);
  6091. if (ret)
  6092. goto err_unpin;
  6093. if (intel_crtc->plane)
  6094. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6095. else
  6096. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6097. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6098. intel_ring_emit(ring, MI_NOOP);
  6099. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6100. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6101. intel_ring_emit(ring, fb->pitches[0]);
  6102. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6103. intel_ring_emit(ring, MI_NOOP);
  6104. intel_mark_page_flip_active(intel_crtc);
  6105. intel_ring_advance(ring);
  6106. return 0;
  6107. err_unpin:
  6108. intel_unpin_fb_obj(obj);
  6109. err:
  6110. return ret;
  6111. }
  6112. static int intel_gen4_queue_flip(struct drm_device *dev,
  6113. struct drm_crtc *crtc,
  6114. struct drm_framebuffer *fb,
  6115. struct drm_i915_gem_object *obj)
  6116. {
  6117. struct drm_i915_private *dev_priv = dev->dev_private;
  6118. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6119. uint32_t pf, pipesrc;
  6120. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6121. int ret;
  6122. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6123. if (ret)
  6124. goto err;
  6125. ret = intel_ring_begin(ring, 4);
  6126. if (ret)
  6127. goto err_unpin;
  6128. /* i965+ uses the linear or tiled offsets from the
  6129. * Display Registers (which do not change across a page-flip)
  6130. * so we need only reprogram the base address.
  6131. */
  6132. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6133. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6134. intel_ring_emit(ring, fb->pitches[0]);
  6135. intel_ring_emit(ring,
  6136. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  6137. obj->tiling_mode);
  6138. /* XXX Enabling the panel-fitter across page-flip is so far
  6139. * untested on non-native modes, so ignore it for now.
  6140. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6141. */
  6142. pf = 0;
  6143. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6144. intel_ring_emit(ring, pf | pipesrc);
  6145. intel_mark_page_flip_active(intel_crtc);
  6146. intel_ring_advance(ring);
  6147. return 0;
  6148. err_unpin:
  6149. intel_unpin_fb_obj(obj);
  6150. err:
  6151. return ret;
  6152. }
  6153. static int intel_gen6_queue_flip(struct drm_device *dev,
  6154. struct drm_crtc *crtc,
  6155. struct drm_framebuffer *fb,
  6156. struct drm_i915_gem_object *obj)
  6157. {
  6158. struct drm_i915_private *dev_priv = dev->dev_private;
  6159. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6160. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6161. uint32_t pf, pipesrc;
  6162. int ret;
  6163. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6164. if (ret)
  6165. goto err;
  6166. ret = intel_ring_begin(ring, 4);
  6167. if (ret)
  6168. goto err_unpin;
  6169. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6170. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6171. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6172. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6173. /* Contrary to the suggestions in the documentation,
  6174. * "Enable Panel Fitter" does not seem to be required when page
  6175. * flipping with a non-native mode, and worse causes a normal
  6176. * modeset to fail.
  6177. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6178. */
  6179. pf = 0;
  6180. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6181. intel_ring_emit(ring, pf | pipesrc);
  6182. intel_mark_page_flip_active(intel_crtc);
  6183. intel_ring_advance(ring);
  6184. return 0;
  6185. err_unpin:
  6186. intel_unpin_fb_obj(obj);
  6187. err:
  6188. return ret;
  6189. }
  6190. /*
  6191. * On gen7 we currently use the blit ring because (in early silicon at least)
  6192. * the render ring doesn't give us interrpts for page flip completion, which
  6193. * means clients will hang after the first flip is queued. Fortunately the
  6194. * blit ring generates interrupts properly, so use it instead.
  6195. */
  6196. static int intel_gen7_queue_flip(struct drm_device *dev,
  6197. struct drm_crtc *crtc,
  6198. struct drm_framebuffer *fb,
  6199. struct drm_i915_gem_object *obj)
  6200. {
  6201. struct drm_i915_private *dev_priv = dev->dev_private;
  6202. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6203. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  6204. uint32_t plane_bit = 0;
  6205. int ret;
  6206. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6207. if (ret)
  6208. goto err;
  6209. switch(intel_crtc->plane) {
  6210. case PLANE_A:
  6211. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6212. break;
  6213. case PLANE_B:
  6214. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6215. break;
  6216. case PLANE_C:
  6217. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6218. break;
  6219. default:
  6220. WARN_ONCE(1, "unknown plane in flip command\n");
  6221. ret = -ENODEV;
  6222. goto err_unpin;
  6223. }
  6224. ret = intel_ring_begin(ring, 4);
  6225. if (ret)
  6226. goto err_unpin;
  6227. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6228. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6229. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  6230. intel_ring_emit(ring, (MI_NOOP));
  6231. intel_mark_page_flip_active(intel_crtc);
  6232. intel_ring_advance(ring);
  6233. return 0;
  6234. err_unpin:
  6235. intel_unpin_fb_obj(obj);
  6236. err:
  6237. return ret;
  6238. }
  6239. static int intel_default_queue_flip(struct drm_device *dev,
  6240. struct drm_crtc *crtc,
  6241. struct drm_framebuffer *fb,
  6242. struct drm_i915_gem_object *obj)
  6243. {
  6244. return -ENODEV;
  6245. }
  6246. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6247. struct drm_framebuffer *fb,
  6248. struct drm_pending_vblank_event *event)
  6249. {
  6250. struct drm_device *dev = crtc->dev;
  6251. struct drm_i915_private *dev_priv = dev->dev_private;
  6252. struct drm_framebuffer *old_fb = crtc->fb;
  6253. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6254. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6255. struct intel_unpin_work *work;
  6256. unsigned long flags;
  6257. int ret;
  6258. /* Can't change pixel format via MI display flips. */
  6259. if (fb->pixel_format != crtc->fb->pixel_format)
  6260. return -EINVAL;
  6261. /*
  6262. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6263. * Note that pitch changes could also affect these register.
  6264. */
  6265. if (INTEL_INFO(dev)->gen > 3 &&
  6266. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6267. fb->pitches[0] != crtc->fb->pitches[0]))
  6268. return -EINVAL;
  6269. work = kzalloc(sizeof *work, GFP_KERNEL);
  6270. if (work == NULL)
  6271. return -ENOMEM;
  6272. work->event = event;
  6273. work->crtc = crtc;
  6274. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6275. INIT_WORK(&work->work, intel_unpin_work_fn);
  6276. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6277. if (ret)
  6278. goto free_work;
  6279. /* We borrow the event spin lock for protecting unpin_work */
  6280. spin_lock_irqsave(&dev->event_lock, flags);
  6281. if (intel_crtc->unpin_work) {
  6282. spin_unlock_irqrestore(&dev->event_lock, flags);
  6283. kfree(work);
  6284. drm_vblank_put(dev, intel_crtc->pipe);
  6285. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6286. return -EBUSY;
  6287. }
  6288. intel_crtc->unpin_work = work;
  6289. spin_unlock_irqrestore(&dev->event_lock, flags);
  6290. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6291. flush_workqueue(dev_priv->wq);
  6292. ret = i915_mutex_lock_interruptible(dev);
  6293. if (ret)
  6294. goto cleanup;
  6295. /* Reference the objects for the scheduled work. */
  6296. drm_gem_object_reference(&work->old_fb_obj->base);
  6297. drm_gem_object_reference(&obj->base);
  6298. crtc->fb = fb;
  6299. work->pending_flip_obj = obj;
  6300. work->enable_stall_check = true;
  6301. atomic_inc(&intel_crtc->unpin_work_count);
  6302. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6303. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  6304. if (ret)
  6305. goto cleanup_pending;
  6306. intel_disable_fbc(dev);
  6307. intel_mark_fb_busy(obj);
  6308. mutex_unlock(&dev->struct_mutex);
  6309. trace_i915_flip_request(intel_crtc->plane, obj);
  6310. return 0;
  6311. cleanup_pending:
  6312. atomic_dec(&intel_crtc->unpin_work_count);
  6313. crtc->fb = old_fb;
  6314. drm_gem_object_unreference(&work->old_fb_obj->base);
  6315. drm_gem_object_unreference(&obj->base);
  6316. mutex_unlock(&dev->struct_mutex);
  6317. cleanup:
  6318. spin_lock_irqsave(&dev->event_lock, flags);
  6319. intel_crtc->unpin_work = NULL;
  6320. spin_unlock_irqrestore(&dev->event_lock, flags);
  6321. drm_vblank_put(dev, intel_crtc->pipe);
  6322. free_work:
  6323. kfree(work);
  6324. return ret;
  6325. }
  6326. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6327. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6328. .load_lut = intel_crtc_load_lut,
  6329. };
  6330. bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
  6331. {
  6332. struct intel_encoder *other_encoder;
  6333. struct drm_crtc *crtc = &encoder->new_crtc->base;
  6334. if (WARN_ON(!crtc))
  6335. return false;
  6336. list_for_each_entry(other_encoder,
  6337. &crtc->dev->mode_config.encoder_list,
  6338. base.head) {
  6339. if (&other_encoder->new_crtc->base != crtc ||
  6340. encoder == other_encoder)
  6341. continue;
  6342. else
  6343. return true;
  6344. }
  6345. return false;
  6346. }
  6347. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6348. struct drm_crtc *crtc)
  6349. {
  6350. struct drm_device *dev;
  6351. struct drm_crtc *tmp;
  6352. int crtc_mask = 1;
  6353. WARN(!crtc, "checking null crtc?\n");
  6354. dev = crtc->dev;
  6355. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6356. if (tmp == crtc)
  6357. break;
  6358. crtc_mask <<= 1;
  6359. }
  6360. if (encoder->possible_crtcs & crtc_mask)
  6361. return true;
  6362. return false;
  6363. }
  6364. /**
  6365. * intel_modeset_update_staged_output_state
  6366. *
  6367. * Updates the staged output configuration state, e.g. after we've read out the
  6368. * current hw state.
  6369. */
  6370. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6371. {
  6372. struct intel_encoder *encoder;
  6373. struct intel_connector *connector;
  6374. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6375. base.head) {
  6376. connector->new_encoder =
  6377. to_intel_encoder(connector->base.encoder);
  6378. }
  6379. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6380. base.head) {
  6381. encoder->new_crtc =
  6382. to_intel_crtc(encoder->base.crtc);
  6383. }
  6384. }
  6385. /**
  6386. * intel_modeset_commit_output_state
  6387. *
  6388. * This function copies the stage display pipe configuration to the real one.
  6389. */
  6390. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6391. {
  6392. struct intel_encoder *encoder;
  6393. struct intel_connector *connector;
  6394. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6395. base.head) {
  6396. connector->base.encoder = &connector->new_encoder->base;
  6397. }
  6398. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6399. base.head) {
  6400. encoder->base.crtc = &encoder->new_crtc->base;
  6401. }
  6402. }
  6403. static void
  6404. connected_sink_compute_bpp(struct intel_connector * connector,
  6405. struct intel_crtc_config *pipe_config)
  6406. {
  6407. int bpp = pipe_config->pipe_bpp;
  6408. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6409. connector->base.base.id,
  6410. drm_get_connector_name(&connector->base));
  6411. /* Don't use an invalid EDID bpc value */
  6412. if (connector->base.display_info.bpc &&
  6413. connector->base.display_info.bpc * 3 < bpp) {
  6414. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6415. bpp, connector->base.display_info.bpc*3);
  6416. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6417. }
  6418. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6419. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6420. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6421. bpp);
  6422. pipe_config->pipe_bpp = 24;
  6423. }
  6424. }
  6425. static int
  6426. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6427. struct drm_framebuffer *fb,
  6428. struct intel_crtc_config *pipe_config)
  6429. {
  6430. struct drm_device *dev = crtc->base.dev;
  6431. struct intel_connector *connector;
  6432. int bpp;
  6433. switch (fb->pixel_format) {
  6434. case DRM_FORMAT_C8:
  6435. bpp = 8*3; /* since we go through a colormap */
  6436. break;
  6437. case DRM_FORMAT_XRGB1555:
  6438. case DRM_FORMAT_ARGB1555:
  6439. /* checked in intel_framebuffer_init already */
  6440. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6441. return -EINVAL;
  6442. case DRM_FORMAT_RGB565:
  6443. bpp = 6*3; /* min is 18bpp */
  6444. break;
  6445. case DRM_FORMAT_XBGR8888:
  6446. case DRM_FORMAT_ABGR8888:
  6447. /* checked in intel_framebuffer_init already */
  6448. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6449. return -EINVAL;
  6450. case DRM_FORMAT_XRGB8888:
  6451. case DRM_FORMAT_ARGB8888:
  6452. bpp = 8*3;
  6453. break;
  6454. case DRM_FORMAT_XRGB2101010:
  6455. case DRM_FORMAT_ARGB2101010:
  6456. case DRM_FORMAT_XBGR2101010:
  6457. case DRM_FORMAT_ABGR2101010:
  6458. /* checked in intel_framebuffer_init already */
  6459. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6460. return -EINVAL;
  6461. bpp = 10*3;
  6462. break;
  6463. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6464. default:
  6465. DRM_DEBUG_KMS("unsupported depth\n");
  6466. return -EINVAL;
  6467. }
  6468. pipe_config->pipe_bpp = bpp;
  6469. /* Clamp display bpp to EDID value */
  6470. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6471. base.head) {
  6472. if (!connector->new_encoder ||
  6473. connector->new_encoder->new_crtc != crtc)
  6474. continue;
  6475. connected_sink_compute_bpp(connector, pipe_config);
  6476. }
  6477. return bpp;
  6478. }
  6479. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6480. struct intel_crtc_config *pipe_config,
  6481. const char *context)
  6482. {
  6483. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6484. context, pipe_name(crtc->pipe));
  6485. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6486. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6487. pipe_config->pipe_bpp, pipe_config->dither);
  6488. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6489. pipe_config->has_pch_encoder,
  6490. pipe_config->fdi_lanes,
  6491. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6492. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6493. pipe_config->fdi_m_n.tu);
  6494. DRM_DEBUG_KMS("requested mode:\n");
  6495. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6496. DRM_DEBUG_KMS("adjusted mode:\n");
  6497. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6498. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6499. pipe_config->gmch_pfit.control,
  6500. pipe_config->gmch_pfit.pgm_ratios,
  6501. pipe_config->gmch_pfit.lvds_border_bits);
  6502. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6503. pipe_config->pch_pfit.pos,
  6504. pipe_config->pch_pfit.size);
  6505. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6506. }
  6507. static struct intel_crtc_config *
  6508. intel_modeset_pipe_config(struct drm_crtc *crtc,
  6509. struct drm_framebuffer *fb,
  6510. struct drm_display_mode *mode)
  6511. {
  6512. struct drm_device *dev = crtc->dev;
  6513. struct drm_encoder_helper_funcs *encoder_funcs;
  6514. struct intel_encoder *encoder;
  6515. struct intel_crtc_config *pipe_config;
  6516. int plane_bpp, ret = -EINVAL;
  6517. bool retry = true;
  6518. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  6519. if (!pipe_config)
  6520. return ERR_PTR(-ENOMEM);
  6521. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  6522. drm_mode_copy(&pipe_config->requested_mode, mode);
  6523. pipe_config->cpu_transcoder = to_intel_crtc(crtc)->pipe;
  6524. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  6525. * plane pixel format and any sink constraints into account. Returns the
  6526. * source plane bpp so that dithering can be selected on mismatches
  6527. * after encoders and crtc also have had their say. */
  6528. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  6529. fb, pipe_config);
  6530. if (plane_bpp < 0)
  6531. goto fail;
  6532. encoder_retry:
  6533. /* Pass our mode to the connectors and the CRTC to give them a chance to
  6534. * adjust it according to limitations or connector properties, and also
  6535. * a chance to reject the mode entirely.
  6536. */
  6537. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6538. base.head) {
  6539. if (&encoder->new_crtc->base != crtc)
  6540. continue;
  6541. if (encoder->compute_config) {
  6542. if (!(encoder->compute_config(encoder, pipe_config))) {
  6543. DRM_DEBUG_KMS("Encoder config failure\n");
  6544. goto fail;
  6545. }
  6546. continue;
  6547. }
  6548. encoder_funcs = encoder->base.helper_private;
  6549. if (!(encoder_funcs->mode_fixup(&encoder->base,
  6550. &pipe_config->requested_mode,
  6551. &pipe_config->adjusted_mode))) {
  6552. DRM_DEBUG_KMS("Encoder fixup failed\n");
  6553. goto fail;
  6554. }
  6555. }
  6556. ret = intel_crtc_compute_config(crtc, pipe_config);
  6557. if (ret < 0) {
  6558. DRM_DEBUG_KMS("CRTC fixup failed\n");
  6559. goto fail;
  6560. }
  6561. if (ret == RETRY) {
  6562. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  6563. ret = -EINVAL;
  6564. goto fail;
  6565. }
  6566. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  6567. retry = false;
  6568. goto encoder_retry;
  6569. }
  6570. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  6571. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  6572. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  6573. return pipe_config;
  6574. fail:
  6575. kfree(pipe_config);
  6576. return ERR_PTR(ret);
  6577. }
  6578. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  6579. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  6580. static void
  6581. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  6582. unsigned *prepare_pipes, unsigned *disable_pipes)
  6583. {
  6584. struct intel_crtc *intel_crtc;
  6585. struct drm_device *dev = crtc->dev;
  6586. struct intel_encoder *encoder;
  6587. struct intel_connector *connector;
  6588. struct drm_crtc *tmp_crtc;
  6589. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  6590. /* Check which crtcs have changed outputs connected to them, these need
  6591. * to be part of the prepare_pipes mask. We don't (yet) support global
  6592. * modeset across multiple crtcs, so modeset_pipes will only have one
  6593. * bit set at most. */
  6594. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6595. base.head) {
  6596. if (connector->base.encoder == &connector->new_encoder->base)
  6597. continue;
  6598. if (connector->base.encoder) {
  6599. tmp_crtc = connector->base.encoder->crtc;
  6600. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6601. }
  6602. if (connector->new_encoder)
  6603. *prepare_pipes |=
  6604. 1 << connector->new_encoder->new_crtc->pipe;
  6605. }
  6606. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6607. base.head) {
  6608. if (encoder->base.crtc == &encoder->new_crtc->base)
  6609. continue;
  6610. if (encoder->base.crtc) {
  6611. tmp_crtc = encoder->base.crtc;
  6612. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  6613. }
  6614. if (encoder->new_crtc)
  6615. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  6616. }
  6617. /* Check for any pipes that will be fully disabled ... */
  6618. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6619. base.head) {
  6620. bool used = false;
  6621. /* Don't try to disable disabled crtcs. */
  6622. if (!intel_crtc->base.enabled)
  6623. continue;
  6624. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6625. base.head) {
  6626. if (encoder->new_crtc == intel_crtc)
  6627. used = true;
  6628. }
  6629. if (!used)
  6630. *disable_pipes |= 1 << intel_crtc->pipe;
  6631. }
  6632. /* set_mode is also used to update properties on life display pipes. */
  6633. intel_crtc = to_intel_crtc(crtc);
  6634. if (crtc->enabled)
  6635. *prepare_pipes |= 1 << intel_crtc->pipe;
  6636. /*
  6637. * For simplicity do a full modeset on any pipe where the output routing
  6638. * changed. We could be more clever, but that would require us to be
  6639. * more careful with calling the relevant encoder->mode_set functions.
  6640. */
  6641. if (*prepare_pipes)
  6642. *modeset_pipes = *prepare_pipes;
  6643. /* ... and mask these out. */
  6644. *modeset_pipes &= ~(*disable_pipes);
  6645. *prepare_pipes &= ~(*disable_pipes);
  6646. /*
  6647. * HACK: We don't (yet) fully support global modesets. intel_set_config
  6648. * obies this rule, but the modeset restore mode of
  6649. * intel_modeset_setup_hw_state does not.
  6650. */
  6651. *modeset_pipes &= 1 << intel_crtc->pipe;
  6652. *prepare_pipes &= 1 << intel_crtc->pipe;
  6653. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  6654. *modeset_pipes, *prepare_pipes, *disable_pipes);
  6655. }
  6656. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  6657. {
  6658. struct drm_encoder *encoder;
  6659. struct drm_device *dev = crtc->dev;
  6660. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  6661. if (encoder->crtc == crtc)
  6662. return true;
  6663. return false;
  6664. }
  6665. static void
  6666. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  6667. {
  6668. struct intel_encoder *intel_encoder;
  6669. struct intel_crtc *intel_crtc;
  6670. struct drm_connector *connector;
  6671. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  6672. base.head) {
  6673. if (!intel_encoder->base.crtc)
  6674. continue;
  6675. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  6676. if (prepare_pipes & (1 << intel_crtc->pipe))
  6677. intel_encoder->connectors_active = false;
  6678. }
  6679. intel_modeset_commit_output_state(dev);
  6680. /* Update computed state. */
  6681. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  6682. base.head) {
  6683. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  6684. }
  6685. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  6686. if (!connector->encoder || !connector->encoder->crtc)
  6687. continue;
  6688. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  6689. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  6690. struct drm_property *dpms_property =
  6691. dev->mode_config.dpms_property;
  6692. connector->dpms = DRM_MODE_DPMS_ON;
  6693. drm_object_property_set_value(&connector->base,
  6694. dpms_property,
  6695. DRM_MODE_DPMS_ON);
  6696. intel_encoder = to_intel_encoder(connector->encoder);
  6697. intel_encoder->connectors_active = true;
  6698. }
  6699. }
  6700. }
  6701. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  6702. list_for_each_entry((intel_crtc), \
  6703. &(dev)->mode_config.crtc_list, \
  6704. base.head) \
  6705. if (mask & (1 <<(intel_crtc)->pipe))
  6706. static bool
  6707. intel_pipe_config_compare(struct drm_device *dev,
  6708. struct intel_crtc_config *current_config,
  6709. struct intel_crtc_config *pipe_config)
  6710. {
  6711. #define PIPE_CONF_CHECK_I(name) \
  6712. if (current_config->name != pipe_config->name) { \
  6713. DRM_ERROR("mismatch in " #name " " \
  6714. "(expected %i, found %i)\n", \
  6715. current_config->name, \
  6716. pipe_config->name); \
  6717. return false; \
  6718. }
  6719. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  6720. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  6721. DRM_ERROR("mismatch in " #name " " \
  6722. "(expected %i, found %i)\n", \
  6723. current_config->name & (mask), \
  6724. pipe_config->name & (mask)); \
  6725. return false; \
  6726. }
  6727. PIPE_CONF_CHECK_I(cpu_transcoder);
  6728. PIPE_CONF_CHECK_I(has_pch_encoder);
  6729. PIPE_CONF_CHECK_I(fdi_lanes);
  6730. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  6731. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  6732. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  6733. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  6734. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  6735. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  6736. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  6737. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  6738. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  6739. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  6740. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  6741. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  6742. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  6743. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  6744. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  6745. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  6746. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  6747. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6748. DRM_MODE_FLAG_INTERLACE);
  6749. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6750. DRM_MODE_FLAG_PHSYNC);
  6751. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6752. DRM_MODE_FLAG_NHSYNC);
  6753. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6754. DRM_MODE_FLAG_PVSYNC);
  6755. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  6756. DRM_MODE_FLAG_NVSYNC);
  6757. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  6758. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  6759. PIPE_CONF_CHECK_I(gmch_pfit.control);
  6760. /* pfit ratios are autocomputed by the hw on gen4+ */
  6761. if (INTEL_INFO(dev)->gen < 4)
  6762. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  6763. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  6764. PIPE_CONF_CHECK_I(pch_pfit.pos);
  6765. PIPE_CONF_CHECK_I(pch_pfit.size);
  6766. PIPE_CONF_CHECK_I(ips_enabled);
  6767. #undef PIPE_CONF_CHECK_I
  6768. #undef PIPE_CONF_CHECK_FLAGS
  6769. return true;
  6770. }
  6771. void
  6772. intel_modeset_check_state(struct drm_device *dev)
  6773. {
  6774. drm_i915_private_t *dev_priv = dev->dev_private;
  6775. struct intel_crtc *crtc;
  6776. struct intel_encoder *encoder;
  6777. struct intel_connector *connector;
  6778. struct intel_crtc_config pipe_config;
  6779. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6780. base.head) {
  6781. /* This also checks the encoder/connector hw state with the
  6782. * ->get_hw_state callbacks. */
  6783. intel_connector_check_state(connector);
  6784. WARN(&connector->new_encoder->base != connector->base.encoder,
  6785. "connector's staged encoder doesn't match current encoder\n");
  6786. }
  6787. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6788. base.head) {
  6789. bool enabled = false;
  6790. bool active = false;
  6791. enum pipe pipe, tracked_pipe;
  6792. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  6793. encoder->base.base.id,
  6794. drm_get_encoder_name(&encoder->base));
  6795. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  6796. "encoder's stage crtc doesn't match current crtc\n");
  6797. WARN(encoder->connectors_active && !encoder->base.crtc,
  6798. "encoder's active_connectors set, but no crtc\n");
  6799. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6800. base.head) {
  6801. if (connector->base.encoder != &encoder->base)
  6802. continue;
  6803. enabled = true;
  6804. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  6805. active = true;
  6806. }
  6807. WARN(!!encoder->base.crtc != enabled,
  6808. "encoder's enabled state mismatch "
  6809. "(expected %i, found %i)\n",
  6810. !!encoder->base.crtc, enabled);
  6811. WARN(active && !encoder->base.crtc,
  6812. "active encoder with no crtc\n");
  6813. WARN(encoder->connectors_active != active,
  6814. "encoder's computed active state doesn't match tracked active state "
  6815. "(expected %i, found %i)\n", active, encoder->connectors_active);
  6816. active = encoder->get_hw_state(encoder, &pipe);
  6817. WARN(active != encoder->connectors_active,
  6818. "encoder's hw state doesn't match sw tracking "
  6819. "(expected %i, found %i)\n",
  6820. encoder->connectors_active, active);
  6821. if (!encoder->base.crtc)
  6822. continue;
  6823. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  6824. WARN(active && pipe != tracked_pipe,
  6825. "active encoder's pipe doesn't match"
  6826. "(expected %i, found %i)\n",
  6827. tracked_pipe, pipe);
  6828. }
  6829. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  6830. base.head) {
  6831. bool enabled = false;
  6832. bool active = false;
  6833. memset(&pipe_config, 0, sizeof(pipe_config));
  6834. DRM_DEBUG_KMS("[CRTC:%d]\n",
  6835. crtc->base.base.id);
  6836. WARN(crtc->active && !crtc->base.enabled,
  6837. "active crtc, but not enabled in sw tracking\n");
  6838. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6839. base.head) {
  6840. if (encoder->base.crtc != &crtc->base)
  6841. continue;
  6842. enabled = true;
  6843. if (encoder->connectors_active)
  6844. active = true;
  6845. if (encoder->get_config)
  6846. encoder->get_config(encoder, &pipe_config);
  6847. }
  6848. WARN(active != crtc->active,
  6849. "crtc's computed active state doesn't match tracked active state "
  6850. "(expected %i, found %i)\n", active, crtc->active);
  6851. WARN(enabled != crtc->base.enabled,
  6852. "crtc's computed enabled state doesn't match tracked enabled state "
  6853. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  6854. active = dev_priv->display.get_pipe_config(crtc,
  6855. &pipe_config);
  6856. WARN(crtc->active != active,
  6857. "crtc active state doesn't match with hw state "
  6858. "(expected %i, found %i)\n", crtc->active, active);
  6859. if (active &&
  6860. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  6861. WARN(1, "pipe state doesn't match!\n");
  6862. intel_dump_pipe_config(crtc, &pipe_config,
  6863. "[hw state]");
  6864. intel_dump_pipe_config(crtc, &crtc->config,
  6865. "[sw state]");
  6866. }
  6867. }
  6868. }
  6869. static int __intel_set_mode(struct drm_crtc *crtc,
  6870. struct drm_display_mode *mode,
  6871. int x, int y, struct drm_framebuffer *fb)
  6872. {
  6873. struct drm_device *dev = crtc->dev;
  6874. drm_i915_private_t *dev_priv = dev->dev_private;
  6875. struct drm_display_mode *saved_mode, *saved_hwmode;
  6876. struct intel_crtc_config *pipe_config = NULL;
  6877. struct intel_crtc *intel_crtc;
  6878. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  6879. int ret = 0;
  6880. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  6881. if (!saved_mode)
  6882. return -ENOMEM;
  6883. saved_hwmode = saved_mode + 1;
  6884. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  6885. &prepare_pipes, &disable_pipes);
  6886. *saved_hwmode = crtc->hwmode;
  6887. *saved_mode = crtc->mode;
  6888. /* Hack: Because we don't (yet) support global modeset on multiple
  6889. * crtcs, we don't keep track of the new mode for more than one crtc.
  6890. * Hence simply check whether any bit is set in modeset_pipes in all the
  6891. * pieces of code that are not yet converted to deal with mutliple crtcs
  6892. * changing their mode at the same time. */
  6893. if (modeset_pipes) {
  6894. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  6895. if (IS_ERR(pipe_config)) {
  6896. ret = PTR_ERR(pipe_config);
  6897. pipe_config = NULL;
  6898. goto out;
  6899. }
  6900. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  6901. "[modeset]");
  6902. }
  6903. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  6904. intel_crtc_disable(&intel_crtc->base);
  6905. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  6906. if (intel_crtc->base.enabled)
  6907. dev_priv->display.crtc_disable(&intel_crtc->base);
  6908. }
  6909. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  6910. * to set it here already despite that we pass it down the callchain.
  6911. */
  6912. if (modeset_pipes) {
  6913. crtc->mode = *mode;
  6914. /* mode_set/enable/disable functions rely on a correct pipe
  6915. * config. */
  6916. to_intel_crtc(crtc)->config = *pipe_config;
  6917. }
  6918. /* Only after disabling all output pipelines that will be changed can we
  6919. * update the the output configuration. */
  6920. intel_modeset_update_state(dev, prepare_pipes);
  6921. if (dev_priv->display.modeset_global_resources)
  6922. dev_priv->display.modeset_global_resources(dev);
  6923. /* Set up the DPLL and any encoders state that needs to adjust or depend
  6924. * on the DPLL.
  6925. */
  6926. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  6927. ret = intel_crtc_mode_set(&intel_crtc->base,
  6928. x, y, fb);
  6929. if (ret)
  6930. goto done;
  6931. }
  6932. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  6933. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  6934. dev_priv->display.crtc_enable(&intel_crtc->base);
  6935. if (modeset_pipes) {
  6936. /* Store real post-adjustment hardware mode. */
  6937. crtc->hwmode = pipe_config->adjusted_mode;
  6938. /* Calculate and store various constants which
  6939. * are later needed by vblank and swap-completion
  6940. * timestamping. They are derived from true hwmode.
  6941. */
  6942. drm_calc_timestamping_constants(crtc);
  6943. }
  6944. /* FIXME: add subpixel order */
  6945. done:
  6946. if (ret && crtc->enabled) {
  6947. crtc->hwmode = *saved_hwmode;
  6948. crtc->mode = *saved_mode;
  6949. }
  6950. out:
  6951. kfree(pipe_config);
  6952. kfree(saved_mode);
  6953. return ret;
  6954. }
  6955. int intel_set_mode(struct drm_crtc *crtc,
  6956. struct drm_display_mode *mode,
  6957. int x, int y, struct drm_framebuffer *fb)
  6958. {
  6959. int ret;
  6960. ret = __intel_set_mode(crtc, mode, x, y, fb);
  6961. if (ret == 0)
  6962. intel_modeset_check_state(crtc->dev);
  6963. return ret;
  6964. }
  6965. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  6966. {
  6967. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  6968. }
  6969. #undef for_each_intel_crtc_masked
  6970. static void intel_set_config_free(struct intel_set_config *config)
  6971. {
  6972. if (!config)
  6973. return;
  6974. kfree(config->save_connector_encoders);
  6975. kfree(config->save_encoder_crtcs);
  6976. kfree(config);
  6977. }
  6978. static int intel_set_config_save_state(struct drm_device *dev,
  6979. struct intel_set_config *config)
  6980. {
  6981. struct drm_encoder *encoder;
  6982. struct drm_connector *connector;
  6983. int count;
  6984. config->save_encoder_crtcs =
  6985. kcalloc(dev->mode_config.num_encoder,
  6986. sizeof(struct drm_crtc *), GFP_KERNEL);
  6987. if (!config->save_encoder_crtcs)
  6988. return -ENOMEM;
  6989. config->save_connector_encoders =
  6990. kcalloc(dev->mode_config.num_connector,
  6991. sizeof(struct drm_encoder *), GFP_KERNEL);
  6992. if (!config->save_connector_encoders)
  6993. return -ENOMEM;
  6994. /* Copy data. Note that driver private data is not affected.
  6995. * Should anything bad happen only the expected state is
  6996. * restored, not the drivers personal bookkeeping.
  6997. */
  6998. count = 0;
  6999. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7000. config->save_encoder_crtcs[count++] = encoder->crtc;
  7001. }
  7002. count = 0;
  7003. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7004. config->save_connector_encoders[count++] = connector->encoder;
  7005. }
  7006. return 0;
  7007. }
  7008. static void intel_set_config_restore_state(struct drm_device *dev,
  7009. struct intel_set_config *config)
  7010. {
  7011. struct intel_encoder *encoder;
  7012. struct intel_connector *connector;
  7013. int count;
  7014. count = 0;
  7015. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7016. encoder->new_crtc =
  7017. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7018. }
  7019. count = 0;
  7020. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7021. connector->new_encoder =
  7022. to_intel_encoder(config->save_connector_encoders[count++]);
  7023. }
  7024. }
  7025. static void
  7026. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7027. struct intel_set_config *config)
  7028. {
  7029. /* We should be able to check here if the fb has the same properties
  7030. * and then just flip_or_move it */
  7031. if (set->crtc->fb != set->fb) {
  7032. /* If we have no fb then treat it as a full mode set */
  7033. if (set->crtc->fb == NULL) {
  7034. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  7035. config->mode_changed = true;
  7036. } else if (set->fb == NULL) {
  7037. config->mode_changed = true;
  7038. } else if (set->fb->pixel_format !=
  7039. set->crtc->fb->pixel_format) {
  7040. config->mode_changed = true;
  7041. } else
  7042. config->fb_changed = true;
  7043. }
  7044. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7045. config->fb_changed = true;
  7046. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7047. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7048. drm_mode_debug_printmodeline(&set->crtc->mode);
  7049. drm_mode_debug_printmodeline(set->mode);
  7050. config->mode_changed = true;
  7051. }
  7052. }
  7053. static int
  7054. intel_modeset_stage_output_state(struct drm_device *dev,
  7055. struct drm_mode_set *set,
  7056. struct intel_set_config *config)
  7057. {
  7058. struct drm_crtc *new_crtc;
  7059. struct intel_connector *connector;
  7060. struct intel_encoder *encoder;
  7061. int count, ro;
  7062. /* The upper layers ensure that we either disable a crtc or have a list
  7063. * of connectors. For paranoia, double-check this. */
  7064. WARN_ON(!set->fb && (set->num_connectors != 0));
  7065. WARN_ON(set->fb && (set->num_connectors == 0));
  7066. count = 0;
  7067. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7068. base.head) {
  7069. /* Otherwise traverse passed in connector list and get encoders
  7070. * for them. */
  7071. for (ro = 0; ro < set->num_connectors; ro++) {
  7072. if (set->connectors[ro] == &connector->base) {
  7073. connector->new_encoder = connector->encoder;
  7074. break;
  7075. }
  7076. }
  7077. /* If we disable the crtc, disable all its connectors. Also, if
  7078. * the connector is on the changing crtc but not on the new
  7079. * connector list, disable it. */
  7080. if ((!set->fb || ro == set->num_connectors) &&
  7081. connector->base.encoder &&
  7082. connector->base.encoder->crtc == set->crtc) {
  7083. connector->new_encoder = NULL;
  7084. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7085. connector->base.base.id,
  7086. drm_get_connector_name(&connector->base));
  7087. }
  7088. if (&connector->new_encoder->base != connector->base.encoder) {
  7089. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7090. config->mode_changed = true;
  7091. }
  7092. }
  7093. /* connector->new_encoder is now updated for all connectors. */
  7094. /* Update crtc of enabled connectors. */
  7095. count = 0;
  7096. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7097. base.head) {
  7098. if (!connector->new_encoder)
  7099. continue;
  7100. new_crtc = connector->new_encoder->base.crtc;
  7101. for (ro = 0; ro < set->num_connectors; ro++) {
  7102. if (set->connectors[ro] == &connector->base)
  7103. new_crtc = set->crtc;
  7104. }
  7105. /* Make sure the new CRTC will work with the encoder */
  7106. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7107. new_crtc)) {
  7108. return -EINVAL;
  7109. }
  7110. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7111. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7112. connector->base.base.id,
  7113. drm_get_connector_name(&connector->base),
  7114. new_crtc->base.id);
  7115. }
  7116. /* Check for any encoders that needs to be disabled. */
  7117. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7118. base.head) {
  7119. list_for_each_entry(connector,
  7120. &dev->mode_config.connector_list,
  7121. base.head) {
  7122. if (connector->new_encoder == encoder) {
  7123. WARN_ON(!connector->new_encoder->new_crtc);
  7124. goto next_encoder;
  7125. }
  7126. }
  7127. encoder->new_crtc = NULL;
  7128. next_encoder:
  7129. /* Only now check for crtc changes so we don't miss encoders
  7130. * that will be disabled. */
  7131. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7132. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7133. config->mode_changed = true;
  7134. }
  7135. }
  7136. /* Now we've also updated encoder->new_crtc for all encoders. */
  7137. return 0;
  7138. }
  7139. static int intel_crtc_set_config(struct drm_mode_set *set)
  7140. {
  7141. struct drm_device *dev;
  7142. struct drm_mode_set save_set;
  7143. struct intel_set_config *config;
  7144. int ret;
  7145. BUG_ON(!set);
  7146. BUG_ON(!set->crtc);
  7147. BUG_ON(!set->crtc->helper_private);
  7148. /* Enforce sane interface api - has been abused by the fb helper. */
  7149. BUG_ON(!set->mode && set->fb);
  7150. BUG_ON(set->fb && set->num_connectors == 0);
  7151. if (set->fb) {
  7152. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7153. set->crtc->base.id, set->fb->base.id,
  7154. (int)set->num_connectors, set->x, set->y);
  7155. } else {
  7156. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7157. }
  7158. dev = set->crtc->dev;
  7159. ret = -ENOMEM;
  7160. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7161. if (!config)
  7162. goto out_config;
  7163. ret = intel_set_config_save_state(dev, config);
  7164. if (ret)
  7165. goto out_config;
  7166. save_set.crtc = set->crtc;
  7167. save_set.mode = &set->crtc->mode;
  7168. save_set.x = set->crtc->x;
  7169. save_set.y = set->crtc->y;
  7170. save_set.fb = set->crtc->fb;
  7171. /* Compute whether we need a full modeset, only an fb base update or no
  7172. * change at all. In the future we might also check whether only the
  7173. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7174. * such cases. */
  7175. intel_set_config_compute_mode_changes(set, config);
  7176. ret = intel_modeset_stage_output_state(dev, set, config);
  7177. if (ret)
  7178. goto fail;
  7179. if (config->mode_changed) {
  7180. ret = intel_set_mode(set->crtc, set->mode,
  7181. set->x, set->y, set->fb);
  7182. if (ret) {
  7183. DRM_ERROR("failed to set mode on [CRTC:%d], err = %d\n",
  7184. set->crtc->base.id, ret);
  7185. goto fail;
  7186. }
  7187. } else if (config->fb_changed) {
  7188. intel_crtc_wait_for_pending_flips(set->crtc);
  7189. ret = intel_pipe_set_base(set->crtc,
  7190. set->x, set->y, set->fb);
  7191. }
  7192. intel_set_config_free(config);
  7193. return 0;
  7194. fail:
  7195. intel_set_config_restore_state(dev, config);
  7196. /* Try to restore the config */
  7197. if (config->mode_changed &&
  7198. intel_set_mode(save_set.crtc, save_set.mode,
  7199. save_set.x, save_set.y, save_set.fb))
  7200. DRM_ERROR("failed to restore config after modeset failure\n");
  7201. out_config:
  7202. intel_set_config_free(config);
  7203. return ret;
  7204. }
  7205. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7206. .cursor_set = intel_crtc_cursor_set,
  7207. .cursor_move = intel_crtc_cursor_move,
  7208. .gamma_set = intel_crtc_gamma_set,
  7209. .set_config = intel_crtc_set_config,
  7210. .destroy = intel_crtc_destroy,
  7211. .page_flip = intel_crtc_page_flip,
  7212. };
  7213. static void intel_cpu_pll_init(struct drm_device *dev)
  7214. {
  7215. if (HAS_DDI(dev))
  7216. intel_ddi_pll_init(dev);
  7217. }
  7218. static void intel_pch_pll_init(struct drm_device *dev)
  7219. {
  7220. drm_i915_private_t *dev_priv = dev->dev_private;
  7221. int i;
  7222. if (dev_priv->num_pch_pll == 0) {
  7223. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  7224. return;
  7225. }
  7226. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  7227. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  7228. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  7229. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  7230. }
  7231. }
  7232. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7233. {
  7234. drm_i915_private_t *dev_priv = dev->dev_private;
  7235. struct intel_crtc *intel_crtc;
  7236. int i;
  7237. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7238. if (intel_crtc == NULL)
  7239. return;
  7240. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7241. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7242. for (i = 0; i < 256; i++) {
  7243. intel_crtc->lut_r[i] = i;
  7244. intel_crtc->lut_g[i] = i;
  7245. intel_crtc->lut_b[i] = i;
  7246. }
  7247. /* Swap pipes & planes for FBC on pre-965 */
  7248. intel_crtc->pipe = pipe;
  7249. intel_crtc->plane = pipe;
  7250. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7251. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7252. intel_crtc->plane = !pipe;
  7253. }
  7254. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7255. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7256. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7257. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7258. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7259. }
  7260. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7261. struct drm_file *file)
  7262. {
  7263. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7264. struct drm_mode_object *drmmode_obj;
  7265. struct intel_crtc *crtc;
  7266. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7267. return -ENODEV;
  7268. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7269. DRM_MODE_OBJECT_CRTC);
  7270. if (!drmmode_obj) {
  7271. DRM_ERROR("no such CRTC id\n");
  7272. return -EINVAL;
  7273. }
  7274. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  7275. pipe_from_crtc_id->pipe = crtc->pipe;
  7276. return 0;
  7277. }
  7278. static int intel_encoder_clones(struct intel_encoder *encoder)
  7279. {
  7280. struct drm_device *dev = encoder->base.dev;
  7281. struct intel_encoder *source_encoder;
  7282. int index_mask = 0;
  7283. int entry = 0;
  7284. list_for_each_entry(source_encoder,
  7285. &dev->mode_config.encoder_list, base.head) {
  7286. if (encoder == source_encoder)
  7287. index_mask |= (1 << entry);
  7288. /* Intel hw has only one MUX where enocoders could be cloned. */
  7289. if (encoder->cloneable && source_encoder->cloneable)
  7290. index_mask |= (1 << entry);
  7291. entry++;
  7292. }
  7293. return index_mask;
  7294. }
  7295. static bool has_edp_a(struct drm_device *dev)
  7296. {
  7297. struct drm_i915_private *dev_priv = dev->dev_private;
  7298. if (!IS_MOBILE(dev))
  7299. return false;
  7300. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  7301. return false;
  7302. if (IS_GEN5(dev) &&
  7303. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  7304. return false;
  7305. return true;
  7306. }
  7307. static void intel_setup_outputs(struct drm_device *dev)
  7308. {
  7309. struct drm_i915_private *dev_priv = dev->dev_private;
  7310. struct intel_encoder *encoder;
  7311. bool dpd_is_edp = false;
  7312. bool has_lvds;
  7313. has_lvds = intel_lvds_init(dev);
  7314. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  7315. /* disable the panel fitter on everything but LVDS */
  7316. I915_WRITE(PFIT_CONTROL, 0);
  7317. }
  7318. if (!IS_ULT(dev))
  7319. intel_crt_init(dev);
  7320. if (HAS_DDI(dev)) {
  7321. int found;
  7322. /* Haswell uses DDI functions to detect digital outputs */
  7323. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  7324. /* DDI A only supports eDP */
  7325. if (found)
  7326. intel_ddi_init(dev, PORT_A);
  7327. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  7328. * register */
  7329. found = I915_READ(SFUSE_STRAP);
  7330. if (found & SFUSE_STRAP_DDIB_DETECTED)
  7331. intel_ddi_init(dev, PORT_B);
  7332. if (found & SFUSE_STRAP_DDIC_DETECTED)
  7333. intel_ddi_init(dev, PORT_C);
  7334. if (found & SFUSE_STRAP_DDID_DETECTED)
  7335. intel_ddi_init(dev, PORT_D);
  7336. } else if (HAS_PCH_SPLIT(dev)) {
  7337. int found;
  7338. dpd_is_edp = intel_dpd_is_edp(dev);
  7339. if (has_edp_a(dev))
  7340. intel_dp_init(dev, DP_A, PORT_A);
  7341. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  7342. /* PCH SDVOB multiplex with HDMIB */
  7343. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  7344. if (!found)
  7345. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  7346. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  7347. intel_dp_init(dev, PCH_DP_B, PORT_B);
  7348. }
  7349. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  7350. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  7351. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  7352. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  7353. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  7354. intel_dp_init(dev, PCH_DP_C, PORT_C);
  7355. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  7356. intel_dp_init(dev, PCH_DP_D, PORT_D);
  7357. } else if (IS_VALLEYVIEW(dev)) {
  7358. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  7359. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  7360. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
  7361. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  7362. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  7363. PORT_B);
  7364. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  7365. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  7366. }
  7367. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  7368. bool found = false;
  7369. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7370. DRM_DEBUG_KMS("probing SDVOB\n");
  7371. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  7372. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  7373. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  7374. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  7375. }
  7376. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  7377. intel_dp_init(dev, DP_B, PORT_B);
  7378. }
  7379. /* Before G4X SDVOC doesn't have its own detect register */
  7380. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  7381. DRM_DEBUG_KMS("probing SDVOC\n");
  7382. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  7383. }
  7384. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  7385. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  7386. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  7387. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  7388. }
  7389. if (SUPPORTS_INTEGRATED_DP(dev))
  7390. intel_dp_init(dev, DP_C, PORT_C);
  7391. }
  7392. if (SUPPORTS_INTEGRATED_DP(dev) &&
  7393. (I915_READ(DP_D) & DP_DETECTED))
  7394. intel_dp_init(dev, DP_D, PORT_D);
  7395. } else if (IS_GEN2(dev))
  7396. intel_dvo_init(dev);
  7397. if (SUPPORTS_TV(dev))
  7398. intel_tv_init(dev);
  7399. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7400. encoder->base.possible_crtcs = encoder->crtc_mask;
  7401. encoder->base.possible_clones =
  7402. intel_encoder_clones(encoder);
  7403. }
  7404. intel_init_pch_refclk(dev);
  7405. drm_helper_move_panel_connectors_to_head(dev);
  7406. }
  7407. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  7408. {
  7409. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7410. drm_framebuffer_cleanup(fb);
  7411. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  7412. kfree(intel_fb);
  7413. }
  7414. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  7415. struct drm_file *file,
  7416. unsigned int *handle)
  7417. {
  7418. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  7419. struct drm_i915_gem_object *obj = intel_fb->obj;
  7420. return drm_gem_handle_create(file, &obj->base, handle);
  7421. }
  7422. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  7423. .destroy = intel_user_framebuffer_destroy,
  7424. .create_handle = intel_user_framebuffer_create_handle,
  7425. };
  7426. int intel_framebuffer_init(struct drm_device *dev,
  7427. struct intel_framebuffer *intel_fb,
  7428. struct drm_mode_fb_cmd2 *mode_cmd,
  7429. struct drm_i915_gem_object *obj)
  7430. {
  7431. int ret;
  7432. if (obj->tiling_mode == I915_TILING_Y) {
  7433. DRM_DEBUG("hardware does not support tiling Y\n");
  7434. return -EINVAL;
  7435. }
  7436. if (mode_cmd->pitches[0] & 63) {
  7437. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  7438. mode_cmd->pitches[0]);
  7439. return -EINVAL;
  7440. }
  7441. /* FIXME <= Gen4 stride limits are bit unclear */
  7442. if (mode_cmd->pitches[0] > 32768) {
  7443. DRM_DEBUG("pitch (%d) must be at less than 32768\n",
  7444. mode_cmd->pitches[0]);
  7445. return -EINVAL;
  7446. }
  7447. if (obj->tiling_mode != I915_TILING_NONE &&
  7448. mode_cmd->pitches[0] != obj->stride) {
  7449. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  7450. mode_cmd->pitches[0], obj->stride);
  7451. return -EINVAL;
  7452. }
  7453. /* Reject formats not supported by any plane early. */
  7454. switch (mode_cmd->pixel_format) {
  7455. case DRM_FORMAT_C8:
  7456. case DRM_FORMAT_RGB565:
  7457. case DRM_FORMAT_XRGB8888:
  7458. case DRM_FORMAT_ARGB8888:
  7459. break;
  7460. case DRM_FORMAT_XRGB1555:
  7461. case DRM_FORMAT_ARGB1555:
  7462. if (INTEL_INFO(dev)->gen > 3) {
  7463. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7464. return -EINVAL;
  7465. }
  7466. break;
  7467. case DRM_FORMAT_XBGR8888:
  7468. case DRM_FORMAT_ABGR8888:
  7469. case DRM_FORMAT_XRGB2101010:
  7470. case DRM_FORMAT_ARGB2101010:
  7471. case DRM_FORMAT_XBGR2101010:
  7472. case DRM_FORMAT_ABGR2101010:
  7473. if (INTEL_INFO(dev)->gen < 4) {
  7474. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7475. return -EINVAL;
  7476. }
  7477. break;
  7478. case DRM_FORMAT_YUYV:
  7479. case DRM_FORMAT_UYVY:
  7480. case DRM_FORMAT_YVYU:
  7481. case DRM_FORMAT_VYUY:
  7482. if (INTEL_INFO(dev)->gen < 5) {
  7483. DRM_DEBUG("invalid format: 0x%08x\n", mode_cmd->pixel_format);
  7484. return -EINVAL;
  7485. }
  7486. break;
  7487. default:
  7488. DRM_DEBUG("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
  7489. return -EINVAL;
  7490. }
  7491. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  7492. if (mode_cmd->offsets[0] != 0)
  7493. return -EINVAL;
  7494. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  7495. intel_fb->obj = obj;
  7496. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  7497. if (ret) {
  7498. DRM_ERROR("framebuffer init failed %d\n", ret);
  7499. return ret;
  7500. }
  7501. return 0;
  7502. }
  7503. static struct drm_framebuffer *
  7504. intel_user_framebuffer_create(struct drm_device *dev,
  7505. struct drm_file *filp,
  7506. struct drm_mode_fb_cmd2 *mode_cmd)
  7507. {
  7508. struct drm_i915_gem_object *obj;
  7509. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  7510. mode_cmd->handles[0]));
  7511. if (&obj->base == NULL)
  7512. return ERR_PTR(-ENOENT);
  7513. return intel_framebuffer_create(dev, mode_cmd, obj);
  7514. }
  7515. static const struct drm_mode_config_funcs intel_mode_funcs = {
  7516. .fb_create = intel_user_framebuffer_create,
  7517. .output_poll_changed = intel_fb_output_poll_changed,
  7518. };
  7519. /* Set up chip specific display functions */
  7520. static void intel_init_display(struct drm_device *dev)
  7521. {
  7522. struct drm_i915_private *dev_priv = dev->dev_private;
  7523. if (HAS_DDI(dev)) {
  7524. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  7525. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  7526. dev_priv->display.crtc_enable = haswell_crtc_enable;
  7527. dev_priv->display.crtc_disable = haswell_crtc_disable;
  7528. dev_priv->display.off = haswell_crtc_off;
  7529. dev_priv->display.update_plane = ironlake_update_plane;
  7530. } else if (HAS_PCH_SPLIT(dev)) {
  7531. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  7532. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  7533. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  7534. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  7535. dev_priv->display.off = ironlake_crtc_off;
  7536. dev_priv->display.update_plane = ironlake_update_plane;
  7537. } else if (IS_VALLEYVIEW(dev)) {
  7538. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7539. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7540. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  7541. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7542. dev_priv->display.off = i9xx_crtc_off;
  7543. dev_priv->display.update_plane = i9xx_update_plane;
  7544. } else {
  7545. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  7546. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  7547. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  7548. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  7549. dev_priv->display.off = i9xx_crtc_off;
  7550. dev_priv->display.update_plane = i9xx_update_plane;
  7551. }
  7552. /* Returns the core display clock speed */
  7553. if (IS_VALLEYVIEW(dev))
  7554. dev_priv->display.get_display_clock_speed =
  7555. valleyview_get_display_clock_speed;
  7556. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  7557. dev_priv->display.get_display_clock_speed =
  7558. i945_get_display_clock_speed;
  7559. else if (IS_I915G(dev))
  7560. dev_priv->display.get_display_clock_speed =
  7561. i915_get_display_clock_speed;
  7562. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  7563. dev_priv->display.get_display_clock_speed =
  7564. i9xx_misc_get_display_clock_speed;
  7565. else if (IS_I915GM(dev))
  7566. dev_priv->display.get_display_clock_speed =
  7567. i915gm_get_display_clock_speed;
  7568. else if (IS_I865G(dev))
  7569. dev_priv->display.get_display_clock_speed =
  7570. i865_get_display_clock_speed;
  7571. else if (IS_I85X(dev))
  7572. dev_priv->display.get_display_clock_speed =
  7573. i855_get_display_clock_speed;
  7574. else /* 852, 830 */
  7575. dev_priv->display.get_display_clock_speed =
  7576. i830_get_display_clock_speed;
  7577. if (HAS_PCH_SPLIT(dev)) {
  7578. if (IS_GEN5(dev)) {
  7579. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  7580. dev_priv->display.write_eld = ironlake_write_eld;
  7581. } else if (IS_GEN6(dev)) {
  7582. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  7583. dev_priv->display.write_eld = ironlake_write_eld;
  7584. } else if (IS_IVYBRIDGE(dev)) {
  7585. /* FIXME: detect B0+ stepping and use auto training */
  7586. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  7587. dev_priv->display.write_eld = ironlake_write_eld;
  7588. dev_priv->display.modeset_global_resources =
  7589. ivb_modeset_global_resources;
  7590. } else if (IS_HASWELL(dev)) {
  7591. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  7592. dev_priv->display.write_eld = haswell_write_eld;
  7593. dev_priv->display.modeset_global_resources =
  7594. haswell_modeset_global_resources;
  7595. }
  7596. } else if (IS_G4X(dev)) {
  7597. dev_priv->display.write_eld = g4x_write_eld;
  7598. }
  7599. /* Default just returns -ENODEV to indicate unsupported */
  7600. dev_priv->display.queue_flip = intel_default_queue_flip;
  7601. switch (INTEL_INFO(dev)->gen) {
  7602. case 2:
  7603. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  7604. break;
  7605. case 3:
  7606. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  7607. break;
  7608. case 4:
  7609. case 5:
  7610. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  7611. break;
  7612. case 6:
  7613. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  7614. break;
  7615. case 7:
  7616. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  7617. break;
  7618. }
  7619. }
  7620. /*
  7621. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  7622. * resume, or other times. This quirk makes sure that's the case for
  7623. * affected systems.
  7624. */
  7625. static void quirk_pipea_force(struct drm_device *dev)
  7626. {
  7627. struct drm_i915_private *dev_priv = dev->dev_private;
  7628. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  7629. DRM_INFO("applying pipe a force quirk\n");
  7630. }
  7631. /*
  7632. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  7633. */
  7634. static void quirk_ssc_force_disable(struct drm_device *dev)
  7635. {
  7636. struct drm_i915_private *dev_priv = dev->dev_private;
  7637. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  7638. DRM_INFO("applying lvds SSC disable quirk\n");
  7639. }
  7640. /*
  7641. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  7642. * brightness value
  7643. */
  7644. static void quirk_invert_brightness(struct drm_device *dev)
  7645. {
  7646. struct drm_i915_private *dev_priv = dev->dev_private;
  7647. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  7648. DRM_INFO("applying inverted panel brightness quirk\n");
  7649. }
  7650. struct intel_quirk {
  7651. int device;
  7652. int subsystem_vendor;
  7653. int subsystem_device;
  7654. void (*hook)(struct drm_device *dev);
  7655. };
  7656. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  7657. struct intel_dmi_quirk {
  7658. void (*hook)(struct drm_device *dev);
  7659. const struct dmi_system_id (*dmi_id_list)[];
  7660. };
  7661. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  7662. {
  7663. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  7664. return 1;
  7665. }
  7666. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  7667. {
  7668. .dmi_id_list = &(const struct dmi_system_id[]) {
  7669. {
  7670. .callback = intel_dmi_reverse_brightness,
  7671. .ident = "NCR Corporation",
  7672. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  7673. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  7674. },
  7675. },
  7676. { } /* terminating entry */
  7677. },
  7678. .hook = quirk_invert_brightness,
  7679. },
  7680. };
  7681. static struct intel_quirk intel_quirks[] = {
  7682. /* HP Mini needs pipe A force quirk (LP: #322104) */
  7683. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  7684. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  7685. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  7686. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  7687. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  7688. /* 830/845 need to leave pipe A & dpll A up */
  7689. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7690. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  7691. /* Lenovo U160 cannot use SSC on LVDS */
  7692. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  7693. /* Sony Vaio Y cannot use SSC on LVDS */
  7694. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  7695. /* Acer Aspire 5734Z must invert backlight brightness */
  7696. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  7697. /* Acer/eMachines G725 */
  7698. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  7699. /* Acer/eMachines e725 */
  7700. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  7701. /* Acer/Packard Bell NCL20 */
  7702. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  7703. /* Acer Aspire 4736Z */
  7704. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  7705. };
  7706. static void intel_init_quirks(struct drm_device *dev)
  7707. {
  7708. struct pci_dev *d = dev->pdev;
  7709. int i;
  7710. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  7711. struct intel_quirk *q = &intel_quirks[i];
  7712. if (d->device == q->device &&
  7713. (d->subsystem_vendor == q->subsystem_vendor ||
  7714. q->subsystem_vendor == PCI_ANY_ID) &&
  7715. (d->subsystem_device == q->subsystem_device ||
  7716. q->subsystem_device == PCI_ANY_ID))
  7717. q->hook(dev);
  7718. }
  7719. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  7720. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  7721. intel_dmi_quirks[i].hook(dev);
  7722. }
  7723. }
  7724. /* Disable the VGA plane that we never use */
  7725. static void i915_disable_vga(struct drm_device *dev)
  7726. {
  7727. struct drm_i915_private *dev_priv = dev->dev_private;
  7728. u8 sr1;
  7729. u32 vga_reg = i915_vgacntrl_reg(dev);
  7730. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  7731. outb(SR01, VGA_SR_INDEX);
  7732. sr1 = inb(VGA_SR_DATA);
  7733. outb(sr1 | 1<<5, VGA_SR_DATA);
  7734. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  7735. udelay(300);
  7736. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  7737. POSTING_READ(vga_reg);
  7738. }
  7739. void intel_modeset_init_hw(struct drm_device *dev)
  7740. {
  7741. intel_init_power_well(dev);
  7742. intel_prepare_ddi(dev);
  7743. intel_init_clock_gating(dev);
  7744. mutex_lock(&dev->struct_mutex);
  7745. intel_enable_gt_powersave(dev);
  7746. mutex_unlock(&dev->struct_mutex);
  7747. }
  7748. void intel_modeset_suspend_hw(struct drm_device *dev)
  7749. {
  7750. intel_suspend_hw(dev);
  7751. }
  7752. void intel_modeset_init(struct drm_device *dev)
  7753. {
  7754. struct drm_i915_private *dev_priv = dev->dev_private;
  7755. int i, j, ret;
  7756. drm_mode_config_init(dev);
  7757. dev->mode_config.min_width = 0;
  7758. dev->mode_config.min_height = 0;
  7759. dev->mode_config.preferred_depth = 24;
  7760. dev->mode_config.prefer_shadow = 1;
  7761. dev->mode_config.funcs = &intel_mode_funcs;
  7762. intel_init_quirks(dev);
  7763. intel_init_pm(dev);
  7764. if (INTEL_INFO(dev)->num_pipes == 0)
  7765. return;
  7766. intel_init_display(dev);
  7767. if (IS_GEN2(dev)) {
  7768. dev->mode_config.max_width = 2048;
  7769. dev->mode_config.max_height = 2048;
  7770. } else if (IS_GEN3(dev)) {
  7771. dev->mode_config.max_width = 4096;
  7772. dev->mode_config.max_height = 4096;
  7773. } else {
  7774. dev->mode_config.max_width = 8192;
  7775. dev->mode_config.max_height = 8192;
  7776. }
  7777. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  7778. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  7779. INTEL_INFO(dev)->num_pipes,
  7780. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  7781. for (i = 0; i < INTEL_INFO(dev)->num_pipes; i++) {
  7782. intel_crtc_init(dev, i);
  7783. for (j = 0; j < dev_priv->num_plane; j++) {
  7784. ret = intel_plane_init(dev, i, j);
  7785. if (ret)
  7786. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  7787. pipe_name(i), sprite_name(i, j), ret);
  7788. }
  7789. }
  7790. intel_cpu_pll_init(dev);
  7791. intel_pch_pll_init(dev);
  7792. /* Just disable it once at startup */
  7793. i915_disable_vga(dev);
  7794. intel_setup_outputs(dev);
  7795. /* Just in case the BIOS is doing something questionable. */
  7796. intel_disable_fbc(dev);
  7797. }
  7798. static void
  7799. intel_connector_break_all_links(struct intel_connector *connector)
  7800. {
  7801. connector->base.dpms = DRM_MODE_DPMS_OFF;
  7802. connector->base.encoder = NULL;
  7803. connector->encoder->connectors_active = false;
  7804. connector->encoder->base.crtc = NULL;
  7805. }
  7806. static void intel_enable_pipe_a(struct drm_device *dev)
  7807. {
  7808. struct intel_connector *connector;
  7809. struct drm_connector *crt = NULL;
  7810. struct intel_load_detect_pipe load_detect_temp;
  7811. /* We can't just switch on the pipe A, we need to set things up with a
  7812. * proper mode and output configuration. As a gross hack, enable pipe A
  7813. * by enabling the load detect pipe once. */
  7814. list_for_each_entry(connector,
  7815. &dev->mode_config.connector_list,
  7816. base.head) {
  7817. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  7818. crt = &connector->base;
  7819. break;
  7820. }
  7821. }
  7822. if (!crt)
  7823. return;
  7824. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  7825. intel_release_load_detect_pipe(crt, &load_detect_temp);
  7826. }
  7827. static bool
  7828. intel_check_plane_mapping(struct intel_crtc *crtc)
  7829. {
  7830. struct drm_device *dev = crtc->base.dev;
  7831. struct drm_i915_private *dev_priv = dev->dev_private;
  7832. u32 reg, val;
  7833. if (INTEL_INFO(dev)->num_pipes == 1)
  7834. return true;
  7835. reg = DSPCNTR(!crtc->plane);
  7836. val = I915_READ(reg);
  7837. if ((val & DISPLAY_PLANE_ENABLE) &&
  7838. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  7839. return false;
  7840. return true;
  7841. }
  7842. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  7843. {
  7844. struct drm_device *dev = crtc->base.dev;
  7845. struct drm_i915_private *dev_priv = dev->dev_private;
  7846. u32 reg;
  7847. /* Clear any frame start delays used for debugging left by the BIOS */
  7848. reg = PIPECONF(crtc->config.cpu_transcoder);
  7849. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  7850. /* We need to sanitize the plane -> pipe mapping first because this will
  7851. * disable the crtc (and hence change the state) if it is wrong. Note
  7852. * that gen4+ has a fixed plane -> pipe mapping. */
  7853. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  7854. struct intel_connector *connector;
  7855. bool plane;
  7856. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  7857. crtc->base.base.id);
  7858. /* Pipe has the wrong plane attached and the plane is active.
  7859. * Temporarily change the plane mapping and disable everything
  7860. * ... */
  7861. plane = crtc->plane;
  7862. crtc->plane = !plane;
  7863. dev_priv->display.crtc_disable(&crtc->base);
  7864. crtc->plane = plane;
  7865. /* ... and break all links. */
  7866. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7867. base.head) {
  7868. if (connector->encoder->base.crtc != &crtc->base)
  7869. continue;
  7870. intel_connector_break_all_links(connector);
  7871. }
  7872. WARN_ON(crtc->active);
  7873. crtc->base.enabled = false;
  7874. }
  7875. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  7876. crtc->pipe == PIPE_A && !crtc->active) {
  7877. /* BIOS forgot to enable pipe A, this mostly happens after
  7878. * resume. Force-enable the pipe to fix this, the update_dpms
  7879. * call below we restore the pipe to the right state, but leave
  7880. * the required bits on. */
  7881. intel_enable_pipe_a(dev);
  7882. }
  7883. /* Adjust the state of the output pipe according to whether we
  7884. * have active connectors/encoders. */
  7885. intel_crtc_update_dpms(&crtc->base);
  7886. if (crtc->active != crtc->base.enabled) {
  7887. struct intel_encoder *encoder;
  7888. /* This can happen either due to bugs in the get_hw_state
  7889. * functions or because the pipe is force-enabled due to the
  7890. * pipe A quirk. */
  7891. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  7892. crtc->base.base.id,
  7893. crtc->base.enabled ? "enabled" : "disabled",
  7894. crtc->active ? "enabled" : "disabled");
  7895. crtc->base.enabled = crtc->active;
  7896. /* Because we only establish the connector -> encoder ->
  7897. * crtc links if something is active, this means the
  7898. * crtc is now deactivated. Break the links. connector
  7899. * -> encoder links are only establish when things are
  7900. * actually up, hence no need to break them. */
  7901. WARN_ON(crtc->active);
  7902. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  7903. WARN_ON(encoder->connectors_active);
  7904. encoder->base.crtc = NULL;
  7905. }
  7906. }
  7907. }
  7908. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  7909. {
  7910. struct intel_connector *connector;
  7911. struct drm_device *dev = encoder->base.dev;
  7912. /* We need to check both for a crtc link (meaning that the
  7913. * encoder is active and trying to read from a pipe) and the
  7914. * pipe itself being active. */
  7915. bool has_active_crtc = encoder->base.crtc &&
  7916. to_intel_crtc(encoder->base.crtc)->active;
  7917. if (encoder->connectors_active && !has_active_crtc) {
  7918. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  7919. encoder->base.base.id,
  7920. drm_get_encoder_name(&encoder->base));
  7921. /* Connector is active, but has no active pipe. This is
  7922. * fallout from our resume register restoring. Disable
  7923. * the encoder manually again. */
  7924. if (encoder->base.crtc) {
  7925. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  7926. encoder->base.base.id,
  7927. drm_get_encoder_name(&encoder->base));
  7928. encoder->disable(encoder);
  7929. }
  7930. /* Inconsistent output/port/pipe state happens presumably due to
  7931. * a bug in one of the get_hw_state functions. Or someplace else
  7932. * in our code, like the register restore mess on resume. Clamp
  7933. * things to off as a safer default. */
  7934. list_for_each_entry(connector,
  7935. &dev->mode_config.connector_list,
  7936. base.head) {
  7937. if (connector->encoder != encoder)
  7938. continue;
  7939. intel_connector_break_all_links(connector);
  7940. }
  7941. }
  7942. /* Enabled encoders without active connectors will be fixed in
  7943. * the crtc fixup. */
  7944. }
  7945. void i915_redisable_vga(struct drm_device *dev)
  7946. {
  7947. struct drm_i915_private *dev_priv = dev->dev_private;
  7948. u32 vga_reg = i915_vgacntrl_reg(dev);
  7949. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  7950. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  7951. i915_disable_vga(dev);
  7952. }
  7953. }
  7954. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  7955. * and i915 state tracking structures. */
  7956. void intel_modeset_setup_hw_state(struct drm_device *dev,
  7957. bool force_restore)
  7958. {
  7959. struct drm_i915_private *dev_priv = dev->dev_private;
  7960. enum pipe pipe;
  7961. struct drm_plane *plane;
  7962. struct intel_crtc *crtc;
  7963. struct intel_encoder *encoder;
  7964. struct intel_connector *connector;
  7965. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7966. base.head) {
  7967. memset(&crtc->config, 0, sizeof(crtc->config));
  7968. crtc->active = dev_priv->display.get_pipe_config(crtc,
  7969. &crtc->config);
  7970. crtc->base.enabled = crtc->active;
  7971. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  7972. crtc->base.base.id,
  7973. crtc->active ? "enabled" : "disabled");
  7974. }
  7975. if (HAS_DDI(dev))
  7976. intel_ddi_setup_hw_pll_state(dev);
  7977. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7978. base.head) {
  7979. pipe = 0;
  7980. if (encoder->get_hw_state(encoder, &pipe)) {
  7981. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  7982. encoder->base.crtc = &crtc->base;
  7983. if (encoder->get_config)
  7984. encoder->get_config(encoder, &crtc->config);
  7985. } else {
  7986. encoder->base.crtc = NULL;
  7987. }
  7988. encoder->connectors_active = false;
  7989. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  7990. encoder->base.base.id,
  7991. drm_get_encoder_name(&encoder->base),
  7992. encoder->base.crtc ? "enabled" : "disabled",
  7993. pipe);
  7994. }
  7995. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7996. base.head) {
  7997. if (connector->get_hw_state(connector)) {
  7998. connector->base.dpms = DRM_MODE_DPMS_ON;
  7999. connector->encoder->connectors_active = true;
  8000. connector->base.encoder = &connector->encoder->base;
  8001. } else {
  8002. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8003. connector->base.encoder = NULL;
  8004. }
  8005. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8006. connector->base.base.id,
  8007. drm_get_connector_name(&connector->base),
  8008. connector->base.encoder ? "enabled" : "disabled");
  8009. }
  8010. /* HW state is read out, now we need to sanitize this mess. */
  8011. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8012. base.head) {
  8013. intel_sanitize_encoder(encoder);
  8014. }
  8015. for_each_pipe(pipe) {
  8016. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8017. intel_sanitize_crtc(crtc);
  8018. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8019. }
  8020. if (force_restore) {
  8021. /*
  8022. * We need to use raw interfaces for restoring state to avoid
  8023. * checking (bogus) intermediate states.
  8024. */
  8025. for_each_pipe(pipe) {
  8026. struct drm_crtc *crtc =
  8027. dev_priv->pipe_to_crtc_mapping[pipe];
  8028. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8029. crtc->fb);
  8030. }
  8031. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8032. intel_plane_restore(plane);
  8033. i915_redisable_vga(dev);
  8034. } else {
  8035. intel_modeset_update_staged_output_state(dev);
  8036. }
  8037. intel_modeset_check_state(dev);
  8038. drm_mode_config_reset(dev);
  8039. }
  8040. void intel_modeset_gem_init(struct drm_device *dev)
  8041. {
  8042. intel_modeset_init_hw(dev);
  8043. intel_setup_overlay(dev);
  8044. intel_modeset_setup_hw_state(dev, false);
  8045. }
  8046. void intel_modeset_cleanup(struct drm_device *dev)
  8047. {
  8048. struct drm_i915_private *dev_priv = dev->dev_private;
  8049. struct drm_crtc *crtc;
  8050. struct intel_crtc *intel_crtc;
  8051. /*
  8052. * Interrupts and polling as the first thing to avoid creating havoc.
  8053. * Too much stuff here (turning of rps, connectors, ...) would
  8054. * experience fancy races otherwise.
  8055. */
  8056. drm_irq_uninstall(dev);
  8057. cancel_work_sync(&dev_priv->hotplug_work);
  8058. /*
  8059. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8060. * poll handlers. Hence disable polling after hpd handling is shut down.
  8061. */
  8062. drm_kms_helper_poll_fini(dev);
  8063. mutex_lock(&dev->struct_mutex);
  8064. intel_unregister_dsm_handler();
  8065. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8066. /* Skip inactive CRTCs */
  8067. if (!crtc->fb)
  8068. continue;
  8069. intel_crtc = to_intel_crtc(crtc);
  8070. intel_increase_pllclock(crtc);
  8071. }
  8072. intel_disable_fbc(dev);
  8073. intel_disable_gt_powersave(dev);
  8074. ironlake_teardown_rc6(dev);
  8075. mutex_unlock(&dev->struct_mutex);
  8076. /* flush any delayed tasks or pending work */
  8077. flush_scheduled_work();
  8078. /* destroy backlight, if any, before the connectors */
  8079. intel_panel_destroy_backlight(dev);
  8080. drm_mode_config_cleanup(dev);
  8081. intel_cleanup_overlay(dev);
  8082. }
  8083. /*
  8084. * Return which encoder is currently attached for connector.
  8085. */
  8086. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8087. {
  8088. return &intel_attached_encoder(connector)->base;
  8089. }
  8090. void intel_connector_attach_encoder(struct intel_connector *connector,
  8091. struct intel_encoder *encoder)
  8092. {
  8093. connector->encoder = encoder;
  8094. drm_mode_connector_attach_encoder(&connector->base,
  8095. &encoder->base);
  8096. }
  8097. /*
  8098. * set vga decode state - true == enable VGA decode
  8099. */
  8100. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8101. {
  8102. struct drm_i915_private *dev_priv = dev->dev_private;
  8103. u16 gmch_ctrl;
  8104. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8105. if (state)
  8106. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8107. else
  8108. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8109. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8110. return 0;
  8111. }
  8112. #ifdef CONFIG_DEBUG_FS
  8113. #include <linux/seq_file.h>
  8114. struct intel_display_error_state {
  8115. u32 power_well_driver;
  8116. struct intel_cursor_error_state {
  8117. u32 control;
  8118. u32 position;
  8119. u32 base;
  8120. u32 size;
  8121. } cursor[I915_MAX_PIPES];
  8122. struct intel_pipe_error_state {
  8123. enum transcoder cpu_transcoder;
  8124. u32 conf;
  8125. u32 source;
  8126. u32 htotal;
  8127. u32 hblank;
  8128. u32 hsync;
  8129. u32 vtotal;
  8130. u32 vblank;
  8131. u32 vsync;
  8132. } pipe[I915_MAX_PIPES];
  8133. struct intel_plane_error_state {
  8134. u32 control;
  8135. u32 stride;
  8136. u32 size;
  8137. u32 pos;
  8138. u32 addr;
  8139. u32 surface;
  8140. u32 tile_offset;
  8141. } plane[I915_MAX_PIPES];
  8142. };
  8143. struct intel_display_error_state *
  8144. intel_display_capture_error_state(struct drm_device *dev)
  8145. {
  8146. drm_i915_private_t *dev_priv = dev->dev_private;
  8147. struct intel_display_error_state *error;
  8148. enum transcoder cpu_transcoder;
  8149. int i;
  8150. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  8151. if (error == NULL)
  8152. return NULL;
  8153. if (HAS_POWER_WELL(dev))
  8154. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  8155. for_each_pipe(i) {
  8156. cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
  8157. error->pipe[i].cpu_transcoder = cpu_transcoder;
  8158. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  8159. error->cursor[i].control = I915_READ(CURCNTR(i));
  8160. error->cursor[i].position = I915_READ(CURPOS(i));
  8161. error->cursor[i].base = I915_READ(CURBASE(i));
  8162. } else {
  8163. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  8164. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  8165. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  8166. }
  8167. error->plane[i].control = I915_READ(DSPCNTR(i));
  8168. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  8169. if (INTEL_INFO(dev)->gen <= 3) {
  8170. error->plane[i].size = I915_READ(DSPSIZE(i));
  8171. error->plane[i].pos = I915_READ(DSPPOS(i));
  8172. }
  8173. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8174. error->plane[i].addr = I915_READ(DSPADDR(i));
  8175. if (INTEL_INFO(dev)->gen >= 4) {
  8176. error->plane[i].surface = I915_READ(DSPSURF(i));
  8177. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  8178. }
  8179. error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  8180. error->pipe[i].source = I915_READ(PIPESRC(i));
  8181. error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  8182. error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  8183. error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  8184. error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  8185. error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  8186. error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  8187. }
  8188. /* In the code above we read the registers without checking if the power
  8189. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  8190. * prevent the next I915_WRITE from detecting it and printing an error
  8191. * message. */
  8192. if (HAS_POWER_WELL(dev))
  8193. I915_WRITE_NOTRACE(FPGA_DBG, FPGA_DBG_RM_NOCLAIM);
  8194. return error;
  8195. }
  8196. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  8197. void
  8198. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  8199. struct drm_device *dev,
  8200. struct intel_display_error_state *error)
  8201. {
  8202. int i;
  8203. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  8204. if (HAS_POWER_WELL(dev))
  8205. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  8206. error->power_well_driver);
  8207. for_each_pipe(i) {
  8208. err_printf(m, "Pipe [%d]:\n", i);
  8209. err_printf(m, " CPU transcoder: %c\n",
  8210. transcoder_name(error->pipe[i].cpu_transcoder));
  8211. err_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  8212. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  8213. err_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  8214. err_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  8215. err_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  8216. err_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  8217. err_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  8218. err_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  8219. err_printf(m, "Plane [%d]:\n", i);
  8220. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  8221. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  8222. if (INTEL_INFO(dev)->gen <= 3) {
  8223. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  8224. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  8225. }
  8226. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  8227. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  8228. if (INTEL_INFO(dev)->gen >= 4) {
  8229. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  8230. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  8231. }
  8232. err_printf(m, "Cursor [%d]:\n", i);
  8233. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  8234. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  8235. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  8236. }
  8237. }
  8238. #endif