sungem.c 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204
  1. /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
  2. * sungem.c: Sun GEM ethernet driver.
  3. *
  4. * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
  5. *
  6. * Support for Apple GMAC and assorted PHYs, WOL, Power Management
  7. * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
  8. * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
  9. *
  10. * NAPI and NETPOLL support
  11. * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12. *
  13. * TODO:
  14. * - Now that the driver was significantly simplified, I need to rework
  15. * the locking. I'm sure we don't need _2_ spinlocks, and we probably
  16. * can avoid taking most of them for so long period of time (and schedule
  17. * instead). The main issues at this point are caused by the netdev layer
  18. * though:
  19. *
  20. * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
  21. * help by net/core/dev.c, thus they can't schedule. That means they can't
  22. * call netif_poll_disable() neither, thus force gem_poll() to keep a spinlock
  23. * where it could have been dropped. change_mtu especially would love also to
  24. * be able to msleep instead of horrid locked delays when resetting the HW,
  25. * but that read_lock() makes it impossible, unless I defer it's action to
  26. * the reset task, which means it'll be asynchronous (won't take effect until
  27. * the system schedules a bit).
  28. *
  29. * Also, it would probably be possible to also remove most of the long-life
  30. * locking in open/resume code path (gem_reinit_chip) by beeing more careful
  31. * about when we can start taking interrupts or get xmit() called...
  32. */
  33. #include <linux/module.h>
  34. #include <linux/kernel.h>
  35. #include <linux/types.h>
  36. #include <linux/fcntl.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/ioport.h>
  39. #include <linux/in.h>
  40. #include <linux/slab.h>
  41. #include <linux/string.h>
  42. #include <linux/delay.h>
  43. #include <linux/init.h>
  44. #include <linux/errno.h>
  45. #include <linux/pci.h>
  46. #include <linux/netdevice.h>
  47. #include <linux/etherdevice.h>
  48. #include <linux/skbuff.h>
  49. #include <linux/mii.h>
  50. #include <linux/ethtool.h>
  51. #include <linux/crc32.h>
  52. #include <linux/random.h>
  53. #include <linux/workqueue.h>
  54. #include <linux/if_vlan.h>
  55. #include <linux/bitops.h>
  56. #include <asm/system.h>
  57. #include <asm/io.h>
  58. #include <asm/byteorder.h>
  59. #include <asm/uaccess.h>
  60. #include <asm/irq.h>
  61. #ifdef __sparc__
  62. #include <asm/idprom.h>
  63. #include <asm/openprom.h>
  64. #include <asm/oplib.h>
  65. #include <asm/pbm.h>
  66. #endif
  67. #ifdef CONFIG_PPC_PMAC
  68. #include <asm/pci-bridge.h>
  69. #include <asm/prom.h>
  70. #include <asm/machdep.h>
  71. #include <asm/pmac_feature.h>
  72. #endif
  73. #include "sungem_phy.h"
  74. #include "sungem.h"
  75. /* Stripping FCS is causing problems, disabled for now */
  76. #undef STRIP_FCS
  77. #define DEFAULT_MSG (NETIF_MSG_DRV | \
  78. NETIF_MSG_PROBE | \
  79. NETIF_MSG_LINK)
  80. #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  81. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  82. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
  83. #define DRV_NAME "sungem"
  84. #define DRV_VERSION "0.98"
  85. #define DRV_RELDATE "8/24/03"
  86. #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
  87. static char version[] __devinitdata =
  88. DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
  89. MODULE_AUTHOR(DRV_AUTHOR);
  90. MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
  91. MODULE_LICENSE("GPL");
  92. #define GEM_MODULE_NAME "gem"
  93. #define PFX GEM_MODULE_NAME ": "
  94. static struct pci_device_id gem_pci_tbl[] = {
  95. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
  96. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  97. /* These models only differ from the original GEM in
  98. * that their tx/rx fifos are of a different size and
  99. * they only support 10/100 speeds. -DaveM
  100. *
  101. * Apple's GMAC does support gigabit on machines with
  102. * the BCM54xx PHYs. -BenH
  103. */
  104. { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
  105. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  106. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
  107. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  108. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
  109. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  110. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
  111. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  112. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
  113. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  114. { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
  115. PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
  116. {0, }
  117. };
  118. MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
  119. static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
  120. {
  121. u32 cmd;
  122. int limit = 10000;
  123. cmd = (1 << 30);
  124. cmd |= (2 << 28);
  125. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  126. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  127. cmd |= (MIF_FRAME_TAMSB);
  128. writel(cmd, gp->regs + MIF_FRAME);
  129. while (limit--) {
  130. cmd = readl(gp->regs + MIF_FRAME);
  131. if (cmd & MIF_FRAME_TALSB)
  132. break;
  133. udelay(10);
  134. }
  135. if (!limit)
  136. cmd = 0xffff;
  137. return cmd & MIF_FRAME_DATA;
  138. }
  139. static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
  140. {
  141. struct gem *gp = dev->priv;
  142. return __phy_read(gp, mii_id, reg);
  143. }
  144. static inline u16 phy_read(struct gem *gp, int reg)
  145. {
  146. return __phy_read(gp, gp->mii_phy_addr, reg);
  147. }
  148. static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
  149. {
  150. u32 cmd;
  151. int limit = 10000;
  152. cmd = (1 << 30);
  153. cmd |= (1 << 28);
  154. cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
  155. cmd |= (reg << 18) & MIF_FRAME_REGAD;
  156. cmd |= (MIF_FRAME_TAMSB);
  157. cmd |= (val & MIF_FRAME_DATA);
  158. writel(cmd, gp->regs + MIF_FRAME);
  159. while (limit--) {
  160. cmd = readl(gp->regs + MIF_FRAME);
  161. if (cmd & MIF_FRAME_TALSB)
  162. break;
  163. udelay(10);
  164. }
  165. }
  166. static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
  167. {
  168. struct gem *gp = dev->priv;
  169. __phy_write(gp, mii_id, reg, val & 0xffff);
  170. }
  171. static inline void phy_write(struct gem *gp, int reg, u16 val)
  172. {
  173. __phy_write(gp, gp->mii_phy_addr, reg, val);
  174. }
  175. static inline void gem_enable_ints(struct gem *gp)
  176. {
  177. /* Enable all interrupts but TXDONE */
  178. writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  179. }
  180. static inline void gem_disable_ints(struct gem *gp)
  181. {
  182. /* Disable all interrupts, including TXDONE */
  183. writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
  184. }
  185. static void gem_get_cell(struct gem *gp)
  186. {
  187. BUG_ON(gp->cell_enabled < 0);
  188. gp->cell_enabled++;
  189. #ifdef CONFIG_PPC_PMAC
  190. if (gp->cell_enabled == 1) {
  191. mb();
  192. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
  193. udelay(10);
  194. }
  195. #endif /* CONFIG_PPC_PMAC */
  196. }
  197. /* Turn off the chip's clock */
  198. static void gem_put_cell(struct gem *gp)
  199. {
  200. BUG_ON(gp->cell_enabled <= 0);
  201. gp->cell_enabled--;
  202. #ifdef CONFIG_PPC_PMAC
  203. if (gp->cell_enabled == 0) {
  204. mb();
  205. pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
  206. udelay(10);
  207. }
  208. #endif /* CONFIG_PPC_PMAC */
  209. }
  210. static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
  211. {
  212. if (netif_msg_intr(gp))
  213. printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
  214. }
  215. static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  216. {
  217. u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
  218. u32 pcs_miistat;
  219. if (netif_msg_intr(gp))
  220. printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
  221. gp->dev->name, pcs_istat);
  222. if (!(pcs_istat & PCS_ISTAT_LSC)) {
  223. printk(KERN_ERR "%s: PCS irq but no link status change???\n",
  224. dev->name);
  225. return 0;
  226. }
  227. /* The link status bit latches on zero, so you must
  228. * read it twice in such a case to see a transition
  229. * to the link being up.
  230. */
  231. pcs_miistat = readl(gp->regs + PCS_MIISTAT);
  232. if (!(pcs_miistat & PCS_MIISTAT_LS))
  233. pcs_miistat |=
  234. (readl(gp->regs + PCS_MIISTAT) &
  235. PCS_MIISTAT_LS);
  236. if (pcs_miistat & PCS_MIISTAT_ANC) {
  237. /* The remote-fault indication is only valid
  238. * when autoneg has completed.
  239. */
  240. if (pcs_miistat & PCS_MIISTAT_RF)
  241. printk(KERN_INFO "%s: PCS AutoNEG complete, "
  242. "RemoteFault\n", dev->name);
  243. else
  244. printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
  245. dev->name);
  246. }
  247. if (pcs_miistat & PCS_MIISTAT_LS) {
  248. printk(KERN_INFO "%s: PCS link is now up.\n",
  249. dev->name);
  250. netif_carrier_on(gp->dev);
  251. } else {
  252. printk(KERN_INFO "%s: PCS link is now down.\n",
  253. dev->name);
  254. netif_carrier_off(gp->dev);
  255. /* If this happens and the link timer is not running,
  256. * reset so we re-negotiate.
  257. */
  258. if (!timer_pending(&gp->link_timer))
  259. return 1;
  260. }
  261. return 0;
  262. }
  263. static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  264. {
  265. u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
  266. if (netif_msg_intr(gp))
  267. printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
  268. gp->dev->name, txmac_stat);
  269. /* Defer timer expiration is quite normal,
  270. * don't even log the event.
  271. */
  272. if ((txmac_stat & MAC_TXSTAT_DTE) &&
  273. !(txmac_stat & ~MAC_TXSTAT_DTE))
  274. return 0;
  275. if (txmac_stat & MAC_TXSTAT_URUN) {
  276. printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
  277. dev->name);
  278. gp->net_stats.tx_fifo_errors++;
  279. }
  280. if (txmac_stat & MAC_TXSTAT_MPE) {
  281. printk(KERN_ERR "%s: TX MAC max packet size error.\n",
  282. dev->name);
  283. gp->net_stats.tx_errors++;
  284. }
  285. /* The rest are all cases of one of the 16-bit TX
  286. * counters expiring.
  287. */
  288. if (txmac_stat & MAC_TXSTAT_NCE)
  289. gp->net_stats.collisions += 0x10000;
  290. if (txmac_stat & MAC_TXSTAT_ECE) {
  291. gp->net_stats.tx_aborted_errors += 0x10000;
  292. gp->net_stats.collisions += 0x10000;
  293. }
  294. if (txmac_stat & MAC_TXSTAT_LCE) {
  295. gp->net_stats.tx_aborted_errors += 0x10000;
  296. gp->net_stats.collisions += 0x10000;
  297. }
  298. /* We do not keep track of MAC_TXSTAT_FCE and
  299. * MAC_TXSTAT_PCE events.
  300. */
  301. return 0;
  302. }
  303. /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
  304. * so we do the following.
  305. *
  306. * If any part of the reset goes wrong, we return 1 and that causes the
  307. * whole chip to be reset.
  308. */
  309. static int gem_rxmac_reset(struct gem *gp)
  310. {
  311. struct net_device *dev = gp->dev;
  312. int limit, i;
  313. u64 desc_dma;
  314. u32 val;
  315. /* First, reset & disable MAC RX. */
  316. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  317. for (limit = 0; limit < 5000; limit++) {
  318. if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
  319. break;
  320. udelay(10);
  321. }
  322. if (limit == 5000) {
  323. printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
  324. "chip.\n", dev->name);
  325. return 1;
  326. }
  327. writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
  328. gp->regs + MAC_RXCFG);
  329. for (limit = 0; limit < 5000; limit++) {
  330. if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
  331. break;
  332. udelay(10);
  333. }
  334. if (limit == 5000) {
  335. printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
  336. "chip.\n", dev->name);
  337. return 1;
  338. }
  339. /* Second, disable RX DMA. */
  340. writel(0, gp->regs + RXDMA_CFG);
  341. for (limit = 0; limit < 5000; limit++) {
  342. if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
  343. break;
  344. udelay(10);
  345. }
  346. if (limit == 5000) {
  347. printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
  348. "chip.\n", dev->name);
  349. return 1;
  350. }
  351. udelay(5000);
  352. /* Execute RX reset command. */
  353. writel(gp->swrst_base | GREG_SWRST_RXRST,
  354. gp->regs + GREG_SWRST);
  355. for (limit = 0; limit < 5000; limit++) {
  356. if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
  357. break;
  358. udelay(10);
  359. }
  360. if (limit == 5000) {
  361. printk(KERN_ERR "%s: RX reset command will not execute, resetting "
  362. "whole chip.\n", dev->name);
  363. return 1;
  364. }
  365. /* Refresh the RX ring. */
  366. for (i = 0; i < RX_RING_SIZE; i++) {
  367. struct gem_rxd *rxd = &gp->init_block->rxd[i];
  368. if (gp->rx_skbs[i] == NULL) {
  369. printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
  370. "whole chip.\n", dev->name);
  371. return 1;
  372. }
  373. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  374. }
  375. gp->rx_new = gp->rx_old = 0;
  376. /* Now we must reprogram the rest of RX unit. */
  377. desc_dma = (u64) gp->gblock_dvma;
  378. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  379. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  380. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  381. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  382. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  383. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  384. writel(val, gp->regs + RXDMA_CFG);
  385. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  386. writel(((5 & RXDMA_BLANK_IPKTS) |
  387. ((8 << 12) & RXDMA_BLANK_ITIME)),
  388. gp->regs + RXDMA_BLANK);
  389. else
  390. writel(((5 & RXDMA_BLANK_IPKTS) |
  391. ((4 << 12) & RXDMA_BLANK_ITIME)),
  392. gp->regs + RXDMA_BLANK);
  393. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  394. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  395. writel(val, gp->regs + RXDMA_PTHRESH);
  396. val = readl(gp->regs + RXDMA_CFG);
  397. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  398. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  399. val = readl(gp->regs + MAC_RXCFG);
  400. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  401. return 0;
  402. }
  403. static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  404. {
  405. u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
  406. int ret = 0;
  407. if (netif_msg_intr(gp))
  408. printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
  409. gp->dev->name, rxmac_stat);
  410. if (rxmac_stat & MAC_RXSTAT_OFLW) {
  411. u32 smac = readl(gp->regs + MAC_SMACHINE);
  412. printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
  413. dev->name, smac);
  414. gp->net_stats.rx_over_errors++;
  415. gp->net_stats.rx_fifo_errors++;
  416. ret = gem_rxmac_reset(gp);
  417. }
  418. if (rxmac_stat & MAC_RXSTAT_ACE)
  419. gp->net_stats.rx_frame_errors += 0x10000;
  420. if (rxmac_stat & MAC_RXSTAT_CCE)
  421. gp->net_stats.rx_crc_errors += 0x10000;
  422. if (rxmac_stat & MAC_RXSTAT_LCE)
  423. gp->net_stats.rx_length_errors += 0x10000;
  424. /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
  425. * events.
  426. */
  427. return ret;
  428. }
  429. static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  430. {
  431. u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
  432. if (netif_msg_intr(gp))
  433. printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
  434. gp->dev->name, mac_cstat);
  435. /* This interrupt is just for pause frame and pause
  436. * tracking. It is useful for diagnostics and debug
  437. * but probably by default we will mask these events.
  438. */
  439. if (mac_cstat & MAC_CSTAT_PS)
  440. gp->pause_entered++;
  441. if (mac_cstat & MAC_CSTAT_PRCV)
  442. gp->pause_last_time_recvd = (mac_cstat >> 16);
  443. return 0;
  444. }
  445. static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  446. {
  447. u32 mif_status = readl(gp->regs + MIF_STATUS);
  448. u32 reg_val, changed_bits;
  449. reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
  450. changed_bits = (mif_status & MIF_STATUS_STAT);
  451. gem_handle_mif_event(gp, reg_val, changed_bits);
  452. return 0;
  453. }
  454. static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
  455. {
  456. u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
  457. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  458. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  459. printk(KERN_ERR "%s: PCI error [%04x] ",
  460. dev->name, pci_estat);
  461. if (pci_estat & GREG_PCIESTAT_BADACK)
  462. printk("<No ACK64# during ABS64 cycle> ");
  463. if (pci_estat & GREG_PCIESTAT_DTRTO)
  464. printk("<Delayed transaction timeout> ");
  465. if (pci_estat & GREG_PCIESTAT_OTHER)
  466. printk("<other>");
  467. printk("\n");
  468. } else {
  469. pci_estat |= GREG_PCIESTAT_OTHER;
  470. printk(KERN_ERR "%s: PCI error\n", dev->name);
  471. }
  472. if (pci_estat & GREG_PCIESTAT_OTHER) {
  473. u16 pci_cfg_stat;
  474. /* Interrogate PCI config space for the
  475. * true cause.
  476. */
  477. pci_read_config_word(gp->pdev, PCI_STATUS,
  478. &pci_cfg_stat);
  479. printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
  480. dev->name, pci_cfg_stat);
  481. if (pci_cfg_stat & PCI_STATUS_PARITY)
  482. printk(KERN_ERR "%s: PCI parity error detected.\n",
  483. dev->name);
  484. if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
  485. printk(KERN_ERR "%s: PCI target abort.\n",
  486. dev->name);
  487. if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
  488. printk(KERN_ERR "%s: PCI master acks target abort.\n",
  489. dev->name);
  490. if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
  491. printk(KERN_ERR "%s: PCI master abort.\n",
  492. dev->name);
  493. if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
  494. printk(KERN_ERR "%s: PCI system error SERR#.\n",
  495. dev->name);
  496. if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
  497. printk(KERN_ERR "%s: PCI parity error.\n",
  498. dev->name);
  499. /* Write the error bits back to clear them. */
  500. pci_cfg_stat &= (PCI_STATUS_PARITY |
  501. PCI_STATUS_SIG_TARGET_ABORT |
  502. PCI_STATUS_REC_TARGET_ABORT |
  503. PCI_STATUS_REC_MASTER_ABORT |
  504. PCI_STATUS_SIG_SYSTEM_ERROR |
  505. PCI_STATUS_DETECTED_PARITY);
  506. pci_write_config_word(gp->pdev,
  507. PCI_STATUS, pci_cfg_stat);
  508. }
  509. /* For all PCI errors, we should reset the chip. */
  510. return 1;
  511. }
  512. /* All non-normal interrupt conditions get serviced here.
  513. * Returns non-zero if we should just exit the interrupt
  514. * handler right now (ie. if we reset the card which invalidates
  515. * all of the other original irq status bits).
  516. */
  517. static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
  518. {
  519. if (gem_status & GREG_STAT_RXNOBUF) {
  520. /* Frame arrived, no free RX buffers available. */
  521. if (netif_msg_rx_err(gp))
  522. printk(KERN_DEBUG "%s: no buffer for rx frame\n",
  523. gp->dev->name);
  524. gp->net_stats.rx_dropped++;
  525. }
  526. if (gem_status & GREG_STAT_RXTAGERR) {
  527. /* corrupt RX tag framing */
  528. if (netif_msg_rx_err(gp))
  529. printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
  530. gp->dev->name);
  531. gp->net_stats.rx_errors++;
  532. goto do_reset;
  533. }
  534. if (gem_status & GREG_STAT_PCS) {
  535. if (gem_pcs_interrupt(dev, gp, gem_status))
  536. goto do_reset;
  537. }
  538. if (gem_status & GREG_STAT_TXMAC) {
  539. if (gem_txmac_interrupt(dev, gp, gem_status))
  540. goto do_reset;
  541. }
  542. if (gem_status & GREG_STAT_RXMAC) {
  543. if (gem_rxmac_interrupt(dev, gp, gem_status))
  544. goto do_reset;
  545. }
  546. if (gem_status & GREG_STAT_MAC) {
  547. if (gem_mac_interrupt(dev, gp, gem_status))
  548. goto do_reset;
  549. }
  550. if (gem_status & GREG_STAT_MIF) {
  551. if (gem_mif_interrupt(dev, gp, gem_status))
  552. goto do_reset;
  553. }
  554. if (gem_status & GREG_STAT_PCIERR) {
  555. if (gem_pci_interrupt(dev, gp, gem_status))
  556. goto do_reset;
  557. }
  558. return 0;
  559. do_reset:
  560. gp->reset_task_pending = 1;
  561. schedule_work(&gp->reset_task);
  562. return 1;
  563. }
  564. static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
  565. {
  566. int entry, limit;
  567. if (netif_msg_intr(gp))
  568. printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
  569. gp->dev->name, gem_status);
  570. entry = gp->tx_old;
  571. limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
  572. while (entry != limit) {
  573. struct sk_buff *skb;
  574. struct gem_txd *txd;
  575. dma_addr_t dma_addr;
  576. u32 dma_len;
  577. int frag;
  578. if (netif_msg_tx_done(gp))
  579. printk(KERN_DEBUG "%s: tx done, slot %d\n",
  580. gp->dev->name, entry);
  581. skb = gp->tx_skbs[entry];
  582. if (skb_shinfo(skb)->nr_frags) {
  583. int last = entry + skb_shinfo(skb)->nr_frags;
  584. int walk = entry;
  585. int incomplete = 0;
  586. last &= (TX_RING_SIZE - 1);
  587. for (;;) {
  588. walk = NEXT_TX(walk);
  589. if (walk == limit)
  590. incomplete = 1;
  591. if (walk == last)
  592. break;
  593. }
  594. if (incomplete)
  595. break;
  596. }
  597. gp->tx_skbs[entry] = NULL;
  598. gp->net_stats.tx_bytes += skb->len;
  599. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  600. txd = &gp->init_block->txd[entry];
  601. dma_addr = le64_to_cpu(txd->buffer);
  602. dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
  603. pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
  604. entry = NEXT_TX(entry);
  605. }
  606. gp->net_stats.tx_packets++;
  607. dev_kfree_skb_irq(skb);
  608. }
  609. gp->tx_old = entry;
  610. if (netif_queue_stopped(dev) &&
  611. TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
  612. netif_wake_queue(dev);
  613. }
  614. static __inline__ void gem_post_rxds(struct gem *gp, int limit)
  615. {
  616. int cluster_start, curr, count, kick;
  617. cluster_start = curr = (gp->rx_new & ~(4 - 1));
  618. count = 0;
  619. kick = -1;
  620. wmb();
  621. while (curr != limit) {
  622. curr = NEXT_RX(curr);
  623. if (++count == 4) {
  624. struct gem_rxd *rxd =
  625. &gp->init_block->rxd[cluster_start];
  626. for (;;) {
  627. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  628. rxd++;
  629. cluster_start = NEXT_RX(cluster_start);
  630. if (cluster_start == curr)
  631. break;
  632. }
  633. kick = curr;
  634. count = 0;
  635. }
  636. }
  637. if (kick >= 0) {
  638. mb();
  639. writel(kick, gp->regs + RXDMA_KICK);
  640. }
  641. }
  642. static int gem_rx(struct gem *gp, int work_to_do)
  643. {
  644. int entry, drops, work_done = 0;
  645. u32 done;
  646. if (netif_msg_rx_status(gp))
  647. printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
  648. gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
  649. entry = gp->rx_new;
  650. drops = 0;
  651. done = readl(gp->regs + RXDMA_DONE);
  652. for (;;) {
  653. struct gem_rxd *rxd = &gp->init_block->rxd[entry];
  654. struct sk_buff *skb;
  655. u64 status = cpu_to_le64(rxd->status_word);
  656. dma_addr_t dma_addr;
  657. int len;
  658. if ((status & RXDCTRL_OWN) != 0)
  659. break;
  660. if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
  661. break;
  662. /* When writing back RX descriptor, GEM writes status
  663. * then buffer address, possibly in seperate transactions.
  664. * If we don't wait for the chip to write both, we could
  665. * post a new buffer to this descriptor then have GEM spam
  666. * on the buffer address. We sync on the RX completion
  667. * register to prevent this from happening.
  668. */
  669. if (entry == done) {
  670. done = readl(gp->regs + RXDMA_DONE);
  671. if (entry == done)
  672. break;
  673. }
  674. /* We can now account for the work we're about to do */
  675. work_done++;
  676. skb = gp->rx_skbs[entry];
  677. len = (status & RXDCTRL_BUFSZ) >> 16;
  678. if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
  679. gp->net_stats.rx_errors++;
  680. if (len < ETH_ZLEN)
  681. gp->net_stats.rx_length_errors++;
  682. if (len & RXDCTRL_BAD)
  683. gp->net_stats.rx_crc_errors++;
  684. /* We'll just return it to GEM. */
  685. drop_it:
  686. gp->net_stats.rx_dropped++;
  687. goto next;
  688. }
  689. dma_addr = cpu_to_le64(rxd->buffer);
  690. if (len > RX_COPY_THRESHOLD) {
  691. struct sk_buff *new_skb;
  692. new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  693. if (new_skb == NULL) {
  694. drops++;
  695. goto drop_it;
  696. }
  697. pci_unmap_page(gp->pdev, dma_addr,
  698. RX_BUF_ALLOC_SIZE(gp),
  699. PCI_DMA_FROMDEVICE);
  700. gp->rx_skbs[entry] = new_skb;
  701. new_skb->dev = gp->dev;
  702. skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
  703. rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
  704. virt_to_page(new_skb->data),
  705. offset_in_page(new_skb->data),
  706. RX_BUF_ALLOC_SIZE(gp),
  707. PCI_DMA_FROMDEVICE));
  708. skb_reserve(new_skb, RX_OFFSET);
  709. /* Trim the original skb for the netif. */
  710. skb_trim(skb, len);
  711. } else {
  712. struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
  713. if (copy_skb == NULL) {
  714. drops++;
  715. goto drop_it;
  716. }
  717. copy_skb->dev = gp->dev;
  718. skb_reserve(copy_skb, 2);
  719. skb_put(copy_skb, len);
  720. pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  721. memcpy(copy_skb->data, skb->data, len);
  722. pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
  723. /* We'll reuse the original ring buffer. */
  724. skb = copy_skb;
  725. }
  726. skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
  727. skb->ip_summed = CHECKSUM_HW;
  728. skb->protocol = eth_type_trans(skb, gp->dev);
  729. netif_receive_skb(skb);
  730. gp->net_stats.rx_packets++;
  731. gp->net_stats.rx_bytes += len;
  732. gp->dev->last_rx = jiffies;
  733. next:
  734. entry = NEXT_RX(entry);
  735. }
  736. gem_post_rxds(gp, entry);
  737. gp->rx_new = entry;
  738. if (drops)
  739. printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
  740. gp->dev->name);
  741. return work_done;
  742. }
  743. static int gem_poll(struct net_device *dev, int *budget)
  744. {
  745. struct gem *gp = dev->priv;
  746. unsigned long flags;
  747. /*
  748. * NAPI locking nightmare: See comment at head of driver
  749. */
  750. spin_lock_irqsave(&gp->lock, flags);
  751. do {
  752. int work_to_do, work_done;
  753. /* Handle anomalies */
  754. if (gp->status & GREG_STAT_ABNORMAL) {
  755. if (gem_abnormal_irq(dev, gp, gp->status))
  756. break;
  757. }
  758. /* Run TX completion thread */
  759. spin_lock(&gp->tx_lock);
  760. gem_tx(dev, gp, gp->status);
  761. spin_unlock(&gp->tx_lock);
  762. spin_unlock_irqrestore(&gp->lock, flags);
  763. /* Run RX thread. We don't use any locking here,
  764. * code willing to do bad things - like cleaning the
  765. * rx ring - must call netif_poll_disable(), which
  766. * schedule_timeout()'s if polling is already disabled.
  767. */
  768. work_to_do = min(*budget, dev->quota);
  769. work_done = gem_rx(gp, work_to_do);
  770. *budget -= work_done;
  771. dev->quota -= work_done;
  772. if (work_done >= work_to_do)
  773. return 1;
  774. spin_lock_irqsave(&gp->lock, flags);
  775. gp->status = readl(gp->regs + GREG_STAT);
  776. } while (gp->status & GREG_STAT_NAPI);
  777. __netif_rx_complete(dev);
  778. gem_enable_ints(gp);
  779. spin_unlock_irqrestore(&gp->lock, flags);
  780. return 0;
  781. }
  782. static irqreturn_t gem_interrupt(int irq, void *dev_id, struct pt_regs *regs)
  783. {
  784. struct net_device *dev = dev_id;
  785. struct gem *gp = dev->priv;
  786. unsigned long flags;
  787. /* Swallow interrupts when shutting the chip down, though
  788. * that shouldn't happen, we should have done free_irq() at
  789. * this point...
  790. */
  791. if (!gp->running)
  792. return IRQ_HANDLED;
  793. spin_lock_irqsave(&gp->lock, flags);
  794. if (netif_rx_schedule_prep(dev)) {
  795. u32 gem_status = readl(gp->regs + GREG_STAT);
  796. if (gem_status == 0) {
  797. spin_unlock_irqrestore(&gp->lock, flags);
  798. return IRQ_NONE;
  799. }
  800. gp->status = gem_status;
  801. gem_disable_ints(gp);
  802. __netif_rx_schedule(dev);
  803. }
  804. spin_unlock_irqrestore(&gp->lock, flags);
  805. /* If polling was disabled at the time we received that
  806. * interrupt, we may return IRQ_HANDLED here while we
  807. * should return IRQ_NONE. No big deal...
  808. */
  809. return IRQ_HANDLED;
  810. }
  811. #ifdef CONFIG_NET_POLL_CONTROLLER
  812. static void gem_poll_controller(struct net_device *dev)
  813. {
  814. /* gem_interrupt is safe to reentrance so no need
  815. * to disable_irq here.
  816. */
  817. gem_interrupt(dev->irq, dev, NULL);
  818. }
  819. #endif
  820. static void gem_tx_timeout(struct net_device *dev)
  821. {
  822. struct gem *gp = dev->priv;
  823. printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
  824. if (!gp->running) {
  825. printk("%s: hrm.. hw not running !\n", dev->name);
  826. return;
  827. }
  828. printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
  829. dev->name,
  830. readl(gp->regs + TXDMA_CFG),
  831. readl(gp->regs + MAC_TXSTAT),
  832. readl(gp->regs + MAC_TXCFG));
  833. printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
  834. dev->name,
  835. readl(gp->regs + RXDMA_CFG),
  836. readl(gp->regs + MAC_RXSTAT),
  837. readl(gp->regs + MAC_RXCFG));
  838. spin_lock_irq(&gp->lock);
  839. spin_lock(&gp->tx_lock);
  840. gp->reset_task_pending = 1;
  841. schedule_work(&gp->reset_task);
  842. spin_unlock(&gp->tx_lock);
  843. spin_unlock_irq(&gp->lock);
  844. }
  845. static __inline__ int gem_intme(int entry)
  846. {
  847. /* Algorithm: IRQ every 1/2 of descriptors. */
  848. if (!(entry & ((TX_RING_SIZE>>1)-1)))
  849. return 1;
  850. return 0;
  851. }
  852. static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
  853. {
  854. struct gem *gp = dev->priv;
  855. int entry;
  856. u64 ctrl;
  857. unsigned long flags;
  858. ctrl = 0;
  859. if (skb->ip_summed == CHECKSUM_HW) {
  860. u64 csum_start_off, csum_stuff_off;
  861. csum_start_off = (u64) (skb->h.raw - skb->data);
  862. csum_stuff_off = (u64) ((skb->h.raw + skb->csum) - skb->data);
  863. ctrl = (TXDCTRL_CENAB |
  864. (csum_start_off << 15) |
  865. (csum_stuff_off << 21));
  866. }
  867. local_irq_save(flags);
  868. if (!spin_trylock(&gp->tx_lock)) {
  869. /* Tell upper layer to requeue */
  870. local_irq_restore(flags);
  871. return NETDEV_TX_LOCKED;
  872. }
  873. /* We raced with gem_do_stop() */
  874. if (!gp->running) {
  875. spin_unlock_irqrestore(&gp->tx_lock, flags);
  876. return NETDEV_TX_BUSY;
  877. }
  878. /* This is a hard error, log it. */
  879. if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  880. netif_stop_queue(dev);
  881. spin_unlock_irqrestore(&gp->tx_lock, flags);
  882. printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
  883. dev->name);
  884. return NETDEV_TX_BUSY;
  885. }
  886. entry = gp->tx_new;
  887. gp->tx_skbs[entry] = skb;
  888. if (skb_shinfo(skb)->nr_frags == 0) {
  889. struct gem_txd *txd = &gp->init_block->txd[entry];
  890. dma_addr_t mapping;
  891. u32 len;
  892. len = skb->len;
  893. mapping = pci_map_page(gp->pdev,
  894. virt_to_page(skb->data),
  895. offset_in_page(skb->data),
  896. len, PCI_DMA_TODEVICE);
  897. ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
  898. if (gem_intme(entry))
  899. ctrl |= TXDCTRL_INTME;
  900. txd->buffer = cpu_to_le64(mapping);
  901. wmb();
  902. txd->control_word = cpu_to_le64(ctrl);
  903. entry = NEXT_TX(entry);
  904. } else {
  905. struct gem_txd *txd;
  906. u32 first_len;
  907. u64 intme;
  908. dma_addr_t first_mapping;
  909. int frag, first_entry = entry;
  910. intme = 0;
  911. if (gem_intme(entry))
  912. intme |= TXDCTRL_INTME;
  913. /* We must give this initial chunk to the device last.
  914. * Otherwise we could race with the device.
  915. */
  916. first_len = skb_headlen(skb);
  917. first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
  918. offset_in_page(skb->data),
  919. first_len, PCI_DMA_TODEVICE);
  920. entry = NEXT_TX(entry);
  921. for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
  922. skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
  923. u32 len;
  924. dma_addr_t mapping;
  925. u64 this_ctrl;
  926. len = this_frag->size;
  927. mapping = pci_map_page(gp->pdev,
  928. this_frag->page,
  929. this_frag->page_offset,
  930. len, PCI_DMA_TODEVICE);
  931. this_ctrl = ctrl;
  932. if (frag == skb_shinfo(skb)->nr_frags - 1)
  933. this_ctrl |= TXDCTRL_EOF;
  934. txd = &gp->init_block->txd[entry];
  935. txd->buffer = cpu_to_le64(mapping);
  936. wmb();
  937. txd->control_word = cpu_to_le64(this_ctrl | len);
  938. if (gem_intme(entry))
  939. intme |= TXDCTRL_INTME;
  940. entry = NEXT_TX(entry);
  941. }
  942. txd = &gp->init_block->txd[first_entry];
  943. txd->buffer = cpu_to_le64(first_mapping);
  944. wmb();
  945. txd->control_word =
  946. cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
  947. }
  948. gp->tx_new = entry;
  949. if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
  950. netif_stop_queue(dev);
  951. if (netif_msg_tx_queued(gp))
  952. printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
  953. dev->name, entry, skb->len);
  954. mb();
  955. writel(gp->tx_new, gp->regs + TXDMA_KICK);
  956. spin_unlock_irqrestore(&gp->tx_lock, flags);
  957. dev->trans_start = jiffies;
  958. return NETDEV_TX_OK;
  959. }
  960. #define STOP_TRIES 32
  961. /* Must be invoked under gp->lock and gp->tx_lock. */
  962. static void gem_reset(struct gem *gp)
  963. {
  964. int limit;
  965. u32 val;
  966. /* Make sure we won't get any more interrupts */
  967. writel(0xffffffff, gp->regs + GREG_IMASK);
  968. /* Reset the chip */
  969. writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
  970. gp->regs + GREG_SWRST);
  971. limit = STOP_TRIES;
  972. do {
  973. udelay(20);
  974. val = readl(gp->regs + GREG_SWRST);
  975. if (limit-- <= 0)
  976. break;
  977. } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
  978. if (limit <= 0)
  979. printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
  980. }
  981. /* Must be invoked under gp->lock and gp->tx_lock. */
  982. static void gem_start_dma(struct gem *gp)
  983. {
  984. u32 val;
  985. /* We are ready to rock, turn everything on. */
  986. val = readl(gp->regs + TXDMA_CFG);
  987. writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  988. val = readl(gp->regs + RXDMA_CFG);
  989. writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  990. val = readl(gp->regs + MAC_TXCFG);
  991. writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  992. val = readl(gp->regs + MAC_RXCFG);
  993. writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  994. (void) readl(gp->regs + MAC_RXCFG);
  995. udelay(100);
  996. gem_enable_ints(gp);
  997. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  998. }
  999. /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
  1000. * actually stopped before about 4ms tho ...
  1001. */
  1002. static void gem_stop_dma(struct gem *gp)
  1003. {
  1004. u32 val;
  1005. /* We are done rocking, turn everything off. */
  1006. val = readl(gp->regs + TXDMA_CFG);
  1007. writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
  1008. val = readl(gp->regs + RXDMA_CFG);
  1009. writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
  1010. val = readl(gp->regs + MAC_TXCFG);
  1011. writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
  1012. val = readl(gp->regs + MAC_RXCFG);
  1013. writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  1014. (void) readl(gp->regs + MAC_RXCFG);
  1015. /* Need to wait a bit ... done by the caller */
  1016. }
  1017. /* Must be invoked under gp->lock and gp->tx_lock. */
  1018. // XXX dbl check what that function should do when called on PCS PHY
  1019. static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
  1020. {
  1021. u32 advertise, features;
  1022. int autoneg;
  1023. int speed;
  1024. int duplex;
  1025. if (gp->phy_type != phy_mii_mdio0 &&
  1026. gp->phy_type != phy_mii_mdio1)
  1027. goto non_mii;
  1028. /* Setup advertise */
  1029. if (found_mii_phy(gp))
  1030. features = gp->phy_mii.def->features;
  1031. else
  1032. features = 0;
  1033. advertise = features & ADVERTISE_MASK;
  1034. if (gp->phy_mii.advertising != 0)
  1035. advertise &= gp->phy_mii.advertising;
  1036. autoneg = gp->want_autoneg;
  1037. speed = gp->phy_mii.speed;
  1038. duplex = gp->phy_mii.duplex;
  1039. /* Setup link parameters */
  1040. if (!ep)
  1041. goto start_aneg;
  1042. if (ep->autoneg == AUTONEG_ENABLE) {
  1043. advertise = ep->advertising;
  1044. autoneg = 1;
  1045. } else {
  1046. autoneg = 0;
  1047. speed = ep->speed;
  1048. duplex = ep->duplex;
  1049. }
  1050. start_aneg:
  1051. /* Sanitize settings based on PHY capabilities */
  1052. if ((features & SUPPORTED_Autoneg) == 0)
  1053. autoneg = 0;
  1054. if (speed == SPEED_1000 &&
  1055. !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
  1056. speed = SPEED_100;
  1057. if (speed == SPEED_100 &&
  1058. !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
  1059. speed = SPEED_10;
  1060. if (duplex == DUPLEX_FULL &&
  1061. !(features & (SUPPORTED_1000baseT_Full |
  1062. SUPPORTED_100baseT_Full |
  1063. SUPPORTED_10baseT_Full)))
  1064. duplex = DUPLEX_HALF;
  1065. if (speed == 0)
  1066. speed = SPEED_10;
  1067. /* If we are asleep, we don't try to actually setup the PHY, we
  1068. * just store the settings
  1069. */
  1070. if (gp->asleep) {
  1071. gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
  1072. gp->phy_mii.speed = speed;
  1073. gp->phy_mii.duplex = duplex;
  1074. return;
  1075. }
  1076. /* Configure PHY & start aneg */
  1077. gp->want_autoneg = autoneg;
  1078. if (autoneg) {
  1079. if (found_mii_phy(gp))
  1080. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
  1081. gp->lstate = link_aneg;
  1082. } else {
  1083. if (found_mii_phy(gp))
  1084. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
  1085. gp->lstate = link_force_ok;
  1086. }
  1087. non_mii:
  1088. gp->timer_ticks = 0;
  1089. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1090. }
  1091. /* A link-up condition has occurred, initialize and enable the
  1092. * rest of the chip.
  1093. *
  1094. * Must be invoked under gp->lock and gp->tx_lock.
  1095. */
  1096. static int gem_set_link_modes(struct gem *gp)
  1097. {
  1098. u32 val;
  1099. int full_duplex, speed, pause;
  1100. full_duplex = 0;
  1101. speed = SPEED_10;
  1102. pause = 0;
  1103. if (found_mii_phy(gp)) {
  1104. if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
  1105. return 1;
  1106. full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
  1107. speed = gp->phy_mii.speed;
  1108. pause = gp->phy_mii.pause;
  1109. } else if (gp->phy_type == phy_serialink ||
  1110. gp->phy_type == phy_serdes) {
  1111. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1112. if (pcs_lpa & PCS_MIIADV_FD)
  1113. full_duplex = 1;
  1114. speed = SPEED_1000;
  1115. }
  1116. if (netif_msg_link(gp))
  1117. printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
  1118. gp->dev->name, speed, (full_duplex ? "full" : "half"));
  1119. if (!gp->running)
  1120. return 0;
  1121. val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
  1122. if (full_duplex) {
  1123. val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
  1124. } else {
  1125. /* MAC_TXCFG_NBO must be zero. */
  1126. }
  1127. writel(val, gp->regs + MAC_TXCFG);
  1128. val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
  1129. if (!full_duplex &&
  1130. (gp->phy_type == phy_mii_mdio0 ||
  1131. gp->phy_type == phy_mii_mdio1)) {
  1132. val |= MAC_XIFCFG_DISE;
  1133. } else if (full_duplex) {
  1134. val |= MAC_XIFCFG_FLED;
  1135. }
  1136. if (speed == SPEED_1000)
  1137. val |= (MAC_XIFCFG_GMII);
  1138. writel(val, gp->regs + MAC_XIFCFG);
  1139. /* If gigabit and half-duplex, enable carrier extension
  1140. * mode. Else, disable it.
  1141. */
  1142. if (speed == SPEED_1000 && !full_duplex) {
  1143. val = readl(gp->regs + MAC_TXCFG);
  1144. writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1145. val = readl(gp->regs + MAC_RXCFG);
  1146. writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1147. } else {
  1148. val = readl(gp->regs + MAC_TXCFG);
  1149. writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
  1150. val = readl(gp->regs + MAC_RXCFG);
  1151. writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
  1152. }
  1153. if (gp->phy_type == phy_serialink ||
  1154. gp->phy_type == phy_serdes) {
  1155. u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
  1156. if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
  1157. pause = 1;
  1158. }
  1159. if (netif_msg_link(gp)) {
  1160. if (pause) {
  1161. printk(KERN_INFO "%s: Pause is enabled "
  1162. "(rxfifo: %d off: %d on: %d)\n",
  1163. gp->dev->name,
  1164. gp->rx_fifo_sz,
  1165. gp->rx_pause_off,
  1166. gp->rx_pause_on);
  1167. } else {
  1168. printk(KERN_INFO "%s: Pause is disabled\n",
  1169. gp->dev->name);
  1170. }
  1171. }
  1172. if (!full_duplex)
  1173. writel(512, gp->regs + MAC_STIME);
  1174. else
  1175. writel(64, gp->regs + MAC_STIME);
  1176. val = readl(gp->regs + MAC_MCCFG);
  1177. if (pause)
  1178. val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1179. else
  1180. val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
  1181. writel(val, gp->regs + MAC_MCCFG);
  1182. gem_start_dma(gp);
  1183. return 0;
  1184. }
  1185. /* Must be invoked under gp->lock and gp->tx_lock. */
  1186. static int gem_mdio_link_not_up(struct gem *gp)
  1187. {
  1188. switch (gp->lstate) {
  1189. case link_force_ret:
  1190. if (netif_msg_link(gp))
  1191. printk(KERN_INFO "%s: Autoneg failed again, keeping"
  1192. " forced mode\n", gp->dev->name);
  1193. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
  1194. gp->last_forced_speed, DUPLEX_HALF);
  1195. gp->timer_ticks = 5;
  1196. gp->lstate = link_force_ok;
  1197. return 0;
  1198. case link_aneg:
  1199. /* We try forced modes after a failed aneg only on PHYs that don't
  1200. * have "magic_aneg" bit set, which means they internally do the
  1201. * while forced-mode thingy. On these, we just restart aneg
  1202. */
  1203. if (gp->phy_mii.def->magic_aneg)
  1204. return 1;
  1205. if (netif_msg_link(gp))
  1206. printk(KERN_INFO "%s: switching to forced 100bt\n",
  1207. gp->dev->name);
  1208. /* Try forced modes. */
  1209. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
  1210. DUPLEX_HALF);
  1211. gp->timer_ticks = 5;
  1212. gp->lstate = link_force_try;
  1213. return 0;
  1214. case link_force_try:
  1215. /* Downgrade from 100 to 10 Mbps if necessary.
  1216. * If already at 10Mbps, warn user about the
  1217. * situation every 10 ticks.
  1218. */
  1219. if (gp->phy_mii.speed == SPEED_100) {
  1220. gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
  1221. DUPLEX_HALF);
  1222. gp->timer_ticks = 5;
  1223. if (netif_msg_link(gp))
  1224. printk(KERN_INFO "%s: switching to forced 10bt\n",
  1225. gp->dev->name);
  1226. return 0;
  1227. } else
  1228. return 1;
  1229. default:
  1230. return 0;
  1231. }
  1232. }
  1233. static void gem_link_timer(unsigned long data)
  1234. {
  1235. struct gem *gp = (struct gem *) data;
  1236. int restart_aneg = 0;
  1237. if (gp->asleep)
  1238. return;
  1239. spin_lock_irq(&gp->lock);
  1240. spin_lock(&gp->tx_lock);
  1241. gem_get_cell(gp);
  1242. /* If the reset task is still pending, we just
  1243. * reschedule the link timer
  1244. */
  1245. if (gp->reset_task_pending)
  1246. goto restart;
  1247. if (gp->phy_type == phy_serialink ||
  1248. gp->phy_type == phy_serdes) {
  1249. u32 val = readl(gp->regs + PCS_MIISTAT);
  1250. if (!(val & PCS_MIISTAT_LS))
  1251. val = readl(gp->regs + PCS_MIISTAT);
  1252. if ((val & PCS_MIISTAT_LS) != 0) {
  1253. gp->lstate = link_up;
  1254. netif_carrier_on(gp->dev);
  1255. (void)gem_set_link_modes(gp);
  1256. }
  1257. goto restart;
  1258. }
  1259. if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
  1260. /* Ok, here we got a link. If we had it due to a forced
  1261. * fallback, and we were configured for autoneg, we do
  1262. * retry a short autoneg pass. If you know your hub is
  1263. * broken, use ethtool ;)
  1264. */
  1265. if (gp->lstate == link_force_try && gp->want_autoneg) {
  1266. gp->lstate = link_force_ret;
  1267. gp->last_forced_speed = gp->phy_mii.speed;
  1268. gp->timer_ticks = 5;
  1269. if (netif_msg_link(gp))
  1270. printk(KERN_INFO "%s: Got link after fallback, retrying"
  1271. " autoneg once...\n", gp->dev->name);
  1272. gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
  1273. } else if (gp->lstate != link_up) {
  1274. gp->lstate = link_up;
  1275. netif_carrier_on(gp->dev);
  1276. if (gem_set_link_modes(gp))
  1277. restart_aneg = 1;
  1278. }
  1279. } else {
  1280. /* If the link was previously up, we restart the
  1281. * whole process
  1282. */
  1283. if (gp->lstate == link_up) {
  1284. gp->lstate = link_down;
  1285. if (netif_msg_link(gp))
  1286. printk(KERN_INFO "%s: Link down\n",
  1287. gp->dev->name);
  1288. netif_carrier_off(gp->dev);
  1289. gp->reset_task_pending = 1;
  1290. schedule_work(&gp->reset_task);
  1291. restart_aneg = 1;
  1292. } else if (++gp->timer_ticks > 10) {
  1293. if (found_mii_phy(gp))
  1294. restart_aneg = gem_mdio_link_not_up(gp);
  1295. else
  1296. restart_aneg = 1;
  1297. }
  1298. }
  1299. if (restart_aneg) {
  1300. gem_begin_auto_negotiation(gp, NULL);
  1301. goto out_unlock;
  1302. }
  1303. restart:
  1304. mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
  1305. out_unlock:
  1306. gem_put_cell(gp);
  1307. spin_unlock(&gp->tx_lock);
  1308. spin_unlock_irq(&gp->lock);
  1309. }
  1310. /* Must be invoked under gp->lock and gp->tx_lock. */
  1311. static void gem_clean_rings(struct gem *gp)
  1312. {
  1313. struct gem_init_block *gb = gp->init_block;
  1314. struct sk_buff *skb;
  1315. int i;
  1316. dma_addr_t dma_addr;
  1317. for (i = 0; i < RX_RING_SIZE; i++) {
  1318. struct gem_rxd *rxd;
  1319. rxd = &gb->rxd[i];
  1320. if (gp->rx_skbs[i] != NULL) {
  1321. skb = gp->rx_skbs[i];
  1322. dma_addr = le64_to_cpu(rxd->buffer);
  1323. pci_unmap_page(gp->pdev, dma_addr,
  1324. RX_BUF_ALLOC_SIZE(gp),
  1325. PCI_DMA_FROMDEVICE);
  1326. dev_kfree_skb_any(skb);
  1327. gp->rx_skbs[i] = NULL;
  1328. }
  1329. rxd->status_word = 0;
  1330. wmb();
  1331. rxd->buffer = 0;
  1332. }
  1333. for (i = 0; i < TX_RING_SIZE; i++) {
  1334. if (gp->tx_skbs[i] != NULL) {
  1335. struct gem_txd *txd;
  1336. int frag;
  1337. skb = gp->tx_skbs[i];
  1338. gp->tx_skbs[i] = NULL;
  1339. for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
  1340. int ent = i & (TX_RING_SIZE - 1);
  1341. txd = &gb->txd[ent];
  1342. dma_addr = le64_to_cpu(txd->buffer);
  1343. pci_unmap_page(gp->pdev, dma_addr,
  1344. le64_to_cpu(txd->control_word) &
  1345. TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
  1346. if (frag != skb_shinfo(skb)->nr_frags)
  1347. i++;
  1348. }
  1349. dev_kfree_skb_any(skb);
  1350. }
  1351. }
  1352. }
  1353. /* Must be invoked under gp->lock and gp->tx_lock. */
  1354. static void gem_init_rings(struct gem *gp)
  1355. {
  1356. struct gem_init_block *gb = gp->init_block;
  1357. struct net_device *dev = gp->dev;
  1358. int i;
  1359. dma_addr_t dma_addr;
  1360. gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
  1361. gem_clean_rings(gp);
  1362. gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
  1363. (unsigned)VLAN_ETH_FRAME_LEN);
  1364. for (i = 0; i < RX_RING_SIZE; i++) {
  1365. struct sk_buff *skb;
  1366. struct gem_rxd *rxd = &gb->rxd[i];
  1367. skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
  1368. if (!skb) {
  1369. rxd->buffer = 0;
  1370. rxd->status_word = 0;
  1371. continue;
  1372. }
  1373. gp->rx_skbs[i] = skb;
  1374. skb->dev = dev;
  1375. skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
  1376. dma_addr = pci_map_page(gp->pdev,
  1377. virt_to_page(skb->data),
  1378. offset_in_page(skb->data),
  1379. RX_BUF_ALLOC_SIZE(gp),
  1380. PCI_DMA_FROMDEVICE);
  1381. rxd->buffer = cpu_to_le64(dma_addr);
  1382. wmb();
  1383. rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
  1384. skb_reserve(skb, RX_OFFSET);
  1385. }
  1386. for (i = 0; i < TX_RING_SIZE; i++) {
  1387. struct gem_txd *txd = &gb->txd[i];
  1388. txd->control_word = 0;
  1389. wmb();
  1390. txd->buffer = 0;
  1391. }
  1392. wmb();
  1393. }
  1394. /* Init PHY interface and start link poll state machine */
  1395. static void gem_init_phy(struct gem *gp)
  1396. {
  1397. u32 mifcfg;
  1398. /* Revert MIF CFG setting done on stop_phy */
  1399. mifcfg = readl(gp->regs + MIF_CFG);
  1400. mifcfg &= ~MIF_CFG_BBMODE;
  1401. writel(mifcfg, gp->regs + MIF_CFG);
  1402. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1403. int i;
  1404. /* Those delay sucks, the HW seem to love them though, I'll
  1405. * serisouly consider breaking some locks here to be able
  1406. * to schedule instead
  1407. */
  1408. for (i = 0; i < 3; i++) {
  1409. #ifdef CONFIG_PPC_PMAC
  1410. pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
  1411. msleep(20);
  1412. #endif
  1413. /* Some PHYs used by apple have problem getting back to us,
  1414. * we do an additional reset here
  1415. */
  1416. phy_write(gp, MII_BMCR, BMCR_RESET);
  1417. msleep(20);
  1418. if (phy_read(gp, MII_BMCR) != 0xffff)
  1419. break;
  1420. if (i == 2)
  1421. printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
  1422. gp->dev->name);
  1423. }
  1424. }
  1425. if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
  1426. gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1427. u32 val;
  1428. /* Init datapath mode register. */
  1429. if (gp->phy_type == phy_mii_mdio0 ||
  1430. gp->phy_type == phy_mii_mdio1) {
  1431. val = PCS_DMODE_MGM;
  1432. } else if (gp->phy_type == phy_serialink) {
  1433. val = PCS_DMODE_SM | PCS_DMODE_GMOE;
  1434. } else {
  1435. val = PCS_DMODE_ESM;
  1436. }
  1437. writel(val, gp->regs + PCS_DMODE);
  1438. }
  1439. if (gp->phy_type == phy_mii_mdio0 ||
  1440. gp->phy_type == phy_mii_mdio1) {
  1441. // XXX check for errors
  1442. mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
  1443. /* Init PHY */
  1444. if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
  1445. gp->phy_mii.def->ops->init(&gp->phy_mii);
  1446. } else {
  1447. u32 val;
  1448. int limit;
  1449. /* Reset PCS unit. */
  1450. val = readl(gp->regs + PCS_MIICTRL);
  1451. val |= PCS_MIICTRL_RST;
  1452. writeb(val, gp->regs + PCS_MIICTRL);
  1453. limit = 32;
  1454. while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
  1455. udelay(100);
  1456. if (limit-- <= 0)
  1457. break;
  1458. }
  1459. if (limit <= 0)
  1460. printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
  1461. gp->dev->name);
  1462. /* Make sure PCS is disabled while changing advertisement
  1463. * configuration.
  1464. */
  1465. val = readl(gp->regs + PCS_CFG);
  1466. val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
  1467. writel(val, gp->regs + PCS_CFG);
  1468. /* Advertise all capabilities except assymetric
  1469. * pause.
  1470. */
  1471. val = readl(gp->regs + PCS_MIIADV);
  1472. val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
  1473. PCS_MIIADV_SP | PCS_MIIADV_AP);
  1474. writel(val, gp->regs + PCS_MIIADV);
  1475. /* Enable and restart auto-negotiation, disable wrapback/loopback,
  1476. * and re-enable PCS.
  1477. */
  1478. val = readl(gp->regs + PCS_MIICTRL);
  1479. val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
  1480. val &= ~PCS_MIICTRL_WB;
  1481. writel(val, gp->regs + PCS_MIICTRL);
  1482. val = readl(gp->regs + PCS_CFG);
  1483. val |= PCS_CFG_ENABLE;
  1484. writel(val, gp->regs + PCS_CFG);
  1485. /* Make sure serialink loopback is off. The meaning
  1486. * of this bit is logically inverted based upon whether
  1487. * you are in Serialink or SERDES mode.
  1488. */
  1489. val = readl(gp->regs + PCS_SCTRL);
  1490. if (gp->phy_type == phy_serialink)
  1491. val &= ~PCS_SCTRL_LOOP;
  1492. else
  1493. val |= PCS_SCTRL_LOOP;
  1494. writel(val, gp->regs + PCS_SCTRL);
  1495. }
  1496. /* Default aneg parameters */
  1497. gp->timer_ticks = 0;
  1498. gp->lstate = link_down;
  1499. netif_carrier_off(gp->dev);
  1500. /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
  1501. spin_lock_irq(&gp->lock);
  1502. gem_begin_auto_negotiation(gp, NULL);
  1503. spin_unlock_irq(&gp->lock);
  1504. }
  1505. /* Must be invoked under gp->lock and gp->tx_lock. */
  1506. static void gem_init_dma(struct gem *gp)
  1507. {
  1508. u64 desc_dma = (u64) gp->gblock_dvma;
  1509. u32 val;
  1510. val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
  1511. writel(val, gp->regs + TXDMA_CFG);
  1512. writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
  1513. writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
  1514. desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
  1515. writel(0, gp->regs + TXDMA_KICK);
  1516. val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
  1517. ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
  1518. writel(val, gp->regs + RXDMA_CFG);
  1519. writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
  1520. writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
  1521. writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
  1522. val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
  1523. val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
  1524. writel(val, gp->regs + RXDMA_PTHRESH);
  1525. if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
  1526. writel(((5 & RXDMA_BLANK_IPKTS) |
  1527. ((8 << 12) & RXDMA_BLANK_ITIME)),
  1528. gp->regs + RXDMA_BLANK);
  1529. else
  1530. writel(((5 & RXDMA_BLANK_IPKTS) |
  1531. ((4 << 12) & RXDMA_BLANK_ITIME)),
  1532. gp->regs + RXDMA_BLANK);
  1533. }
  1534. /* Must be invoked under gp->lock and gp->tx_lock. */
  1535. static u32 gem_setup_multicast(struct gem *gp)
  1536. {
  1537. u32 rxcfg = 0;
  1538. int i;
  1539. if ((gp->dev->flags & IFF_ALLMULTI) ||
  1540. (gp->dev->mc_count > 256)) {
  1541. for (i=0; i<16; i++)
  1542. writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
  1543. rxcfg |= MAC_RXCFG_HFE;
  1544. } else if (gp->dev->flags & IFF_PROMISC) {
  1545. rxcfg |= MAC_RXCFG_PROM;
  1546. } else {
  1547. u16 hash_table[16];
  1548. u32 crc;
  1549. struct dev_mc_list *dmi = gp->dev->mc_list;
  1550. int i;
  1551. for (i = 0; i < 16; i++)
  1552. hash_table[i] = 0;
  1553. for (i = 0; i < gp->dev->mc_count; i++) {
  1554. char *addrs = dmi->dmi_addr;
  1555. dmi = dmi->next;
  1556. if (!(*addrs & 1))
  1557. continue;
  1558. crc = ether_crc_le(6, addrs);
  1559. crc >>= 24;
  1560. hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
  1561. }
  1562. for (i=0; i<16; i++)
  1563. writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
  1564. rxcfg |= MAC_RXCFG_HFE;
  1565. }
  1566. return rxcfg;
  1567. }
  1568. /* Must be invoked under gp->lock and gp->tx_lock. */
  1569. static void gem_init_mac(struct gem *gp)
  1570. {
  1571. unsigned char *e = &gp->dev->dev_addr[0];
  1572. writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
  1573. writel(0x00, gp->regs + MAC_IPG0);
  1574. writel(0x08, gp->regs + MAC_IPG1);
  1575. writel(0x04, gp->regs + MAC_IPG2);
  1576. writel(0x40, gp->regs + MAC_STIME);
  1577. writel(0x40, gp->regs + MAC_MINFSZ);
  1578. /* Ethernet payload + header + FCS + optional VLAN tag. */
  1579. writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
  1580. writel(0x07, gp->regs + MAC_PASIZE);
  1581. writel(0x04, gp->regs + MAC_JAMSIZE);
  1582. writel(0x10, gp->regs + MAC_ATTLIM);
  1583. writel(0x8808, gp->regs + MAC_MCTYPE);
  1584. writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
  1585. writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
  1586. writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
  1587. writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
  1588. writel(0, gp->regs + MAC_ADDR3);
  1589. writel(0, gp->regs + MAC_ADDR4);
  1590. writel(0, gp->regs + MAC_ADDR5);
  1591. writel(0x0001, gp->regs + MAC_ADDR6);
  1592. writel(0xc200, gp->regs + MAC_ADDR7);
  1593. writel(0x0180, gp->regs + MAC_ADDR8);
  1594. writel(0, gp->regs + MAC_AFILT0);
  1595. writel(0, gp->regs + MAC_AFILT1);
  1596. writel(0, gp->regs + MAC_AFILT2);
  1597. writel(0, gp->regs + MAC_AF21MSK);
  1598. writel(0, gp->regs + MAC_AF0MSK);
  1599. gp->mac_rx_cfg = gem_setup_multicast(gp);
  1600. #ifdef STRIP_FCS
  1601. gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
  1602. #endif
  1603. writel(0, gp->regs + MAC_NCOLL);
  1604. writel(0, gp->regs + MAC_FASUCC);
  1605. writel(0, gp->regs + MAC_ECOLL);
  1606. writel(0, gp->regs + MAC_LCOLL);
  1607. writel(0, gp->regs + MAC_DTIMER);
  1608. writel(0, gp->regs + MAC_PATMPS);
  1609. writel(0, gp->regs + MAC_RFCTR);
  1610. writel(0, gp->regs + MAC_LERR);
  1611. writel(0, gp->regs + MAC_AERR);
  1612. writel(0, gp->regs + MAC_FCSERR);
  1613. writel(0, gp->regs + MAC_RXCVERR);
  1614. /* Clear RX/TX/MAC/XIF config, we will set these up and enable
  1615. * them once a link is established.
  1616. */
  1617. writel(0, gp->regs + MAC_TXCFG);
  1618. writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
  1619. writel(0, gp->regs + MAC_MCCFG);
  1620. writel(0, gp->regs + MAC_XIFCFG);
  1621. /* Setup MAC interrupts. We want to get all of the interesting
  1622. * counter expiration events, but we do not want to hear about
  1623. * normal rx/tx as the DMA engine tells us that.
  1624. */
  1625. writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
  1626. writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
  1627. /* Don't enable even the PAUSE interrupts for now, we
  1628. * make no use of those events other than to record them.
  1629. */
  1630. writel(0xffffffff, gp->regs + MAC_MCMASK);
  1631. /* Don't enable GEM's WOL in normal operations
  1632. */
  1633. if (gp->has_wol)
  1634. writel(0, gp->regs + WOL_WAKECSR);
  1635. }
  1636. /* Must be invoked under gp->lock and gp->tx_lock. */
  1637. static void gem_init_pause_thresholds(struct gem *gp)
  1638. {
  1639. u32 cfg;
  1640. /* Calculate pause thresholds. Setting the OFF threshold to the
  1641. * full RX fifo size effectively disables PAUSE generation which
  1642. * is what we do for 10/100 only GEMs which have FIFOs too small
  1643. * to make real gains from PAUSE.
  1644. */
  1645. if (gp->rx_fifo_sz <= (2 * 1024)) {
  1646. gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
  1647. } else {
  1648. int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
  1649. int off = (gp->rx_fifo_sz - (max_frame * 2));
  1650. int on = off - max_frame;
  1651. gp->rx_pause_off = off;
  1652. gp->rx_pause_on = on;
  1653. }
  1654. /* Configure the chip "burst" DMA mode & enable some
  1655. * HW bug fixes on Apple version
  1656. */
  1657. cfg = 0;
  1658. if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
  1659. cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
  1660. #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
  1661. cfg |= GREG_CFG_IBURST;
  1662. #endif
  1663. cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
  1664. cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
  1665. writel(cfg, gp->regs + GREG_CFG);
  1666. /* If Infinite Burst didn't stick, then use different
  1667. * thresholds (and Apple bug fixes don't exist)
  1668. */
  1669. if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
  1670. cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
  1671. cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
  1672. writel(cfg, gp->regs + GREG_CFG);
  1673. }
  1674. }
  1675. static int gem_check_invariants(struct gem *gp)
  1676. {
  1677. struct pci_dev *pdev = gp->pdev;
  1678. u32 mif_cfg;
  1679. /* On Apple's sungem, we can't rely on registers as the chip
  1680. * was been powered down by the firmware. The PHY is looked
  1681. * up later on.
  1682. */
  1683. if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
  1684. gp->phy_type = phy_mii_mdio0;
  1685. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1686. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1687. gp->swrst_base = 0;
  1688. mif_cfg = readl(gp->regs + MIF_CFG);
  1689. mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
  1690. mif_cfg |= MIF_CFG_MDI0;
  1691. writel(mif_cfg, gp->regs + MIF_CFG);
  1692. writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
  1693. writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
  1694. /* We hard-code the PHY address so we can properly bring it out of
  1695. * reset later on, we can't really probe it at this point, though
  1696. * that isn't an issue.
  1697. */
  1698. if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
  1699. gp->mii_phy_addr = 1;
  1700. else
  1701. gp->mii_phy_addr = 0;
  1702. return 0;
  1703. }
  1704. mif_cfg = readl(gp->regs + MIF_CFG);
  1705. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  1706. pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
  1707. /* One of the MII PHYs _must_ be present
  1708. * as this chip has no gigabit PHY.
  1709. */
  1710. if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
  1711. printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
  1712. mif_cfg);
  1713. return -1;
  1714. }
  1715. }
  1716. /* Determine initial PHY interface type guess. MDIO1 is the
  1717. * external PHY and thus takes precedence over MDIO0.
  1718. */
  1719. if (mif_cfg & MIF_CFG_MDI1) {
  1720. gp->phy_type = phy_mii_mdio1;
  1721. mif_cfg |= MIF_CFG_PSELECT;
  1722. writel(mif_cfg, gp->regs + MIF_CFG);
  1723. } else if (mif_cfg & MIF_CFG_MDI0) {
  1724. gp->phy_type = phy_mii_mdio0;
  1725. mif_cfg &= ~MIF_CFG_PSELECT;
  1726. writel(mif_cfg, gp->regs + MIF_CFG);
  1727. } else {
  1728. gp->phy_type = phy_serialink;
  1729. }
  1730. if (gp->phy_type == phy_mii_mdio1 ||
  1731. gp->phy_type == phy_mii_mdio0) {
  1732. int i;
  1733. for (i = 0; i < 32; i++) {
  1734. gp->mii_phy_addr = i;
  1735. if (phy_read(gp, MII_BMCR) != 0xffff)
  1736. break;
  1737. }
  1738. if (i == 32) {
  1739. if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
  1740. printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
  1741. return -1;
  1742. }
  1743. gp->phy_type = phy_serdes;
  1744. }
  1745. }
  1746. /* Fetch the FIFO configurations now too. */
  1747. gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
  1748. gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
  1749. if (pdev->vendor == PCI_VENDOR_ID_SUN) {
  1750. if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
  1751. if (gp->tx_fifo_sz != (9 * 1024) ||
  1752. gp->rx_fifo_sz != (20 * 1024)) {
  1753. printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1754. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1755. return -1;
  1756. }
  1757. gp->swrst_base = 0;
  1758. } else {
  1759. if (gp->tx_fifo_sz != (2 * 1024) ||
  1760. gp->rx_fifo_sz != (2 * 1024)) {
  1761. printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
  1762. gp->tx_fifo_sz, gp->rx_fifo_sz);
  1763. return -1;
  1764. }
  1765. gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
  1766. }
  1767. }
  1768. return 0;
  1769. }
  1770. /* Must be invoked under gp->lock and gp->tx_lock. */
  1771. static void gem_reinit_chip(struct gem *gp)
  1772. {
  1773. /* Reset the chip */
  1774. gem_reset(gp);
  1775. /* Make sure ints are disabled */
  1776. gem_disable_ints(gp);
  1777. /* Allocate & setup ring buffers */
  1778. gem_init_rings(gp);
  1779. /* Configure pause thresholds */
  1780. gem_init_pause_thresholds(gp);
  1781. /* Init DMA & MAC engines */
  1782. gem_init_dma(gp);
  1783. gem_init_mac(gp);
  1784. }
  1785. /* Must be invoked with no lock held. */
  1786. static void gem_stop_phy(struct gem *gp, int wol)
  1787. {
  1788. u32 mifcfg;
  1789. unsigned long flags;
  1790. /* Let the chip settle down a bit, it seems that helps
  1791. * for sleep mode on some models
  1792. */
  1793. msleep(10);
  1794. /* Make sure we aren't polling PHY status change. We
  1795. * don't currently use that feature though
  1796. */
  1797. mifcfg = readl(gp->regs + MIF_CFG);
  1798. mifcfg &= ~MIF_CFG_POLL;
  1799. writel(mifcfg, gp->regs + MIF_CFG);
  1800. if (wol && gp->has_wol) {
  1801. unsigned char *e = &gp->dev->dev_addr[0];
  1802. u32 csr;
  1803. /* Setup wake-on-lan for MAGIC packet */
  1804. writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
  1805. gp->regs + MAC_RXCFG);
  1806. writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
  1807. writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
  1808. writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
  1809. writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
  1810. csr = WOL_WAKECSR_ENABLE;
  1811. if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
  1812. csr |= WOL_WAKECSR_MII;
  1813. writel(csr, gp->regs + WOL_WAKECSR);
  1814. } else {
  1815. writel(0, gp->regs + MAC_RXCFG);
  1816. (void)readl(gp->regs + MAC_RXCFG);
  1817. /* Machine sleep will die in strange ways if we
  1818. * dont wait a bit here, looks like the chip takes
  1819. * some time to really shut down
  1820. */
  1821. msleep(10);
  1822. }
  1823. writel(0, gp->regs + MAC_TXCFG);
  1824. writel(0, gp->regs + MAC_XIFCFG);
  1825. writel(0, gp->regs + TXDMA_CFG);
  1826. writel(0, gp->regs + RXDMA_CFG);
  1827. if (!wol) {
  1828. spin_lock_irqsave(&gp->lock, flags);
  1829. spin_lock(&gp->tx_lock);
  1830. gem_reset(gp);
  1831. writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
  1832. writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
  1833. spin_unlock(&gp->tx_lock);
  1834. spin_unlock_irqrestore(&gp->lock, flags);
  1835. /* No need to take the lock here */
  1836. if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
  1837. gp->phy_mii.def->ops->suspend(&gp->phy_mii);
  1838. /* According to Apple, we must set the MDIO pins to this begnign
  1839. * state or we may 1) eat more current, 2) damage some PHYs
  1840. */
  1841. writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
  1842. writel(0, gp->regs + MIF_BBCLK);
  1843. writel(0, gp->regs + MIF_BBDATA);
  1844. writel(0, gp->regs + MIF_BBOENAB);
  1845. writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
  1846. (void) readl(gp->regs + MAC_XIFCFG);
  1847. }
  1848. }
  1849. static int gem_do_start(struct net_device *dev)
  1850. {
  1851. struct gem *gp = dev->priv;
  1852. unsigned long flags;
  1853. spin_lock_irqsave(&gp->lock, flags);
  1854. spin_lock(&gp->tx_lock);
  1855. /* Enable the cell */
  1856. gem_get_cell(gp);
  1857. /* Init & setup chip hardware */
  1858. gem_reinit_chip(gp);
  1859. gp->running = 1;
  1860. if (gp->lstate == link_up) {
  1861. netif_carrier_on(gp->dev);
  1862. gem_set_link_modes(gp);
  1863. }
  1864. netif_wake_queue(gp->dev);
  1865. spin_unlock(&gp->tx_lock);
  1866. spin_unlock_irqrestore(&gp->lock, flags);
  1867. if (request_irq(gp->pdev->irq, gem_interrupt,
  1868. SA_SHIRQ, dev->name, (void *)dev)) {
  1869. printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
  1870. spin_lock_irqsave(&gp->lock, flags);
  1871. spin_lock(&gp->tx_lock);
  1872. gp->running = 0;
  1873. gem_reset(gp);
  1874. gem_clean_rings(gp);
  1875. gem_put_cell(gp);
  1876. spin_unlock(&gp->tx_lock);
  1877. spin_unlock_irqrestore(&gp->lock, flags);
  1878. return -EAGAIN;
  1879. }
  1880. return 0;
  1881. }
  1882. static void gem_do_stop(struct net_device *dev, int wol)
  1883. {
  1884. struct gem *gp = dev->priv;
  1885. unsigned long flags;
  1886. spin_lock_irqsave(&gp->lock, flags);
  1887. spin_lock(&gp->tx_lock);
  1888. gp->running = 0;
  1889. /* Stop netif queue */
  1890. netif_stop_queue(dev);
  1891. /* Make sure ints are disabled */
  1892. gem_disable_ints(gp);
  1893. /* We can drop the lock now */
  1894. spin_unlock(&gp->tx_lock);
  1895. spin_unlock_irqrestore(&gp->lock, flags);
  1896. /* If we are going to sleep with WOL */
  1897. gem_stop_dma(gp);
  1898. msleep(10);
  1899. if (!wol)
  1900. gem_reset(gp);
  1901. msleep(10);
  1902. /* Get rid of rings */
  1903. gem_clean_rings(gp);
  1904. /* No irq needed anymore */
  1905. free_irq(gp->pdev->irq, (void *) dev);
  1906. /* Cell not needed neither if no WOL */
  1907. if (!wol) {
  1908. spin_lock_irqsave(&gp->lock, flags);
  1909. gem_put_cell(gp);
  1910. spin_unlock_irqrestore(&gp->lock, flags);
  1911. }
  1912. }
  1913. static void gem_reset_task(void *data)
  1914. {
  1915. struct gem *gp = (struct gem *) data;
  1916. down(&gp->pm_sem);
  1917. netif_poll_disable(gp->dev);
  1918. spin_lock_irq(&gp->lock);
  1919. spin_lock(&gp->tx_lock);
  1920. if (gp->running == 0)
  1921. goto not_running;
  1922. if (gp->running) {
  1923. netif_stop_queue(gp->dev);
  1924. /* Reset the chip & rings */
  1925. gem_reinit_chip(gp);
  1926. if (gp->lstate == link_up)
  1927. gem_set_link_modes(gp);
  1928. netif_wake_queue(gp->dev);
  1929. }
  1930. not_running:
  1931. gp->reset_task_pending = 0;
  1932. spin_unlock(&gp->tx_lock);
  1933. spin_unlock_irq(&gp->lock);
  1934. netif_poll_enable(gp->dev);
  1935. up(&gp->pm_sem);
  1936. }
  1937. static int gem_open(struct net_device *dev)
  1938. {
  1939. struct gem *gp = dev->priv;
  1940. int rc = 0;
  1941. down(&gp->pm_sem);
  1942. /* We need the cell enabled */
  1943. if (!gp->asleep)
  1944. rc = gem_do_start(dev);
  1945. gp->opened = (rc == 0);
  1946. up(&gp->pm_sem);
  1947. return rc;
  1948. }
  1949. static int gem_close(struct net_device *dev)
  1950. {
  1951. struct gem *gp = dev->priv;
  1952. /* Note: we don't need to call netif_poll_disable() here because
  1953. * our caller (dev_close) already did it for us
  1954. */
  1955. down(&gp->pm_sem);
  1956. gp->opened = 0;
  1957. if (!gp->asleep)
  1958. gem_do_stop(dev, 0);
  1959. up(&gp->pm_sem);
  1960. return 0;
  1961. }
  1962. #ifdef CONFIG_PM
  1963. static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
  1964. {
  1965. struct net_device *dev = pci_get_drvdata(pdev);
  1966. struct gem *gp = dev->priv;
  1967. unsigned long flags;
  1968. down(&gp->pm_sem);
  1969. netif_poll_disable(dev);
  1970. printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
  1971. dev->name,
  1972. (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
  1973. /* Keep the cell enabled during the entire operation */
  1974. spin_lock_irqsave(&gp->lock, flags);
  1975. spin_lock(&gp->tx_lock);
  1976. gem_get_cell(gp);
  1977. spin_unlock(&gp->tx_lock);
  1978. spin_unlock_irqrestore(&gp->lock, flags);
  1979. /* If the driver is opened, we stop the MAC */
  1980. if (gp->opened) {
  1981. /* Stop traffic, mark us closed */
  1982. netif_device_detach(dev);
  1983. /* Switch off MAC, remember WOL setting */
  1984. gp->asleep_wol = gp->wake_on_lan;
  1985. gem_do_stop(dev, gp->asleep_wol);
  1986. } else
  1987. gp->asleep_wol = 0;
  1988. /* Mark us asleep */
  1989. gp->asleep = 1;
  1990. wmb();
  1991. /* Stop the link timer */
  1992. del_timer_sync(&gp->link_timer);
  1993. /* Now we release the semaphore to not block the reset task who
  1994. * can take it too. We are marked asleep, so there will be no
  1995. * conflict here
  1996. */
  1997. up(&gp->pm_sem);
  1998. /* Wait for a pending reset task to complete */
  1999. while (gp->reset_task_pending)
  2000. yield();
  2001. flush_scheduled_work();
  2002. /* Shut the PHY down eventually and setup WOL */
  2003. gem_stop_phy(gp, gp->asleep_wol);
  2004. /* Make sure bus master is disabled */
  2005. pci_disable_device(gp->pdev);
  2006. /* Release the cell, no need to take a lock at this point since
  2007. * nothing else can happen now
  2008. */
  2009. gem_put_cell(gp);
  2010. return 0;
  2011. }
  2012. static int gem_resume(struct pci_dev *pdev)
  2013. {
  2014. struct net_device *dev = pci_get_drvdata(pdev);
  2015. struct gem *gp = dev->priv;
  2016. unsigned long flags;
  2017. printk(KERN_INFO "%s: resuming\n", dev->name);
  2018. down(&gp->pm_sem);
  2019. /* Keep the cell enabled during the entire operation, no need to
  2020. * take a lock here tho since nothing else can happen while we are
  2021. * marked asleep
  2022. */
  2023. gem_get_cell(gp);
  2024. /* Make sure PCI access and bus master are enabled */
  2025. if (pci_enable_device(gp->pdev)) {
  2026. printk(KERN_ERR "%s: Can't re-enable chip !\n",
  2027. dev->name);
  2028. /* Put cell and forget it for now, it will be considered as
  2029. * still asleep, a new sleep cycle may bring it back
  2030. */
  2031. gem_put_cell(gp);
  2032. up(&gp->pm_sem);
  2033. return 0;
  2034. }
  2035. pci_set_master(gp->pdev);
  2036. /* Reset everything */
  2037. gem_reset(gp);
  2038. /* Mark us woken up */
  2039. gp->asleep = 0;
  2040. wmb();
  2041. /* Bring the PHY back. Again, lock is useless at this point as
  2042. * nothing can be happening until we restart the whole thing
  2043. */
  2044. gem_init_phy(gp);
  2045. /* If we were opened, bring everything back */
  2046. if (gp->opened) {
  2047. /* Restart MAC */
  2048. gem_do_start(dev);
  2049. /* Re-attach net device */
  2050. netif_device_attach(dev);
  2051. }
  2052. spin_lock_irqsave(&gp->lock, flags);
  2053. spin_lock(&gp->tx_lock);
  2054. /* If we had WOL enabled, the cell clock was never turned off during
  2055. * sleep, so we end up beeing unbalanced. Fix that here
  2056. */
  2057. if (gp->asleep_wol)
  2058. gem_put_cell(gp);
  2059. /* This function doesn't need to hold the cell, it will be held if the
  2060. * driver is open by gem_do_start().
  2061. */
  2062. gem_put_cell(gp);
  2063. spin_unlock(&gp->tx_lock);
  2064. spin_unlock_irqrestore(&gp->lock, flags);
  2065. netif_poll_enable(dev);
  2066. up(&gp->pm_sem);
  2067. return 0;
  2068. }
  2069. #endif /* CONFIG_PM */
  2070. static struct net_device_stats *gem_get_stats(struct net_device *dev)
  2071. {
  2072. struct gem *gp = dev->priv;
  2073. struct net_device_stats *stats = &gp->net_stats;
  2074. spin_lock_irq(&gp->lock);
  2075. spin_lock(&gp->tx_lock);
  2076. /* I have seen this being called while the PM was in progress,
  2077. * so we shield against this
  2078. */
  2079. if (gp->running) {
  2080. stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
  2081. writel(0, gp->regs + MAC_FCSERR);
  2082. stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
  2083. writel(0, gp->regs + MAC_AERR);
  2084. stats->rx_length_errors += readl(gp->regs + MAC_LERR);
  2085. writel(0, gp->regs + MAC_LERR);
  2086. stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
  2087. stats->collisions +=
  2088. (readl(gp->regs + MAC_ECOLL) +
  2089. readl(gp->regs + MAC_LCOLL));
  2090. writel(0, gp->regs + MAC_ECOLL);
  2091. writel(0, gp->regs + MAC_LCOLL);
  2092. }
  2093. spin_unlock(&gp->tx_lock);
  2094. spin_unlock_irq(&gp->lock);
  2095. return &gp->net_stats;
  2096. }
  2097. static void gem_set_multicast(struct net_device *dev)
  2098. {
  2099. struct gem *gp = dev->priv;
  2100. u32 rxcfg, rxcfg_new;
  2101. int limit = 10000;
  2102. spin_lock_irq(&gp->lock);
  2103. spin_lock(&gp->tx_lock);
  2104. if (!gp->running)
  2105. goto bail;
  2106. netif_stop_queue(dev);
  2107. rxcfg = readl(gp->regs + MAC_RXCFG);
  2108. rxcfg_new = gem_setup_multicast(gp);
  2109. #ifdef STRIP_FCS
  2110. rxcfg_new |= MAC_RXCFG_SFCS;
  2111. #endif
  2112. gp->mac_rx_cfg = rxcfg_new;
  2113. writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
  2114. while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
  2115. if (!limit--)
  2116. break;
  2117. udelay(10);
  2118. }
  2119. rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
  2120. rxcfg |= rxcfg_new;
  2121. writel(rxcfg, gp->regs + MAC_RXCFG);
  2122. netif_wake_queue(dev);
  2123. bail:
  2124. spin_unlock(&gp->tx_lock);
  2125. spin_unlock_irq(&gp->lock);
  2126. }
  2127. /* Jumbo-grams don't seem to work :-( */
  2128. #define GEM_MIN_MTU 68
  2129. #if 1
  2130. #define GEM_MAX_MTU 1500
  2131. #else
  2132. #define GEM_MAX_MTU 9000
  2133. #endif
  2134. static int gem_change_mtu(struct net_device *dev, int new_mtu)
  2135. {
  2136. struct gem *gp = dev->priv;
  2137. if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
  2138. return -EINVAL;
  2139. if (!netif_running(dev) || !netif_device_present(dev)) {
  2140. /* We'll just catch it later when the
  2141. * device is up'd or resumed.
  2142. */
  2143. dev->mtu = new_mtu;
  2144. return 0;
  2145. }
  2146. down(&gp->pm_sem);
  2147. spin_lock_irq(&gp->lock);
  2148. spin_lock(&gp->tx_lock);
  2149. dev->mtu = new_mtu;
  2150. if (gp->running) {
  2151. gem_reinit_chip(gp);
  2152. if (gp->lstate == link_up)
  2153. gem_set_link_modes(gp);
  2154. }
  2155. spin_unlock(&gp->tx_lock);
  2156. spin_unlock_irq(&gp->lock);
  2157. up(&gp->pm_sem);
  2158. return 0;
  2159. }
  2160. static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  2161. {
  2162. struct gem *gp = dev->priv;
  2163. strcpy(info->driver, DRV_NAME);
  2164. strcpy(info->version, DRV_VERSION);
  2165. strcpy(info->bus_info, pci_name(gp->pdev));
  2166. }
  2167. static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2168. {
  2169. struct gem *gp = dev->priv;
  2170. if (gp->phy_type == phy_mii_mdio0 ||
  2171. gp->phy_type == phy_mii_mdio1) {
  2172. if (gp->phy_mii.def)
  2173. cmd->supported = gp->phy_mii.def->features;
  2174. else
  2175. cmd->supported = (SUPPORTED_10baseT_Half |
  2176. SUPPORTED_10baseT_Full);
  2177. /* XXX hardcoded stuff for now */
  2178. cmd->port = PORT_MII;
  2179. cmd->transceiver = XCVR_EXTERNAL;
  2180. cmd->phy_address = 0; /* XXX fixed PHYAD */
  2181. /* Return current PHY settings */
  2182. spin_lock_irq(&gp->lock);
  2183. cmd->autoneg = gp->want_autoneg;
  2184. cmd->speed = gp->phy_mii.speed;
  2185. cmd->duplex = gp->phy_mii.duplex;
  2186. cmd->advertising = gp->phy_mii.advertising;
  2187. /* If we started with a forced mode, we don't have a default
  2188. * advertise set, we need to return something sensible so
  2189. * userland can re-enable autoneg properly.
  2190. */
  2191. if (cmd->advertising == 0)
  2192. cmd->advertising = cmd->supported;
  2193. spin_unlock_irq(&gp->lock);
  2194. } else { // XXX PCS ?
  2195. cmd->supported =
  2196. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2197. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2198. SUPPORTED_Autoneg);
  2199. cmd->advertising = cmd->supported;
  2200. cmd->speed = 0;
  2201. cmd->duplex = cmd->port = cmd->phy_address =
  2202. cmd->transceiver = cmd->autoneg = 0;
  2203. }
  2204. cmd->maxtxpkt = cmd->maxrxpkt = 0;
  2205. return 0;
  2206. }
  2207. static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2208. {
  2209. struct gem *gp = dev->priv;
  2210. /* Verify the settings we care about. */
  2211. if (cmd->autoneg != AUTONEG_ENABLE &&
  2212. cmd->autoneg != AUTONEG_DISABLE)
  2213. return -EINVAL;
  2214. if (cmd->autoneg == AUTONEG_ENABLE &&
  2215. cmd->advertising == 0)
  2216. return -EINVAL;
  2217. if (cmd->autoneg == AUTONEG_DISABLE &&
  2218. ((cmd->speed != SPEED_1000 &&
  2219. cmd->speed != SPEED_100 &&
  2220. cmd->speed != SPEED_10) ||
  2221. (cmd->duplex != DUPLEX_HALF &&
  2222. cmd->duplex != DUPLEX_FULL)))
  2223. return -EINVAL;
  2224. /* Apply settings and restart link process. */
  2225. spin_lock_irq(&gp->lock);
  2226. gem_get_cell(gp);
  2227. gem_begin_auto_negotiation(gp, cmd);
  2228. gem_put_cell(gp);
  2229. spin_unlock_irq(&gp->lock);
  2230. return 0;
  2231. }
  2232. static int gem_nway_reset(struct net_device *dev)
  2233. {
  2234. struct gem *gp = dev->priv;
  2235. if (!gp->want_autoneg)
  2236. return -EINVAL;
  2237. /* Restart link process. */
  2238. spin_lock_irq(&gp->lock);
  2239. gem_get_cell(gp);
  2240. gem_begin_auto_negotiation(gp, NULL);
  2241. gem_put_cell(gp);
  2242. spin_unlock_irq(&gp->lock);
  2243. return 0;
  2244. }
  2245. static u32 gem_get_msglevel(struct net_device *dev)
  2246. {
  2247. struct gem *gp = dev->priv;
  2248. return gp->msg_enable;
  2249. }
  2250. static void gem_set_msglevel(struct net_device *dev, u32 value)
  2251. {
  2252. struct gem *gp = dev->priv;
  2253. gp->msg_enable = value;
  2254. }
  2255. /* Add more when I understand how to program the chip */
  2256. /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
  2257. #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
  2258. static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2259. {
  2260. struct gem *gp = dev->priv;
  2261. /* Add more when I understand how to program the chip */
  2262. if (gp->has_wol) {
  2263. wol->supported = WOL_SUPPORTED_MASK;
  2264. wol->wolopts = gp->wake_on_lan;
  2265. } else {
  2266. wol->supported = 0;
  2267. wol->wolopts = 0;
  2268. }
  2269. }
  2270. static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  2271. {
  2272. struct gem *gp = dev->priv;
  2273. if (!gp->has_wol)
  2274. return -EOPNOTSUPP;
  2275. gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
  2276. return 0;
  2277. }
  2278. static struct ethtool_ops gem_ethtool_ops = {
  2279. .get_drvinfo = gem_get_drvinfo,
  2280. .get_link = ethtool_op_get_link,
  2281. .get_settings = gem_get_settings,
  2282. .set_settings = gem_set_settings,
  2283. .nway_reset = gem_nway_reset,
  2284. .get_msglevel = gem_get_msglevel,
  2285. .set_msglevel = gem_set_msglevel,
  2286. .get_wol = gem_get_wol,
  2287. .set_wol = gem_set_wol,
  2288. };
  2289. static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2290. {
  2291. struct gem *gp = dev->priv;
  2292. struct mii_ioctl_data *data = if_mii(ifr);
  2293. int rc = -EOPNOTSUPP;
  2294. unsigned long flags;
  2295. /* Hold the PM semaphore while doing ioctl's or we may collide
  2296. * with power management.
  2297. */
  2298. down(&gp->pm_sem);
  2299. spin_lock_irqsave(&gp->lock, flags);
  2300. gem_get_cell(gp);
  2301. spin_unlock_irqrestore(&gp->lock, flags);
  2302. switch (cmd) {
  2303. case SIOCGMIIPHY: /* Get address of MII PHY in use. */
  2304. data->phy_id = gp->mii_phy_addr;
  2305. /* Fallthrough... */
  2306. case SIOCGMIIREG: /* Read MII PHY register. */
  2307. if (!gp->running)
  2308. rc = -EAGAIN;
  2309. else {
  2310. data->val_out = __phy_read(gp, data->phy_id & 0x1f,
  2311. data->reg_num & 0x1f);
  2312. rc = 0;
  2313. }
  2314. break;
  2315. case SIOCSMIIREG: /* Write MII PHY register. */
  2316. if (!capable(CAP_NET_ADMIN))
  2317. rc = -EPERM;
  2318. else if (!gp->running)
  2319. rc = -EAGAIN;
  2320. else {
  2321. __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
  2322. data->val_in);
  2323. rc = 0;
  2324. }
  2325. break;
  2326. };
  2327. spin_lock_irqsave(&gp->lock, flags);
  2328. gem_put_cell(gp);
  2329. spin_unlock_irqrestore(&gp->lock, flags);
  2330. up(&gp->pm_sem);
  2331. return rc;
  2332. }
  2333. #if (!defined(__sparc__) && !defined(CONFIG_PPC_PMAC))
  2334. /* Fetch MAC address from vital product data of PCI ROM. */
  2335. static void find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
  2336. {
  2337. int this_offset;
  2338. for (this_offset = 0x20; this_offset < len; this_offset++) {
  2339. void __iomem *p = rom_base + this_offset;
  2340. int i;
  2341. if (readb(p + 0) != 0x90 ||
  2342. readb(p + 1) != 0x00 ||
  2343. readb(p + 2) != 0x09 ||
  2344. readb(p + 3) != 0x4e ||
  2345. readb(p + 4) != 0x41 ||
  2346. readb(p + 5) != 0x06)
  2347. continue;
  2348. this_offset += 6;
  2349. p += 6;
  2350. for (i = 0; i < 6; i++)
  2351. dev_addr[i] = readb(p + i);
  2352. break;
  2353. }
  2354. }
  2355. static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
  2356. {
  2357. u32 rom_reg_orig;
  2358. void __iomem *p;
  2359. if (pdev->resource[PCI_ROM_RESOURCE].parent == NULL) {
  2360. if (pci_assign_resource(pdev, PCI_ROM_RESOURCE) < 0)
  2361. goto use_random;
  2362. }
  2363. pci_read_config_dword(pdev, pdev->rom_base_reg, &rom_reg_orig);
  2364. pci_write_config_dword(pdev, pdev->rom_base_reg,
  2365. rom_reg_orig | PCI_ROM_ADDRESS_ENABLE);
  2366. p = ioremap(pci_resource_start(pdev, PCI_ROM_RESOURCE), (64 * 1024));
  2367. if (p != NULL && readb(p) == 0x55 && readb(p + 1) == 0xaa)
  2368. find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
  2369. if (p != NULL)
  2370. iounmap(p);
  2371. pci_write_config_dword(pdev, pdev->rom_base_reg, rom_reg_orig);
  2372. return;
  2373. use_random:
  2374. /* Sun MAC prefix then 3 random bytes. */
  2375. dev_addr[0] = 0x08;
  2376. dev_addr[1] = 0x00;
  2377. dev_addr[2] = 0x20;
  2378. get_random_bytes(dev_addr + 3, 3);
  2379. return;
  2380. }
  2381. #endif /* not Sparc and not PPC */
  2382. static int __devinit gem_get_device_address(struct gem *gp)
  2383. {
  2384. #if defined(__sparc__) || defined(CONFIG_PPC_PMAC)
  2385. struct net_device *dev = gp->dev;
  2386. #endif
  2387. #if defined(__sparc__)
  2388. struct pci_dev *pdev = gp->pdev;
  2389. struct pcidev_cookie *pcp = pdev->sysdata;
  2390. int node = -1;
  2391. if (pcp != NULL) {
  2392. node = pcp->prom_node;
  2393. if (prom_getproplen(node, "local-mac-address") == 6)
  2394. prom_getproperty(node, "local-mac-address",
  2395. dev->dev_addr, 6);
  2396. else
  2397. node = -1;
  2398. }
  2399. if (node == -1)
  2400. memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
  2401. #elif defined(CONFIG_PPC_PMAC)
  2402. unsigned char *addr;
  2403. addr = get_property(gp->of_node, "local-mac-address", NULL);
  2404. if (addr == NULL) {
  2405. printk("\n");
  2406. printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
  2407. return -1;
  2408. }
  2409. memcpy(dev->dev_addr, addr, 6);
  2410. #else
  2411. get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
  2412. #endif
  2413. return 0;
  2414. }
  2415. static void __devexit gem_remove_one(struct pci_dev *pdev)
  2416. {
  2417. struct net_device *dev = pci_get_drvdata(pdev);
  2418. if (dev) {
  2419. struct gem *gp = dev->priv;
  2420. unregister_netdev(dev);
  2421. /* Stop the link timer */
  2422. del_timer_sync(&gp->link_timer);
  2423. /* We shouldn't need any locking here */
  2424. gem_get_cell(gp);
  2425. /* Wait for a pending reset task to complete */
  2426. while (gp->reset_task_pending)
  2427. yield();
  2428. flush_scheduled_work();
  2429. /* Shut the PHY down */
  2430. gem_stop_phy(gp, 0);
  2431. gem_put_cell(gp);
  2432. /* Make sure bus master is disabled */
  2433. pci_disable_device(gp->pdev);
  2434. /* Free resources */
  2435. pci_free_consistent(pdev,
  2436. sizeof(struct gem_init_block),
  2437. gp->init_block,
  2438. gp->gblock_dvma);
  2439. iounmap(gp->regs);
  2440. pci_release_regions(pdev);
  2441. free_netdev(dev);
  2442. pci_set_drvdata(pdev, NULL);
  2443. }
  2444. }
  2445. static int __devinit gem_init_one(struct pci_dev *pdev,
  2446. const struct pci_device_id *ent)
  2447. {
  2448. static int gem_version_printed = 0;
  2449. unsigned long gemreg_base, gemreg_len;
  2450. struct net_device *dev;
  2451. struct gem *gp;
  2452. int i, err, pci_using_dac;
  2453. if (gem_version_printed++ == 0)
  2454. printk(KERN_INFO "%s", version);
  2455. /* Apple gmac note: during probe, the chip is powered up by
  2456. * the arch code to allow the code below to work (and to let
  2457. * the chip be probed on the config space. It won't stay powered
  2458. * up until the interface is brought up however, so we can't rely
  2459. * on register configuration done at this point.
  2460. */
  2461. err = pci_enable_device(pdev);
  2462. if (err) {
  2463. printk(KERN_ERR PFX "Cannot enable MMIO operation, "
  2464. "aborting.\n");
  2465. return err;
  2466. }
  2467. pci_set_master(pdev);
  2468. /* Configure DMA attributes. */
  2469. /* All of the GEM documentation states that 64-bit DMA addressing
  2470. * is fully supported and should work just fine. However the
  2471. * front end for RIO based GEMs is different and only supports
  2472. * 32-bit addressing.
  2473. *
  2474. * For now we assume the various PPC GEMs are 32-bit only as well.
  2475. */
  2476. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  2477. pdev->device == PCI_DEVICE_ID_SUN_GEM &&
  2478. !pci_set_dma_mask(pdev, (u64) 0xffffffffffffffffULL)) {
  2479. pci_using_dac = 1;
  2480. } else {
  2481. err = pci_set_dma_mask(pdev, (u64) 0xffffffff);
  2482. if (err) {
  2483. printk(KERN_ERR PFX "No usable DMA configuration, "
  2484. "aborting.\n");
  2485. goto err_disable_device;
  2486. }
  2487. pci_using_dac = 0;
  2488. }
  2489. gemreg_base = pci_resource_start(pdev, 0);
  2490. gemreg_len = pci_resource_len(pdev, 0);
  2491. if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
  2492. printk(KERN_ERR PFX "Cannot find proper PCI device "
  2493. "base address, aborting.\n");
  2494. err = -ENODEV;
  2495. goto err_disable_device;
  2496. }
  2497. dev = alloc_etherdev(sizeof(*gp));
  2498. if (!dev) {
  2499. printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
  2500. err = -ENOMEM;
  2501. goto err_disable_device;
  2502. }
  2503. SET_MODULE_OWNER(dev);
  2504. SET_NETDEV_DEV(dev, &pdev->dev);
  2505. gp = dev->priv;
  2506. err = pci_request_regions(pdev, DRV_NAME);
  2507. if (err) {
  2508. printk(KERN_ERR PFX "Cannot obtain PCI resources, "
  2509. "aborting.\n");
  2510. goto err_out_free_netdev;
  2511. }
  2512. gp->pdev = pdev;
  2513. dev->base_addr = (long) pdev;
  2514. gp->dev = dev;
  2515. gp->msg_enable = DEFAULT_MSG;
  2516. spin_lock_init(&gp->lock);
  2517. spin_lock_init(&gp->tx_lock);
  2518. init_MUTEX(&gp->pm_sem);
  2519. init_timer(&gp->link_timer);
  2520. gp->link_timer.function = gem_link_timer;
  2521. gp->link_timer.data = (unsigned long) gp;
  2522. INIT_WORK(&gp->reset_task, gem_reset_task, gp);
  2523. gp->lstate = link_down;
  2524. gp->timer_ticks = 0;
  2525. netif_carrier_off(dev);
  2526. gp->regs = ioremap(gemreg_base, gemreg_len);
  2527. if (gp->regs == 0UL) {
  2528. printk(KERN_ERR PFX "Cannot map device registers, "
  2529. "aborting.\n");
  2530. err = -EIO;
  2531. goto err_out_free_res;
  2532. }
  2533. /* On Apple, we want a reference to the Open Firmware device-tree
  2534. * node. We use it for clock control.
  2535. */
  2536. #ifdef CONFIG_PPC_PMAC
  2537. gp->of_node = pci_device_to_OF_node(pdev);
  2538. #endif
  2539. /* Only Apple version supports WOL afaik */
  2540. if (pdev->vendor == PCI_VENDOR_ID_APPLE)
  2541. gp->has_wol = 1;
  2542. /* Make sure cell is enabled */
  2543. gem_get_cell(gp);
  2544. /* Make sure everything is stopped and in init state */
  2545. gem_reset(gp);
  2546. /* Fill up the mii_phy structure (even if we won't use it) */
  2547. gp->phy_mii.dev = dev;
  2548. gp->phy_mii.mdio_read = _phy_read;
  2549. gp->phy_mii.mdio_write = _phy_write;
  2550. /* By default, we start with autoneg */
  2551. gp->want_autoneg = 1;
  2552. /* Check fifo sizes, PHY type, etc... */
  2553. if (gem_check_invariants(gp)) {
  2554. err = -ENODEV;
  2555. goto err_out_iounmap;
  2556. }
  2557. /* It is guaranteed that the returned buffer will be at least
  2558. * PAGE_SIZE aligned.
  2559. */
  2560. gp->init_block = (struct gem_init_block *)
  2561. pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
  2562. &gp->gblock_dvma);
  2563. if (!gp->init_block) {
  2564. printk(KERN_ERR PFX "Cannot allocate init block, "
  2565. "aborting.\n");
  2566. err = -ENOMEM;
  2567. goto err_out_iounmap;
  2568. }
  2569. if (gem_get_device_address(gp))
  2570. goto err_out_free_consistent;
  2571. dev->open = gem_open;
  2572. dev->stop = gem_close;
  2573. dev->hard_start_xmit = gem_start_xmit;
  2574. dev->get_stats = gem_get_stats;
  2575. dev->set_multicast_list = gem_set_multicast;
  2576. dev->do_ioctl = gem_ioctl;
  2577. dev->poll = gem_poll;
  2578. dev->weight = 64;
  2579. dev->ethtool_ops = &gem_ethtool_ops;
  2580. dev->tx_timeout = gem_tx_timeout;
  2581. dev->watchdog_timeo = 5 * HZ;
  2582. dev->change_mtu = gem_change_mtu;
  2583. dev->irq = pdev->irq;
  2584. dev->dma = 0;
  2585. #ifdef CONFIG_NET_POLL_CONTROLLER
  2586. dev->poll_controller = gem_poll_controller;
  2587. #endif
  2588. /* Set that now, in case PM kicks in now */
  2589. pci_set_drvdata(pdev, dev);
  2590. /* Detect & init PHY, start autoneg, we release the cell now
  2591. * too, it will be managed by whoever needs it
  2592. */
  2593. gem_init_phy(gp);
  2594. spin_lock_irq(&gp->lock);
  2595. gem_put_cell(gp);
  2596. spin_unlock_irq(&gp->lock);
  2597. /* Register with kernel */
  2598. if (register_netdev(dev)) {
  2599. printk(KERN_ERR PFX "Cannot register net device, "
  2600. "aborting.\n");
  2601. err = -ENOMEM;
  2602. goto err_out_free_consistent;
  2603. }
  2604. printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet ",
  2605. dev->name);
  2606. for (i = 0; i < 6; i++)
  2607. printk("%2.2x%c", dev->dev_addr[i],
  2608. i == 5 ? ' ' : ':');
  2609. printk("\n");
  2610. if (gp->phy_type == phy_mii_mdio0 ||
  2611. gp->phy_type == phy_mii_mdio1)
  2612. printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
  2613. gp->phy_mii.def ? gp->phy_mii.def->name : "no");
  2614. /* GEM can do it all... */
  2615. dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
  2616. if (pci_using_dac)
  2617. dev->features |= NETIF_F_HIGHDMA;
  2618. return 0;
  2619. err_out_free_consistent:
  2620. gem_remove_one(pdev);
  2621. err_out_iounmap:
  2622. gem_put_cell(gp);
  2623. iounmap(gp->regs);
  2624. err_out_free_res:
  2625. pci_release_regions(pdev);
  2626. err_out_free_netdev:
  2627. free_netdev(dev);
  2628. err_disable_device:
  2629. pci_disable_device(pdev);
  2630. return err;
  2631. }
  2632. static struct pci_driver gem_driver = {
  2633. .name = GEM_MODULE_NAME,
  2634. .id_table = gem_pci_tbl,
  2635. .probe = gem_init_one,
  2636. .remove = __devexit_p(gem_remove_one),
  2637. #ifdef CONFIG_PM
  2638. .suspend = gem_suspend,
  2639. .resume = gem_resume,
  2640. #endif /* CONFIG_PM */
  2641. };
  2642. static int __init gem_init(void)
  2643. {
  2644. return pci_module_init(&gem_driver);
  2645. }
  2646. static void __exit gem_cleanup(void)
  2647. {
  2648. pci_unregister_driver(&gem_driver);
  2649. }
  2650. module_init(gem_init);
  2651. module_exit(gem_cleanup);