ns83820.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222
  1. #define _VERSION "0.20"
  2. /* ns83820.c by Benjamin LaHaise with contributions.
  3. *
  4. * Questions/comments/discussion to linux-ns83820@kvack.org.
  5. *
  6. * $Revision: 1.34.2.23 $
  7. *
  8. * Copyright 2001 Benjamin LaHaise.
  9. * Copyright 2001, 2002 Red Hat.
  10. *
  11. * Mmmm, chocolate vanilla mocha...
  12. *
  13. *
  14. * This program is free software; you can redistribute it and/or modify
  15. * it under the terms of the GNU General Public License as published by
  16. * the Free Software Foundation; either version 2 of the License, or
  17. * (at your option) any later version.
  18. *
  19. * This program is distributed in the hope that it will be useful,
  20. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  22. * GNU General Public License for more details.
  23. *
  24. * You should have received a copy of the GNU General Public License
  25. * along with this program; if not, write to the Free Software
  26. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  27. *
  28. *
  29. * ChangeLog
  30. * =========
  31. * 20010414 0.1 - created
  32. * 20010622 0.2 - basic rx and tx.
  33. * 20010711 0.3 - added duplex and link state detection support.
  34. * 20010713 0.4 - zero copy, no hangs.
  35. * 0.5 - 64 bit dma support (davem will hate me for this)
  36. * - disable jumbo frames to avoid tx hangs
  37. * - work around tx deadlocks on my 1.02 card via
  38. * fiddling with TXCFG
  39. * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64
  40. * 20010816 0.7 - misc cleanups
  41. * 20010826 0.8 - fix critical zero copy bugs
  42. * 0.9 - internal experiment
  43. * 20010827 0.10 - fix ia64 unaligned access.
  44. * 20010906 0.11 - accept all packets with checksum errors as
  45. * otherwise fragments get lost
  46. * - fix >> 32 bugs
  47. * 0.12 - add statistics counters
  48. * - add allmulti/promisc support
  49. * 20011009 0.13 - hotplug support, other smaller pci api cleanups
  50. * 20011204 0.13a - optical transceiver support added
  51. * by Michael Clark <michael@metaparadigm.com>
  52. * 20011205 0.13b - call register_netdev earlier in initialization
  53. * suppress duplicate link status messages
  54. * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  55. * 20011204 0.15 get ppc (big endian) working
  56. * 20011218 0.16 various cleanups
  57. * 20020310 0.17 speedups
  58. * 20020610 0.18 - actually use the pci dma api for highmem
  59. * - remove pci latency register fiddling
  60. * 0.19 - better bist support
  61. * - add ihr and reset_phy parameters
  62. * - gmii bus probing
  63. * - fix missed txok introduced during performance
  64. * tuning
  65. * 0.20 - fix stupid RFEN thinko. i am such a smurf.
  66. *
  67. * 20040828 0.21 - add hardware vlan accleration
  68. * by Neil Horman <nhorman@redhat.com>
  69. * Driver Overview
  70. * ===============
  71. *
  72. * This driver was originally written for the National Semiconductor
  73. * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully
  74. * this code will turn out to be a) clean, b) correct, and c) fast.
  75. * With that in mind, I'm aiming to split the code up as much as
  76. * reasonably possible. At present there are X major sections that
  77. * break down into a) packet receive, b) packet transmit, c) link
  78. * management, d) initialization and configuration. Where possible,
  79. * these code paths are designed to run in parallel.
  80. *
  81. * This driver has been tested and found to work with the following
  82. * cards (in no particular order):
  83. *
  84. * Cameo SOHO-GA2000T SOHO-GA2500T
  85. * D-Link DGE-500T
  86. * PureData PDP8023Z-TG
  87. * SMC SMC9452TX SMC9462TX
  88. * Netgear GA621
  89. *
  90. * Special thanks to SMC for providing hardware to test this driver on.
  91. *
  92. * Reports of success or failure would be greatly appreciated.
  93. */
  94. //#define dprintk printk
  95. #define dprintk(x...) do { } while (0)
  96. #include <linux/config.h>
  97. #include <linux/module.h>
  98. #include <linux/moduleparam.h>
  99. #include <linux/types.h>
  100. #include <linux/pci.h>
  101. #include <linux/netdevice.h>
  102. #include <linux/etherdevice.h>
  103. #include <linux/delay.h>
  104. #include <linux/smp_lock.h>
  105. #include <linux/workqueue.h>
  106. #include <linux/init.h>
  107. #include <linux/ip.h> /* for iph */
  108. #include <linux/in.h> /* for IPPROTO_... */
  109. #include <linux/eeprom.h>
  110. #include <linux/compiler.h>
  111. #include <linux/prefetch.h>
  112. #include <linux/ethtool.h>
  113. #include <linux/timer.h>
  114. #include <linux/if_vlan.h>
  115. #include <asm/io.h>
  116. #include <asm/uaccess.h>
  117. #include <asm/system.h>
  118. #define DRV_NAME "ns83820"
  119. /* Global parameters. See module_param near the bottom. */
  120. static int ihr = 2;
  121. static int reset_phy = 0;
  122. static int lnksts = 0; /* CFG_LNKSTS bit polarity */
  123. /* Dprintk is used for more interesting debug events */
  124. #undef Dprintk
  125. #define Dprintk dprintk
  126. #if defined(CONFIG_HIGHMEM64G) || defined(__ia64__)
  127. #define USE_64BIT_ADDR "+"
  128. #endif
  129. #if defined(USE_64BIT_ADDR)
  130. #define VERSION _VERSION USE_64BIT_ADDR
  131. #define TRY_DAC 1
  132. #else
  133. #define VERSION _VERSION
  134. #define TRY_DAC 0
  135. #endif
  136. /* tunables */
  137. #define RX_BUF_SIZE 1500 /* 8192 */
  138. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  139. #define NS83820_VLAN_ACCEL_SUPPORT
  140. #endif
  141. /* Must not exceed ~65000. */
  142. #define NR_RX_DESC 64
  143. #define NR_TX_DESC 128
  144. /* not tunable */
  145. #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */
  146. #define MIN_TX_DESC_FREE 8
  147. /* register defines */
  148. #define CFGCS 0x04
  149. #define CR_TXE 0x00000001
  150. #define CR_TXD 0x00000002
  151. /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
  152. * The Receive engine skips one descriptor and moves
  153. * onto the next one!! */
  154. #define CR_RXE 0x00000004
  155. #define CR_RXD 0x00000008
  156. #define CR_TXR 0x00000010
  157. #define CR_RXR 0x00000020
  158. #define CR_SWI 0x00000080
  159. #define CR_RST 0x00000100
  160. #define PTSCR_EEBIST_FAIL 0x00000001
  161. #define PTSCR_EEBIST_EN 0x00000002
  162. #define PTSCR_EELOAD_EN 0x00000004
  163. #define PTSCR_RBIST_FAIL 0x000001b8
  164. #define PTSCR_RBIST_DONE 0x00000200
  165. #define PTSCR_RBIST_EN 0x00000400
  166. #define PTSCR_RBIST_RST 0x00002000
  167. #define MEAR_EEDI 0x00000001
  168. #define MEAR_EEDO 0x00000002
  169. #define MEAR_EECLK 0x00000004
  170. #define MEAR_EESEL 0x00000008
  171. #define MEAR_MDIO 0x00000010
  172. #define MEAR_MDDIR 0x00000020
  173. #define MEAR_MDC 0x00000040
  174. #define ISR_TXDESC3 0x40000000
  175. #define ISR_TXDESC2 0x20000000
  176. #define ISR_TXDESC1 0x10000000
  177. #define ISR_TXDESC0 0x08000000
  178. #define ISR_RXDESC3 0x04000000
  179. #define ISR_RXDESC2 0x02000000
  180. #define ISR_RXDESC1 0x01000000
  181. #define ISR_RXDESC0 0x00800000
  182. #define ISR_TXRCMP 0x00400000
  183. #define ISR_RXRCMP 0x00200000
  184. #define ISR_DPERR 0x00100000
  185. #define ISR_SSERR 0x00080000
  186. #define ISR_RMABT 0x00040000
  187. #define ISR_RTABT 0x00020000
  188. #define ISR_RXSOVR 0x00010000
  189. #define ISR_HIBINT 0x00008000
  190. #define ISR_PHY 0x00004000
  191. #define ISR_PME 0x00002000
  192. #define ISR_SWI 0x00001000
  193. #define ISR_MIB 0x00000800
  194. #define ISR_TXURN 0x00000400
  195. #define ISR_TXIDLE 0x00000200
  196. #define ISR_TXERR 0x00000100
  197. #define ISR_TXDESC 0x00000080
  198. #define ISR_TXOK 0x00000040
  199. #define ISR_RXORN 0x00000020
  200. #define ISR_RXIDLE 0x00000010
  201. #define ISR_RXEARLY 0x00000008
  202. #define ISR_RXERR 0x00000004
  203. #define ISR_RXDESC 0x00000002
  204. #define ISR_RXOK 0x00000001
  205. #define TXCFG_CSI 0x80000000
  206. #define TXCFG_HBI 0x40000000
  207. #define TXCFG_MLB 0x20000000
  208. #define TXCFG_ATP 0x10000000
  209. #define TXCFG_ECRETRY 0x00800000
  210. #define TXCFG_BRST_DIS 0x00080000
  211. #define TXCFG_MXDMA1024 0x00000000
  212. #define TXCFG_MXDMA512 0x00700000
  213. #define TXCFG_MXDMA256 0x00600000
  214. #define TXCFG_MXDMA128 0x00500000
  215. #define TXCFG_MXDMA64 0x00400000
  216. #define TXCFG_MXDMA32 0x00300000
  217. #define TXCFG_MXDMA16 0x00200000
  218. #define TXCFG_MXDMA8 0x00100000
  219. #define CFG_LNKSTS 0x80000000
  220. #define CFG_SPDSTS 0x60000000
  221. #define CFG_SPDSTS1 0x40000000
  222. #define CFG_SPDSTS0 0x20000000
  223. #define CFG_DUPSTS 0x10000000
  224. #define CFG_TBI_EN 0x01000000
  225. #define CFG_MODE_1000 0x00400000
  226. /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
  227. * Read the Phy response and then configure the MAC accordingly */
  228. #define CFG_AUTO_1000 0x00200000
  229. #define CFG_PINT_CTL 0x001c0000
  230. #define CFG_PINT_DUPSTS 0x00100000
  231. #define CFG_PINT_LNKSTS 0x00080000
  232. #define CFG_PINT_SPDSTS 0x00040000
  233. #define CFG_TMRTEST 0x00020000
  234. #define CFG_MRM_DIS 0x00010000
  235. #define CFG_MWI_DIS 0x00008000
  236. #define CFG_T64ADDR 0x00004000
  237. #define CFG_PCI64_DET 0x00002000
  238. #define CFG_DATA64_EN 0x00001000
  239. #define CFG_M64ADDR 0x00000800
  240. #define CFG_PHY_RST 0x00000400
  241. #define CFG_PHY_DIS 0x00000200
  242. #define CFG_EXTSTS_EN 0x00000100
  243. #define CFG_REQALG 0x00000080
  244. #define CFG_SB 0x00000040
  245. #define CFG_POW 0x00000020
  246. #define CFG_EXD 0x00000010
  247. #define CFG_PESEL 0x00000008
  248. #define CFG_BROM_DIS 0x00000004
  249. #define CFG_EXT_125 0x00000002
  250. #define CFG_BEM 0x00000001
  251. #define EXTSTS_UDPPKT 0x00200000
  252. #define EXTSTS_TCPPKT 0x00080000
  253. #define EXTSTS_IPPKT 0x00020000
  254. #define EXTSTS_VPKT 0x00010000
  255. #define EXTSTS_VTG_MASK 0x0000ffff
  256. #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
  257. #define MIBC_MIBS 0x00000008
  258. #define MIBC_ACLR 0x00000004
  259. #define MIBC_FRZ 0x00000002
  260. #define MIBC_WRN 0x00000001
  261. #define PCR_PSEN (1 << 31)
  262. #define PCR_PS_MCAST (1 << 30)
  263. #define PCR_PS_DA (1 << 29)
  264. #define PCR_STHI_8 (3 << 23)
  265. #define PCR_STLO_4 (1 << 23)
  266. #define PCR_FFHI_8K (3 << 21)
  267. #define PCR_FFLO_4K (1 << 21)
  268. #define PCR_PAUSE_CNT 0xFFFE
  269. #define RXCFG_AEP 0x80000000
  270. #define RXCFG_ARP 0x40000000
  271. #define RXCFG_STRIPCRC 0x20000000
  272. #define RXCFG_RX_FD 0x10000000
  273. #define RXCFG_ALP 0x08000000
  274. #define RXCFG_AIRL 0x04000000
  275. #define RXCFG_MXDMA512 0x00700000
  276. #define RXCFG_DRTH 0x0000003e
  277. #define RXCFG_DRTH0 0x00000002
  278. #define RFCR_RFEN 0x80000000
  279. #define RFCR_AAB 0x40000000
  280. #define RFCR_AAM 0x20000000
  281. #define RFCR_AAU 0x10000000
  282. #define RFCR_APM 0x08000000
  283. #define RFCR_APAT 0x07800000
  284. #define RFCR_APAT3 0x04000000
  285. #define RFCR_APAT2 0x02000000
  286. #define RFCR_APAT1 0x01000000
  287. #define RFCR_APAT0 0x00800000
  288. #define RFCR_AARP 0x00400000
  289. #define RFCR_MHEN 0x00200000
  290. #define RFCR_UHEN 0x00100000
  291. #define RFCR_ULM 0x00080000
  292. #define VRCR_RUDPE 0x00000080
  293. #define VRCR_RTCPE 0x00000040
  294. #define VRCR_RIPE 0x00000020
  295. #define VRCR_IPEN 0x00000010
  296. #define VRCR_DUTF 0x00000008
  297. #define VRCR_DVTF 0x00000004
  298. #define VRCR_VTREN 0x00000002
  299. #define VRCR_VTDEN 0x00000001
  300. #define VTCR_PPCHK 0x00000008
  301. #define VTCR_GCHK 0x00000004
  302. #define VTCR_VPPTI 0x00000002
  303. #define VTCR_VGTI 0x00000001
  304. #define CR 0x00
  305. #define CFG 0x04
  306. #define MEAR 0x08
  307. #define PTSCR 0x0c
  308. #define ISR 0x10
  309. #define IMR 0x14
  310. #define IER 0x18
  311. #define IHR 0x1c
  312. #define TXDP 0x20
  313. #define TXDP_HI 0x24
  314. #define TXCFG 0x28
  315. #define GPIOR 0x2c
  316. #define RXDP 0x30
  317. #define RXDP_HI 0x34
  318. #define RXCFG 0x38
  319. #define PQCR 0x3c
  320. #define WCSR 0x40
  321. #define PCR 0x44
  322. #define RFCR 0x48
  323. #define RFDR 0x4c
  324. #define SRR 0x58
  325. #define VRCR 0xbc
  326. #define VTCR 0xc0
  327. #define VDR 0xc4
  328. #define CCSR 0xcc
  329. #define TBICR 0xe0
  330. #define TBISR 0xe4
  331. #define TANAR 0xe8
  332. #define TANLPAR 0xec
  333. #define TANER 0xf0
  334. #define TESR 0xf4
  335. #define TBICR_MR_AN_ENABLE 0x00001000
  336. #define TBICR_MR_RESTART_AN 0x00000200
  337. #define TBISR_MR_LINK_STATUS 0x00000020
  338. #define TBISR_MR_AN_COMPLETE 0x00000004
  339. #define TANAR_PS2 0x00000100
  340. #define TANAR_PS1 0x00000080
  341. #define TANAR_HALF_DUP 0x00000040
  342. #define TANAR_FULL_DUP 0x00000020
  343. #define GPIOR_GP5_OE 0x00000200
  344. #define GPIOR_GP4_OE 0x00000100
  345. #define GPIOR_GP3_OE 0x00000080
  346. #define GPIOR_GP2_OE 0x00000040
  347. #define GPIOR_GP1_OE 0x00000020
  348. #define GPIOR_GP3_OUT 0x00000004
  349. #define GPIOR_GP1_OUT 0x00000001
  350. #define LINK_AUTONEGOTIATE 0x01
  351. #define LINK_DOWN 0x02
  352. #define LINK_UP 0x04
  353. #ifdef USE_64BIT_ADDR
  354. #define HW_ADDR_LEN 8
  355. #define desc_addr_set(desc, addr) \
  356. do { \
  357. u64 __addr = (addr); \
  358. (desc)[0] = cpu_to_le32(__addr); \
  359. (desc)[1] = cpu_to_le32(__addr >> 32); \
  360. } while(0)
  361. #define desc_addr_get(desc) \
  362. (((u64)le32_to_cpu((desc)[1]) << 32) \
  363. | le32_to_cpu((desc)[0]))
  364. #else
  365. #define HW_ADDR_LEN 4
  366. #define desc_addr_set(desc, addr) ((desc)[0] = cpu_to_le32(addr))
  367. #define desc_addr_get(desc) (le32_to_cpu((desc)[0]))
  368. #endif
  369. #define DESC_LINK 0
  370. #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4)
  371. #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4)
  372. #define DESC_EXTSTS (DESC_CMDSTS + 4/4)
  373. #define CMDSTS_OWN 0x80000000
  374. #define CMDSTS_MORE 0x40000000
  375. #define CMDSTS_INTR 0x20000000
  376. #define CMDSTS_ERR 0x10000000
  377. #define CMDSTS_OK 0x08000000
  378. #define CMDSTS_RUNT 0x00200000
  379. #define CMDSTS_LEN_MASK 0x0000ffff
  380. #define CMDSTS_DEST_MASK 0x01800000
  381. #define CMDSTS_DEST_SELF 0x00800000
  382. #define CMDSTS_DEST_MULTI 0x01000000
  383. #define DESC_SIZE 8 /* Should be cache line sized */
  384. struct rx_info {
  385. spinlock_t lock;
  386. int up;
  387. long idle;
  388. struct sk_buff *skbs[NR_RX_DESC];
  389. u32 *next_rx_desc;
  390. u16 next_rx, next_empty;
  391. u32 *descs;
  392. dma_addr_t phy_descs;
  393. };
  394. struct ns83820 {
  395. struct net_device_stats stats;
  396. u8 __iomem *base;
  397. struct pci_dev *pci_dev;
  398. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  399. struct vlan_group *vlgrp;
  400. #endif
  401. struct rx_info rx_info;
  402. struct tasklet_struct rx_tasklet;
  403. unsigned ihr;
  404. struct work_struct tq_refill;
  405. /* protects everything below. irqsave when using. */
  406. spinlock_t misc_lock;
  407. u32 CFG_cache;
  408. u32 MEAR_cache;
  409. u32 IMR_cache;
  410. struct eeprom ee;
  411. unsigned linkstate;
  412. spinlock_t tx_lock;
  413. u16 tx_done_idx;
  414. u16 tx_idx;
  415. volatile u16 tx_free_idx; /* idx of free desc chain */
  416. u16 tx_intr_idx;
  417. atomic_t nr_tx_skbs;
  418. struct sk_buff *tx_skbs[NR_TX_DESC];
  419. char pad[16] __attribute__((aligned(16)));
  420. u32 *tx_descs;
  421. dma_addr_t tx_phy_descs;
  422. struct timer_list tx_watchdog;
  423. };
  424. static inline struct ns83820 *PRIV(struct net_device *dev)
  425. {
  426. return netdev_priv(dev);
  427. }
  428. #define __kick_rx(dev) writel(CR_RXE, dev->base + CR)
  429. static inline void kick_rx(struct net_device *ndev)
  430. {
  431. struct ns83820 *dev = PRIV(ndev);
  432. dprintk("kick_rx: maybe kicking\n");
  433. if (test_and_clear_bit(0, &dev->rx_info.idle)) {
  434. dprintk("actually kicking\n");
  435. writel(dev->rx_info.phy_descs +
  436. (4 * DESC_SIZE * dev->rx_info.next_rx),
  437. dev->base + RXDP);
  438. if (dev->rx_info.next_rx == dev->rx_info.next_empty)
  439. printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
  440. ndev->name);
  441. __kick_rx(dev);
  442. }
  443. }
  444. //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
  445. #define start_tx_okay(dev) \
  446. (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
  447. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  448. static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  449. {
  450. struct ns83820 *dev = PRIV(ndev);
  451. spin_lock_irq(&dev->misc_lock);
  452. spin_lock(&dev->tx_lock);
  453. dev->vlgrp = grp;
  454. spin_unlock(&dev->tx_lock);
  455. spin_unlock_irq(&dev->misc_lock);
  456. }
  457. static void ns83820_vlan_rx_kill_vid(struct net_device *ndev, unsigned short vid)
  458. {
  459. struct ns83820 *dev = PRIV(ndev);
  460. spin_lock_irq(&dev->misc_lock);
  461. spin_lock(&dev->tx_lock);
  462. if (dev->vlgrp)
  463. dev->vlgrp->vlan_devices[vid] = NULL;
  464. spin_unlock(&dev->tx_lock);
  465. spin_unlock_irq(&dev->misc_lock);
  466. }
  467. #endif
  468. /* Packet Receiver
  469. *
  470. * The hardware supports linked lists of receive descriptors for
  471. * which ownership is transfered back and forth by means of an
  472. * ownership bit. While the hardware does support the use of a
  473. * ring for receive descriptors, we only make use of a chain in
  474. * an attempt to reduce bus traffic under heavy load scenarios.
  475. * This will also make bugs a bit more obvious. The current code
  476. * only makes use of a single rx chain; I hope to implement
  477. * priority based rx for version 1.0. Goal: even under overload
  478. * conditions, still route realtime traffic with as low jitter as
  479. * possible.
  480. */
  481. static inline void build_rx_desc(struct ns83820 *dev, u32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
  482. {
  483. desc_addr_set(desc + DESC_LINK, link);
  484. desc_addr_set(desc + DESC_BUFPTR, buf);
  485. desc[DESC_EXTSTS] = cpu_to_le32(extsts);
  486. mb();
  487. desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
  488. }
  489. #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
  490. static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
  491. {
  492. unsigned next_empty;
  493. u32 cmdsts;
  494. u32 *sg;
  495. dma_addr_t buf;
  496. next_empty = dev->rx_info.next_empty;
  497. /* don't overrun last rx marker */
  498. if (unlikely(nr_rx_empty(dev) <= 2)) {
  499. kfree_skb(skb);
  500. return 1;
  501. }
  502. #if 0
  503. dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
  504. dev->rx_info.next_empty,
  505. dev->rx_info.nr_used,
  506. dev->rx_info.next_rx
  507. );
  508. #endif
  509. sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
  510. if (unlikely(NULL != dev->rx_info.skbs[next_empty]))
  511. BUG();
  512. dev->rx_info.skbs[next_empty] = skb;
  513. dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
  514. cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
  515. buf = pci_map_single(dev->pci_dev, skb->tail,
  516. REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  517. build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
  518. /* update link of previous rx */
  519. if (likely(next_empty != dev->rx_info.next_rx))
  520. dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
  521. return 0;
  522. }
  523. static inline int rx_refill(struct net_device *ndev, int gfp)
  524. {
  525. struct ns83820 *dev = PRIV(ndev);
  526. unsigned i;
  527. unsigned long flags = 0;
  528. if (unlikely(nr_rx_empty(dev) <= 2))
  529. return 0;
  530. dprintk("rx_refill(%p)\n", ndev);
  531. if (gfp == GFP_ATOMIC)
  532. spin_lock_irqsave(&dev->rx_info.lock, flags);
  533. for (i=0; i<NR_RX_DESC; i++) {
  534. struct sk_buff *skb;
  535. long res;
  536. /* extra 16 bytes for alignment */
  537. skb = __dev_alloc_skb(REAL_RX_BUF_SIZE+16, gfp);
  538. if (unlikely(!skb))
  539. break;
  540. res = (long)skb->tail & 0xf;
  541. res = 0x10 - res;
  542. res &= 0xf;
  543. skb_reserve(skb, res);
  544. skb->dev = ndev;
  545. if (gfp != GFP_ATOMIC)
  546. spin_lock_irqsave(&dev->rx_info.lock, flags);
  547. res = ns83820_add_rx_skb(dev, skb);
  548. if (gfp != GFP_ATOMIC)
  549. spin_unlock_irqrestore(&dev->rx_info.lock, flags);
  550. if (res) {
  551. i = 1;
  552. break;
  553. }
  554. }
  555. if (gfp == GFP_ATOMIC)
  556. spin_unlock_irqrestore(&dev->rx_info.lock, flags);
  557. return i ? 0 : -ENOMEM;
  558. }
  559. static void FASTCALL(rx_refill_atomic(struct net_device *ndev));
  560. static void fastcall rx_refill_atomic(struct net_device *ndev)
  561. {
  562. rx_refill(ndev, GFP_ATOMIC);
  563. }
  564. /* REFILL */
  565. static inline void queue_refill(void *_dev)
  566. {
  567. struct net_device *ndev = _dev;
  568. struct ns83820 *dev = PRIV(ndev);
  569. rx_refill(ndev, GFP_KERNEL);
  570. if (dev->rx_info.up)
  571. kick_rx(ndev);
  572. }
  573. static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
  574. {
  575. build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
  576. }
  577. static void FASTCALL(phy_intr(struct net_device *ndev));
  578. static void fastcall phy_intr(struct net_device *ndev)
  579. {
  580. struct ns83820 *dev = PRIV(ndev);
  581. static char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
  582. u32 cfg, new_cfg;
  583. u32 tbisr, tanar, tanlpar;
  584. int speed, fullduplex, newlinkstate;
  585. cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  586. if (dev->CFG_cache & CFG_TBI_EN) {
  587. /* we have an optical transceiver */
  588. tbisr = readl(dev->base + TBISR);
  589. tanar = readl(dev->base + TANAR);
  590. tanlpar = readl(dev->base + TANLPAR);
  591. dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
  592. tbisr, tanar, tanlpar);
  593. if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
  594. && (tanar & TANAR_FULL_DUP)) ) {
  595. /* both of us are full duplex */
  596. writel(readl(dev->base + TXCFG)
  597. | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
  598. dev->base + TXCFG);
  599. writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
  600. dev->base + RXCFG);
  601. /* Light up full duplex LED */
  602. writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
  603. dev->base + GPIOR);
  604. } else if(((tanlpar & TANAR_HALF_DUP)
  605. && (tanar & TANAR_HALF_DUP))
  606. || ((tanlpar & TANAR_FULL_DUP)
  607. && (tanar & TANAR_HALF_DUP))
  608. || ((tanlpar & TANAR_HALF_DUP)
  609. && (tanar & TANAR_FULL_DUP))) {
  610. /* one or both of us are half duplex */
  611. writel((readl(dev->base + TXCFG)
  612. & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
  613. dev->base + TXCFG);
  614. writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
  615. dev->base + RXCFG);
  616. /* Turn off full duplex LED */
  617. writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
  618. dev->base + GPIOR);
  619. }
  620. speed = 4; /* 1000F */
  621. } else {
  622. /* we have a copper transceiver */
  623. new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
  624. if (cfg & CFG_SPDSTS1)
  625. new_cfg |= CFG_MODE_1000;
  626. else
  627. new_cfg &= ~CFG_MODE_1000;
  628. speed = ((cfg / CFG_SPDSTS0) & 3);
  629. fullduplex = (cfg & CFG_DUPSTS);
  630. if (fullduplex)
  631. new_cfg |= CFG_SB;
  632. if ((cfg & CFG_LNKSTS) &&
  633. ((new_cfg ^ dev->CFG_cache) & CFG_MODE_1000)) {
  634. writel(new_cfg, dev->base + CFG);
  635. dev->CFG_cache = new_cfg;
  636. }
  637. dev->CFG_cache &= ~CFG_SPDSTS;
  638. dev->CFG_cache |= cfg & CFG_SPDSTS;
  639. }
  640. newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
  641. if (newlinkstate & LINK_UP
  642. && dev->linkstate != newlinkstate) {
  643. netif_start_queue(ndev);
  644. netif_wake_queue(ndev);
  645. printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
  646. ndev->name,
  647. speeds[speed],
  648. fullduplex ? "full" : "half");
  649. } else if (newlinkstate & LINK_DOWN
  650. && dev->linkstate != newlinkstate) {
  651. netif_stop_queue(ndev);
  652. printk(KERN_INFO "%s: link now down.\n", ndev->name);
  653. }
  654. dev->linkstate = newlinkstate;
  655. }
  656. static int ns83820_setup_rx(struct net_device *ndev)
  657. {
  658. struct ns83820 *dev = PRIV(ndev);
  659. unsigned i;
  660. int ret;
  661. dprintk("ns83820_setup_rx(%p)\n", ndev);
  662. dev->rx_info.idle = 1;
  663. dev->rx_info.next_rx = 0;
  664. dev->rx_info.next_rx_desc = dev->rx_info.descs;
  665. dev->rx_info.next_empty = 0;
  666. for (i=0; i<NR_RX_DESC; i++)
  667. clear_rx_desc(dev, i);
  668. writel(0, dev->base + RXDP_HI);
  669. writel(dev->rx_info.phy_descs, dev->base + RXDP);
  670. ret = rx_refill(ndev, GFP_KERNEL);
  671. if (!ret) {
  672. dprintk("starting receiver\n");
  673. /* prevent the interrupt handler from stomping on us */
  674. spin_lock_irq(&dev->rx_info.lock);
  675. writel(0x0001, dev->base + CCSR);
  676. writel(0, dev->base + RFCR);
  677. writel(0x7fc00000, dev->base + RFCR);
  678. writel(0xffc00000, dev->base + RFCR);
  679. dev->rx_info.up = 1;
  680. phy_intr(ndev);
  681. /* Okay, let it rip */
  682. spin_lock_irq(&dev->misc_lock);
  683. dev->IMR_cache |= ISR_PHY;
  684. dev->IMR_cache |= ISR_RXRCMP;
  685. //dev->IMR_cache |= ISR_RXERR;
  686. //dev->IMR_cache |= ISR_RXOK;
  687. dev->IMR_cache |= ISR_RXORN;
  688. dev->IMR_cache |= ISR_RXSOVR;
  689. dev->IMR_cache |= ISR_RXDESC;
  690. dev->IMR_cache |= ISR_RXIDLE;
  691. dev->IMR_cache |= ISR_TXDESC;
  692. dev->IMR_cache |= ISR_TXIDLE;
  693. writel(dev->IMR_cache, dev->base + IMR);
  694. writel(1, dev->base + IER);
  695. spin_unlock_irq(&dev->misc_lock);
  696. kick_rx(ndev);
  697. spin_unlock_irq(&dev->rx_info.lock);
  698. }
  699. return ret;
  700. }
  701. static void ns83820_cleanup_rx(struct ns83820 *dev)
  702. {
  703. unsigned i;
  704. unsigned long flags;
  705. dprintk("ns83820_cleanup_rx(%p)\n", dev);
  706. /* disable receive interrupts */
  707. spin_lock_irqsave(&dev->misc_lock, flags);
  708. dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
  709. writel(dev->IMR_cache, dev->base + IMR);
  710. spin_unlock_irqrestore(&dev->misc_lock, flags);
  711. /* synchronize with the interrupt handler and kill it */
  712. dev->rx_info.up = 0;
  713. synchronize_irq(dev->pci_dev->irq);
  714. /* touch the pci bus... */
  715. readl(dev->base + IMR);
  716. /* assumes the transmitter is already disabled and reset */
  717. writel(0, dev->base + RXDP_HI);
  718. writel(0, dev->base + RXDP);
  719. for (i=0; i<NR_RX_DESC; i++) {
  720. struct sk_buff *skb = dev->rx_info.skbs[i];
  721. dev->rx_info.skbs[i] = NULL;
  722. clear_rx_desc(dev, i);
  723. if (skb)
  724. kfree_skb(skb);
  725. }
  726. }
  727. static void FASTCALL(ns83820_rx_kick(struct net_device *ndev));
  728. static void fastcall ns83820_rx_kick(struct net_device *ndev)
  729. {
  730. struct ns83820 *dev = PRIV(ndev);
  731. /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
  732. if (dev->rx_info.up) {
  733. rx_refill_atomic(ndev);
  734. kick_rx(ndev);
  735. }
  736. }
  737. if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
  738. schedule_work(&dev->tq_refill);
  739. else
  740. kick_rx(ndev);
  741. if (dev->rx_info.idle)
  742. printk(KERN_DEBUG "%s: BAD\n", ndev->name);
  743. }
  744. /* rx_irq
  745. *
  746. */
  747. static void FASTCALL(rx_irq(struct net_device *ndev));
  748. static void fastcall rx_irq(struct net_device *ndev)
  749. {
  750. struct ns83820 *dev = PRIV(ndev);
  751. struct rx_info *info = &dev->rx_info;
  752. unsigned next_rx;
  753. int rx_rc, len;
  754. u32 cmdsts, *desc;
  755. unsigned long flags;
  756. int nr = 0;
  757. dprintk("rx_irq(%p)\n", ndev);
  758. dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
  759. readl(dev->base + RXDP),
  760. (long)(dev->rx_info.phy_descs),
  761. (int)dev->rx_info.next_rx,
  762. (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
  763. (int)dev->rx_info.next_empty,
  764. (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
  765. );
  766. spin_lock_irqsave(&info->lock, flags);
  767. if (!info->up)
  768. goto out;
  769. dprintk("walking descs\n");
  770. next_rx = info->next_rx;
  771. desc = info->next_rx_desc;
  772. while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
  773. (cmdsts != CMDSTS_OWN)) {
  774. struct sk_buff *skb;
  775. u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
  776. dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
  777. dprintk("cmdsts: %08x\n", cmdsts);
  778. dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
  779. dprintk("extsts: %08x\n", extsts);
  780. skb = info->skbs[next_rx];
  781. info->skbs[next_rx] = NULL;
  782. info->next_rx = (next_rx + 1) % NR_RX_DESC;
  783. mb();
  784. clear_rx_desc(dev, next_rx);
  785. pci_unmap_single(dev->pci_dev, bufptr,
  786. RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
  787. len = cmdsts & CMDSTS_LEN_MASK;
  788. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  789. /* NH: As was mentioned below, this chip is kinda
  790. * brain dead about vlan tag stripping. Frames
  791. * that are 64 bytes with a vlan header appended
  792. * like arp frames, or pings, are flagged as Runts
  793. * when the tag is stripped and hardware. This
  794. * also means that the OK bit in the descriptor
  795. * is cleared when the frame comes in so we have
  796. * to do a specific length check here to make sure
  797. * the frame would have been ok, had we not stripped
  798. * the tag.
  799. */
  800. if (likely((CMDSTS_OK & cmdsts) ||
  801. ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
  802. #else
  803. if (likely(CMDSTS_OK & cmdsts)) {
  804. #endif
  805. skb_put(skb, len);
  806. if (unlikely(!skb))
  807. goto netdev_mangle_me_harder_failed;
  808. if (cmdsts & CMDSTS_DEST_MULTI)
  809. dev->stats.multicast ++;
  810. dev->stats.rx_packets ++;
  811. dev->stats.rx_bytes += len;
  812. if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
  813. skb->ip_summed = CHECKSUM_UNNECESSARY;
  814. } else {
  815. skb->ip_summed = CHECKSUM_NONE;
  816. }
  817. skb->protocol = eth_type_trans(skb, ndev);
  818. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  819. if(extsts & EXTSTS_VPKT) {
  820. unsigned short tag;
  821. tag = ntohs(extsts & EXTSTS_VTG_MASK);
  822. rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
  823. } else {
  824. rx_rc = netif_rx(skb);
  825. }
  826. #else
  827. rx_rc = netif_rx(skb);
  828. #endif
  829. if (NET_RX_DROP == rx_rc) {
  830. netdev_mangle_me_harder_failed:
  831. dev->stats.rx_dropped ++;
  832. }
  833. } else {
  834. kfree_skb(skb);
  835. }
  836. nr++;
  837. next_rx = info->next_rx;
  838. desc = info->descs + (DESC_SIZE * next_rx);
  839. }
  840. info->next_rx = next_rx;
  841. info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
  842. out:
  843. if (0 && !nr) {
  844. Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
  845. }
  846. spin_unlock_irqrestore(&info->lock, flags);
  847. }
  848. static void rx_action(unsigned long _dev)
  849. {
  850. struct net_device *ndev = (void *)_dev;
  851. struct ns83820 *dev = PRIV(ndev);
  852. rx_irq(ndev);
  853. writel(ihr, dev->base + IHR);
  854. spin_lock_irq(&dev->misc_lock);
  855. dev->IMR_cache |= ISR_RXDESC;
  856. writel(dev->IMR_cache, dev->base + IMR);
  857. spin_unlock_irq(&dev->misc_lock);
  858. rx_irq(ndev);
  859. ns83820_rx_kick(ndev);
  860. }
  861. /* Packet Transmit code
  862. */
  863. static inline void kick_tx(struct ns83820 *dev)
  864. {
  865. dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
  866. dev, dev->tx_idx, dev->tx_free_idx);
  867. writel(CR_TXE, dev->base + CR);
  868. }
  869. /* No spinlock needed on the transmit irq path as the interrupt handler is
  870. * serialized.
  871. */
  872. static void do_tx_done(struct net_device *ndev)
  873. {
  874. struct ns83820 *dev = PRIV(ndev);
  875. u32 cmdsts, tx_done_idx, *desc;
  876. spin_lock_irq(&dev->tx_lock);
  877. dprintk("do_tx_done(%p)\n", ndev);
  878. tx_done_idx = dev->tx_done_idx;
  879. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  880. dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  881. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  882. while ((tx_done_idx != dev->tx_free_idx) &&
  883. !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
  884. struct sk_buff *skb;
  885. unsigned len;
  886. dma_addr_t addr;
  887. if (cmdsts & CMDSTS_ERR)
  888. dev->stats.tx_errors ++;
  889. if (cmdsts & CMDSTS_OK)
  890. dev->stats.tx_packets ++;
  891. if (cmdsts & CMDSTS_OK)
  892. dev->stats.tx_bytes += cmdsts & 0xffff;
  893. dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  894. tx_done_idx, dev->tx_free_idx, cmdsts);
  895. skb = dev->tx_skbs[tx_done_idx];
  896. dev->tx_skbs[tx_done_idx] = NULL;
  897. dprintk("done(%p)\n", skb);
  898. len = cmdsts & CMDSTS_LEN_MASK;
  899. addr = desc_addr_get(desc + DESC_BUFPTR);
  900. if (skb) {
  901. pci_unmap_single(dev->pci_dev,
  902. addr,
  903. len,
  904. PCI_DMA_TODEVICE);
  905. dev_kfree_skb_irq(skb);
  906. atomic_dec(&dev->nr_tx_skbs);
  907. } else
  908. pci_unmap_page(dev->pci_dev,
  909. addr,
  910. len,
  911. PCI_DMA_TODEVICE);
  912. tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
  913. dev->tx_done_idx = tx_done_idx;
  914. desc[DESC_CMDSTS] = cpu_to_le32(0);
  915. mb();
  916. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  917. }
  918. /* Allow network stack to resume queueing packets after we've
  919. * finished transmitting at least 1/4 of the packets in the queue.
  920. */
  921. if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
  922. dprintk("start_queue(%p)\n", ndev);
  923. netif_start_queue(ndev);
  924. netif_wake_queue(ndev);
  925. }
  926. spin_unlock_irq(&dev->tx_lock);
  927. }
  928. static void ns83820_cleanup_tx(struct ns83820 *dev)
  929. {
  930. unsigned i;
  931. for (i=0; i<NR_TX_DESC; i++) {
  932. struct sk_buff *skb = dev->tx_skbs[i];
  933. dev->tx_skbs[i] = NULL;
  934. if (skb) {
  935. u32 *desc = dev->tx_descs + (i * DESC_SIZE);
  936. pci_unmap_single(dev->pci_dev,
  937. desc_addr_get(desc + DESC_BUFPTR),
  938. le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
  939. PCI_DMA_TODEVICE);
  940. dev_kfree_skb_irq(skb);
  941. atomic_dec(&dev->nr_tx_skbs);
  942. }
  943. }
  944. memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
  945. }
  946. /* transmit routine. This code relies on the network layer serializing
  947. * its calls in, but will run happily in parallel with the interrupt
  948. * handler. This code currently has provisions for fragmenting tx buffers
  949. * while trying to track down a bug in either the zero copy code or
  950. * the tx fifo (hence the MAX_FRAG_LEN).
  951. */
  952. static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
  953. {
  954. struct ns83820 *dev = PRIV(ndev);
  955. u32 free_idx, cmdsts, extsts;
  956. int nr_free, nr_frags;
  957. unsigned tx_done_idx, last_idx;
  958. dma_addr_t buf;
  959. unsigned len;
  960. skb_frag_t *frag;
  961. int stopped = 0;
  962. int do_intr = 0;
  963. volatile u32 *first_desc;
  964. dprintk("ns83820_hard_start_xmit\n");
  965. nr_frags = skb_shinfo(skb)->nr_frags;
  966. again:
  967. if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
  968. netif_stop_queue(ndev);
  969. if (unlikely(dev->CFG_cache & CFG_LNKSTS))
  970. return 1;
  971. netif_start_queue(ndev);
  972. }
  973. last_idx = free_idx = dev->tx_free_idx;
  974. tx_done_idx = dev->tx_done_idx;
  975. nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
  976. nr_free -= 1;
  977. if (nr_free <= nr_frags) {
  978. dprintk("stop_queue - not enough(%p)\n", ndev);
  979. netif_stop_queue(ndev);
  980. /* Check again: we may have raced with a tx done irq */
  981. if (dev->tx_done_idx != tx_done_idx) {
  982. dprintk("restart queue(%p)\n", ndev);
  983. netif_start_queue(ndev);
  984. goto again;
  985. }
  986. return 1;
  987. }
  988. if (free_idx == dev->tx_intr_idx) {
  989. do_intr = 1;
  990. dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
  991. }
  992. nr_free -= nr_frags;
  993. if (nr_free < MIN_TX_DESC_FREE) {
  994. dprintk("stop_queue - last entry(%p)\n", ndev);
  995. netif_stop_queue(ndev);
  996. stopped = 1;
  997. }
  998. frag = skb_shinfo(skb)->frags;
  999. if (!nr_frags)
  1000. frag = NULL;
  1001. extsts = 0;
  1002. if (skb->ip_summed == CHECKSUM_HW) {
  1003. extsts |= EXTSTS_IPPKT;
  1004. if (IPPROTO_TCP == skb->nh.iph->protocol)
  1005. extsts |= EXTSTS_TCPPKT;
  1006. else if (IPPROTO_UDP == skb->nh.iph->protocol)
  1007. extsts |= EXTSTS_UDPPKT;
  1008. }
  1009. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1010. if(vlan_tx_tag_present(skb)) {
  1011. /* fetch the vlan tag info out of the
  1012. * ancilliary data if the vlan code
  1013. * is using hw vlan acceleration
  1014. */
  1015. short tag = vlan_tx_tag_get(skb);
  1016. extsts |= (EXTSTS_VPKT | htons(tag));
  1017. }
  1018. #endif
  1019. len = skb->len;
  1020. if (nr_frags)
  1021. len -= skb->data_len;
  1022. buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
  1023. first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
  1024. for (;;) {
  1025. volatile u32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
  1026. u32 residue = 0;
  1027. dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
  1028. (unsigned long long)buf);
  1029. last_idx = free_idx;
  1030. free_idx = (free_idx + 1) % NR_TX_DESC;
  1031. desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
  1032. desc_addr_set(desc + DESC_BUFPTR, buf);
  1033. desc[DESC_EXTSTS] = cpu_to_le32(extsts);
  1034. cmdsts = ((nr_frags|residue) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
  1035. cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
  1036. cmdsts |= len;
  1037. desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
  1038. if (residue) {
  1039. buf += len;
  1040. len = residue;
  1041. continue;
  1042. }
  1043. if (!nr_frags)
  1044. break;
  1045. buf = pci_map_page(dev->pci_dev, frag->page,
  1046. frag->page_offset,
  1047. frag->size, PCI_DMA_TODEVICE);
  1048. dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n",
  1049. (long long)buf, (long) page_to_pfn(frag->page),
  1050. frag->page_offset);
  1051. len = frag->size;
  1052. frag++;
  1053. nr_frags--;
  1054. }
  1055. dprintk("done pkt\n");
  1056. spin_lock_irq(&dev->tx_lock);
  1057. dev->tx_skbs[last_idx] = skb;
  1058. first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
  1059. dev->tx_free_idx = free_idx;
  1060. atomic_inc(&dev->nr_tx_skbs);
  1061. spin_unlock_irq(&dev->tx_lock);
  1062. kick_tx(dev);
  1063. /* Check again: we may have raced with a tx done irq */
  1064. if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
  1065. netif_start_queue(ndev);
  1066. /* set the transmit start time to catch transmit timeouts */
  1067. ndev->trans_start = jiffies;
  1068. return 0;
  1069. }
  1070. static void ns83820_update_stats(struct ns83820 *dev)
  1071. {
  1072. u8 __iomem *base = dev->base;
  1073. /* the DP83820 will freeze counters, so we need to read all of them */
  1074. dev->stats.rx_errors += readl(base + 0x60) & 0xffff;
  1075. dev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff;
  1076. dev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff;
  1077. dev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff;
  1078. /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
  1079. dev->stats.rx_length_errors += readl(base + 0x74) & 0xffff;
  1080. dev->stats.rx_length_errors += readl(base + 0x78) & 0xffff;
  1081. /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
  1082. /*dev->stats.rx_pause_count += */ readl(base + 0x80);
  1083. /*dev->stats.tx_pause_count += */ readl(base + 0x84);
  1084. dev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff;
  1085. }
  1086. static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
  1087. {
  1088. struct ns83820 *dev = PRIV(ndev);
  1089. /* somewhat overkill */
  1090. spin_lock_irq(&dev->misc_lock);
  1091. ns83820_update_stats(dev);
  1092. spin_unlock_irq(&dev->misc_lock);
  1093. return &dev->stats;
  1094. }
  1095. static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
  1096. {
  1097. struct ns83820 *dev = PRIV(ndev);
  1098. strcpy(info->driver, "ns83820");
  1099. strcpy(info->version, VERSION);
  1100. strcpy(info->bus_info, pci_name(dev->pci_dev));
  1101. }
  1102. static u32 ns83820_get_link(struct net_device *ndev)
  1103. {
  1104. struct ns83820 *dev = PRIV(ndev);
  1105. u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
  1106. return cfg & CFG_LNKSTS ? 1 : 0;
  1107. }
  1108. static struct ethtool_ops ops = {
  1109. .get_drvinfo = ns83820_get_drvinfo,
  1110. .get_link = ns83820_get_link
  1111. };
  1112. static void ns83820_mib_isr(struct ns83820 *dev)
  1113. {
  1114. spin_lock(&dev->misc_lock);
  1115. ns83820_update_stats(dev);
  1116. spin_unlock(&dev->misc_lock);
  1117. }
  1118. static void ns83820_do_isr(struct net_device *ndev, u32 isr);
  1119. static irqreturn_t ns83820_irq(int foo, void *data, struct pt_regs *regs)
  1120. {
  1121. struct net_device *ndev = data;
  1122. struct ns83820 *dev = PRIV(ndev);
  1123. u32 isr;
  1124. dprintk("ns83820_irq(%p)\n", ndev);
  1125. dev->ihr = 0;
  1126. isr = readl(dev->base + ISR);
  1127. dprintk("irq: %08x\n", isr);
  1128. ns83820_do_isr(ndev, isr);
  1129. return IRQ_HANDLED;
  1130. }
  1131. static void ns83820_do_isr(struct net_device *ndev, u32 isr)
  1132. {
  1133. struct ns83820 *dev = PRIV(ndev);
  1134. #ifdef DEBUG
  1135. if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
  1136. Dprintk("odd isr? 0x%08x\n", isr);
  1137. #endif
  1138. if (ISR_RXIDLE & isr) {
  1139. dev->rx_info.idle = 1;
  1140. Dprintk("oh dear, we are idle\n");
  1141. ns83820_rx_kick(ndev);
  1142. }
  1143. if ((ISR_RXDESC | ISR_RXOK) & isr) {
  1144. prefetch(dev->rx_info.next_rx_desc);
  1145. spin_lock_irq(&dev->misc_lock);
  1146. dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
  1147. writel(dev->IMR_cache, dev->base + IMR);
  1148. spin_unlock_irq(&dev->misc_lock);
  1149. tasklet_schedule(&dev->rx_tasklet);
  1150. //rx_irq(ndev);
  1151. //writel(4, dev->base + IHR);
  1152. }
  1153. if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
  1154. ns83820_rx_kick(ndev);
  1155. if (unlikely(ISR_RXSOVR & isr)) {
  1156. //printk("overrun: rxsovr\n");
  1157. dev->stats.rx_fifo_errors ++;
  1158. }
  1159. if (unlikely(ISR_RXORN & isr)) {
  1160. //printk("overrun: rxorn\n");
  1161. dev->stats.rx_fifo_errors ++;
  1162. }
  1163. if ((ISR_RXRCMP & isr) && dev->rx_info.up)
  1164. writel(CR_RXE, dev->base + CR);
  1165. if (ISR_TXIDLE & isr) {
  1166. u32 txdp;
  1167. txdp = readl(dev->base + TXDP);
  1168. dprintk("txdp: %08x\n", txdp);
  1169. txdp -= dev->tx_phy_descs;
  1170. dev->tx_idx = txdp / (DESC_SIZE * 4);
  1171. if (dev->tx_idx >= NR_TX_DESC) {
  1172. printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
  1173. dev->tx_idx = 0;
  1174. }
  1175. /* The may have been a race between a pci originated read
  1176. * and the descriptor update from the cpu. Just in case,
  1177. * kick the transmitter if the hardware thinks it is on a
  1178. * different descriptor than we are.
  1179. */
  1180. if (dev->tx_idx != dev->tx_free_idx)
  1181. kick_tx(dev);
  1182. }
  1183. /* Defer tx ring processing until more than a minimum amount of
  1184. * work has accumulated
  1185. */
  1186. if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
  1187. do_tx_done(ndev);
  1188. /* Disable TxOk if there are no outstanding tx packets.
  1189. */
  1190. if ((dev->tx_done_idx == dev->tx_free_idx) &&
  1191. (dev->IMR_cache & ISR_TXOK)) {
  1192. spin_lock_irq(&dev->misc_lock);
  1193. dev->IMR_cache &= ~ISR_TXOK;
  1194. writel(dev->IMR_cache, dev->base + IMR);
  1195. spin_unlock_irq(&dev->misc_lock);
  1196. }
  1197. }
  1198. /* The TxIdle interrupt can come in before the transmit has
  1199. * completed. Normally we reap packets off of the combination
  1200. * of TxDesc and TxIdle and leave TxOk disabled (since it
  1201. * occurs on every packet), but when no further irqs of this
  1202. * nature are expected, we must enable TxOk.
  1203. */
  1204. if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
  1205. spin_lock_irq(&dev->misc_lock);
  1206. dev->IMR_cache |= ISR_TXOK;
  1207. writel(dev->IMR_cache, dev->base + IMR);
  1208. spin_unlock_irq(&dev->misc_lock);
  1209. }
  1210. /* MIB interrupt: one of the statistics counters is about to overflow */
  1211. if (unlikely(ISR_MIB & isr))
  1212. ns83820_mib_isr(dev);
  1213. /* PHY: Link up/down/negotiation state change */
  1214. if (unlikely(ISR_PHY & isr))
  1215. phy_intr(ndev);
  1216. #if 0 /* Still working on the interrupt mitigation strategy */
  1217. if (dev->ihr)
  1218. writel(dev->ihr, dev->base + IHR);
  1219. #endif
  1220. }
  1221. static void ns83820_do_reset(struct ns83820 *dev, u32 which)
  1222. {
  1223. Dprintk("resetting chip...\n");
  1224. writel(which, dev->base + CR);
  1225. do {
  1226. schedule();
  1227. } while (readl(dev->base + CR) & which);
  1228. Dprintk("okay!\n");
  1229. }
  1230. static int ns83820_stop(struct net_device *ndev)
  1231. {
  1232. struct ns83820 *dev = PRIV(ndev);
  1233. /* FIXME: protect against interrupt handler? */
  1234. del_timer_sync(&dev->tx_watchdog);
  1235. /* disable interrupts */
  1236. writel(0, dev->base + IMR);
  1237. writel(0, dev->base + IER);
  1238. readl(dev->base + IER);
  1239. dev->rx_info.up = 0;
  1240. synchronize_irq(dev->pci_dev->irq);
  1241. ns83820_do_reset(dev, CR_RST);
  1242. synchronize_irq(dev->pci_dev->irq);
  1243. spin_lock_irq(&dev->misc_lock);
  1244. dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
  1245. spin_unlock_irq(&dev->misc_lock);
  1246. ns83820_cleanup_rx(dev);
  1247. ns83820_cleanup_tx(dev);
  1248. return 0;
  1249. }
  1250. static void ns83820_tx_timeout(struct net_device *ndev)
  1251. {
  1252. struct ns83820 *dev = PRIV(ndev);
  1253. u32 tx_done_idx, *desc;
  1254. unsigned long flags;
  1255. local_irq_save(flags);
  1256. tx_done_idx = dev->tx_done_idx;
  1257. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  1258. printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  1259. ndev->name,
  1260. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  1261. #if defined(DEBUG)
  1262. {
  1263. u32 isr;
  1264. isr = readl(dev->base + ISR);
  1265. printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
  1266. ns83820_do_isr(ndev, isr);
  1267. }
  1268. #endif
  1269. do_tx_done(ndev);
  1270. tx_done_idx = dev->tx_done_idx;
  1271. desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
  1272. printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
  1273. ndev->name,
  1274. tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
  1275. local_irq_restore(flags);
  1276. }
  1277. static void ns83820_tx_watch(unsigned long data)
  1278. {
  1279. struct net_device *ndev = (void *)data;
  1280. struct ns83820 *dev = PRIV(ndev);
  1281. #if defined(DEBUG)
  1282. printk("ns83820_tx_watch: %u %u %d\n",
  1283. dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
  1284. );
  1285. #endif
  1286. if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
  1287. dev->tx_done_idx != dev->tx_free_idx) {
  1288. printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
  1289. ndev->name,
  1290. dev->tx_done_idx, dev->tx_free_idx,
  1291. atomic_read(&dev->nr_tx_skbs));
  1292. ns83820_tx_timeout(ndev);
  1293. }
  1294. mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
  1295. }
  1296. static int ns83820_open(struct net_device *ndev)
  1297. {
  1298. struct ns83820 *dev = PRIV(ndev);
  1299. unsigned i;
  1300. u32 desc;
  1301. int ret;
  1302. dprintk("ns83820_open\n");
  1303. writel(0, dev->base + PQCR);
  1304. ret = ns83820_setup_rx(ndev);
  1305. if (ret)
  1306. goto failed;
  1307. memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
  1308. for (i=0; i<NR_TX_DESC; i++) {
  1309. dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
  1310. = cpu_to_le32(
  1311. dev->tx_phy_descs
  1312. + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
  1313. }
  1314. dev->tx_idx = 0;
  1315. dev->tx_done_idx = 0;
  1316. desc = dev->tx_phy_descs;
  1317. writel(0, dev->base + TXDP_HI);
  1318. writel(desc, dev->base + TXDP);
  1319. init_timer(&dev->tx_watchdog);
  1320. dev->tx_watchdog.data = (unsigned long)ndev;
  1321. dev->tx_watchdog.function = ns83820_tx_watch;
  1322. mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
  1323. netif_start_queue(ndev); /* FIXME: wait for phy to come up */
  1324. return 0;
  1325. failed:
  1326. ns83820_stop(ndev);
  1327. return ret;
  1328. }
  1329. static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
  1330. {
  1331. unsigned i;
  1332. for (i=0; i<3; i++) {
  1333. u32 data;
  1334. #if 0 /* I've left this in as an example of how to use eeprom.h */
  1335. data = eeprom_readw(&dev->ee, 0xa + 2 - i);
  1336. #else
  1337. /* Read from the perfect match memory: this is loaded by
  1338. * the chip from the EEPROM via the EELOAD self test.
  1339. */
  1340. writel(i*2, dev->base + RFCR);
  1341. data = readl(dev->base + RFDR);
  1342. #endif
  1343. *mac++ = data;
  1344. *mac++ = data >> 8;
  1345. }
  1346. }
  1347. static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
  1348. {
  1349. if (new_mtu > RX_BUF_SIZE)
  1350. return -EINVAL;
  1351. ndev->mtu = new_mtu;
  1352. return 0;
  1353. }
  1354. static void ns83820_set_multicast(struct net_device *ndev)
  1355. {
  1356. struct ns83820 *dev = PRIV(ndev);
  1357. u8 __iomem *rfcr = dev->base + RFCR;
  1358. u32 and_mask = 0xffffffff;
  1359. u32 or_mask = 0;
  1360. u32 val;
  1361. if (ndev->flags & IFF_PROMISC)
  1362. or_mask |= RFCR_AAU | RFCR_AAM;
  1363. else
  1364. and_mask &= ~(RFCR_AAU | RFCR_AAM);
  1365. if (ndev->flags & IFF_ALLMULTI)
  1366. or_mask |= RFCR_AAM;
  1367. else
  1368. and_mask &= ~RFCR_AAM;
  1369. spin_lock_irq(&dev->misc_lock);
  1370. val = (readl(rfcr) & and_mask) | or_mask;
  1371. /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
  1372. writel(val & ~RFCR_RFEN, rfcr);
  1373. writel(val, rfcr);
  1374. spin_unlock_irq(&dev->misc_lock);
  1375. }
  1376. static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
  1377. {
  1378. struct ns83820 *dev = PRIV(ndev);
  1379. int timed_out = 0;
  1380. long start;
  1381. u32 status;
  1382. int loops = 0;
  1383. dprintk("%s: start %s\n", ndev->name, name);
  1384. start = jiffies;
  1385. writel(enable, dev->base + PTSCR);
  1386. for (;;) {
  1387. loops++;
  1388. status = readl(dev->base + PTSCR);
  1389. if (!(status & enable))
  1390. break;
  1391. if (status & done)
  1392. break;
  1393. if (status & fail)
  1394. break;
  1395. if ((jiffies - start) >= HZ) {
  1396. timed_out = 1;
  1397. break;
  1398. }
  1399. set_current_state(TASK_UNINTERRUPTIBLE);
  1400. schedule_timeout(1);
  1401. }
  1402. if (status & fail)
  1403. printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
  1404. ndev->name, name, status, fail);
  1405. else if (timed_out)
  1406. printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
  1407. ndev->name, name, status);
  1408. dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
  1409. }
  1410. #ifdef PHY_CODE_IS_FINISHED
  1411. static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
  1412. {
  1413. /* drive MDC low */
  1414. dev->MEAR_cache &= ~MEAR_MDC;
  1415. writel(dev->MEAR_cache, dev->base + MEAR);
  1416. readl(dev->base + MEAR);
  1417. /* enable output, set bit */
  1418. dev->MEAR_cache |= MEAR_MDDIR;
  1419. if (bit)
  1420. dev->MEAR_cache |= MEAR_MDIO;
  1421. else
  1422. dev->MEAR_cache &= ~MEAR_MDIO;
  1423. /* set the output bit */
  1424. writel(dev->MEAR_cache, dev->base + MEAR);
  1425. readl(dev->base + MEAR);
  1426. /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
  1427. udelay(1);
  1428. /* drive MDC high causing the data bit to be latched */
  1429. dev->MEAR_cache |= MEAR_MDC;
  1430. writel(dev->MEAR_cache, dev->base + MEAR);
  1431. readl(dev->base + MEAR);
  1432. /* Wait again... */
  1433. udelay(1);
  1434. }
  1435. static int ns83820_mii_read_bit(struct ns83820 *dev)
  1436. {
  1437. int bit;
  1438. /* drive MDC low, disable output */
  1439. dev->MEAR_cache &= ~MEAR_MDC;
  1440. dev->MEAR_cache &= ~MEAR_MDDIR;
  1441. writel(dev->MEAR_cache, dev->base + MEAR);
  1442. readl(dev->base + MEAR);
  1443. /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */
  1444. udelay(1);
  1445. /* drive MDC high causing the data bit to be latched */
  1446. bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
  1447. dev->MEAR_cache |= MEAR_MDC;
  1448. writel(dev->MEAR_cache, dev->base + MEAR);
  1449. /* Wait again... */
  1450. udelay(1);
  1451. return bit;
  1452. }
  1453. static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
  1454. {
  1455. unsigned data = 0;
  1456. int i;
  1457. /* read some garbage so that we eventually sync up */
  1458. for (i=0; i<64; i++)
  1459. ns83820_mii_read_bit(dev);
  1460. ns83820_mii_write_bit(dev, 0); /* start */
  1461. ns83820_mii_write_bit(dev, 1);
  1462. ns83820_mii_write_bit(dev, 1); /* opcode read */
  1463. ns83820_mii_write_bit(dev, 0);
  1464. /* write out the phy address: 5 bits, msb first */
  1465. for (i=0; i<5; i++)
  1466. ns83820_mii_write_bit(dev, phy & (0x10 >> i));
  1467. /* write out the register address, 5 bits, msb first */
  1468. for (i=0; i<5; i++)
  1469. ns83820_mii_write_bit(dev, reg & (0x10 >> i));
  1470. ns83820_mii_read_bit(dev); /* turn around cycles */
  1471. ns83820_mii_read_bit(dev);
  1472. /* read in the register data, 16 bits msb first */
  1473. for (i=0; i<16; i++) {
  1474. data <<= 1;
  1475. data |= ns83820_mii_read_bit(dev);
  1476. }
  1477. return data;
  1478. }
  1479. static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
  1480. {
  1481. int i;
  1482. /* read some garbage so that we eventually sync up */
  1483. for (i=0; i<64; i++)
  1484. ns83820_mii_read_bit(dev);
  1485. ns83820_mii_write_bit(dev, 0); /* start */
  1486. ns83820_mii_write_bit(dev, 1);
  1487. ns83820_mii_write_bit(dev, 0); /* opcode read */
  1488. ns83820_mii_write_bit(dev, 1);
  1489. /* write out the phy address: 5 bits, msb first */
  1490. for (i=0; i<5; i++)
  1491. ns83820_mii_write_bit(dev, phy & (0x10 >> i));
  1492. /* write out the register address, 5 bits, msb first */
  1493. for (i=0; i<5; i++)
  1494. ns83820_mii_write_bit(dev, reg & (0x10 >> i));
  1495. ns83820_mii_read_bit(dev); /* turn around cycles */
  1496. ns83820_mii_read_bit(dev);
  1497. /* read in the register data, 16 bits msb first */
  1498. for (i=0; i<16; i++)
  1499. ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
  1500. return data;
  1501. }
  1502. static void ns83820_probe_phy(struct net_device *ndev)
  1503. {
  1504. struct ns83820 *dev = PRIV(ndev);
  1505. static int first;
  1506. int i;
  1507. #define MII_PHYIDR1 0x02
  1508. #define MII_PHYIDR2 0x03
  1509. #if 0
  1510. if (!first) {
  1511. unsigned tmp;
  1512. ns83820_mii_read_reg(dev, 1, 0x09);
  1513. ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
  1514. tmp = ns83820_mii_read_reg(dev, 1, 0x00);
  1515. ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
  1516. udelay(1300);
  1517. ns83820_mii_read_reg(dev, 1, 0x09);
  1518. }
  1519. #endif
  1520. first = 1;
  1521. for (i=1; i<2; i++) {
  1522. int j;
  1523. unsigned a, b;
  1524. a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
  1525. b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
  1526. //printk("%s: phy %d: 0x%04x 0x%04x\n",
  1527. // ndev->name, i, a, b);
  1528. for (j=0; j<0x16; j+=4) {
  1529. dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
  1530. ndev->name, j,
  1531. ns83820_mii_read_reg(dev, i, 0 + j),
  1532. ns83820_mii_read_reg(dev, i, 1 + j),
  1533. ns83820_mii_read_reg(dev, i, 2 + j),
  1534. ns83820_mii_read_reg(dev, i, 3 + j)
  1535. );
  1536. }
  1537. }
  1538. {
  1539. unsigned a, b;
  1540. /* read firmware version: memory addr is 0x8402 and 0x8403 */
  1541. ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
  1542. ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
  1543. a = ns83820_mii_read_reg(dev, 1, 0x1d);
  1544. ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
  1545. ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
  1546. b = ns83820_mii_read_reg(dev, 1, 0x1d);
  1547. dprintk("version: 0x%04x 0x%04x\n", a, b);
  1548. }
  1549. }
  1550. #endif
  1551. static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id)
  1552. {
  1553. struct net_device *ndev;
  1554. struct ns83820 *dev;
  1555. long addr;
  1556. int err;
  1557. int using_dac = 0;
  1558. /* See if we can set the dma mask early on; failure is fatal. */
  1559. if (TRY_DAC && !pci_set_dma_mask(pci_dev, 0xffffffffffffffffULL)) {
  1560. using_dac = 1;
  1561. } else if (!pci_set_dma_mask(pci_dev, 0xffffffff)) {
  1562. using_dac = 0;
  1563. } else {
  1564. printk(KERN_WARNING "ns83820.c: pci_set_dma_mask failed!\n");
  1565. return -ENODEV;
  1566. }
  1567. ndev = alloc_etherdev(sizeof(struct ns83820));
  1568. dev = PRIV(ndev);
  1569. err = -ENOMEM;
  1570. if (!dev)
  1571. goto out;
  1572. spin_lock_init(&dev->rx_info.lock);
  1573. spin_lock_init(&dev->tx_lock);
  1574. spin_lock_init(&dev->misc_lock);
  1575. dev->pci_dev = pci_dev;
  1576. dev->ee.cache = &dev->MEAR_cache;
  1577. dev->ee.lock = &dev->misc_lock;
  1578. SET_MODULE_OWNER(ndev);
  1579. SET_NETDEV_DEV(ndev, &pci_dev->dev);
  1580. INIT_WORK(&dev->tq_refill, queue_refill, ndev);
  1581. tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
  1582. err = pci_enable_device(pci_dev);
  1583. if (err) {
  1584. printk(KERN_INFO "ns83820: pci_enable_dev failed: %d\n", err);
  1585. goto out_free;
  1586. }
  1587. pci_set_master(pci_dev);
  1588. addr = pci_resource_start(pci_dev, 1);
  1589. dev->base = ioremap_nocache(addr, PAGE_SIZE);
  1590. dev->tx_descs = pci_alloc_consistent(pci_dev,
  1591. 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
  1592. dev->rx_info.descs = pci_alloc_consistent(pci_dev,
  1593. 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
  1594. err = -ENOMEM;
  1595. if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
  1596. goto out_disable;
  1597. dprintk("%p: %08lx %p: %08lx\n",
  1598. dev->tx_descs, (long)dev->tx_phy_descs,
  1599. dev->rx_info.descs, (long)dev->rx_info.phy_descs);
  1600. /* disable interrupts */
  1601. writel(0, dev->base + IMR);
  1602. writel(0, dev->base + IER);
  1603. readl(dev->base + IER);
  1604. dev->IMR_cache = 0;
  1605. setup_ee_mem_bitbanger(&dev->ee, dev->base + MEAR, 3, 2, 1, 0,
  1606. 0);
  1607. err = request_irq(pci_dev->irq, ns83820_irq, SA_SHIRQ,
  1608. DRV_NAME, ndev);
  1609. if (err) {
  1610. printk(KERN_INFO "ns83820: unable to register irq %d\n",
  1611. pci_dev->irq);
  1612. goto out_disable;
  1613. }
  1614. /*
  1615. * FIXME: we are holding rtnl_lock() over obscenely long area only
  1616. * because some of the setup code uses dev->name. It's Wrong(tm) -
  1617. * we should be using driver-specific names for all that stuff.
  1618. * For now that will do, but we really need to come back and kill
  1619. * most of the dev_alloc_name() users later.
  1620. */
  1621. rtnl_lock();
  1622. err = dev_alloc_name(ndev, ndev->name);
  1623. if (err < 0) {
  1624. printk(KERN_INFO "ns83820: unable to get netdev name: %d\n", err);
  1625. goto out_free_irq;
  1626. }
  1627. printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
  1628. ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
  1629. pci_dev->subsystem_vendor, pci_dev->subsystem_device);
  1630. ndev->open = ns83820_open;
  1631. ndev->stop = ns83820_stop;
  1632. ndev->hard_start_xmit = ns83820_hard_start_xmit;
  1633. ndev->get_stats = ns83820_get_stats;
  1634. ndev->change_mtu = ns83820_change_mtu;
  1635. ndev->set_multicast_list = ns83820_set_multicast;
  1636. SET_ETHTOOL_OPS(ndev, &ops);
  1637. ndev->tx_timeout = ns83820_tx_timeout;
  1638. ndev->watchdog_timeo = 5 * HZ;
  1639. pci_set_drvdata(pci_dev, ndev);
  1640. ns83820_do_reset(dev, CR_RST);
  1641. /* Must reset the ram bist before running it */
  1642. writel(PTSCR_RBIST_RST, dev->base + PTSCR);
  1643. ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN,
  1644. PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
  1645. ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
  1646. PTSCR_EEBIST_FAIL);
  1647. ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
  1648. /* I love config registers */
  1649. dev->CFG_cache = readl(dev->base + CFG);
  1650. if ((dev->CFG_cache & CFG_PCI64_DET)) {
  1651. printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
  1652. ndev->name);
  1653. /*dev->CFG_cache |= CFG_DATA64_EN;*/
  1654. if (!(dev->CFG_cache & CFG_DATA64_EN))
  1655. printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n",
  1656. ndev->name);
  1657. } else
  1658. dev->CFG_cache &= ~(CFG_DATA64_EN);
  1659. dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS |
  1660. CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
  1661. CFG_M64ADDR);
  1662. dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
  1663. CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL;
  1664. dev->CFG_cache |= CFG_REQALG;
  1665. dev->CFG_cache |= CFG_POW;
  1666. dev->CFG_cache |= CFG_TMRTEST;
  1667. /* When compiled with 64 bit addressing, we must always enable
  1668. * the 64 bit descriptor format.
  1669. */
  1670. #ifdef USE_64BIT_ADDR
  1671. dev->CFG_cache |= CFG_M64ADDR;
  1672. #endif
  1673. if (using_dac)
  1674. dev->CFG_cache |= CFG_T64ADDR;
  1675. /* Big endian mode does not seem to do what the docs suggest */
  1676. dev->CFG_cache &= ~CFG_BEM;
  1677. /* setup optical transceiver if we have one */
  1678. if (dev->CFG_cache & CFG_TBI_EN) {
  1679. printk(KERN_INFO "%s: enabling optical transceiver\n",
  1680. ndev->name);
  1681. writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
  1682. /* setup auto negotiation feature advertisement */
  1683. writel(readl(dev->base + TANAR)
  1684. | TANAR_HALF_DUP | TANAR_FULL_DUP,
  1685. dev->base + TANAR);
  1686. /* start auto negotiation */
  1687. writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
  1688. dev->base + TBICR);
  1689. writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
  1690. dev->linkstate = LINK_AUTONEGOTIATE;
  1691. dev->CFG_cache |= CFG_MODE_1000;
  1692. }
  1693. writel(dev->CFG_cache, dev->base + CFG);
  1694. dprintk("CFG: %08x\n", dev->CFG_cache);
  1695. if (reset_phy) {
  1696. printk(KERN_INFO "%s: resetting phy\n", ndev->name);
  1697. writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
  1698. msleep(10);
  1699. writel(dev->CFG_cache, dev->base + CFG);
  1700. }
  1701. #if 0 /* Huh? This sets the PCI latency register. Should be done via
  1702. * the PCI layer. FIXME.
  1703. */
  1704. if (readl(dev->base + SRR))
  1705. writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
  1706. #endif
  1707. /* Note! The DMA burst size interacts with packet
  1708. * transmission, such that the largest packet that
  1709. * can be transmitted is 8192 - FLTH - burst size.
  1710. * If only the transmit fifo was larger...
  1711. */
  1712. /* Ramit : 1024 DMA is not a good idea, it ends up banging
  1713. * some DELL and COMPAQ SMP systems */
  1714. writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
  1715. | ((1600 / 32) * 0x100),
  1716. dev->base + TXCFG);
  1717. /* Flush the interrupt holdoff timer */
  1718. writel(0x000, dev->base + IHR);
  1719. writel(0x100, dev->base + IHR);
  1720. writel(0x000, dev->base + IHR);
  1721. /* Set Rx to full duplex, don't accept runt, errored, long or length
  1722. * range errored packets. Use 512 byte DMA.
  1723. */
  1724. /* Ramit : 1024 DMA is not a good idea, it ends up banging
  1725. * some DELL and COMPAQ SMP systems
  1726. * Turn on ALP, only we are accpeting Jumbo Packets */
  1727. writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
  1728. | RXCFG_STRIPCRC
  1729. //| RXCFG_ALP
  1730. | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
  1731. /* Disable priority queueing */
  1732. writel(0, dev->base + PQCR);
  1733. /* Enable IP checksum validation and detetion of VLAN headers.
  1734. * Note: do not set the reject options as at least the 0x102
  1735. * revision of the chip does not properly accept IP fragments
  1736. * at least for UDP.
  1737. */
  1738. /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
  1739. * the MAC it calculates the packetsize AFTER stripping the VLAN
  1740. * header, and if a VLAN Tagged packet of 64 bytes is received (like
  1741. * a ping with a VLAN header) then the card, strips the 4 byte VLAN
  1742. * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
  1743. * it discrards it!. These guys......
  1744. * also turn on tag stripping if hardware acceleration is enabled
  1745. */
  1746. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1747. #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
  1748. #else
  1749. #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
  1750. #endif
  1751. writel(VRCR_INIT_VALUE, dev->base + VRCR);
  1752. /* Enable per-packet TCP/UDP/IP checksumming
  1753. * and per packet vlan tag insertion if
  1754. * vlan hardware acceleration is enabled
  1755. */
  1756. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1757. #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
  1758. #else
  1759. #define VTCR_INIT_VALUE VTCR_PPCHK
  1760. #endif
  1761. writel(VTCR_INIT_VALUE, dev->base + VTCR);
  1762. /* Ramit : Enable async and sync pause frames */
  1763. /* writel(0, dev->base + PCR); */
  1764. writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
  1765. PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
  1766. dev->base + PCR);
  1767. /* Disable Wake On Lan */
  1768. writel(0, dev->base + WCSR);
  1769. ns83820_getmac(dev, ndev->dev_addr);
  1770. /* Yes, we support dumb IP checksum on transmit */
  1771. ndev->features |= NETIF_F_SG;
  1772. ndev->features |= NETIF_F_IP_CSUM;
  1773. #ifdef NS83820_VLAN_ACCEL_SUPPORT
  1774. /* We also support hardware vlan acceleration */
  1775. ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  1776. ndev->vlan_rx_register = ns83820_vlan_rx_register;
  1777. ndev->vlan_rx_kill_vid = ns83820_vlan_rx_kill_vid;
  1778. #endif
  1779. if (using_dac) {
  1780. printk(KERN_INFO "%s: using 64 bit addressing.\n",
  1781. ndev->name);
  1782. ndev->features |= NETIF_F_HIGHDMA;
  1783. }
  1784. printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %02x:%02x:%02x:%02x:%02x:%02x io=0x%08lx irq=%d f=%s\n",
  1785. ndev->name,
  1786. (unsigned)readl(dev->base + SRR) >> 8,
  1787. (unsigned)readl(dev->base + SRR) & 0xff,
  1788. ndev->dev_addr[0], ndev->dev_addr[1],
  1789. ndev->dev_addr[2], ndev->dev_addr[3],
  1790. ndev->dev_addr[4], ndev->dev_addr[5],
  1791. addr, pci_dev->irq,
  1792. (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
  1793. );
  1794. #ifdef PHY_CODE_IS_FINISHED
  1795. ns83820_probe_phy(ndev);
  1796. #endif
  1797. err = register_netdevice(ndev);
  1798. if (err) {
  1799. printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
  1800. goto out_cleanup;
  1801. }
  1802. rtnl_unlock();
  1803. return 0;
  1804. out_cleanup:
  1805. writel(0, dev->base + IMR); /* paranoia */
  1806. writel(0, dev->base + IER);
  1807. readl(dev->base + IER);
  1808. out_free_irq:
  1809. rtnl_unlock();
  1810. free_irq(pci_dev->irq, ndev);
  1811. out_disable:
  1812. if (dev->base)
  1813. iounmap(dev->base);
  1814. pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
  1815. pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
  1816. pci_disable_device(pci_dev);
  1817. out_free:
  1818. free_netdev(ndev);
  1819. pci_set_drvdata(pci_dev, NULL);
  1820. out:
  1821. return err;
  1822. }
  1823. static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
  1824. {
  1825. struct net_device *ndev = pci_get_drvdata(pci_dev);
  1826. struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
  1827. if (!ndev) /* paranoia */
  1828. return;
  1829. writel(0, dev->base + IMR); /* paranoia */
  1830. writel(0, dev->base + IER);
  1831. readl(dev->base + IER);
  1832. unregister_netdev(ndev);
  1833. free_irq(dev->pci_dev->irq, ndev);
  1834. iounmap(dev->base);
  1835. pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
  1836. dev->tx_descs, dev->tx_phy_descs);
  1837. pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
  1838. dev->rx_info.descs, dev->rx_info.phy_descs);
  1839. pci_disable_device(dev->pci_dev);
  1840. free_netdev(ndev);
  1841. pci_set_drvdata(pci_dev, NULL);
  1842. }
  1843. static struct pci_device_id ns83820_pci_tbl[] = {
  1844. { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
  1845. { 0, },
  1846. };
  1847. static struct pci_driver driver = {
  1848. .name = "ns83820",
  1849. .id_table = ns83820_pci_tbl,
  1850. .probe = ns83820_init_one,
  1851. .remove = __devexit_p(ns83820_remove_one),
  1852. #if 0 /* FIXME: implement */
  1853. .suspend = ,
  1854. .resume = ,
  1855. #endif
  1856. };
  1857. static int __init ns83820_init(void)
  1858. {
  1859. printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
  1860. return pci_module_init(&driver);
  1861. }
  1862. static void __exit ns83820_exit(void)
  1863. {
  1864. pci_unregister_driver(&driver);
  1865. }
  1866. MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
  1867. MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
  1868. MODULE_LICENSE("GPL");
  1869. MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
  1870. module_param(lnksts, int, 0);
  1871. MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
  1872. module_param(ihr, int, 0);
  1873. MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
  1874. module_param(reset_phy, int, 0);
  1875. MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
  1876. module_init(ns83820_init);
  1877. module_exit(ns83820_exit);