e1000_main.c 86 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. #include "e1000.h"
  21. /* Change Log
  22. * 5.3.12 6/7/04
  23. * - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
  24. * - if_mii support and associated kcompat for older kernels
  25. * - More errlogging support from Jon Mason <jonmason@us.ibm.com>
  26. * - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
  27. *
  28. * 5.7.1 12/16/04
  29. * - Resurrect 82547EI/GI related fix in e1000_intr to avoid deadlocks. This
  30. * fix was removed as it caused system instability. The suspected cause of
  31. * this is the called to e1000_irq_disable in e1000_intr. Inlined the
  32. * required piece of e1000_irq_disable into e1000_intr - Anton Blanchard
  33. * 5.7.0 12/10/04
  34. * - include fix to the condition that determines when to quit NAPI - Robert Olsson
  35. * - use netif_poll_{disable/enable} to synchronize between NAPI and i/f up/down
  36. * 5.6.5 11/01/04
  37. * - Enabling NETIF_F_SG without checksum offload is illegal -
  38. John Mason <jdmason@us.ibm.com>
  39. * 5.6.3 10/26/04
  40. * - Remove redundant initialization - Jamal Hadi
  41. * - Reset buffer_info->dma in tx resource cleanup logic
  42. * 5.6.2 10/12/04
  43. * - Avoid filling tx_ring completely - shemminger@osdl.org
  44. * - Replace schedule_timeout() with msleep()/msleep_interruptible() -
  45. * nacc@us.ibm.com
  46. * - Sparse cleanup - shemminger@osdl.org
  47. * - Fix tx resource cleanup logic
  48. * - LLTX support - ak@suse.de and hadi@cyberus.ca
  49. */
  50. char e1000_driver_name[] = "e1000";
  51. char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  52. #ifndef CONFIG_E1000_NAPI
  53. #define DRIVERNAPI
  54. #else
  55. #define DRIVERNAPI "-NAPI"
  56. #endif
  57. #define DRV_VERSION "5.7.6-k2"DRIVERNAPI
  58. char e1000_driver_version[] = DRV_VERSION;
  59. char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
  60. /* e1000_pci_tbl - PCI Device ID Table
  61. *
  62. * Last entry must be all 0s
  63. *
  64. * Macro expands to...
  65. * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  66. */
  67. static struct pci_device_id e1000_pci_tbl[] = {
  68. INTEL_E1000_ETHERNET_DEVICE(0x1000),
  69. INTEL_E1000_ETHERNET_DEVICE(0x1001),
  70. INTEL_E1000_ETHERNET_DEVICE(0x1004),
  71. INTEL_E1000_ETHERNET_DEVICE(0x1008),
  72. INTEL_E1000_ETHERNET_DEVICE(0x1009),
  73. INTEL_E1000_ETHERNET_DEVICE(0x100C),
  74. INTEL_E1000_ETHERNET_DEVICE(0x100D),
  75. INTEL_E1000_ETHERNET_DEVICE(0x100E),
  76. INTEL_E1000_ETHERNET_DEVICE(0x100F),
  77. INTEL_E1000_ETHERNET_DEVICE(0x1010),
  78. INTEL_E1000_ETHERNET_DEVICE(0x1011),
  79. INTEL_E1000_ETHERNET_DEVICE(0x1012),
  80. INTEL_E1000_ETHERNET_DEVICE(0x1013),
  81. INTEL_E1000_ETHERNET_DEVICE(0x1014),
  82. INTEL_E1000_ETHERNET_DEVICE(0x1015),
  83. INTEL_E1000_ETHERNET_DEVICE(0x1016),
  84. INTEL_E1000_ETHERNET_DEVICE(0x1017),
  85. INTEL_E1000_ETHERNET_DEVICE(0x1018),
  86. INTEL_E1000_ETHERNET_DEVICE(0x1019),
  87. INTEL_E1000_ETHERNET_DEVICE(0x101D),
  88. INTEL_E1000_ETHERNET_DEVICE(0x101E),
  89. INTEL_E1000_ETHERNET_DEVICE(0x1026),
  90. INTEL_E1000_ETHERNET_DEVICE(0x1027),
  91. INTEL_E1000_ETHERNET_DEVICE(0x1028),
  92. INTEL_E1000_ETHERNET_DEVICE(0x1075),
  93. INTEL_E1000_ETHERNET_DEVICE(0x1076),
  94. INTEL_E1000_ETHERNET_DEVICE(0x1077),
  95. INTEL_E1000_ETHERNET_DEVICE(0x1078),
  96. INTEL_E1000_ETHERNET_DEVICE(0x1079),
  97. INTEL_E1000_ETHERNET_DEVICE(0x107A),
  98. INTEL_E1000_ETHERNET_DEVICE(0x107B),
  99. INTEL_E1000_ETHERNET_DEVICE(0x107C),
  100. INTEL_E1000_ETHERNET_DEVICE(0x108A),
  101. /* required last entry */
  102. {0,}
  103. };
  104. MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  105. int e1000_up(struct e1000_adapter *adapter);
  106. void e1000_down(struct e1000_adapter *adapter);
  107. void e1000_reset(struct e1000_adapter *adapter);
  108. int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  109. int e1000_setup_tx_resources(struct e1000_adapter *adapter);
  110. int e1000_setup_rx_resources(struct e1000_adapter *adapter);
  111. void e1000_free_tx_resources(struct e1000_adapter *adapter);
  112. void e1000_free_rx_resources(struct e1000_adapter *adapter);
  113. void e1000_update_stats(struct e1000_adapter *adapter);
  114. /* Local Function Prototypes */
  115. static int e1000_init_module(void);
  116. static void e1000_exit_module(void);
  117. static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  118. static void __devexit e1000_remove(struct pci_dev *pdev);
  119. static int e1000_sw_init(struct e1000_adapter *adapter);
  120. static int e1000_open(struct net_device *netdev);
  121. static int e1000_close(struct net_device *netdev);
  122. static void e1000_configure_tx(struct e1000_adapter *adapter);
  123. static void e1000_configure_rx(struct e1000_adapter *adapter);
  124. static void e1000_setup_rctl(struct e1000_adapter *adapter);
  125. static void e1000_clean_tx_ring(struct e1000_adapter *adapter);
  126. static void e1000_clean_rx_ring(struct e1000_adapter *adapter);
  127. static void e1000_set_multi(struct net_device *netdev);
  128. static void e1000_update_phy_info(unsigned long data);
  129. static void e1000_watchdog(unsigned long data);
  130. static void e1000_watchdog_task(struct e1000_adapter *adapter);
  131. static void e1000_82547_tx_fifo_stall(unsigned long data);
  132. static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  133. static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
  134. static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
  135. static int e1000_set_mac(struct net_device *netdev, void *p);
  136. static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
  137. static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter);
  138. #ifdef CONFIG_E1000_NAPI
  139. static int e1000_clean(struct net_device *netdev, int *budget);
  140. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
  141. int *work_done, int work_to_do);
  142. #else
  143. static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter);
  144. #endif
  145. static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter);
  146. static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
  147. static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
  148. int cmd);
  149. void e1000_set_ethtool_ops(struct net_device *netdev);
  150. static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
  151. static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
  152. static void e1000_tx_timeout(struct net_device *dev);
  153. static void e1000_tx_timeout_task(struct net_device *dev);
  154. static void e1000_smartspeed(struct e1000_adapter *adapter);
  155. static inline int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
  156. struct sk_buff *skb);
  157. static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
  158. static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
  159. static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
  160. static void e1000_restore_vlan(struct e1000_adapter *adapter);
  161. static int e1000_notify_reboot(struct notifier_block *, unsigned long event, void *ptr);
  162. static int e1000_suspend(struct pci_dev *pdev, uint32_t state);
  163. #ifdef CONFIG_PM
  164. static int e1000_resume(struct pci_dev *pdev);
  165. #endif
  166. #ifdef CONFIG_NET_POLL_CONTROLLER
  167. /* for netdump / net console */
  168. static void e1000_netpoll (struct net_device *netdev);
  169. #endif
  170. struct notifier_block e1000_notifier_reboot = {
  171. .notifier_call = e1000_notify_reboot,
  172. .next = NULL,
  173. .priority = 0
  174. };
  175. /* Exported from other modules */
  176. extern void e1000_check_options(struct e1000_adapter *adapter);
  177. static struct pci_driver e1000_driver = {
  178. .name = e1000_driver_name,
  179. .id_table = e1000_pci_tbl,
  180. .probe = e1000_probe,
  181. .remove = __devexit_p(e1000_remove),
  182. /* Power Managment Hooks */
  183. #ifdef CONFIG_PM
  184. .suspend = e1000_suspend,
  185. .resume = e1000_resume
  186. #endif
  187. };
  188. MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  189. MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
  190. MODULE_LICENSE("GPL");
  191. MODULE_VERSION(DRV_VERSION);
  192. static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
  193. module_param(debug, int, 0);
  194. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  195. /**
  196. * e1000_init_module - Driver Registration Routine
  197. *
  198. * e1000_init_module is the first routine called when the driver is
  199. * loaded. All it does is register with the PCI subsystem.
  200. **/
  201. static int __init
  202. e1000_init_module(void)
  203. {
  204. int ret;
  205. printk(KERN_INFO "%s - version %s\n",
  206. e1000_driver_string, e1000_driver_version);
  207. printk(KERN_INFO "%s\n", e1000_copyright);
  208. ret = pci_module_init(&e1000_driver);
  209. if(ret >= 0) {
  210. register_reboot_notifier(&e1000_notifier_reboot);
  211. }
  212. return ret;
  213. }
  214. module_init(e1000_init_module);
  215. /**
  216. * e1000_exit_module - Driver Exit Cleanup Routine
  217. *
  218. * e1000_exit_module is called just before the driver is removed
  219. * from memory.
  220. **/
  221. static void __exit
  222. e1000_exit_module(void)
  223. {
  224. unregister_reboot_notifier(&e1000_notifier_reboot);
  225. pci_unregister_driver(&e1000_driver);
  226. }
  227. module_exit(e1000_exit_module);
  228. /**
  229. * e1000_irq_disable - Mask off interrupt generation on the NIC
  230. * @adapter: board private structure
  231. **/
  232. static inline void
  233. e1000_irq_disable(struct e1000_adapter *adapter)
  234. {
  235. atomic_inc(&adapter->irq_sem);
  236. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  237. E1000_WRITE_FLUSH(&adapter->hw);
  238. synchronize_irq(adapter->pdev->irq);
  239. }
  240. /**
  241. * e1000_irq_enable - Enable default interrupt generation settings
  242. * @adapter: board private structure
  243. **/
  244. static inline void
  245. e1000_irq_enable(struct e1000_adapter *adapter)
  246. {
  247. if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
  248. E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
  249. E1000_WRITE_FLUSH(&adapter->hw);
  250. }
  251. }
  252. int
  253. e1000_up(struct e1000_adapter *adapter)
  254. {
  255. struct net_device *netdev = adapter->netdev;
  256. int err;
  257. /* hardware has been reset, we need to reload some things */
  258. /* Reset the PHY if it was previously powered down */
  259. if(adapter->hw.media_type == e1000_media_type_copper) {
  260. uint16_t mii_reg;
  261. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  262. if(mii_reg & MII_CR_POWER_DOWN)
  263. e1000_phy_reset(&adapter->hw);
  264. }
  265. e1000_set_multi(netdev);
  266. e1000_restore_vlan(adapter);
  267. e1000_configure_tx(adapter);
  268. e1000_setup_rctl(adapter);
  269. e1000_configure_rx(adapter);
  270. e1000_alloc_rx_buffers(adapter);
  271. if((err = request_irq(adapter->pdev->irq, &e1000_intr,
  272. SA_SHIRQ | SA_SAMPLE_RANDOM,
  273. netdev->name, netdev)))
  274. return err;
  275. mod_timer(&adapter->watchdog_timer, jiffies);
  276. e1000_irq_enable(adapter);
  277. #ifdef CONFIG_E1000_NAPI
  278. netif_poll_enable(netdev);
  279. #endif
  280. return 0;
  281. }
  282. void
  283. e1000_down(struct e1000_adapter *adapter)
  284. {
  285. struct net_device *netdev = adapter->netdev;
  286. e1000_irq_disable(adapter);
  287. free_irq(adapter->pdev->irq, netdev);
  288. del_timer_sync(&adapter->tx_fifo_stall_timer);
  289. del_timer_sync(&adapter->watchdog_timer);
  290. del_timer_sync(&adapter->phy_info_timer);
  291. #ifdef CONFIG_E1000_NAPI
  292. netif_poll_disable(netdev);
  293. #endif
  294. adapter->link_speed = 0;
  295. adapter->link_duplex = 0;
  296. netif_carrier_off(netdev);
  297. netif_stop_queue(netdev);
  298. e1000_reset(adapter);
  299. e1000_clean_tx_ring(adapter);
  300. e1000_clean_rx_ring(adapter);
  301. /* If WoL is not enabled
  302. * Power down the PHY so no link is implied when interface is down */
  303. if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
  304. uint16_t mii_reg;
  305. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
  306. mii_reg |= MII_CR_POWER_DOWN;
  307. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
  308. }
  309. }
  310. void
  311. e1000_reset(struct e1000_adapter *adapter)
  312. {
  313. uint32_t pba;
  314. /* Repartition Pba for greater than 9k mtu
  315. * To take effect CTRL.RST is required.
  316. */
  317. if(adapter->hw.mac_type < e1000_82547) {
  318. if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
  319. pba = E1000_PBA_40K;
  320. else
  321. pba = E1000_PBA_48K;
  322. } else {
  323. if(adapter->rx_buffer_len > E1000_RXBUFFER_8192)
  324. pba = E1000_PBA_22K;
  325. else
  326. pba = E1000_PBA_30K;
  327. adapter->tx_fifo_head = 0;
  328. adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
  329. adapter->tx_fifo_size =
  330. (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
  331. atomic_set(&adapter->tx_fifo_stall, 0);
  332. }
  333. E1000_WRITE_REG(&adapter->hw, PBA, pba);
  334. /* flow control settings */
  335. adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
  336. E1000_FC_HIGH_DIFF;
  337. adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
  338. E1000_FC_LOW_DIFF;
  339. adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
  340. adapter->hw.fc_send_xon = 1;
  341. adapter->hw.fc = adapter->hw.original_fc;
  342. e1000_reset_hw(&adapter->hw);
  343. if(adapter->hw.mac_type >= e1000_82544)
  344. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  345. if(e1000_init_hw(&adapter->hw))
  346. DPRINTK(PROBE, ERR, "Hardware Error\n");
  347. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  348. E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
  349. e1000_reset_adaptive(&adapter->hw);
  350. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  351. }
  352. /**
  353. * e1000_probe - Device Initialization Routine
  354. * @pdev: PCI device information struct
  355. * @ent: entry in e1000_pci_tbl
  356. *
  357. * Returns 0 on success, negative on failure
  358. *
  359. * e1000_probe initializes an adapter identified by a pci_dev structure.
  360. * The OS initialization, configuring of the adapter private structure,
  361. * and a hardware reset occur.
  362. **/
  363. static int __devinit
  364. e1000_probe(struct pci_dev *pdev,
  365. const struct pci_device_id *ent)
  366. {
  367. struct net_device *netdev;
  368. struct e1000_adapter *adapter;
  369. static int cards_found = 0;
  370. unsigned long mmio_start;
  371. int mmio_len;
  372. int pci_using_dac;
  373. int i;
  374. int err;
  375. uint16_t eeprom_data;
  376. uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
  377. if((err = pci_enable_device(pdev)))
  378. return err;
  379. if(!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK))) {
  380. pci_using_dac = 1;
  381. } else {
  382. if((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  383. E1000_ERR("No usable DMA configuration, aborting\n");
  384. return err;
  385. }
  386. pci_using_dac = 0;
  387. }
  388. if((err = pci_request_regions(pdev, e1000_driver_name)))
  389. return err;
  390. pci_set_master(pdev);
  391. netdev = alloc_etherdev(sizeof(struct e1000_adapter));
  392. if(!netdev) {
  393. err = -ENOMEM;
  394. goto err_alloc_etherdev;
  395. }
  396. SET_MODULE_OWNER(netdev);
  397. SET_NETDEV_DEV(netdev, &pdev->dev);
  398. pci_set_drvdata(pdev, netdev);
  399. adapter = netdev->priv;
  400. adapter->netdev = netdev;
  401. adapter->pdev = pdev;
  402. adapter->hw.back = adapter;
  403. adapter->msg_enable = (1 << debug) - 1;
  404. mmio_start = pci_resource_start(pdev, BAR_0);
  405. mmio_len = pci_resource_len(pdev, BAR_0);
  406. adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
  407. if(!adapter->hw.hw_addr) {
  408. err = -EIO;
  409. goto err_ioremap;
  410. }
  411. for(i = BAR_1; i <= BAR_5; i++) {
  412. if(pci_resource_len(pdev, i) == 0)
  413. continue;
  414. if(pci_resource_flags(pdev, i) & IORESOURCE_IO) {
  415. adapter->hw.io_base = pci_resource_start(pdev, i);
  416. break;
  417. }
  418. }
  419. netdev->open = &e1000_open;
  420. netdev->stop = &e1000_close;
  421. netdev->hard_start_xmit = &e1000_xmit_frame;
  422. netdev->get_stats = &e1000_get_stats;
  423. netdev->set_multicast_list = &e1000_set_multi;
  424. netdev->set_mac_address = &e1000_set_mac;
  425. netdev->change_mtu = &e1000_change_mtu;
  426. netdev->do_ioctl = &e1000_ioctl;
  427. e1000_set_ethtool_ops(netdev);
  428. netdev->tx_timeout = &e1000_tx_timeout;
  429. netdev->watchdog_timeo = 5 * HZ;
  430. #ifdef CONFIG_E1000_NAPI
  431. netdev->poll = &e1000_clean;
  432. netdev->weight = 64;
  433. #endif
  434. netdev->vlan_rx_register = e1000_vlan_rx_register;
  435. netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
  436. netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
  437. #ifdef CONFIG_NET_POLL_CONTROLLER
  438. netdev->poll_controller = e1000_netpoll;
  439. #endif
  440. strcpy(netdev->name, pci_name(pdev));
  441. netdev->mem_start = mmio_start;
  442. netdev->mem_end = mmio_start + mmio_len;
  443. netdev->base_addr = adapter->hw.io_base;
  444. adapter->bd_number = cards_found;
  445. /* setup the private structure */
  446. if((err = e1000_sw_init(adapter)))
  447. goto err_sw_init;
  448. if(adapter->hw.mac_type >= e1000_82543) {
  449. netdev->features = NETIF_F_SG |
  450. NETIF_F_HW_CSUM |
  451. NETIF_F_HW_VLAN_TX |
  452. NETIF_F_HW_VLAN_RX |
  453. NETIF_F_HW_VLAN_FILTER;
  454. }
  455. #ifdef NETIF_F_TSO
  456. if((adapter->hw.mac_type >= e1000_82544) &&
  457. (adapter->hw.mac_type != e1000_82547))
  458. netdev->features |= NETIF_F_TSO;
  459. #endif
  460. if(pci_using_dac)
  461. netdev->features |= NETIF_F_HIGHDMA;
  462. /* hard_start_xmit is safe against parallel locking */
  463. netdev->features |= NETIF_F_LLTX;
  464. /* before reading the EEPROM, reset the controller to
  465. * put the device in a known good starting state */
  466. e1000_reset_hw(&adapter->hw);
  467. /* make sure the EEPROM is good */
  468. if(e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
  469. DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
  470. err = -EIO;
  471. goto err_eeprom;
  472. }
  473. /* copy the MAC address out of the EEPROM */
  474. if (e1000_read_mac_addr(&adapter->hw))
  475. DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
  476. memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
  477. if(!is_valid_ether_addr(netdev->dev_addr)) {
  478. DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
  479. err = -EIO;
  480. goto err_eeprom;
  481. }
  482. e1000_read_part_num(&adapter->hw, &(adapter->part_num));
  483. e1000_get_bus_info(&adapter->hw);
  484. init_timer(&adapter->tx_fifo_stall_timer);
  485. adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
  486. adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
  487. init_timer(&adapter->watchdog_timer);
  488. adapter->watchdog_timer.function = &e1000_watchdog;
  489. adapter->watchdog_timer.data = (unsigned long) adapter;
  490. INIT_WORK(&adapter->watchdog_task,
  491. (void (*)(void *))e1000_watchdog_task, adapter);
  492. init_timer(&adapter->phy_info_timer);
  493. adapter->phy_info_timer.function = &e1000_update_phy_info;
  494. adapter->phy_info_timer.data = (unsigned long) adapter;
  495. INIT_WORK(&adapter->tx_timeout_task,
  496. (void (*)(void *))e1000_tx_timeout_task, netdev);
  497. /* we're going to reset, so assume we have no link for now */
  498. netif_carrier_off(netdev);
  499. netif_stop_queue(netdev);
  500. e1000_check_options(adapter);
  501. /* Initial Wake on LAN setting
  502. * If APM wake is enabled in the EEPROM,
  503. * enable the ACPI Magic Packet filter
  504. */
  505. switch(adapter->hw.mac_type) {
  506. case e1000_82542_rev2_0:
  507. case e1000_82542_rev2_1:
  508. case e1000_82543:
  509. break;
  510. case e1000_82544:
  511. e1000_read_eeprom(&adapter->hw,
  512. EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
  513. eeprom_apme_mask = E1000_EEPROM_82544_APM;
  514. break;
  515. case e1000_82546:
  516. case e1000_82546_rev_3:
  517. if((E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
  518. && (adapter->hw.media_type == e1000_media_type_copper)) {
  519. e1000_read_eeprom(&adapter->hw,
  520. EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  521. break;
  522. }
  523. /* Fall Through */
  524. default:
  525. e1000_read_eeprom(&adapter->hw,
  526. EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
  527. break;
  528. }
  529. if(eeprom_data & eeprom_apme_mask)
  530. adapter->wol |= E1000_WUFC_MAG;
  531. /* reset the hardware with the new settings */
  532. e1000_reset(adapter);
  533. strcpy(netdev->name, "eth%d");
  534. if((err = register_netdev(netdev)))
  535. goto err_register;
  536. DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
  537. cards_found++;
  538. return 0;
  539. err_register:
  540. err_sw_init:
  541. err_eeprom:
  542. iounmap(adapter->hw.hw_addr);
  543. err_ioremap:
  544. free_netdev(netdev);
  545. err_alloc_etherdev:
  546. pci_release_regions(pdev);
  547. return err;
  548. }
  549. /**
  550. * e1000_remove - Device Removal Routine
  551. * @pdev: PCI device information struct
  552. *
  553. * e1000_remove is called by the PCI subsystem to alert the driver
  554. * that it should release a PCI device. The could be caused by a
  555. * Hot-Plug event, or because the driver is going to be removed from
  556. * memory.
  557. **/
  558. static void __devexit
  559. e1000_remove(struct pci_dev *pdev)
  560. {
  561. struct net_device *netdev = pci_get_drvdata(pdev);
  562. struct e1000_adapter *adapter = netdev->priv;
  563. uint32_t manc;
  564. flush_scheduled_work();
  565. if(adapter->hw.mac_type >= e1000_82540 &&
  566. adapter->hw.media_type == e1000_media_type_copper) {
  567. manc = E1000_READ_REG(&adapter->hw, MANC);
  568. if(manc & E1000_MANC_SMBUS_EN) {
  569. manc |= E1000_MANC_ARP_EN;
  570. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  571. }
  572. }
  573. unregister_netdev(netdev);
  574. e1000_phy_hw_reset(&adapter->hw);
  575. iounmap(adapter->hw.hw_addr);
  576. pci_release_regions(pdev);
  577. free_netdev(netdev);
  578. pci_disable_device(pdev);
  579. }
  580. /**
  581. * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
  582. * @adapter: board private structure to initialize
  583. *
  584. * e1000_sw_init initializes the Adapter private data structure.
  585. * Fields are initialized based on PCI device information and
  586. * OS network device settings (MTU size).
  587. **/
  588. static int __devinit
  589. e1000_sw_init(struct e1000_adapter *adapter)
  590. {
  591. struct e1000_hw *hw = &adapter->hw;
  592. struct net_device *netdev = adapter->netdev;
  593. struct pci_dev *pdev = adapter->pdev;
  594. /* PCI config space info */
  595. hw->vendor_id = pdev->vendor;
  596. hw->device_id = pdev->device;
  597. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  598. hw->subsystem_id = pdev->subsystem_device;
  599. pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
  600. pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
  601. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  602. hw->max_frame_size = netdev->mtu +
  603. ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  604. hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
  605. /* identify the MAC */
  606. if(e1000_set_mac_type(hw)) {
  607. DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
  608. return -EIO;
  609. }
  610. /* initialize eeprom parameters */
  611. e1000_init_eeprom_params(hw);
  612. switch(hw->mac_type) {
  613. default:
  614. break;
  615. case e1000_82541:
  616. case e1000_82547:
  617. case e1000_82541_rev_2:
  618. case e1000_82547_rev_2:
  619. hw->phy_init_script = 1;
  620. break;
  621. }
  622. e1000_set_media_type(hw);
  623. hw->wait_autoneg_complete = FALSE;
  624. hw->tbi_compatibility_en = TRUE;
  625. hw->adaptive_ifs = TRUE;
  626. /* Copper options */
  627. if(hw->media_type == e1000_media_type_copper) {
  628. hw->mdix = AUTO_ALL_MODES;
  629. hw->disable_polarity_correction = FALSE;
  630. hw->master_slave = E1000_MASTER_SLAVE;
  631. }
  632. atomic_set(&adapter->irq_sem, 1);
  633. spin_lock_init(&adapter->stats_lock);
  634. spin_lock_init(&adapter->tx_lock);
  635. return 0;
  636. }
  637. /**
  638. * e1000_open - Called when a network interface is made active
  639. * @netdev: network interface device structure
  640. *
  641. * Returns 0 on success, negative value on failure
  642. *
  643. * The open entry point is called when a network interface is made
  644. * active by the system (IFF_UP). At this point all resources needed
  645. * for transmit and receive operations are allocated, the interrupt
  646. * handler is registered with the OS, the watchdog timer is started,
  647. * and the stack is notified that the interface is ready.
  648. **/
  649. static int
  650. e1000_open(struct net_device *netdev)
  651. {
  652. struct e1000_adapter *adapter = netdev->priv;
  653. int err;
  654. /* allocate transmit descriptors */
  655. if((err = e1000_setup_tx_resources(adapter)))
  656. goto err_setup_tx;
  657. /* allocate receive descriptors */
  658. if((err = e1000_setup_rx_resources(adapter)))
  659. goto err_setup_rx;
  660. if((err = e1000_up(adapter)))
  661. goto err_up;
  662. return E1000_SUCCESS;
  663. err_up:
  664. e1000_free_rx_resources(adapter);
  665. err_setup_rx:
  666. e1000_free_tx_resources(adapter);
  667. err_setup_tx:
  668. e1000_reset(adapter);
  669. return err;
  670. }
  671. /**
  672. * e1000_close - Disables a network interface
  673. * @netdev: network interface device structure
  674. *
  675. * Returns 0, this is not allowed to fail
  676. *
  677. * The close entry point is called when an interface is de-activated
  678. * by the OS. The hardware is still under the drivers control, but
  679. * needs to be disabled. A global MAC reset is issued to stop the
  680. * hardware, and all transmit and receive resources are freed.
  681. **/
  682. static int
  683. e1000_close(struct net_device *netdev)
  684. {
  685. struct e1000_adapter *adapter = netdev->priv;
  686. e1000_down(adapter);
  687. e1000_free_tx_resources(adapter);
  688. e1000_free_rx_resources(adapter);
  689. return 0;
  690. }
  691. /**
  692. * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
  693. * @adapter: address of board private structure
  694. * @begin: address of beginning of memory
  695. * @end: address of end of memory
  696. **/
  697. static inline boolean_t
  698. e1000_check_64k_bound(struct e1000_adapter *adapter,
  699. void *start, unsigned long len)
  700. {
  701. unsigned long begin = (unsigned long) start;
  702. unsigned long end = begin + len;
  703. /* first rev 82545 and 82546 need to not allow any memory
  704. * write location to cross a 64k boundary due to errata 23 */
  705. if (adapter->hw.mac_type == e1000_82545 ||
  706. adapter->hw.mac_type == e1000_82546 ) {
  707. /* check buffer doesn't cross 64kB */
  708. return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
  709. }
  710. return TRUE;
  711. }
  712. /**
  713. * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
  714. * @adapter: board private structure
  715. *
  716. * Return 0 on success, negative on failure
  717. **/
  718. int
  719. e1000_setup_tx_resources(struct e1000_adapter *adapter)
  720. {
  721. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  722. struct pci_dev *pdev = adapter->pdev;
  723. int size;
  724. size = sizeof(struct e1000_buffer) * txdr->count;
  725. txdr->buffer_info = vmalloc(size);
  726. if(!txdr->buffer_info) {
  727. DPRINTK(PROBE, ERR,
  728. "Unable to Allocate Memory for the Transmit descriptor ring\n");
  729. return -ENOMEM;
  730. }
  731. memset(txdr->buffer_info, 0, size);
  732. /* round up to nearest 4K */
  733. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  734. E1000_ROUNDUP(txdr->size, 4096);
  735. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  736. if(!txdr->desc) {
  737. setup_tx_desc_die:
  738. DPRINTK(PROBE, ERR,
  739. "Unable to Allocate Memory for the Transmit descriptor ring\n");
  740. vfree(txdr->buffer_info);
  741. return -ENOMEM;
  742. }
  743. /* fix for errata 23, cant cross 64kB boundary */
  744. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  745. void *olddesc = txdr->desc;
  746. dma_addr_t olddma = txdr->dma;
  747. DPRINTK(TX_ERR,ERR,"txdr align check failed: %u bytes at %p\n",
  748. txdr->size, txdr->desc);
  749. /* try again, without freeing the previous */
  750. txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
  751. /* failed allocation, critial failure */
  752. if(!txdr->desc) {
  753. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  754. goto setup_tx_desc_die;
  755. }
  756. if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
  757. /* give up */
  758. pci_free_consistent(pdev, txdr->size,
  759. txdr->desc, txdr->dma);
  760. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  761. DPRINTK(PROBE, ERR,
  762. "Unable to Allocate aligned Memory for the Transmit"
  763. " descriptor ring\n");
  764. vfree(txdr->buffer_info);
  765. return -ENOMEM;
  766. } else {
  767. /* free old, move on with the new one since its okay */
  768. pci_free_consistent(pdev, txdr->size, olddesc, olddma);
  769. }
  770. }
  771. memset(txdr->desc, 0, txdr->size);
  772. txdr->next_to_use = 0;
  773. txdr->next_to_clean = 0;
  774. return 0;
  775. }
  776. /**
  777. * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
  778. * @adapter: board private structure
  779. *
  780. * Configure the Tx unit of the MAC after a reset.
  781. **/
  782. static void
  783. e1000_configure_tx(struct e1000_adapter *adapter)
  784. {
  785. uint64_t tdba = adapter->tx_ring.dma;
  786. uint32_t tdlen = adapter->tx_ring.count * sizeof(struct e1000_tx_desc);
  787. uint32_t tctl, tipg;
  788. E1000_WRITE_REG(&adapter->hw, TDBAL, (tdba & 0x00000000ffffffffULL));
  789. E1000_WRITE_REG(&adapter->hw, TDBAH, (tdba >> 32));
  790. E1000_WRITE_REG(&adapter->hw, TDLEN, tdlen);
  791. /* Setup the HW Tx Head and Tail descriptor pointers */
  792. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  793. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  794. /* Set the default values for the Tx Inter Packet Gap timer */
  795. switch (adapter->hw.mac_type) {
  796. case e1000_82542_rev2_0:
  797. case e1000_82542_rev2_1:
  798. tipg = DEFAULT_82542_TIPG_IPGT;
  799. tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  800. tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  801. break;
  802. default:
  803. if(adapter->hw.media_type == e1000_media_type_fiber ||
  804. adapter->hw.media_type == e1000_media_type_internal_serdes)
  805. tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
  806. else
  807. tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
  808. tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT;
  809. tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT;
  810. }
  811. E1000_WRITE_REG(&adapter->hw, TIPG, tipg);
  812. /* Set the Tx Interrupt Delay register */
  813. E1000_WRITE_REG(&adapter->hw, TIDV, adapter->tx_int_delay);
  814. if(adapter->hw.mac_type >= e1000_82540)
  815. E1000_WRITE_REG(&adapter->hw, TADV, adapter->tx_abs_int_delay);
  816. /* Program the Transmit Control Register */
  817. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  818. tctl &= ~E1000_TCTL_CT;
  819. tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
  820. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  821. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  822. e1000_config_collision_dist(&adapter->hw);
  823. /* Setup Transmit Descriptor Settings for eop descriptor */
  824. adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
  825. E1000_TXD_CMD_IFCS;
  826. if(adapter->hw.mac_type < e1000_82543)
  827. adapter->txd_cmd |= E1000_TXD_CMD_RPS;
  828. else
  829. adapter->txd_cmd |= E1000_TXD_CMD_RS;
  830. /* Cache if we're 82544 running in PCI-X because we'll
  831. * need this to apply a workaround later in the send path. */
  832. if(adapter->hw.mac_type == e1000_82544 &&
  833. adapter->hw.bus_type == e1000_bus_type_pcix)
  834. adapter->pcix_82544 = 1;
  835. }
  836. /**
  837. * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
  838. * @adapter: board private structure
  839. *
  840. * Returns 0 on success, negative on failure
  841. **/
  842. int
  843. e1000_setup_rx_resources(struct e1000_adapter *adapter)
  844. {
  845. struct e1000_desc_ring *rxdr = &adapter->rx_ring;
  846. struct pci_dev *pdev = adapter->pdev;
  847. int size;
  848. size = sizeof(struct e1000_buffer) * rxdr->count;
  849. rxdr->buffer_info = vmalloc(size);
  850. if(!rxdr->buffer_info) {
  851. DPRINTK(PROBE, ERR,
  852. "Unable to Allocate Memory for the Recieve descriptor ring\n");
  853. return -ENOMEM;
  854. }
  855. memset(rxdr->buffer_info, 0, size);
  856. /* Round up to nearest 4K */
  857. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  858. E1000_ROUNDUP(rxdr->size, 4096);
  859. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  860. if(!rxdr->desc) {
  861. setup_rx_desc_die:
  862. DPRINTK(PROBE, ERR,
  863. "Unble to Allocate Memory for the Recieve descriptor ring\n");
  864. vfree(rxdr->buffer_info);
  865. return -ENOMEM;
  866. }
  867. /* fix for errata 23, cant cross 64kB boundary */
  868. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  869. void *olddesc = rxdr->desc;
  870. dma_addr_t olddma = rxdr->dma;
  871. DPRINTK(RX_ERR,ERR,
  872. "rxdr align check failed: %u bytes at %p\n",
  873. rxdr->size, rxdr->desc);
  874. /* try again, without freeing the previous */
  875. rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
  876. /* failed allocation, critial failure */
  877. if(!rxdr->desc) {
  878. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  879. goto setup_rx_desc_die;
  880. }
  881. if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
  882. /* give up */
  883. pci_free_consistent(pdev, rxdr->size,
  884. rxdr->desc, rxdr->dma);
  885. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  886. DPRINTK(PROBE, ERR,
  887. "Unable to Allocate aligned Memory for the"
  888. " Receive descriptor ring\n");
  889. vfree(rxdr->buffer_info);
  890. return -ENOMEM;
  891. } else {
  892. /* free old, move on with the new one since its okay */
  893. pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
  894. }
  895. }
  896. memset(rxdr->desc, 0, rxdr->size);
  897. rxdr->next_to_clean = 0;
  898. rxdr->next_to_use = 0;
  899. return 0;
  900. }
  901. /**
  902. * e1000_setup_rctl - configure the receive control register
  903. * @adapter: Board private structure
  904. **/
  905. static void
  906. e1000_setup_rctl(struct e1000_adapter *adapter)
  907. {
  908. uint32_t rctl;
  909. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  910. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  911. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
  912. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  913. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  914. if(adapter->hw.tbi_compatibility_on == 1)
  915. rctl |= E1000_RCTL_SBP;
  916. else
  917. rctl &= ~E1000_RCTL_SBP;
  918. /* Setup buffer sizes */
  919. rctl &= ~(E1000_RCTL_SZ_4096);
  920. rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
  921. switch (adapter->rx_buffer_len) {
  922. case E1000_RXBUFFER_2048:
  923. default:
  924. rctl |= E1000_RCTL_SZ_2048;
  925. rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
  926. break;
  927. case E1000_RXBUFFER_4096:
  928. rctl |= E1000_RCTL_SZ_4096;
  929. break;
  930. case E1000_RXBUFFER_8192:
  931. rctl |= E1000_RCTL_SZ_8192;
  932. break;
  933. case E1000_RXBUFFER_16384:
  934. rctl |= E1000_RCTL_SZ_16384;
  935. break;
  936. }
  937. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  938. }
  939. /**
  940. * e1000_configure_rx - Configure 8254x Receive Unit after Reset
  941. * @adapter: board private structure
  942. *
  943. * Configure the Rx unit of the MAC after a reset.
  944. **/
  945. static void
  946. e1000_configure_rx(struct e1000_adapter *adapter)
  947. {
  948. uint64_t rdba = adapter->rx_ring.dma;
  949. uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc);
  950. uint32_t rctl;
  951. uint32_t rxcsum;
  952. /* disable receives while setting up the descriptors */
  953. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  954. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  955. /* set the Receive Delay Timer Register */
  956. E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
  957. if(adapter->hw.mac_type >= e1000_82540) {
  958. E1000_WRITE_REG(&adapter->hw, RADV, adapter->rx_abs_int_delay);
  959. if(adapter->itr > 1)
  960. E1000_WRITE_REG(&adapter->hw, ITR,
  961. 1000000000 / (adapter->itr * 256));
  962. }
  963. /* Setup the Base and Length of the Rx Descriptor Ring */
  964. E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
  965. E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
  966. E1000_WRITE_REG(&adapter->hw, RDLEN, rdlen);
  967. /* Setup the HW Rx Head and Tail Descriptor Pointers */
  968. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  969. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  970. /* Enable 82543 Receive Checksum Offload for TCP and UDP */
  971. if((adapter->hw.mac_type >= e1000_82543) &&
  972. (adapter->rx_csum == TRUE)) {
  973. rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM);
  974. rxcsum |= E1000_RXCSUM_TUOFL;
  975. E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum);
  976. }
  977. /* Enable Receives */
  978. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  979. }
  980. /**
  981. * e1000_free_tx_resources - Free Tx Resources
  982. * @adapter: board private structure
  983. *
  984. * Free all transmit software resources
  985. **/
  986. void
  987. e1000_free_tx_resources(struct e1000_adapter *adapter)
  988. {
  989. struct pci_dev *pdev = adapter->pdev;
  990. e1000_clean_tx_ring(adapter);
  991. vfree(adapter->tx_ring.buffer_info);
  992. adapter->tx_ring.buffer_info = NULL;
  993. pci_free_consistent(pdev, adapter->tx_ring.size,
  994. adapter->tx_ring.desc, adapter->tx_ring.dma);
  995. adapter->tx_ring.desc = NULL;
  996. }
  997. static inline void
  998. e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
  999. struct e1000_buffer *buffer_info)
  1000. {
  1001. struct pci_dev *pdev = adapter->pdev;
  1002. if(buffer_info->dma) {
  1003. pci_unmap_page(pdev,
  1004. buffer_info->dma,
  1005. buffer_info->length,
  1006. PCI_DMA_TODEVICE);
  1007. buffer_info->dma = 0;
  1008. }
  1009. if(buffer_info->skb) {
  1010. dev_kfree_skb_any(buffer_info->skb);
  1011. buffer_info->skb = NULL;
  1012. }
  1013. }
  1014. /**
  1015. * e1000_clean_tx_ring - Free Tx Buffers
  1016. * @adapter: board private structure
  1017. **/
  1018. static void
  1019. e1000_clean_tx_ring(struct e1000_adapter *adapter)
  1020. {
  1021. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1022. struct e1000_buffer *buffer_info;
  1023. unsigned long size;
  1024. unsigned int i;
  1025. /* Free all the Tx ring sk_buffs */
  1026. if (likely(adapter->previous_buffer_info.skb != NULL)) {
  1027. e1000_unmap_and_free_tx_resource(adapter,
  1028. &adapter->previous_buffer_info);
  1029. }
  1030. for(i = 0; i < tx_ring->count; i++) {
  1031. buffer_info = &tx_ring->buffer_info[i];
  1032. e1000_unmap_and_free_tx_resource(adapter, buffer_info);
  1033. }
  1034. size = sizeof(struct e1000_buffer) * tx_ring->count;
  1035. memset(tx_ring->buffer_info, 0, size);
  1036. /* Zero out the descriptor ring */
  1037. memset(tx_ring->desc, 0, tx_ring->size);
  1038. tx_ring->next_to_use = 0;
  1039. tx_ring->next_to_clean = 0;
  1040. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  1041. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  1042. }
  1043. /**
  1044. * e1000_free_rx_resources - Free Rx Resources
  1045. * @adapter: board private structure
  1046. *
  1047. * Free all receive software resources
  1048. **/
  1049. void
  1050. e1000_free_rx_resources(struct e1000_adapter *adapter)
  1051. {
  1052. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  1053. struct pci_dev *pdev = adapter->pdev;
  1054. e1000_clean_rx_ring(adapter);
  1055. vfree(rx_ring->buffer_info);
  1056. rx_ring->buffer_info = NULL;
  1057. pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
  1058. rx_ring->desc = NULL;
  1059. }
  1060. /**
  1061. * e1000_clean_rx_ring - Free Rx Buffers
  1062. * @adapter: board private structure
  1063. **/
  1064. static void
  1065. e1000_clean_rx_ring(struct e1000_adapter *adapter)
  1066. {
  1067. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  1068. struct e1000_buffer *buffer_info;
  1069. struct pci_dev *pdev = adapter->pdev;
  1070. unsigned long size;
  1071. unsigned int i;
  1072. /* Free all the Rx ring sk_buffs */
  1073. for(i = 0; i < rx_ring->count; i++) {
  1074. buffer_info = &rx_ring->buffer_info[i];
  1075. if(buffer_info->skb) {
  1076. pci_unmap_single(pdev,
  1077. buffer_info->dma,
  1078. buffer_info->length,
  1079. PCI_DMA_FROMDEVICE);
  1080. dev_kfree_skb(buffer_info->skb);
  1081. buffer_info->skb = NULL;
  1082. }
  1083. }
  1084. size = sizeof(struct e1000_buffer) * rx_ring->count;
  1085. memset(rx_ring->buffer_info, 0, size);
  1086. /* Zero out the descriptor ring */
  1087. memset(rx_ring->desc, 0, rx_ring->size);
  1088. rx_ring->next_to_clean = 0;
  1089. rx_ring->next_to_use = 0;
  1090. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  1091. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  1092. }
  1093. /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
  1094. * and memory write and invalidate disabled for certain operations
  1095. */
  1096. static void
  1097. e1000_enter_82542_rst(struct e1000_adapter *adapter)
  1098. {
  1099. struct net_device *netdev = adapter->netdev;
  1100. uint32_t rctl;
  1101. e1000_pci_clear_mwi(&adapter->hw);
  1102. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1103. rctl |= E1000_RCTL_RST;
  1104. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1105. E1000_WRITE_FLUSH(&adapter->hw);
  1106. mdelay(5);
  1107. if(netif_running(netdev))
  1108. e1000_clean_rx_ring(adapter);
  1109. }
  1110. static void
  1111. e1000_leave_82542_rst(struct e1000_adapter *adapter)
  1112. {
  1113. struct net_device *netdev = adapter->netdev;
  1114. uint32_t rctl;
  1115. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1116. rctl &= ~E1000_RCTL_RST;
  1117. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1118. E1000_WRITE_FLUSH(&adapter->hw);
  1119. mdelay(5);
  1120. if(adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
  1121. e1000_pci_set_mwi(&adapter->hw);
  1122. if(netif_running(netdev)) {
  1123. e1000_configure_rx(adapter);
  1124. e1000_alloc_rx_buffers(adapter);
  1125. }
  1126. }
  1127. /**
  1128. * e1000_set_mac - Change the Ethernet Address of the NIC
  1129. * @netdev: network interface device structure
  1130. * @p: pointer to an address structure
  1131. *
  1132. * Returns 0 on success, negative on failure
  1133. **/
  1134. static int
  1135. e1000_set_mac(struct net_device *netdev, void *p)
  1136. {
  1137. struct e1000_adapter *adapter = netdev->priv;
  1138. struct sockaddr *addr = p;
  1139. if(!is_valid_ether_addr(addr->sa_data))
  1140. return -EADDRNOTAVAIL;
  1141. /* 82542 2.0 needs to be in reset to write receive address registers */
  1142. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1143. e1000_enter_82542_rst(adapter);
  1144. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  1145. memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
  1146. e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
  1147. if(adapter->hw.mac_type == e1000_82542_rev2_0)
  1148. e1000_leave_82542_rst(adapter);
  1149. return 0;
  1150. }
  1151. /**
  1152. * e1000_set_multi - Multicast and Promiscuous mode set
  1153. * @netdev: network interface device structure
  1154. *
  1155. * The set_multi entry point is called whenever the multicast address
  1156. * list or the network interface flags are updated. This routine is
  1157. * responsible for configuring the hardware for proper multicast,
  1158. * promiscuous mode, and all-multi behavior.
  1159. **/
  1160. static void
  1161. e1000_set_multi(struct net_device *netdev)
  1162. {
  1163. struct e1000_adapter *adapter = netdev->priv;
  1164. struct e1000_hw *hw = &adapter->hw;
  1165. struct dev_mc_list *mc_ptr;
  1166. uint32_t rctl;
  1167. uint32_t hash_value;
  1168. int i;
  1169. unsigned long flags;
  1170. /* Check for Promiscuous and All Multicast modes */
  1171. spin_lock_irqsave(&adapter->tx_lock, flags);
  1172. rctl = E1000_READ_REG(hw, RCTL);
  1173. if(netdev->flags & IFF_PROMISC) {
  1174. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  1175. } else if(netdev->flags & IFF_ALLMULTI) {
  1176. rctl |= E1000_RCTL_MPE;
  1177. rctl &= ~E1000_RCTL_UPE;
  1178. } else {
  1179. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
  1180. }
  1181. E1000_WRITE_REG(hw, RCTL, rctl);
  1182. /* 82542 2.0 needs to be in reset to write receive address registers */
  1183. if(hw->mac_type == e1000_82542_rev2_0)
  1184. e1000_enter_82542_rst(adapter);
  1185. /* load the first 14 multicast address into the exact filters 1-14
  1186. * RAR 0 is used for the station MAC adddress
  1187. * if there are not 14 addresses, go ahead and clear the filters
  1188. */
  1189. mc_ptr = netdev->mc_list;
  1190. for(i = 1; i < E1000_RAR_ENTRIES; i++) {
  1191. if(mc_ptr) {
  1192. e1000_rar_set(hw, mc_ptr->dmi_addr, i);
  1193. mc_ptr = mc_ptr->next;
  1194. } else {
  1195. E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
  1196. E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
  1197. }
  1198. }
  1199. /* clear the old settings from the multicast hash table */
  1200. for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++)
  1201. E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
  1202. /* load any remaining addresses into the hash table */
  1203. for(; mc_ptr; mc_ptr = mc_ptr->next) {
  1204. hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
  1205. e1000_mta_set(hw, hash_value);
  1206. }
  1207. if(hw->mac_type == e1000_82542_rev2_0)
  1208. e1000_leave_82542_rst(adapter);
  1209. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1210. }
  1211. /* Need to wait a few seconds after link up to get diagnostic information from
  1212. * the phy */
  1213. static void
  1214. e1000_update_phy_info(unsigned long data)
  1215. {
  1216. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1217. e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
  1218. }
  1219. /**
  1220. * e1000_82547_tx_fifo_stall - Timer Call-back
  1221. * @data: pointer to adapter cast into an unsigned long
  1222. **/
  1223. static void
  1224. e1000_82547_tx_fifo_stall(unsigned long data)
  1225. {
  1226. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1227. struct net_device *netdev = adapter->netdev;
  1228. uint32_t tctl;
  1229. if(atomic_read(&adapter->tx_fifo_stall)) {
  1230. if((E1000_READ_REG(&adapter->hw, TDT) ==
  1231. E1000_READ_REG(&adapter->hw, TDH)) &&
  1232. (E1000_READ_REG(&adapter->hw, TDFT) ==
  1233. E1000_READ_REG(&adapter->hw, TDFH)) &&
  1234. (E1000_READ_REG(&adapter->hw, TDFTS) ==
  1235. E1000_READ_REG(&adapter->hw, TDFHS))) {
  1236. tctl = E1000_READ_REG(&adapter->hw, TCTL);
  1237. E1000_WRITE_REG(&adapter->hw, TCTL,
  1238. tctl & ~E1000_TCTL_EN);
  1239. E1000_WRITE_REG(&adapter->hw, TDFT,
  1240. adapter->tx_head_addr);
  1241. E1000_WRITE_REG(&adapter->hw, TDFH,
  1242. adapter->tx_head_addr);
  1243. E1000_WRITE_REG(&adapter->hw, TDFTS,
  1244. adapter->tx_head_addr);
  1245. E1000_WRITE_REG(&adapter->hw, TDFHS,
  1246. adapter->tx_head_addr);
  1247. E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
  1248. E1000_WRITE_FLUSH(&adapter->hw);
  1249. adapter->tx_fifo_head = 0;
  1250. atomic_set(&adapter->tx_fifo_stall, 0);
  1251. netif_wake_queue(netdev);
  1252. } else {
  1253. mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
  1254. }
  1255. }
  1256. }
  1257. /**
  1258. * e1000_watchdog - Timer Call-back
  1259. * @data: pointer to adapter cast into an unsigned long
  1260. **/
  1261. static void
  1262. e1000_watchdog(unsigned long data)
  1263. {
  1264. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1265. /* Do the rest outside of interrupt context */
  1266. schedule_work(&adapter->watchdog_task);
  1267. }
  1268. static void
  1269. e1000_watchdog_task(struct e1000_adapter *adapter)
  1270. {
  1271. struct net_device *netdev = adapter->netdev;
  1272. struct e1000_desc_ring *txdr = &adapter->tx_ring;
  1273. uint32_t link;
  1274. e1000_check_for_link(&adapter->hw);
  1275. if((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1276. !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
  1277. link = !adapter->hw.serdes_link_down;
  1278. else
  1279. link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
  1280. if(link) {
  1281. if(!netif_carrier_ok(netdev)) {
  1282. e1000_get_speed_and_duplex(&adapter->hw,
  1283. &adapter->link_speed,
  1284. &adapter->link_duplex);
  1285. DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
  1286. adapter->link_speed,
  1287. adapter->link_duplex == FULL_DUPLEX ?
  1288. "Full Duplex" : "Half Duplex");
  1289. netif_carrier_on(netdev);
  1290. netif_wake_queue(netdev);
  1291. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1292. adapter->smartspeed = 0;
  1293. }
  1294. } else {
  1295. if(netif_carrier_ok(netdev)) {
  1296. adapter->link_speed = 0;
  1297. adapter->link_duplex = 0;
  1298. DPRINTK(LINK, INFO, "NIC Link is Down\n");
  1299. netif_carrier_off(netdev);
  1300. netif_stop_queue(netdev);
  1301. mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
  1302. }
  1303. e1000_smartspeed(adapter);
  1304. }
  1305. e1000_update_stats(adapter);
  1306. adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
  1307. adapter->tpt_old = adapter->stats.tpt;
  1308. adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
  1309. adapter->colc_old = adapter->stats.colc;
  1310. adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
  1311. adapter->gorcl_old = adapter->stats.gorcl;
  1312. adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
  1313. adapter->gotcl_old = adapter->stats.gotcl;
  1314. e1000_update_adaptive(&adapter->hw);
  1315. if(!netif_carrier_ok(netdev)) {
  1316. if(E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
  1317. /* We've lost link, so the controller stops DMA,
  1318. * but we've got queued Tx work that's never going
  1319. * to get done, so reset controller to flush Tx.
  1320. * (Do the reset outside of interrupt context). */
  1321. schedule_work(&adapter->tx_timeout_task);
  1322. }
  1323. }
  1324. /* Dynamic mode for Interrupt Throttle Rate (ITR) */
  1325. if(adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
  1326. /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
  1327. * asymmetrical Tx or Rx gets ITR=8000; everyone
  1328. * else is between 2000-8000. */
  1329. uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
  1330. uint32_t dif = (adapter->gotcl > adapter->gorcl ?
  1331. adapter->gotcl - adapter->gorcl :
  1332. adapter->gorcl - adapter->gotcl) / 10000;
  1333. uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
  1334. E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
  1335. }
  1336. /* Cause software interrupt to ensure rx ring is cleaned */
  1337. E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
  1338. /* Force detection of hung controller every watchdog period*/
  1339. adapter->detect_tx_hung = TRUE;
  1340. /* Reset the timer */
  1341. mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
  1342. }
  1343. #define E1000_TX_FLAGS_CSUM 0x00000001
  1344. #define E1000_TX_FLAGS_VLAN 0x00000002
  1345. #define E1000_TX_FLAGS_TSO 0x00000004
  1346. #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
  1347. #define E1000_TX_FLAGS_VLAN_SHIFT 16
  1348. static inline int
  1349. e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
  1350. {
  1351. #ifdef NETIF_F_TSO
  1352. struct e1000_context_desc *context_desc;
  1353. unsigned int i;
  1354. uint32_t cmd_length = 0;
  1355. uint16_t ipcse, tucse, mss;
  1356. uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
  1357. int err;
  1358. if(skb_shinfo(skb)->tso_size) {
  1359. if (skb_header_cloned(skb)) {
  1360. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1361. if (err)
  1362. return err;
  1363. }
  1364. hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
  1365. mss = skb_shinfo(skb)->tso_size;
  1366. skb->nh.iph->tot_len = 0;
  1367. skb->nh.iph->check = 0;
  1368. skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr,
  1369. skb->nh.iph->daddr,
  1370. 0,
  1371. IPPROTO_TCP,
  1372. 0);
  1373. ipcss = skb->nh.raw - skb->data;
  1374. ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
  1375. ipcse = skb->h.raw - skb->data - 1;
  1376. tucss = skb->h.raw - skb->data;
  1377. tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
  1378. tucse = 0;
  1379. cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
  1380. E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
  1381. (skb->len - (hdr_len)));
  1382. i = adapter->tx_ring.next_to_use;
  1383. context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
  1384. context_desc->lower_setup.ip_fields.ipcss = ipcss;
  1385. context_desc->lower_setup.ip_fields.ipcso = ipcso;
  1386. context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
  1387. context_desc->upper_setup.tcp_fields.tucss = tucss;
  1388. context_desc->upper_setup.tcp_fields.tucso = tucso;
  1389. context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
  1390. context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
  1391. context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
  1392. context_desc->cmd_and_length = cpu_to_le32(cmd_length);
  1393. if(++i == adapter->tx_ring.count) i = 0;
  1394. adapter->tx_ring.next_to_use = i;
  1395. return 1;
  1396. }
  1397. #endif
  1398. return 0;
  1399. }
  1400. static inline boolean_t
  1401. e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
  1402. {
  1403. struct e1000_context_desc *context_desc;
  1404. unsigned int i;
  1405. uint8_t css;
  1406. if(likely(skb->ip_summed == CHECKSUM_HW)) {
  1407. css = skb->h.raw - skb->data;
  1408. i = adapter->tx_ring.next_to_use;
  1409. context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
  1410. context_desc->upper_setup.tcp_fields.tucss = css;
  1411. context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
  1412. context_desc->upper_setup.tcp_fields.tucse = 0;
  1413. context_desc->tcp_seg_setup.data = 0;
  1414. context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
  1415. if(unlikely(++i == adapter->tx_ring.count)) i = 0;
  1416. adapter->tx_ring.next_to_use = i;
  1417. return TRUE;
  1418. }
  1419. return FALSE;
  1420. }
  1421. #define E1000_MAX_TXD_PWR 12
  1422. #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
  1423. static inline int
  1424. e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
  1425. unsigned int first, unsigned int max_per_txd,
  1426. unsigned int nr_frags, unsigned int mss)
  1427. {
  1428. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1429. struct e1000_buffer *buffer_info;
  1430. unsigned int len = skb->len;
  1431. unsigned int offset = 0, size, count = 0, i;
  1432. unsigned int f;
  1433. len -= skb->data_len;
  1434. i = tx_ring->next_to_use;
  1435. while(len) {
  1436. buffer_info = &tx_ring->buffer_info[i];
  1437. size = min(len, max_per_txd);
  1438. #ifdef NETIF_F_TSO
  1439. /* Workaround for premature desc write-backs
  1440. * in TSO mode. Append 4-byte sentinel desc */
  1441. if(unlikely(mss && !nr_frags && size == len && size > 8))
  1442. size -= 4;
  1443. #endif
  1444. /* Workaround for potential 82544 hang in PCI-X. Avoid
  1445. * terminating buffers within evenly-aligned dwords. */
  1446. if(unlikely(adapter->pcix_82544 &&
  1447. !((unsigned long)(skb->data + offset + size - 1) & 4) &&
  1448. size > 4))
  1449. size -= 4;
  1450. buffer_info->length = size;
  1451. buffer_info->dma =
  1452. pci_map_single(adapter->pdev,
  1453. skb->data + offset,
  1454. size,
  1455. PCI_DMA_TODEVICE);
  1456. buffer_info->time_stamp = jiffies;
  1457. len -= size;
  1458. offset += size;
  1459. count++;
  1460. if(unlikely(++i == tx_ring->count)) i = 0;
  1461. }
  1462. for(f = 0; f < nr_frags; f++) {
  1463. struct skb_frag_struct *frag;
  1464. frag = &skb_shinfo(skb)->frags[f];
  1465. len = frag->size;
  1466. offset = frag->page_offset;
  1467. while(len) {
  1468. buffer_info = &tx_ring->buffer_info[i];
  1469. size = min(len, max_per_txd);
  1470. #ifdef NETIF_F_TSO
  1471. /* Workaround for premature desc write-backs
  1472. * in TSO mode. Append 4-byte sentinel desc */
  1473. if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
  1474. size -= 4;
  1475. #endif
  1476. /* Workaround for potential 82544 hang in PCI-X.
  1477. * Avoid terminating buffers within evenly-aligned
  1478. * dwords. */
  1479. if(unlikely(adapter->pcix_82544 &&
  1480. !((unsigned long)(frag->page+offset+size-1) & 4) &&
  1481. size > 4))
  1482. size -= 4;
  1483. buffer_info->length = size;
  1484. buffer_info->dma =
  1485. pci_map_page(adapter->pdev,
  1486. frag->page,
  1487. offset,
  1488. size,
  1489. PCI_DMA_TODEVICE);
  1490. buffer_info->time_stamp = jiffies;
  1491. len -= size;
  1492. offset += size;
  1493. count++;
  1494. if(unlikely(++i == tx_ring->count)) i = 0;
  1495. }
  1496. }
  1497. i = (i == 0) ? tx_ring->count - 1 : i - 1;
  1498. tx_ring->buffer_info[i].skb = skb;
  1499. tx_ring->buffer_info[first].next_to_watch = i;
  1500. return count;
  1501. }
  1502. static inline void
  1503. e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
  1504. {
  1505. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1506. struct e1000_tx_desc *tx_desc = NULL;
  1507. struct e1000_buffer *buffer_info;
  1508. uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
  1509. unsigned int i;
  1510. if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
  1511. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
  1512. E1000_TXD_CMD_TSE;
  1513. txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
  1514. }
  1515. if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
  1516. txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
  1517. txd_upper |= E1000_TXD_POPTS_TXSM << 8;
  1518. }
  1519. if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
  1520. txd_lower |= E1000_TXD_CMD_VLE;
  1521. txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
  1522. }
  1523. i = tx_ring->next_to_use;
  1524. while(count--) {
  1525. buffer_info = &tx_ring->buffer_info[i];
  1526. tx_desc = E1000_TX_DESC(*tx_ring, i);
  1527. tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  1528. tx_desc->lower.data =
  1529. cpu_to_le32(txd_lower | buffer_info->length);
  1530. tx_desc->upper.data = cpu_to_le32(txd_upper);
  1531. if(unlikely(++i == tx_ring->count)) i = 0;
  1532. }
  1533. tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
  1534. /* Force memory writes to complete before letting h/w
  1535. * know there are new descriptors to fetch. (Only
  1536. * applicable for weak-ordered memory model archs,
  1537. * such as IA-64). */
  1538. wmb();
  1539. tx_ring->next_to_use = i;
  1540. E1000_WRITE_REG(&adapter->hw, TDT, i);
  1541. }
  1542. /**
  1543. * 82547 workaround to avoid controller hang in half-duplex environment.
  1544. * The workaround is to avoid queuing a large packet that would span
  1545. * the internal Tx FIFO ring boundary by notifying the stack to resend
  1546. * the packet at a later time. This gives the Tx FIFO an opportunity to
  1547. * flush all packets. When that occurs, we reset the Tx FIFO pointers
  1548. * to the beginning of the Tx FIFO.
  1549. **/
  1550. #define E1000_FIFO_HDR 0x10
  1551. #define E1000_82547_PAD_LEN 0x3E0
  1552. static inline int
  1553. e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
  1554. {
  1555. uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
  1556. uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
  1557. E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
  1558. if(adapter->link_duplex != HALF_DUPLEX)
  1559. goto no_fifo_stall_required;
  1560. if(atomic_read(&adapter->tx_fifo_stall))
  1561. return 1;
  1562. if(skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
  1563. atomic_set(&adapter->tx_fifo_stall, 1);
  1564. return 1;
  1565. }
  1566. no_fifo_stall_required:
  1567. adapter->tx_fifo_head += skb_fifo_len;
  1568. if(adapter->tx_fifo_head >= adapter->tx_fifo_size)
  1569. adapter->tx_fifo_head -= adapter->tx_fifo_size;
  1570. return 0;
  1571. }
  1572. #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
  1573. static int
  1574. e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
  1575. {
  1576. struct e1000_adapter *adapter = netdev->priv;
  1577. unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
  1578. unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
  1579. unsigned int tx_flags = 0;
  1580. unsigned int len = skb->len;
  1581. unsigned long flags;
  1582. unsigned int nr_frags = 0;
  1583. unsigned int mss = 0;
  1584. int count = 0;
  1585. int tso;
  1586. unsigned int f;
  1587. len -= skb->data_len;
  1588. if(unlikely(skb->len <= 0)) {
  1589. dev_kfree_skb_any(skb);
  1590. return NETDEV_TX_OK;
  1591. }
  1592. #ifdef NETIF_F_TSO
  1593. mss = skb_shinfo(skb)->tso_size;
  1594. /* The controller does a simple calculation to
  1595. * make sure there is enough room in the FIFO before
  1596. * initiating the DMA for each buffer. The calc is:
  1597. * 4 = ceil(buffer len/mss). To make sure we don't
  1598. * overrun the FIFO, adjust the max buffer len if mss
  1599. * drops. */
  1600. if(mss) {
  1601. max_per_txd = min(mss << 2, max_per_txd);
  1602. max_txd_pwr = fls(max_per_txd) - 1;
  1603. }
  1604. if((mss) || (skb->ip_summed == CHECKSUM_HW))
  1605. count++;
  1606. count++; /* for sentinel desc */
  1607. #else
  1608. if(skb->ip_summed == CHECKSUM_HW)
  1609. count++;
  1610. #endif
  1611. count += TXD_USE_COUNT(len, max_txd_pwr);
  1612. if(adapter->pcix_82544)
  1613. count++;
  1614. nr_frags = skb_shinfo(skb)->nr_frags;
  1615. for(f = 0; f < nr_frags; f++)
  1616. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
  1617. max_txd_pwr);
  1618. if(adapter->pcix_82544)
  1619. count += nr_frags;
  1620. local_irq_save(flags);
  1621. if (!spin_trylock(&adapter->tx_lock)) {
  1622. /* Collision - tell upper layer to requeue */
  1623. local_irq_restore(flags);
  1624. return NETDEV_TX_LOCKED;
  1625. }
  1626. /* need: count + 2 desc gap to keep tail from touching
  1627. * head, otherwise try next time */
  1628. if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2)) {
  1629. netif_stop_queue(netdev);
  1630. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1631. return NETDEV_TX_BUSY;
  1632. }
  1633. if(unlikely(adapter->hw.mac_type == e1000_82547)) {
  1634. if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
  1635. netif_stop_queue(netdev);
  1636. mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
  1637. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1638. return NETDEV_TX_BUSY;
  1639. }
  1640. }
  1641. if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
  1642. tx_flags |= E1000_TX_FLAGS_VLAN;
  1643. tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
  1644. }
  1645. first = adapter->tx_ring.next_to_use;
  1646. tso = e1000_tso(adapter, skb);
  1647. if (tso < 0) {
  1648. dev_kfree_skb_any(skb);
  1649. return NETDEV_TX_OK;
  1650. }
  1651. if (likely(tso))
  1652. tx_flags |= E1000_TX_FLAGS_TSO;
  1653. else if(likely(e1000_tx_csum(adapter, skb)))
  1654. tx_flags |= E1000_TX_FLAGS_CSUM;
  1655. e1000_tx_queue(adapter,
  1656. e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
  1657. tx_flags);
  1658. netdev->trans_start = jiffies;
  1659. /* Make sure there is space in the ring for the next send. */
  1660. if(unlikely(E1000_DESC_UNUSED(&adapter->tx_ring) < MAX_SKB_FRAGS + 2))
  1661. netif_stop_queue(netdev);
  1662. spin_unlock_irqrestore(&adapter->tx_lock, flags);
  1663. return NETDEV_TX_OK;
  1664. }
  1665. /**
  1666. * e1000_tx_timeout - Respond to a Tx Hang
  1667. * @netdev: network interface device structure
  1668. **/
  1669. static void
  1670. e1000_tx_timeout(struct net_device *netdev)
  1671. {
  1672. struct e1000_adapter *adapter = netdev->priv;
  1673. /* Do the reset outside of interrupt context */
  1674. schedule_work(&adapter->tx_timeout_task);
  1675. }
  1676. static void
  1677. e1000_tx_timeout_task(struct net_device *netdev)
  1678. {
  1679. struct e1000_adapter *adapter = netdev->priv;
  1680. e1000_down(adapter);
  1681. e1000_up(adapter);
  1682. }
  1683. /**
  1684. * e1000_get_stats - Get System Network Statistics
  1685. * @netdev: network interface device structure
  1686. *
  1687. * Returns the address of the device statistics structure.
  1688. * The statistics are actually updated from the timer callback.
  1689. **/
  1690. static struct net_device_stats *
  1691. e1000_get_stats(struct net_device *netdev)
  1692. {
  1693. struct e1000_adapter *adapter = netdev->priv;
  1694. e1000_update_stats(adapter);
  1695. return &adapter->net_stats;
  1696. }
  1697. /**
  1698. * e1000_change_mtu - Change the Maximum Transfer Unit
  1699. * @netdev: network interface device structure
  1700. * @new_mtu: new value for maximum frame size
  1701. *
  1702. * Returns 0 on success, negative on failure
  1703. **/
  1704. static int
  1705. e1000_change_mtu(struct net_device *netdev, int new_mtu)
  1706. {
  1707. struct e1000_adapter *adapter = netdev->priv;
  1708. int old_mtu = adapter->rx_buffer_len;
  1709. int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
  1710. if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
  1711. (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  1712. DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
  1713. return -EINVAL;
  1714. }
  1715. if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) {
  1716. adapter->rx_buffer_len = E1000_RXBUFFER_2048;
  1717. } else if(adapter->hw.mac_type < e1000_82543) {
  1718. DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n");
  1719. return -EINVAL;
  1720. } else if(max_frame <= E1000_RXBUFFER_4096) {
  1721. adapter->rx_buffer_len = E1000_RXBUFFER_4096;
  1722. } else if(max_frame <= E1000_RXBUFFER_8192) {
  1723. adapter->rx_buffer_len = E1000_RXBUFFER_8192;
  1724. } else {
  1725. adapter->rx_buffer_len = E1000_RXBUFFER_16384;
  1726. }
  1727. if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
  1728. e1000_down(adapter);
  1729. e1000_up(adapter);
  1730. }
  1731. netdev->mtu = new_mtu;
  1732. adapter->hw.max_frame_size = max_frame;
  1733. return 0;
  1734. }
  1735. /**
  1736. * e1000_update_stats - Update the board statistics counters
  1737. * @adapter: board private structure
  1738. **/
  1739. void
  1740. e1000_update_stats(struct e1000_adapter *adapter)
  1741. {
  1742. struct e1000_hw *hw = &adapter->hw;
  1743. unsigned long flags;
  1744. uint16_t phy_tmp;
  1745. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  1746. spin_lock_irqsave(&adapter->stats_lock, flags);
  1747. /* these counters are modified from e1000_adjust_tbi_stats,
  1748. * called from the interrupt context, so they must only
  1749. * be written while holding adapter->stats_lock
  1750. */
  1751. adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
  1752. adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
  1753. adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
  1754. adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
  1755. adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
  1756. adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
  1757. adapter->stats.roc += E1000_READ_REG(hw, ROC);
  1758. adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
  1759. adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
  1760. adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
  1761. adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
  1762. adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
  1763. adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
  1764. adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
  1765. adapter->stats.mpc += E1000_READ_REG(hw, MPC);
  1766. adapter->stats.scc += E1000_READ_REG(hw, SCC);
  1767. adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
  1768. adapter->stats.mcc += E1000_READ_REG(hw, MCC);
  1769. adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
  1770. adapter->stats.dc += E1000_READ_REG(hw, DC);
  1771. adapter->stats.sec += E1000_READ_REG(hw, SEC);
  1772. adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
  1773. adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
  1774. adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
  1775. adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
  1776. adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
  1777. adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
  1778. adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
  1779. adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
  1780. adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
  1781. adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
  1782. adapter->stats.ruc += E1000_READ_REG(hw, RUC);
  1783. adapter->stats.rfc += E1000_READ_REG(hw, RFC);
  1784. adapter->stats.rjc += E1000_READ_REG(hw, RJC);
  1785. adapter->stats.torl += E1000_READ_REG(hw, TORL);
  1786. adapter->stats.torh += E1000_READ_REG(hw, TORH);
  1787. adapter->stats.totl += E1000_READ_REG(hw, TOTL);
  1788. adapter->stats.toth += E1000_READ_REG(hw, TOTH);
  1789. adapter->stats.tpr += E1000_READ_REG(hw, TPR);
  1790. adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
  1791. adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
  1792. adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
  1793. adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
  1794. adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
  1795. adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
  1796. adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
  1797. adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
  1798. /* used for adaptive IFS */
  1799. hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
  1800. adapter->stats.tpt += hw->tx_packet_delta;
  1801. hw->collision_delta = E1000_READ_REG(hw, COLC);
  1802. adapter->stats.colc += hw->collision_delta;
  1803. if(hw->mac_type >= e1000_82543) {
  1804. adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
  1805. adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
  1806. adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
  1807. adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
  1808. adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
  1809. adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
  1810. }
  1811. /* Fill out the OS statistics structure */
  1812. adapter->net_stats.rx_packets = adapter->stats.gprc;
  1813. adapter->net_stats.tx_packets = adapter->stats.gptc;
  1814. adapter->net_stats.rx_bytes = adapter->stats.gorcl;
  1815. adapter->net_stats.tx_bytes = adapter->stats.gotcl;
  1816. adapter->net_stats.multicast = adapter->stats.mprc;
  1817. adapter->net_stats.collisions = adapter->stats.colc;
  1818. /* Rx Errors */
  1819. adapter->net_stats.rx_errors = adapter->stats.rxerrc +
  1820. adapter->stats.crcerrs + adapter->stats.algnerrc +
  1821. adapter->stats.rlec + adapter->stats.rnbc +
  1822. adapter->stats.mpc + adapter->stats.cexterr;
  1823. adapter->net_stats.rx_dropped = adapter->stats.rnbc;
  1824. adapter->net_stats.rx_length_errors = adapter->stats.rlec;
  1825. adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
  1826. adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
  1827. adapter->net_stats.rx_fifo_errors = adapter->stats.mpc;
  1828. adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
  1829. /* Tx Errors */
  1830. adapter->net_stats.tx_errors = adapter->stats.ecol +
  1831. adapter->stats.latecol;
  1832. adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
  1833. adapter->net_stats.tx_window_errors = adapter->stats.latecol;
  1834. adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
  1835. /* Tx Dropped needs to be maintained elsewhere */
  1836. /* Phy Stats */
  1837. if(hw->media_type == e1000_media_type_copper) {
  1838. if((adapter->link_speed == SPEED_1000) &&
  1839. (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  1840. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  1841. adapter->phy_stats.idle_errors += phy_tmp;
  1842. }
  1843. if((hw->mac_type <= e1000_82546) &&
  1844. (hw->phy_type == e1000_phy_m88) &&
  1845. !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
  1846. adapter->phy_stats.receive_errors += phy_tmp;
  1847. }
  1848. spin_unlock_irqrestore(&adapter->stats_lock, flags);
  1849. }
  1850. /**
  1851. * e1000_intr - Interrupt Handler
  1852. * @irq: interrupt number
  1853. * @data: pointer to a network interface device structure
  1854. * @pt_regs: CPU registers structure
  1855. **/
  1856. static irqreturn_t
  1857. e1000_intr(int irq, void *data, struct pt_regs *regs)
  1858. {
  1859. struct net_device *netdev = data;
  1860. struct e1000_adapter *adapter = netdev->priv;
  1861. struct e1000_hw *hw = &adapter->hw;
  1862. uint32_t icr = E1000_READ_REG(hw, ICR);
  1863. #ifndef CONFIG_E1000_NAPI
  1864. unsigned int i;
  1865. #endif
  1866. if(unlikely(!icr))
  1867. return IRQ_NONE; /* Not our interrupt */
  1868. if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
  1869. hw->get_link_status = 1;
  1870. mod_timer(&adapter->watchdog_timer, jiffies);
  1871. }
  1872. #ifdef CONFIG_E1000_NAPI
  1873. if(likely(netif_rx_schedule_prep(netdev))) {
  1874. /* Disable interrupts and register for poll. The flush
  1875. of the posted write is intentionally left out.
  1876. */
  1877. atomic_inc(&adapter->irq_sem);
  1878. E1000_WRITE_REG(hw, IMC, ~0);
  1879. __netif_rx_schedule(netdev);
  1880. }
  1881. #else
  1882. /* Writing IMC and IMS is needed for 82547.
  1883. Due to Hub Link bus being occupied, an interrupt
  1884. de-assertion message is not able to be sent.
  1885. When an interrupt assertion message is generated later,
  1886. two messages are re-ordered and sent out.
  1887. That causes APIC to think 82547 is in de-assertion
  1888. state, while 82547 is in assertion state, resulting
  1889. in dead lock. Writing IMC forces 82547 into
  1890. de-assertion state.
  1891. */
  1892. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2){
  1893. atomic_inc(&adapter->irq_sem);
  1894. E1000_WRITE_REG(&adapter->hw, IMC, ~0);
  1895. }
  1896. for(i = 0; i < E1000_MAX_INTR; i++)
  1897. if(unlikely(!e1000_clean_rx_irq(adapter) &
  1898. !e1000_clean_tx_irq(adapter)))
  1899. break;
  1900. if(hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
  1901. e1000_irq_enable(adapter);
  1902. #endif
  1903. return IRQ_HANDLED;
  1904. }
  1905. #ifdef CONFIG_E1000_NAPI
  1906. /**
  1907. * e1000_clean - NAPI Rx polling callback
  1908. * @adapter: board private structure
  1909. **/
  1910. static int
  1911. e1000_clean(struct net_device *netdev, int *budget)
  1912. {
  1913. struct e1000_adapter *adapter = netdev->priv;
  1914. int work_to_do = min(*budget, netdev->quota);
  1915. int tx_cleaned;
  1916. int work_done = 0;
  1917. tx_cleaned = e1000_clean_tx_irq(adapter);
  1918. e1000_clean_rx_irq(adapter, &work_done, work_to_do);
  1919. *budget -= work_done;
  1920. netdev->quota -= work_done;
  1921. /* if no Tx and not enough Rx work done, exit the polling mode */
  1922. if((!tx_cleaned && (work_done < work_to_do)) ||
  1923. !netif_running(netdev)) {
  1924. netif_rx_complete(netdev);
  1925. e1000_irq_enable(adapter);
  1926. return 0;
  1927. }
  1928. return 1;
  1929. }
  1930. #endif
  1931. /**
  1932. * e1000_clean_tx_irq - Reclaim resources after transmit completes
  1933. * @adapter: board private structure
  1934. **/
  1935. static boolean_t
  1936. e1000_clean_tx_irq(struct e1000_adapter *adapter)
  1937. {
  1938. struct e1000_desc_ring *tx_ring = &adapter->tx_ring;
  1939. struct net_device *netdev = adapter->netdev;
  1940. struct e1000_tx_desc *tx_desc, *eop_desc;
  1941. struct e1000_buffer *buffer_info;
  1942. unsigned int i, eop;
  1943. boolean_t cleaned = FALSE;
  1944. i = tx_ring->next_to_clean;
  1945. eop = tx_ring->buffer_info[i].next_to_watch;
  1946. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  1947. while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
  1948. /* pre-mature writeback of Tx descriptors */
  1949. /* clear (free buffers and unmap pci_mapping) */
  1950. /* previous_buffer_info */
  1951. if (likely(adapter->previous_buffer_info.skb != NULL)) {
  1952. e1000_unmap_and_free_tx_resource(adapter,
  1953. &adapter->previous_buffer_info);
  1954. }
  1955. for(cleaned = FALSE; !cleaned; ) {
  1956. tx_desc = E1000_TX_DESC(*tx_ring, i);
  1957. buffer_info = &tx_ring->buffer_info[i];
  1958. cleaned = (i == eop);
  1959. /* pre-mature writeback of Tx descriptors */
  1960. /* save the cleaning of the this for the */
  1961. /* next iteration */
  1962. if (cleaned) {
  1963. memcpy(&adapter->previous_buffer_info,
  1964. buffer_info,
  1965. sizeof(struct e1000_buffer));
  1966. memset(buffer_info,
  1967. 0,
  1968. sizeof(struct e1000_buffer));
  1969. } else {
  1970. e1000_unmap_and_free_tx_resource(adapter,
  1971. buffer_info);
  1972. }
  1973. tx_desc->buffer_addr = 0;
  1974. tx_desc->lower.data = 0;
  1975. tx_desc->upper.data = 0;
  1976. cleaned = (i == eop);
  1977. if(unlikely(++i == tx_ring->count)) i = 0;
  1978. }
  1979. eop = tx_ring->buffer_info[i].next_to_watch;
  1980. eop_desc = E1000_TX_DESC(*tx_ring, eop);
  1981. }
  1982. tx_ring->next_to_clean = i;
  1983. spin_lock(&adapter->tx_lock);
  1984. if(unlikely(cleaned && netif_queue_stopped(netdev) &&
  1985. netif_carrier_ok(netdev)))
  1986. netif_wake_queue(netdev);
  1987. spin_unlock(&adapter->tx_lock);
  1988. if(adapter->detect_tx_hung) {
  1989. /* detect a transmit hang in hardware, this serializes the
  1990. * check with the clearing of time_stamp and movement of i */
  1991. adapter->detect_tx_hung = FALSE;
  1992. if(tx_ring->buffer_info[i].dma &&
  1993. time_after(jiffies, tx_ring->buffer_info[i].time_stamp + HZ) &&
  1994. !(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_TXOFF))
  1995. netif_stop_queue(netdev);
  1996. }
  1997. return cleaned;
  1998. }
  1999. /**
  2000. * e1000_rx_checksum - Receive Checksum Offload for 82543
  2001. * @adapter: board private structure
  2002. * @rx_desc: receive descriptor
  2003. * @sk_buff: socket buffer with received data
  2004. **/
  2005. static inline void
  2006. e1000_rx_checksum(struct e1000_adapter *adapter,
  2007. struct e1000_rx_desc *rx_desc,
  2008. struct sk_buff *skb)
  2009. {
  2010. /* 82543 or newer only */
  2011. if(unlikely((adapter->hw.mac_type < e1000_82543) ||
  2012. /* Ignore Checksum bit is set */
  2013. (rx_desc->status & E1000_RXD_STAT_IXSM) ||
  2014. /* TCP Checksum has not been calculated */
  2015. (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
  2016. skb->ip_summed = CHECKSUM_NONE;
  2017. return;
  2018. }
  2019. /* At this point we know the hardware did the TCP checksum */
  2020. /* now look at the TCP checksum error bit */
  2021. if(rx_desc->errors & E1000_RXD_ERR_TCPE) {
  2022. /* let the stack verify checksum errors */
  2023. skb->ip_summed = CHECKSUM_NONE;
  2024. adapter->hw_csum_err++;
  2025. } else {
  2026. /* TCP checksum is good */
  2027. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2028. adapter->hw_csum_good++;
  2029. }
  2030. }
  2031. /**
  2032. * e1000_clean_rx_irq - Send received data up the network stack
  2033. * @adapter: board private structure
  2034. **/
  2035. static boolean_t
  2036. #ifdef CONFIG_E1000_NAPI
  2037. e1000_clean_rx_irq(struct e1000_adapter *adapter, int *work_done,
  2038. int work_to_do)
  2039. #else
  2040. e1000_clean_rx_irq(struct e1000_adapter *adapter)
  2041. #endif
  2042. {
  2043. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2044. struct net_device *netdev = adapter->netdev;
  2045. struct pci_dev *pdev = adapter->pdev;
  2046. struct e1000_rx_desc *rx_desc;
  2047. struct e1000_buffer *buffer_info;
  2048. struct sk_buff *skb;
  2049. unsigned long flags;
  2050. uint32_t length;
  2051. uint8_t last_byte;
  2052. unsigned int i;
  2053. boolean_t cleaned = FALSE;
  2054. i = rx_ring->next_to_clean;
  2055. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2056. while(rx_desc->status & E1000_RXD_STAT_DD) {
  2057. buffer_info = &rx_ring->buffer_info[i];
  2058. #ifdef CONFIG_E1000_NAPI
  2059. if(*work_done >= work_to_do)
  2060. break;
  2061. (*work_done)++;
  2062. #endif
  2063. cleaned = TRUE;
  2064. pci_unmap_single(pdev,
  2065. buffer_info->dma,
  2066. buffer_info->length,
  2067. PCI_DMA_FROMDEVICE);
  2068. skb = buffer_info->skb;
  2069. length = le16_to_cpu(rx_desc->length);
  2070. if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
  2071. /* All receives must fit into a single buffer */
  2072. E1000_DBG("%s: Receive packet consumed multiple"
  2073. " buffers\n", netdev->name);
  2074. dev_kfree_skb_irq(skb);
  2075. goto next_desc;
  2076. }
  2077. if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
  2078. last_byte = *(skb->data + length - 1);
  2079. if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
  2080. rx_desc->errors, length, last_byte)) {
  2081. spin_lock_irqsave(&adapter->stats_lock, flags);
  2082. e1000_tbi_adjust_stats(&adapter->hw,
  2083. &adapter->stats,
  2084. length, skb->data);
  2085. spin_unlock_irqrestore(&adapter->stats_lock,
  2086. flags);
  2087. length--;
  2088. } else {
  2089. dev_kfree_skb_irq(skb);
  2090. goto next_desc;
  2091. }
  2092. }
  2093. /* Good Receive */
  2094. skb_put(skb, length - ETHERNET_FCS_SIZE);
  2095. /* Receive Checksum Offload */
  2096. e1000_rx_checksum(adapter, rx_desc, skb);
  2097. skb->protocol = eth_type_trans(skb, netdev);
  2098. #ifdef CONFIG_E1000_NAPI
  2099. if(unlikely(adapter->vlgrp &&
  2100. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2101. vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
  2102. le16_to_cpu(rx_desc->special) &
  2103. E1000_RXD_SPC_VLAN_MASK);
  2104. } else {
  2105. netif_receive_skb(skb);
  2106. }
  2107. #else /* CONFIG_E1000_NAPI */
  2108. if(unlikely(adapter->vlgrp &&
  2109. (rx_desc->status & E1000_RXD_STAT_VP))) {
  2110. vlan_hwaccel_rx(skb, adapter->vlgrp,
  2111. le16_to_cpu(rx_desc->special) &
  2112. E1000_RXD_SPC_VLAN_MASK);
  2113. } else {
  2114. netif_rx(skb);
  2115. }
  2116. #endif /* CONFIG_E1000_NAPI */
  2117. netdev->last_rx = jiffies;
  2118. next_desc:
  2119. rx_desc->status = 0;
  2120. buffer_info->skb = NULL;
  2121. if(unlikely(++i == rx_ring->count)) i = 0;
  2122. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2123. }
  2124. rx_ring->next_to_clean = i;
  2125. e1000_alloc_rx_buffers(adapter);
  2126. return cleaned;
  2127. }
  2128. /**
  2129. * e1000_alloc_rx_buffers - Replace used receive buffers
  2130. * @adapter: address of board private structure
  2131. **/
  2132. static void
  2133. e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
  2134. {
  2135. struct e1000_desc_ring *rx_ring = &adapter->rx_ring;
  2136. struct net_device *netdev = adapter->netdev;
  2137. struct pci_dev *pdev = adapter->pdev;
  2138. struct e1000_rx_desc *rx_desc;
  2139. struct e1000_buffer *buffer_info;
  2140. struct sk_buff *skb;
  2141. unsigned int i, bufsz;
  2142. i = rx_ring->next_to_use;
  2143. buffer_info = &rx_ring->buffer_info[i];
  2144. while(!buffer_info->skb) {
  2145. bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
  2146. skb = dev_alloc_skb(bufsz);
  2147. if(unlikely(!skb)) {
  2148. /* Better luck next round */
  2149. break;
  2150. }
  2151. /* fix for errata 23, cant cross 64kB boundary */
  2152. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  2153. struct sk_buff *oldskb = skb;
  2154. DPRINTK(RX_ERR,ERR,
  2155. "skb align check failed: %u bytes at %p\n",
  2156. bufsz, skb->data);
  2157. /* try again, without freeing the previous */
  2158. skb = dev_alloc_skb(bufsz);
  2159. if (!skb) {
  2160. dev_kfree_skb(oldskb);
  2161. break;
  2162. }
  2163. if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
  2164. /* give up */
  2165. dev_kfree_skb(skb);
  2166. dev_kfree_skb(oldskb);
  2167. break; /* while !buffer_info->skb */
  2168. } else {
  2169. /* move on with the new one */
  2170. dev_kfree_skb(oldskb);
  2171. }
  2172. }
  2173. /* Make buffer alignment 2 beyond a 16 byte boundary
  2174. * this will result in a 16 byte aligned IP header after
  2175. * the 14 byte MAC header is removed
  2176. */
  2177. skb_reserve(skb, NET_IP_ALIGN);
  2178. skb->dev = netdev;
  2179. buffer_info->skb = skb;
  2180. buffer_info->length = adapter->rx_buffer_len;
  2181. buffer_info->dma = pci_map_single(pdev,
  2182. skb->data,
  2183. adapter->rx_buffer_len,
  2184. PCI_DMA_FROMDEVICE);
  2185. /* fix for errata 23, cant cross 64kB boundary */
  2186. if(!e1000_check_64k_bound(adapter,
  2187. (void *)(unsigned long)buffer_info->dma,
  2188. adapter->rx_buffer_len)) {
  2189. DPRINTK(RX_ERR,ERR,
  2190. "dma align check failed: %u bytes at %ld\n",
  2191. adapter->rx_buffer_len, (unsigned long)buffer_info->dma);
  2192. dev_kfree_skb(skb);
  2193. buffer_info->skb = NULL;
  2194. pci_unmap_single(pdev,
  2195. buffer_info->dma,
  2196. adapter->rx_buffer_len,
  2197. PCI_DMA_FROMDEVICE);
  2198. break; /* while !buffer_info->skb */
  2199. }
  2200. rx_desc = E1000_RX_DESC(*rx_ring, i);
  2201. rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
  2202. if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
  2203. /* Force memory writes to complete before letting h/w
  2204. * know there are new descriptors to fetch. (Only
  2205. * applicable for weak-ordered memory model archs,
  2206. * such as IA-64). */
  2207. wmb();
  2208. E1000_WRITE_REG(&adapter->hw, RDT, i);
  2209. }
  2210. if(unlikely(++i == rx_ring->count)) i = 0;
  2211. buffer_info = &rx_ring->buffer_info[i];
  2212. }
  2213. rx_ring->next_to_use = i;
  2214. }
  2215. /**
  2216. * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
  2217. * @adapter:
  2218. **/
  2219. static void
  2220. e1000_smartspeed(struct e1000_adapter *adapter)
  2221. {
  2222. uint16_t phy_status;
  2223. uint16_t phy_ctrl;
  2224. if((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
  2225. !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
  2226. return;
  2227. if(adapter->smartspeed == 0) {
  2228. /* If Master/Slave config fault is asserted twice,
  2229. * we assume back-to-back */
  2230. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  2231. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  2232. e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
  2233. if(!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
  2234. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  2235. if(phy_ctrl & CR_1000T_MS_ENABLE) {
  2236. phy_ctrl &= ~CR_1000T_MS_ENABLE;
  2237. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
  2238. phy_ctrl);
  2239. adapter->smartspeed++;
  2240. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  2241. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
  2242. &phy_ctrl)) {
  2243. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  2244. MII_CR_RESTART_AUTO_NEG);
  2245. e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
  2246. phy_ctrl);
  2247. }
  2248. }
  2249. return;
  2250. } else if(adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
  2251. /* If still no link, perhaps using 2/3 pair cable */
  2252. e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
  2253. phy_ctrl |= CR_1000T_MS_ENABLE;
  2254. e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
  2255. if(!e1000_phy_setup_autoneg(&adapter->hw) &&
  2256. !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
  2257. phy_ctrl |= (MII_CR_AUTO_NEG_EN |
  2258. MII_CR_RESTART_AUTO_NEG);
  2259. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
  2260. }
  2261. }
  2262. /* Restart process after E1000_SMARTSPEED_MAX iterations */
  2263. if(adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
  2264. adapter->smartspeed = 0;
  2265. }
  2266. /**
  2267. * e1000_ioctl -
  2268. * @netdev:
  2269. * @ifreq:
  2270. * @cmd:
  2271. **/
  2272. static int
  2273. e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  2274. {
  2275. switch (cmd) {
  2276. case SIOCGMIIPHY:
  2277. case SIOCGMIIREG:
  2278. case SIOCSMIIREG:
  2279. return e1000_mii_ioctl(netdev, ifr, cmd);
  2280. default:
  2281. return -EOPNOTSUPP;
  2282. }
  2283. }
  2284. /**
  2285. * e1000_mii_ioctl -
  2286. * @netdev:
  2287. * @ifreq:
  2288. * @cmd:
  2289. **/
  2290. static int
  2291. e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  2292. {
  2293. struct e1000_adapter *adapter = netdev->priv;
  2294. struct mii_ioctl_data *data = if_mii(ifr);
  2295. int retval;
  2296. uint16_t mii_reg;
  2297. uint16_t spddplx;
  2298. if(adapter->hw.media_type != e1000_media_type_copper)
  2299. return -EOPNOTSUPP;
  2300. switch (cmd) {
  2301. case SIOCGMIIPHY:
  2302. data->phy_id = adapter->hw.phy_addr;
  2303. break;
  2304. case SIOCGMIIREG:
  2305. if (!capable(CAP_NET_ADMIN))
  2306. return -EPERM;
  2307. if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  2308. &data->val_out))
  2309. return -EIO;
  2310. break;
  2311. case SIOCSMIIREG:
  2312. if (!capable(CAP_NET_ADMIN))
  2313. return -EPERM;
  2314. if (data->reg_num & ~(0x1F))
  2315. return -EFAULT;
  2316. mii_reg = data->val_in;
  2317. if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
  2318. mii_reg))
  2319. return -EIO;
  2320. if (adapter->hw.phy_type == e1000_phy_m88) {
  2321. switch (data->reg_num) {
  2322. case PHY_CTRL:
  2323. if(mii_reg & MII_CR_POWER_DOWN)
  2324. break;
  2325. if(mii_reg & MII_CR_AUTO_NEG_EN) {
  2326. adapter->hw.autoneg = 1;
  2327. adapter->hw.autoneg_advertised = 0x2F;
  2328. } else {
  2329. if (mii_reg & 0x40)
  2330. spddplx = SPEED_1000;
  2331. else if (mii_reg & 0x2000)
  2332. spddplx = SPEED_100;
  2333. else
  2334. spddplx = SPEED_10;
  2335. spddplx += (mii_reg & 0x100)
  2336. ? FULL_DUPLEX :
  2337. HALF_DUPLEX;
  2338. retval = e1000_set_spd_dplx(adapter,
  2339. spddplx);
  2340. if(retval)
  2341. return retval;
  2342. }
  2343. if(netif_running(adapter->netdev)) {
  2344. e1000_down(adapter);
  2345. e1000_up(adapter);
  2346. } else
  2347. e1000_reset(adapter);
  2348. break;
  2349. case M88E1000_PHY_SPEC_CTRL:
  2350. case M88E1000_EXT_PHY_SPEC_CTRL:
  2351. if (e1000_phy_reset(&adapter->hw))
  2352. return -EIO;
  2353. break;
  2354. }
  2355. } else {
  2356. switch (data->reg_num) {
  2357. case PHY_CTRL:
  2358. if(mii_reg & MII_CR_POWER_DOWN)
  2359. break;
  2360. if(netif_running(adapter->netdev)) {
  2361. e1000_down(adapter);
  2362. e1000_up(adapter);
  2363. } else
  2364. e1000_reset(adapter);
  2365. break;
  2366. }
  2367. }
  2368. break;
  2369. default:
  2370. return -EOPNOTSUPP;
  2371. }
  2372. return E1000_SUCCESS;
  2373. }
  2374. void
  2375. e1000_pci_set_mwi(struct e1000_hw *hw)
  2376. {
  2377. struct e1000_adapter *adapter = hw->back;
  2378. int ret;
  2379. ret = pci_set_mwi(adapter->pdev);
  2380. }
  2381. void
  2382. e1000_pci_clear_mwi(struct e1000_hw *hw)
  2383. {
  2384. struct e1000_adapter *adapter = hw->back;
  2385. pci_clear_mwi(adapter->pdev);
  2386. }
  2387. void
  2388. e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  2389. {
  2390. struct e1000_adapter *adapter = hw->back;
  2391. pci_read_config_word(adapter->pdev, reg, value);
  2392. }
  2393. void
  2394. e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
  2395. {
  2396. struct e1000_adapter *adapter = hw->back;
  2397. pci_write_config_word(adapter->pdev, reg, *value);
  2398. }
  2399. uint32_t
  2400. e1000_io_read(struct e1000_hw *hw, unsigned long port)
  2401. {
  2402. return inl(port);
  2403. }
  2404. void
  2405. e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
  2406. {
  2407. outl(value, port);
  2408. }
  2409. static void
  2410. e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
  2411. {
  2412. struct e1000_adapter *adapter = netdev->priv;
  2413. uint32_t ctrl, rctl;
  2414. e1000_irq_disable(adapter);
  2415. adapter->vlgrp = grp;
  2416. if(grp) {
  2417. /* enable VLAN tag insert/strip */
  2418. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2419. ctrl |= E1000_CTRL_VME;
  2420. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2421. /* enable VLAN receive filtering */
  2422. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2423. rctl |= E1000_RCTL_VFE;
  2424. rctl &= ~E1000_RCTL_CFIEN;
  2425. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2426. } else {
  2427. /* disable VLAN tag insert/strip */
  2428. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2429. ctrl &= ~E1000_CTRL_VME;
  2430. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2431. /* disable VLAN filtering */
  2432. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2433. rctl &= ~E1000_RCTL_VFE;
  2434. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2435. }
  2436. e1000_irq_enable(adapter);
  2437. }
  2438. static void
  2439. e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
  2440. {
  2441. struct e1000_adapter *adapter = netdev->priv;
  2442. uint32_t vfta, index;
  2443. /* add VID to filter table */
  2444. index = (vid >> 5) & 0x7F;
  2445. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  2446. vfta |= (1 << (vid & 0x1F));
  2447. e1000_write_vfta(&adapter->hw, index, vfta);
  2448. }
  2449. static void
  2450. e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
  2451. {
  2452. struct e1000_adapter *adapter = netdev->priv;
  2453. uint32_t vfta, index;
  2454. e1000_irq_disable(adapter);
  2455. if(adapter->vlgrp)
  2456. adapter->vlgrp->vlan_devices[vid] = NULL;
  2457. e1000_irq_enable(adapter);
  2458. /* remove VID from filter table */
  2459. index = (vid >> 5) & 0x7F;
  2460. vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
  2461. vfta &= ~(1 << (vid & 0x1F));
  2462. e1000_write_vfta(&adapter->hw, index, vfta);
  2463. }
  2464. static void
  2465. e1000_restore_vlan(struct e1000_adapter *adapter)
  2466. {
  2467. e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
  2468. if(adapter->vlgrp) {
  2469. uint16_t vid;
  2470. for(vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
  2471. if(!adapter->vlgrp->vlan_devices[vid])
  2472. continue;
  2473. e1000_vlan_rx_add_vid(adapter->netdev, vid);
  2474. }
  2475. }
  2476. }
  2477. int
  2478. e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
  2479. {
  2480. adapter->hw.autoneg = 0;
  2481. switch(spddplx) {
  2482. case SPEED_10 + DUPLEX_HALF:
  2483. adapter->hw.forced_speed_duplex = e1000_10_half;
  2484. break;
  2485. case SPEED_10 + DUPLEX_FULL:
  2486. adapter->hw.forced_speed_duplex = e1000_10_full;
  2487. break;
  2488. case SPEED_100 + DUPLEX_HALF:
  2489. adapter->hw.forced_speed_duplex = e1000_100_half;
  2490. break;
  2491. case SPEED_100 + DUPLEX_FULL:
  2492. adapter->hw.forced_speed_duplex = e1000_100_full;
  2493. break;
  2494. case SPEED_1000 + DUPLEX_FULL:
  2495. adapter->hw.autoneg = 1;
  2496. adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
  2497. break;
  2498. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  2499. default:
  2500. DPRINTK(PROBE, ERR,
  2501. "Unsupported Speed/Duplexity configuration\n");
  2502. return -EINVAL;
  2503. }
  2504. return 0;
  2505. }
  2506. static int
  2507. e1000_notify_reboot(struct notifier_block *nb, unsigned long event, void *p)
  2508. {
  2509. struct pci_dev *pdev = NULL;
  2510. switch(event) {
  2511. case SYS_DOWN:
  2512. case SYS_HALT:
  2513. case SYS_POWER_OFF:
  2514. while((pdev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
  2515. if(pci_dev_driver(pdev) == &e1000_driver)
  2516. e1000_suspend(pdev, 3);
  2517. }
  2518. }
  2519. return NOTIFY_DONE;
  2520. }
  2521. static int
  2522. e1000_suspend(struct pci_dev *pdev, uint32_t state)
  2523. {
  2524. struct net_device *netdev = pci_get_drvdata(pdev);
  2525. struct e1000_adapter *adapter = netdev->priv;
  2526. uint32_t ctrl, ctrl_ext, rctl, manc, status;
  2527. uint32_t wufc = adapter->wol;
  2528. netif_device_detach(netdev);
  2529. if(netif_running(netdev))
  2530. e1000_down(adapter);
  2531. status = E1000_READ_REG(&adapter->hw, STATUS);
  2532. if(status & E1000_STATUS_LU)
  2533. wufc &= ~E1000_WUFC_LNKC;
  2534. if(wufc) {
  2535. e1000_setup_rctl(adapter);
  2536. e1000_set_multi(netdev);
  2537. /* turn on all-multi mode if wake on multicast is enabled */
  2538. if(adapter->wol & E1000_WUFC_MC) {
  2539. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  2540. rctl |= E1000_RCTL_MPE;
  2541. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  2542. }
  2543. if(adapter->hw.mac_type >= e1000_82540) {
  2544. ctrl = E1000_READ_REG(&adapter->hw, CTRL);
  2545. /* advertise wake from D3Cold */
  2546. #define E1000_CTRL_ADVD3WUC 0x00100000
  2547. /* phy power management enable */
  2548. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  2549. ctrl |= E1000_CTRL_ADVD3WUC |
  2550. E1000_CTRL_EN_PHY_PWR_MGMT;
  2551. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
  2552. }
  2553. if(adapter->hw.media_type == e1000_media_type_fiber ||
  2554. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  2555. /* keep the laser running in D3 */
  2556. ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
  2557. ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
  2558. E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
  2559. }
  2560. E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
  2561. E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
  2562. pci_enable_wake(pdev, 3, 1);
  2563. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  2564. } else {
  2565. E1000_WRITE_REG(&adapter->hw, WUC, 0);
  2566. E1000_WRITE_REG(&adapter->hw, WUFC, 0);
  2567. pci_enable_wake(pdev, 3, 0);
  2568. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  2569. }
  2570. pci_save_state(pdev);
  2571. if(adapter->hw.mac_type >= e1000_82540 &&
  2572. adapter->hw.media_type == e1000_media_type_copper) {
  2573. manc = E1000_READ_REG(&adapter->hw, MANC);
  2574. if(manc & E1000_MANC_SMBUS_EN) {
  2575. manc |= E1000_MANC_ARP_EN;
  2576. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  2577. pci_enable_wake(pdev, 3, 1);
  2578. pci_enable_wake(pdev, 4, 1); /* 4 == D3 cold */
  2579. }
  2580. }
  2581. pci_disable_device(pdev);
  2582. state = (state > 0) ? 3 : 0;
  2583. pci_set_power_state(pdev, state);
  2584. return 0;
  2585. }
  2586. #ifdef CONFIG_PM
  2587. static int
  2588. e1000_resume(struct pci_dev *pdev)
  2589. {
  2590. struct net_device *netdev = pci_get_drvdata(pdev);
  2591. struct e1000_adapter *adapter = netdev->priv;
  2592. uint32_t manc, ret;
  2593. pci_set_power_state(pdev, 0);
  2594. pci_restore_state(pdev);
  2595. ret = pci_enable_device(pdev);
  2596. if (pdev->is_busmaster)
  2597. pci_set_master(pdev);
  2598. pci_enable_wake(pdev, 3, 0);
  2599. pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
  2600. e1000_reset(adapter);
  2601. E1000_WRITE_REG(&adapter->hw, WUS, ~0);
  2602. if(netif_running(netdev))
  2603. e1000_up(adapter);
  2604. netif_device_attach(netdev);
  2605. if(adapter->hw.mac_type >= e1000_82540 &&
  2606. adapter->hw.media_type == e1000_media_type_copper) {
  2607. manc = E1000_READ_REG(&adapter->hw, MANC);
  2608. manc &= ~(E1000_MANC_ARP_EN);
  2609. E1000_WRITE_REG(&adapter->hw, MANC, manc);
  2610. }
  2611. return 0;
  2612. }
  2613. #endif
  2614. #ifdef CONFIG_NET_POLL_CONTROLLER
  2615. /*
  2616. * Polling 'interrupt' - used by things like netconsole to send skbs
  2617. * without having to re-enable interrupts. It's not called while
  2618. * the interrupt routine is executing.
  2619. */
  2620. static void
  2621. e1000_netpoll (struct net_device *netdev)
  2622. {
  2623. struct e1000_adapter *adapter = netdev->priv;
  2624. disable_irq(adapter->pdev->irq);
  2625. e1000_intr(adapter->pdev->irq, netdev, NULL);
  2626. enable_irq(adapter->pdev->irq);
  2627. }
  2628. #endif
  2629. /* e1000_main.c */