acenic.c 87 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271
  1. /*
  2. * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
  3. * and other Tigon based cards.
  4. *
  5. * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
  6. *
  7. * Thanks to Alteon and 3Com for providing hardware and documentation
  8. * enabling me to write this driver.
  9. *
  10. * A mailing list for discussing the use of this driver has been
  11. * setup, please subscribe to the lists if you have any questions
  12. * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
  13. * see how to subscribe.
  14. *
  15. * This program is free software; you can redistribute it and/or modify
  16. * it under the terms of the GNU General Public License as published by
  17. * the Free Software Foundation; either version 2 of the License, or
  18. * (at your option) any later version.
  19. *
  20. * Additional credits:
  21. * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
  22. * dump support. The trace dump support has not been
  23. * integrated yet however.
  24. * Troy Benjegerdes: Big Endian (PPC) patches.
  25. * Nate Stahl: Better out of memory handling and stats support.
  26. * Aman Singla: Nasty race between interrupt handler and tx code dealing
  27. * with 'testing the tx_ret_csm and setting tx_full'
  28. * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
  29. * infrastructure and Sparc support
  30. * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
  31. * driver under Linux/Sparc64
  32. * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
  33. * ETHTOOL_GDRVINFO support
  34. * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
  35. * handler and close() cleanup.
  36. * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
  37. * memory mapped IO is enabled to
  38. * make the driver work on RS/6000.
  39. * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
  40. * where the driver would disable
  41. * bus master mode if it had to disable
  42. * write and invalidate.
  43. * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
  44. * endian systems.
  45. * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
  46. * rx producer index when
  47. * flushing the Jumbo ring.
  48. * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
  49. * driver init path.
  50. * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
  51. */
  52. #include <linux/config.h>
  53. #include <linux/module.h>
  54. #include <linux/moduleparam.h>
  55. #include <linux/version.h>
  56. #include <linux/types.h>
  57. #include <linux/errno.h>
  58. #include <linux/ioport.h>
  59. #include <linux/pci.h>
  60. #include <linux/kernel.h>
  61. #include <linux/netdevice.h>
  62. #include <linux/etherdevice.h>
  63. #include <linux/skbuff.h>
  64. #include <linux/init.h>
  65. #include <linux/delay.h>
  66. #include <linux/mm.h>
  67. #include <linux/highmem.h>
  68. #include <linux/sockios.h>
  69. #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
  70. #include <linux/if_vlan.h>
  71. #endif
  72. #ifdef SIOCETHTOOL
  73. #include <linux/ethtool.h>
  74. #endif
  75. #include <net/sock.h>
  76. #include <net/ip.h>
  77. #include <asm/system.h>
  78. #include <asm/io.h>
  79. #include <asm/irq.h>
  80. #include <asm/byteorder.h>
  81. #include <asm/uaccess.h>
  82. #define DRV_NAME "acenic"
  83. #undef INDEX_DEBUG
  84. #ifdef CONFIG_ACENIC_OMIT_TIGON_I
  85. #define ACE_IS_TIGON_I(ap) 0
  86. #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
  87. #else
  88. #define ACE_IS_TIGON_I(ap) (ap->version == 1)
  89. #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
  90. #endif
  91. #ifndef PCI_VENDOR_ID_ALTEON
  92. #define PCI_VENDOR_ID_ALTEON 0x12ae
  93. #endif
  94. #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
  95. #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
  96. #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
  97. #endif
  98. #ifndef PCI_DEVICE_ID_3COM_3C985
  99. #define PCI_DEVICE_ID_3COM_3C985 0x0001
  100. #endif
  101. #ifndef PCI_VENDOR_ID_NETGEAR
  102. #define PCI_VENDOR_ID_NETGEAR 0x1385
  103. #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
  104. #endif
  105. #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
  106. #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
  107. #endif
  108. /*
  109. * Farallon used the DEC vendor ID by mistake and they seem not
  110. * to care - stinky!
  111. */
  112. #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
  113. #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
  114. #endif
  115. #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
  116. #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
  117. #endif
  118. #ifndef PCI_VENDOR_ID_SGI
  119. #define PCI_VENDOR_ID_SGI 0x10a9
  120. #endif
  121. #ifndef PCI_DEVICE_ID_SGI_ACENIC
  122. #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
  123. #endif
  124. static struct pci_device_id acenic_pci_tbl[] = {
  125. { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
  126. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  127. { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
  128. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  129. { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
  130. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  131. { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
  132. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  133. { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
  134. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  135. /*
  136. * Farallon used the DEC vendor ID on their cards incorrectly,
  137. * then later Alteon's ID.
  138. */
  139. { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
  140. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  141. { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
  142. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  143. { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
  144. PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
  145. { }
  146. };
  147. MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
  148. #ifndef SET_NETDEV_DEV
  149. #define SET_NETDEV_DEV(net, pdev) do{} while(0)
  150. #endif
  151. #if LINUX_VERSION_CODE >= 0x2051c
  152. #define ace_sync_irq(irq) synchronize_irq(irq)
  153. #else
  154. #define ace_sync_irq(irq) synchronize_irq()
  155. #endif
  156. #ifndef offset_in_page
  157. #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
  158. #endif
  159. #define ACE_MAX_MOD_PARMS 8
  160. #define BOARD_IDX_STATIC 0
  161. #define BOARD_IDX_OVERFLOW -1
  162. #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \
  163. defined(NETIF_F_HW_VLAN_RX)
  164. #define ACENIC_DO_VLAN 1
  165. #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST
  166. #else
  167. #define ACENIC_DO_VLAN 0
  168. #define ACE_RCB_VLAN_FLAG 0
  169. #endif
  170. #include "acenic.h"
  171. /*
  172. * These must be defined before the firmware is included.
  173. */
  174. #define MAX_TEXT_LEN 96*1024
  175. #define MAX_RODATA_LEN 8*1024
  176. #define MAX_DATA_LEN 2*1024
  177. #include "acenic_firmware.h"
  178. #ifndef tigon2FwReleaseLocal
  179. #define tigon2FwReleaseLocal 0
  180. #endif
  181. /*
  182. * This driver currently supports Tigon I and Tigon II based cards
  183. * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
  184. * GA620. The driver should also work on the SGI, DEC and Farallon
  185. * versions of the card, however I have not been able to test that
  186. * myself.
  187. *
  188. * This card is really neat, it supports receive hardware checksumming
  189. * and jumbo frames (up to 9000 bytes) and does a lot of work in the
  190. * firmware. Also the programming interface is quite neat, except for
  191. * the parts dealing with the i2c eeprom on the card ;-)
  192. *
  193. * Using jumbo frames:
  194. *
  195. * To enable jumbo frames, simply specify an mtu between 1500 and 9000
  196. * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
  197. * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
  198. * interface number and <MTU> being the MTU value.
  199. *
  200. * Module parameters:
  201. *
  202. * When compiled as a loadable module, the driver allows for a number
  203. * of module parameters to be specified. The driver supports the
  204. * following module parameters:
  205. *
  206. * trace=<val> - Firmware trace level. This requires special traced
  207. * firmware to replace the firmware supplied with
  208. * the driver - for debugging purposes only.
  209. *
  210. * link=<val> - Link state. Normally you want to use the default link
  211. * parameters set by the driver. This can be used to
  212. * override these in case your switch doesn't negotiate
  213. * the link properly. Valid values are:
  214. * 0x0001 - Force half duplex link.
  215. * 0x0002 - Do not negotiate line speed with the other end.
  216. * 0x0010 - 10Mbit/sec link.
  217. * 0x0020 - 100Mbit/sec link.
  218. * 0x0040 - 1000Mbit/sec link.
  219. * 0x0100 - Do not negotiate flow control.
  220. * 0x0200 - Enable RX flow control Y
  221. * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
  222. * Default value is 0x0270, ie. enable link+flow
  223. * control negotiation. Negotiating the highest
  224. * possible link speed with RX flow control enabled.
  225. *
  226. * When disabling link speed negotiation, only one link
  227. * speed is allowed to be specified!
  228. *
  229. * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
  230. * to wait for more packets to arive before
  231. * interrupting the host, from the time the first
  232. * packet arrives.
  233. *
  234. * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
  235. * to wait for more packets to arive in the transmit ring,
  236. * before interrupting the host, after transmitting the
  237. * first packet in the ring.
  238. *
  239. * max_tx_desc=<val> - maximum number of transmit descriptors
  240. * (packets) transmitted before interrupting the host.
  241. *
  242. * max_rx_desc=<val> - maximum number of receive descriptors
  243. * (packets) received before interrupting the host.
  244. *
  245. * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
  246. * increments of the NIC's on board memory to be used for
  247. * transmit and receive buffers. For the 1MB NIC app. 800KB
  248. * is available, on the 1/2MB NIC app. 300KB is available.
  249. * 68KB will always be available as a minimum for both
  250. * directions. The default value is a 50/50 split.
  251. * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
  252. * operations, default (1) is to always disable this as
  253. * that is what Alteon does on NT. I have not been able
  254. * to measure any real performance differences with
  255. * this on my systems. Set <val>=0 if you want to
  256. * enable these operations.
  257. *
  258. * If you use more than one NIC, specify the parameters for the
  259. * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
  260. * run tracing on NIC #2 but not on NIC #1 and #3.
  261. *
  262. * TODO:
  263. *
  264. * - Proper multicast support.
  265. * - NIC dump support.
  266. * - More tuning parameters.
  267. *
  268. * The mini ring is not used under Linux and I am not sure it makes sense
  269. * to actually use it.
  270. *
  271. * New interrupt handler strategy:
  272. *
  273. * The old interrupt handler worked using the traditional method of
  274. * replacing an skbuff with a new one when a packet arrives. However
  275. * the rx rings do not need to contain a static number of buffer
  276. * descriptors, thus it makes sense to move the memory allocation out
  277. * of the main interrupt handler and do it in a bottom half handler
  278. * and only allocate new buffers when the number of buffers in the
  279. * ring is below a certain threshold. In order to avoid starving the
  280. * NIC under heavy load it is however necessary to force allocation
  281. * when hitting a minimum threshold. The strategy for alloction is as
  282. * follows:
  283. *
  284. * RX_LOW_BUF_THRES - allocate buffers in the bottom half
  285. * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
  286. * the buffers in the interrupt handler
  287. * RX_RING_THRES - maximum number of buffers in the rx ring
  288. * RX_MINI_THRES - maximum number of buffers in the mini ring
  289. * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
  290. *
  291. * One advantagous side effect of this allocation approach is that the
  292. * entire rx processing can be done without holding any spin lock
  293. * since the rx rings and registers are totally independent of the tx
  294. * ring and its registers. This of course includes the kmalloc's of
  295. * new skb's. Thus start_xmit can run in parallel with rx processing
  296. * and the memory allocation on SMP systems.
  297. *
  298. * Note that running the skb reallocation in a bottom half opens up
  299. * another can of races which needs to be handled properly. In
  300. * particular it can happen that the interrupt handler tries to run
  301. * the reallocation while the bottom half is either running on another
  302. * CPU or was interrupted on the same CPU. To get around this the
  303. * driver uses bitops to prevent the reallocation routines from being
  304. * reentered.
  305. *
  306. * TX handling can also be done without holding any spin lock, wheee
  307. * this is fun! since tx_ret_csm is only written to by the interrupt
  308. * handler. The case to be aware of is when shutting down the device
  309. * and cleaning up where it is necessary to make sure that
  310. * start_xmit() is not running while this is happening. Well DaveM
  311. * informs me that this case is already protected against ... bye bye
  312. * Mr. Spin Lock, it was nice to know you.
  313. *
  314. * TX interrupts are now partly disabled so the NIC will only generate
  315. * TX interrupts for the number of coal ticks, not for the number of
  316. * TX packets in the queue. This should reduce the number of TX only,
  317. * ie. when no RX processing is done, interrupts seen.
  318. */
  319. /*
  320. * Threshold values for RX buffer allocation - the low water marks for
  321. * when to start refilling the rings are set to 75% of the ring
  322. * sizes. It seems to make sense to refill the rings entirely from the
  323. * intrrupt handler once it gets below the panic threshold, that way
  324. * we don't risk that the refilling is moved to another CPU when the
  325. * one running the interrupt handler just got the slab code hot in its
  326. * cache.
  327. */
  328. #define RX_RING_SIZE 72
  329. #define RX_MINI_SIZE 64
  330. #define RX_JUMBO_SIZE 48
  331. #define RX_PANIC_STD_THRES 16
  332. #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
  333. #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
  334. #define RX_PANIC_MINI_THRES 12
  335. #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
  336. #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
  337. #define RX_PANIC_JUMBO_THRES 6
  338. #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
  339. #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
  340. /*
  341. * Size of the mini ring entries, basically these just should be big
  342. * enough to take TCP ACKs
  343. */
  344. #define ACE_MINI_SIZE 100
  345. #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
  346. #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
  347. #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
  348. /*
  349. * There seems to be a magic difference in the effect between 995 and 996
  350. * but little difference between 900 and 995 ... no idea why.
  351. *
  352. * There is now a default set of tuning parameters which is set, depending
  353. * on whether or not the user enables Jumbo frames. It's assumed that if
  354. * Jumbo frames are enabled, the user wants optimal tuning for that case.
  355. */
  356. #define DEF_TX_COAL 400 /* 996 */
  357. #define DEF_TX_MAX_DESC 60 /* was 40 */
  358. #define DEF_RX_COAL 120 /* 1000 */
  359. #define DEF_RX_MAX_DESC 25
  360. #define DEF_TX_RATIO 21 /* 24 */
  361. #define DEF_JUMBO_TX_COAL 20
  362. #define DEF_JUMBO_TX_MAX_DESC 60
  363. #define DEF_JUMBO_RX_COAL 30
  364. #define DEF_JUMBO_RX_MAX_DESC 6
  365. #define DEF_JUMBO_TX_RATIO 21
  366. #if tigon2FwReleaseLocal < 20001118
  367. /*
  368. * Standard firmware and early modifications duplicate
  369. * IRQ load without this flag (coal timer is never reset).
  370. * Note that with this flag tx_coal should be less than
  371. * time to xmit full tx ring.
  372. * 400usec is not so bad for tx ring size of 128.
  373. */
  374. #define TX_COAL_INTS_ONLY 1 /* worth it */
  375. #else
  376. /*
  377. * With modified firmware, this is not necessary, but still useful.
  378. */
  379. #define TX_COAL_INTS_ONLY 1
  380. #endif
  381. #define DEF_TRACE 0
  382. #define DEF_STAT (2 * TICKS_PER_SEC)
  383. static int link[ACE_MAX_MOD_PARMS];
  384. static int trace[ACE_MAX_MOD_PARMS];
  385. static int tx_coal_tick[ACE_MAX_MOD_PARMS];
  386. static int rx_coal_tick[ACE_MAX_MOD_PARMS];
  387. static int max_tx_desc[ACE_MAX_MOD_PARMS];
  388. static int max_rx_desc[ACE_MAX_MOD_PARMS];
  389. static int tx_ratio[ACE_MAX_MOD_PARMS];
  390. static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
  391. MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
  392. MODULE_LICENSE("GPL");
  393. MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
  394. module_param_array(link, int, NULL, 0);
  395. module_param_array(trace, int, NULL, 0);
  396. module_param_array(tx_coal_tick, int, NULL, 0);
  397. module_param_array(max_tx_desc, int, NULL, 0);
  398. module_param_array(rx_coal_tick, int, NULL, 0);
  399. module_param_array(max_rx_desc, int, NULL, 0);
  400. module_param_array(tx_ratio, int, NULL, 0);
  401. MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
  402. MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
  403. MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
  404. MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
  405. MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
  406. MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
  407. MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
  408. static char version[] __devinitdata =
  409. "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
  410. " http://home.cern.ch/~jes/gige/acenic.html\n";
  411. static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
  412. static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
  413. static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
  414. static struct ethtool_ops ace_ethtool_ops = {
  415. .get_settings = ace_get_settings,
  416. .set_settings = ace_set_settings,
  417. .get_drvinfo = ace_get_drvinfo,
  418. };
  419. static void ace_watchdog(struct net_device *dev);
  420. static int __devinit acenic_probe_one(struct pci_dev *pdev,
  421. const struct pci_device_id *id)
  422. {
  423. struct net_device *dev;
  424. struct ace_private *ap;
  425. static int boards_found;
  426. dev = alloc_etherdev(sizeof(struct ace_private));
  427. if (dev == NULL) {
  428. printk(KERN_ERR "acenic: Unable to allocate "
  429. "net_device structure!\n");
  430. return -ENOMEM;
  431. }
  432. SET_MODULE_OWNER(dev);
  433. SET_NETDEV_DEV(dev, &pdev->dev);
  434. ap = dev->priv;
  435. ap->pdev = pdev;
  436. ap->name = pci_name(pdev);
  437. dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
  438. #if ACENIC_DO_VLAN
  439. dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
  440. dev->vlan_rx_register = ace_vlan_rx_register;
  441. dev->vlan_rx_kill_vid = ace_vlan_rx_kill_vid;
  442. #endif
  443. if (1) {
  444. dev->tx_timeout = &ace_watchdog;
  445. dev->watchdog_timeo = 5*HZ;
  446. }
  447. dev->open = &ace_open;
  448. dev->stop = &ace_close;
  449. dev->hard_start_xmit = &ace_start_xmit;
  450. dev->get_stats = &ace_get_stats;
  451. dev->set_multicast_list = &ace_set_multicast_list;
  452. SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
  453. dev->set_mac_address = &ace_set_mac_addr;
  454. dev->change_mtu = &ace_change_mtu;
  455. /* we only display this string ONCE */
  456. if (!boards_found)
  457. printk(version);
  458. if (pci_enable_device(pdev))
  459. goto fail_free_netdev;
  460. /*
  461. * Enable master mode before we start playing with the
  462. * pci_command word since pci_set_master() will modify
  463. * it.
  464. */
  465. pci_set_master(pdev);
  466. pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
  467. /* OpenFirmware on Mac's does not set this - DOH.. */
  468. if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
  469. printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
  470. "access - was not enabled by BIOS/Firmware\n",
  471. ap->name);
  472. ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
  473. pci_write_config_word(ap->pdev, PCI_COMMAND,
  474. ap->pci_command);
  475. wmb();
  476. }
  477. pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
  478. if (ap->pci_latency <= 0x40) {
  479. ap->pci_latency = 0x40;
  480. pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
  481. }
  482. /*
  483. * Remap the regs into kernel space - this is abuse of
  484. * dev->base_addr since it was means for I/O port
  485. * addresses but who gives a damn.
  486. */
  487. dev->base_addr = pci_resource_start(pdev, 0);
  488. ap->regs = ioremap(dev->base_addr, 0x4000);
  489. if (!ap->regs) {
  490. printk(KERN_ERR "%s: Unable to map I/O register, "
  491. "AceNIC %i will be disabled.\n",
  492. ap->name, boards_found);
  493. goto fail_free_netdev;
  494. }
  495. switch(pdev->vendor) {
  496. case PCI_VENDOR_ID_ALTEON:
  497. if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
  498. printk(KERN_INFO "%s: Farallon PN9100-T ",
  499. ap->name);
  500. } else {
  501. printk(KERN_INFO "%s: Alteon AceNIC ",
  502. ap->name);
  503. }
  504. break;
  505. case PCI_VENDOR_ID_3COM:
  506. printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
  507. break;
  508. case PCI_VENDOR_ID_NETGEAR:
  509. printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
  510. break;
  511. case PCI_VENDOR_ID_DEC:
  512. if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
  513. printk(KERN_INFO "%s: Farallon PN9000-SX ",
  514. ap->name);
  515. break;
  516. }
  517. case PCI_VENDOR_ID_SGI:
  518. printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
  519. break;
  520. default:
  521. printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
  522. break;
  523. }
  524. printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
  525. #ifdef __sparc__
  526. printk("irq %s\n", __irq_itoa(pdev->irq));
  527. #else
  528. printk("irq %i\n", pdev->irq);
  529. #endif
  530. #ifdef CONFIG_ACENIC_OMIT_TIGON_I
  531. if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
  532. printk(KERN_ERR "%s: Driver compiled without Tigon I"
  533. " support - NIC disabled\n", dev->name);
  534. goto fail_uninit;
  535. }
  536. #endif
  537. if (ace_allocate_descriptors(dev))
  538. goto fail_free_netdev;
  539. #ifdef MODULE
  540. if (boards_found >= ACE_MAX_MOD_PARMS)
  541. ap->board_idx = BOARD_IDX_OVERFLOW;
  542. else
  543. ap->board_idx = boards_found;
  544. #else
  545. ap->board_idx = BOARD_IDX_STATIC;
  546. #endif
  547. if (ace_init(dev))
  548. goto fail_free_netdev;
  549. if (register_netdev(dev)) {
  550. printk(KERN_ERR "acenic: device registration failed\n");
  551. goto fail_uninit;
  552. }
  553. ap->name = dev->name;
  554. if (ap->pci_using_dac)
  555. dev->features |= NETIF_F_HIGHDMA;
  556. pci_set_drvdata(pdev, dev);
  557. boards_found++;
  558. return 0;
  559. fail_uninit:
  560. ace_init_cleanup(dev);
  561. fail_free_netdev:
  562. free_netdev(dev);
  563. return -ENODEV;
  564. }
  565. static void __devexit acenic_remove_one(struct pci_dev *pdev)
  566. {
  567. struct net_device *dev = pci_get_drvdata(pdev);
  568. struct ace_private *ap = netdev_priv(dev);
  569. struct ace_regs __iomem *regs = ap->regs;
  570. short i;
  571. unregister_netdev(dev);
  572. writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
  573. if (ap->version >= 2)
  574. writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
  575. /*
  576. * This clears any pending interrupts
  577. */
  578. writel(1, &regs->Mb0Lo);
  579. readl(&regs->CpuCtrl); /* flush */
  580. /*
  581. * Make sure no other CPUs are processing interrupts
  582. * on the card before the buffers are being released.
  583. * Otherwise one might experience some `interesting'
  584. * effects.
  585. *
  586. * Then release the RX buffers - jumbo buffers were
  587. * already released in ace_close().
  588. */
  589. ace_sync_irq(dev->irq);
  590. for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
  591. struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
  592. if (skb) {
  593. struct ring_info *ringp;
  594. dma_addr_t mapping;
  595. ringp = &ap->skb->rx_std_skbuff[i];
  596. mapping = pci_unmap_addr(ringp, mapping);
  597. pci_unmap_page(ap->pdev, mapping,
  598. ACE_STD_BUFSIZE,
  599. PCI_DMA_FROMDEVICE);
  600. ap->rx_std_ring[i].size = 0;
  601. ap->skb->rx_std_skbuff[i].skb = NULL;
  602. dev_kfree_skb(skb);
  603. }
  604. }
  605. if (ap->version >= 2) {
  606. for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
  607. struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
  608. if (skb) {
  609. struct ring_info *ringp;
  610. dma_addr_t mapping;
  611. ringp = &ap->skb->rx_mini_skbuff[i];
  612. mapping = pci_unmap_addr(ringp,mapping);
  613. pci_unmap_page(ap->pdev, mapping,
  614. ACE_MINI_BUFSIZE,
  615. PCI_DMA_FROMDEVICE);
  616. ap->rx_mini_ring[i].size = 0;
  617. ap->skb->rx_mini_skbuff[i].skb = NULL;
  618. dev_kfree_skb(skb);
  619. }
  620. }
  621. }
  622. for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
  623. struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
  624. if (skb) {
  625. struct ring_info *ringp;
  626. dma_addr_t mapping;
  627. ringp = &ap->skb->rx_jumbo_skbuff[i];
  628. mapping = pci_unmap_addr(ringp, mapping);
  629. pci_unmap_page(ap->pdev, mapping,
  630. ACE_JUMBO_BUFSIZE,
  631. PCI_DMA_FROMDEVICE);
  632. ap->rx_jumbo_ring[i].size = 0;
  633. ap->skb->rx_jumbo_skbuff[i].skb = NULL;
  634. dev_kfree_skb(skb);
  635. }
  636. }
  637. ace_init_cleanup(dev);
  638. free_netdev(dev);
  639. }
  640. static struct pci_driver acenic_pci_driver = {
  641. .name = "acenic",
  642. .id_table = acenic_pci_tbl,
  643. .probe = acenic_probe_one,
  644. .remove = __devexit_p(acenic_remove_one),
  645. };
  646. static int __init acenic_init(void)
  647. {
  648. return pci_module_init(&acenic_pci_driver);
  649. }
  650. static void __exit acenic_exit(void)
  651. {
  652. pci_unregister_driver(&acenic_pci_driver);
  653. }
  654. module_init(acenic_init);
  655. module_exit(acenic_exit);
  656. static void ace_free_descriptors(struct net_device *dev)
  657. {
  658. struct ace_private *ap = netdev_priv(dev);
  659. int size;
  660. if (ap->rx_std_ring != NULL) {
  661. size = (sizeof(struct rx_desc) *
  662. (RX_STD_RING_ENTRIES +
  663. RX_JUMBO_RING_ENTRIES +
  664. RX_MINI_RING_ENTRIES +
  665. RX_RETURN_RING_ENTRIES));
  666. pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
  667. ap->rx_ring_base_dma);
  668. ap->rx_std_ring = NULL;
  669. ap->rx_jumbo_ring = NULL;
  670. ap->rx_mini_ring = NULL;
  671. ap->rx_return_ring = NULL;
  672. }
  673. if (ap->evt_ring != NULL) {
  674. size = (sizeof(struct event) * EVT_RING_ENTRIES);
  675. pci_free_consistent(ap->pdev, size, ap->evt_ring,
  676. ap->evt_ring_dma);
  677. ap->evt_ring = NULL;
  678. }
  679. if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
  680. size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
  681. pci_free_consistent(ap->pdev, size, ap->tx_ring,
  682. ap->tx_ring_dma);
  683. }
  684. ap->tx_ring = NULL;
  685. if (ap->evt_prd != NULL) {
  686. pci_free_consistent(ap->pdev, sizeof(u32),
  687. (void *)ap->evt_prd, ap->evt_prd_dma);
  688. ap->evt_prd = NULL;
  689. }
  690. if (ap->rx_ret_prd != NULL) {
  691. pci_free_consistent(ap->pdev, sizeof(u32),
  692. (void *)ap->rx_ret_prd,
  693. ap->rx_ret_prd_dma);
  694. ap->rx_ret_prd = NULL;
  695. }
  696. if (ap->tx_csm != NULL) {
  697. pci_free_consistent(ap->pdev, sizeof(u32),
  698. (void *)ap->tx_csm, ap->tx_csm_dma);
  699. ap->tx_csm = NULL;
  700. }
  701. }
  702. static int ace_allocate_descriptors(struct net_device *dev)
  703. {
  704. struct ace_private *ap = netdev_priv(dev);
  705. int size;
  706. size = (sizeof(struct rx_desc) *
  707. (RX_STD_RING_ENTRIES +
  708. RX_JUMBO_RING_ENTRIES +
  709. RX_MINI_RING_ENTRIES +
  710. RX_RETURN_RING_ENTRIES));
  711. ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
  712. &ap->rx_ring_base_dma);
  713. if (ap->rx_std_ring == NULL)
  714. goto fail;
  715. ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
  716. ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
  717. ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
  718. size = (sizeof(struct event) * EVT_RING_ENTRIES);
  719. ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
  720. if (ap->evt_ring == NULL)
  721. goto fail;
  722. /*
  723. * Only allocate a host TX ring for the Tigon II, the Tigon I
  724. * has to use PCI registers for this ;-(
  725. */
  726. if (!ACE_IS_TIGON_I(ap)) {
  727. size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
  728. ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
  729. &ap->tx_ring_dma);
  730. if (ap->tx_ring == NULL)
  731. goto fail;
  732. }
  733. ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
  734. &ap->evt_prd_dma);
  735. if (ap->evt_prd == NULL)
  736. goto fail;
  737. ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
  738. &ap->rx_ret_prd_dma);
  739. if (ap->rx_ret_prd == NULL)
  740. goto fail;
  741. ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
  742. &ap->tx_csm_dma);
  743. if (ap->tx_csm == NULL)
  744. goto fail;
  745. return 0;
  746. fail:
  747. /* Clean up. */
  748. ace_init_cleanup(dev);
  749. return 1;
  750. }
  751. /*
  752. * Generic cleanup handling data allocated during init. Used when the
  753. * module is unloaded or if an error occurs during initialization
  754. */
  755. static void ace_init_cleanup(struct net_device *dev)
  756. {
  757. struct ace_private *ap;
  758. ap = netdev_priv(dev);
  759. ace_free_descriptors(dev);
  760. if (ap->info)
  761. pci_free_consistent(ap->pdev, sizeof(struct ace_info),
  762. ap->info, ap->info_dma);
  763. if (ap->skb)
  764. kfree(ap->skb);
  765. if (ap->trace_buf)
  766. kfree(ap->trace_buf);
  767. if (dev->irq)
  768. free_irq(dev->irq, dev);
  769. iounmap(ap->regs);
  770. }
  771. /*
  772. * Commands are considered to be slow.
  773. */
  774. static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
  775. {
  776. u32 idx;
  777. idx = readl(&regs->CmdPrd);
  778. writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
  779. idx = (idx + 1) % CMD_RING_ENTRIES;
  780. writel(idx, &regs->CmdPrd);
  781. }
  782. static int __devinit ace_init(struct net_device *dev)
  783. {
  784. struct ace_private *ap;
  785. struct ace_regs __iomem *regs;
  786. struct ace_info *info = NULL;
  787. struct pci_dev *pdev;
  788. unsigned long myjif;
  789. u64 tmp_ptr;
  790. u32 tig_ver, mac1, mac2, tmp, pci_state;
  791. int board_idx, ecode = 0;
  792. short i;
  793. unsigned char cache_size;
  794. ap = netdev_priv(dev);
  795. regs = ap->regs;
  796. board_idx = ap->board_idx;
  797. /*
  798. * aman@sgi.com - its useful to do a NIC reset here to
  799. * address the `Firmware not running' problem subsequent
  800. * to any crashes involving the NIC
  801. */
  802. writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
  803. readl(&regs->HostCtrl); /* PCI write posting */
  804. udelay(5);
  805. /*
  806. * Don't access any other registers before this point!
  807. */
  808. #ifdef __BIG_ENDIAN
  809. /*
  810. * This will most likely need BYTE_SWAP once we switch
  811. * to using __raw_writel()
  812. */
  813. writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
  814. &regs->HostCtrl);
  815. #else
  816. writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
  817. &regs->HostCtrl);
  818. #endif
  819. readl(&regs->HostCtrl); /* PCI write posting */
  820. /*
  821. * Stop the NIC CPU and clear pending interrupts
  822. */
  823. writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
  824. readl(&regs->CpuCtrl); /* PCI write posting */
  825. writel(0, &regs->Mb0Lo);
  826. tig_ver = readl(&regs->HostCtrl) >> 28;
  827. switch(tig_ver){
  828. #ifndef CONFIG_ACENIC_OMIT_TIGON_I
  829. case 4:
  830. case 5:
  831. printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
  832. tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor,
  833. tigonFwReleaseFix);
  834. writel(0, &regs->LocalCtrl);
  835. ap->version = 1;
  836. ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
  837. break;
  838. #endif
  839. case 6:
  840. printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
  841. tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor,
  842. tigon2FwReleaseFix);
  843. writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
  844. readl(&regs->CpuBCtrl); /* PCI write posting */
  845. /*
  846. * The SRAM bank size does _not_ indicate the amount
  847. * of memory on the card, it controls the _bank_ size!
  848. * Ie. a 1MB AceNIC will have two banks of 512KB.
  849. */
  850. writel(SRAM_BANK_512K, &regs->LocalCtrl);
  851. writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
  852. ap->version = 2;
  853. ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
  854. break;
  855. default:
  856. printk(KERN_WARNING " Unsupported Tigon version detected "
  857. "(%i)\n", tig_ver);
  858. ecode = -ENODEV;
  859. goto init_error;
  860. }
  861. /*
  862. * ModeStat _must_ be set after the SRAM settings as this change
  863. * seems to corrupt the ModeStat and possible other registers.
  864. * The SRAM settings survive resets and setting it to the same
  865. * value a second time works as well. This is what caused the
  866. * `Firmware not running' problem on the Tigon II.
  867. */
  868. #ifdef __BIG_ENDIAN
  869. writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
  870. ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
  871. #else
  872. writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
  873. ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
  874. #endif
  875. readl(&regs->ModeStat); /* PCI write posting */
  876. mac1 = 0;
  877. for(i = 0; i < 4; i++) {
  878. mac1 = mac1 << 8;
  879. tmp = read_eeprom_byte(dev, 0x8c+i);
  880. if (tmp < 0) {
  881. ecode = -EIO;
  882. goto init_error;
  883. } else
  884. mac1 |= (tmp & 0xff);
  885. }
  886. mac2 = 0;
  887. for(i = 4; i < 8; i++) {
  888. mac2 = mac2 << 8;
  889. tmp = read_eeprom_byte(dev, 0x8c+i);
  890. if (tmp < 0) {
  891. ecode = -EIO;
  892. goto init_error;
  893. } else
  894. mac2 |= (tmp & 0xff);
  895. }
  896. writel(mac1, &regs->MacAddrHi);
  897. writel(mac2, &regs->MacAddrLo);
  898. printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
  899. (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff,
  900. (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff);
  901. dev->dev_addr[0] = (mac1 >> 8) & 0xff;
  902. dev->dev_addr[1] = mac1 & 0xff;
  903. dev->dev_addr[2] = (mac2 >> 24) & 0xff;
  904. dev->dev_addr[3] = (mac2 >> 16) & 0xff;
  905. dev->dev_addr[4] = (mac2 >> 8) & 0xff;
  906. dev->dev_addr[5] = mac2 & 0xff;
  907. /*
  908. * Looks like this is necessary to deal with on all architectures,
  909. * even this %$#%$# N440BX Intel based thing doesn't get it right.
  910. * Ie. having two NICs in the machine, one will have the cache
  911. * line set at boot time, the other will not.
  912. */
  913. pdev = ap->pdev;
  914. pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
  915. cache_size <<= 2;
  916. if (cache_size != SMP_CACHE_BYTES) {
  917. printk(KERN_INFO " PCI cache line size set incorrectly "
  918. "(%i bytes) by BIOS/FW, ", cache_size);
  919. if (cache_size > SMP_CACHE_BYTES)
  920. printk("expecting %i\n", SMP_CACHE_BYTES);
  921. else {
  922. printk("correcting to %i\n", SMP_CACHE_BYTES);
  923. pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
  924. SMP_CACHE_BYTES >> 2);
  925. }
  926. }
  927. pci_state = readl(&regs->PciState);
  928. printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
  929. "latency: %i clks\n",
  930. (pci_state & PCI_32BIT) ? 32 : 64,
  931. (pci_state & PCI_66MHZ) ? 66 : 33,
  932. ap->pci_latency);
  933. /*
  934. * Set the max DMA transfer size. Seems that for most systems
  935. * the performance is better when no MAX parameter is
  936. * set. However for systems enabling PCI write and invalidate,
  937. * DMA writes must be set to the L1 cache line size to get
  938. * optimal performance.
  939. *
  940. * The default is now to turn the PCI write and invalidate off
  941. * - that is what Alteon does for NT.
  942. */
  943. tmp = READ_CMD_MEM | WRITE_CMD_MEM;
  944. if (ap->version >= 2) {
  945. tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
  946. /*
  947. * Tuning parameters only supported for 8 cards
  948. */
  949. if (board_idx == BOARD_IDX_OVERFLOW ||
  950. dis_pci_mem_inval[board_idx]) {
  951. if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
  952. ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
  953. pci_write_config_word(pdev, PCI_COMMAND,
  954. ap->pci_command);
  955. printk(KERN_INFO " Disabling PCI memory "
  956. "write and invalidate\n");
  957. }
  958. } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
  959. printk(KERN_INFO " PCI memory write & invalidate "
  960. "enabled by BIOS, enabling counter measures\n");
  961. switch(SMP_CACHE_BYTES) {
  962. case 16:
  963. tmp |= DMA_WRITE_MAX_16;
  964. break;
  965. case 32:
  966. tmp |= DMA_WRITE_MAX_32;
  967. break;
  968. case 64:
  969. tmp |= DMA_WRITE_MAX_64;
  970. break;
  971. case 128:
  972. tmp |= DMA_WRITE_MAX_128;
  973. break;
  974. default:
  975. printk(KERN_INFO " Cache line size %i not "
  976. "supported, PCI write and invalidate "
  977. "disabled\n", SMP_CACHE_BYTES);
  978. ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
  979. pci_write_config_word(pdev, PCI_COMMAND,
  980. ap->pci_command);
  981. }
  982. }
  983. }
  984. #ifdef __sparc__
  985. /*
  986. * On this platform, we know what the best dma settings
  987. * are. We use 64-byte maximum bursts, because if we
  988. * burst larger than the cache line size (or even cross
  989. * a 64byte boundary in a single burst) the UltraSparc
  990. * PCI controller will disconnect at 64-byte multiples.
  991. *
  992. * Read-multiple will be properly enabled above, and when
  993. * set will give the PCI controller proper hints about
  994. * prefetching.
  995. */
  996. tmp &= ~DMA_READ_WRITE_MASK;
  997. tmp |= DMA_READ_MAX_64;
  998. tmp |= DMA_WRITE_MAX_64;
  999. #endif
  1000. #ifdef __alpha__
  1001. tmp &= ~DMA_READ_WRITE_MASK;
  1002. tmp |= DMA_READ_MAX_128;
  1003. /*
  1004. * All the docs say MUST NOT. Well, I did.
  1005. * Nothing terrible happens, if we load wrong size.
  1006. * Bit w&i still works better!
  1007. */
  1008. tmp |= DMA_WRITE_MAX_128;
  1009. #endif
  1010. writel(tmp, &regs->PciState);
  1011. #if 0
  1012. /*
  1013. * The Host PCI bus controller driver has to set FBB.
  1014. * If all devices on that PCI bus support FBB, then the controller
  1015. * can enable FBB support in the Host PCI Bus controller (or on
  1016. * the PCI-PCI bridge if that applies).
  1017. * -ggg
  1018. */
  1019. /*
  1020. * I have received reports from people having problems when this
  1021. * bit is enabled.
  1022. */
  1023. if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
  1024. printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
  1025. ap->pci_command |= PCI_COMMAND_FAST_BACK;
  1026. pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
  1027. }
  1028. #endif
  1029. /*
  1030. * Configure DMA attributes.
  1031. */
  1032. if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) {
  1033. ap->pci_using_dac = 1;
  1034. } else if (!pci_set_dma_mask(pdev, 0xffffffffULL)) {
  1035. ap->pci_using_dac = 0;
  1036. } else {
  1037. ecode = -ENODEV;
  1038. goto init_error;
  1039. }
  1040. /*
  1041. * Initialize the generic info block and the command+event rings
  1042. * and the control blocks for the transmit and receive rings
  1043. * as they need to be setup once and for all.
  1044. */
  1045. if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
  1046. &ap->info_dma))) {
  1047. ecode = -EAGAIN;
  1048. goto init_error;
  1049. }
  1050. ap->info = info;
  1051. /*
  1052. * Get the memory for the skb rings.
  1053. */
  1054. if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
  1055. ecode = -EAGAIN;
  1056. goto init_error;
  1057. }
  1058. ecode = request_irq(pdev->irq, ace_interrupt, SA_SHIRQ,
  1059. DRV_NAME, dev);
  1060. if (ecode) {
  1061. printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
  1062. DRV_NAME, pdev->irq);
  1063. goto init_error;
  1064. } else
  1065. dev->irq = pdev->irq;
  1066. #ifdef INDEX_DEBUG
  1067. spin_lock_init(&ap->debug_lock);
  1068. ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
  1069. ap->last_std_rx = 0;
  1070. ap->last_mini_rx = 0;
  1071. #endif
  1072. memset(ap->info, 0, sizeof(struct ace_info));
  1073. memset(ap->skb, 0, sizeof(struct ace_skb));
  1074. ace_load_firmware(dev);
  1075. ap->fw_running = 0;
  1076. tmp_ptr = ap->info_dma;
  1077. writel(tmp_ptr >> 32, &regs->InfoPtrHi);
  1078. writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
  1079. memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
  1080. set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
  1081. info->evt_ctrl.flags = 0;
  1082. *(ap->evt_prd) = 0;
  1083. wmb();
  1084. set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
  1085. writel(0, &regs->EvtCsm);
  1086. set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
  1087. info->cmd_ctrl.flags = 0;
  1088. info->cmd_ctrl.max_len = 0;
  1089. for (i = 0; i < CMD_RING_ENTRIES; i++)
  1090. writel(0, &regs->CmdRng[i]);
  1091. writel(0, &regs->CmdPrd);
  1092. writel(0, &regs->CmdCsm);
  1093. tmp_ptr = ap->info_dma;
  1094. tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
  1095. set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
  1096. set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
  1097. info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
  1098. info->rx_std_ctrl.flags =
  1099. RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
  1100. memset(ap->rx_std_ring, 0,
  1101. RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
  1102. for (i = 0; i < RX_STD_RING_ENTRIES; i++)
  1103. ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
  1104. ap->rx_std_skbprd = 0;
  1105. atomic_set(&ap->cur_rx_bufs, 0);
  1106. set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
  1107. (ap->rx_ring_base_dma +
  1108. (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
  1109. info->rx_jumbo_ctrl.max_len = 0;
  1110. info->rx_jumbo_ctrl.flags =
  1111. RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
  1112. memset(ap->rx_jumbo_ring, 0,
  1113. RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
  1114. for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
  1115. ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
  1116. ap->rx_jumbo_skbprd = 0;
  1117. atomic_set(&ap->cur_jumbo_bufs, 0);
  1118. memset(ap->rx_mini_ring, 0,
  1119. RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
  1120. if (ap->version >= 2) {
  1121. set_aceaddr(&info->rx_mini_ctrl.rngptr,
  1122. (ap->rx_ring_base_dma +
  1123. (sizeof(struct rx_desc) *
  1124. (RX_STD_RING_ENTRIES +
  1125. RX_JUMBO_RING_ENTRIES))));
  1126. info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
  1127. info->rx_mini_ctrl.flags =
  1128. RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG;
  1129. for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
  1130. ap->rx_mini_ring[i].flags =
  1131. BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
  1132. } else {
  1133. set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
  1134. info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
  1135. info->rx_mini_ctrl.max_len = 0;
  1136. }
  1137. ap->rx_mini_skbprd = 0;
  1138. atomic_set(&ap->cur_mini_bufs, 0);
  1139. set_aceaddr(&info->rx_return_ctrl.rngptr,
  1140. (ap->rx_ring_base_dma +
  1141. (sizeof(struct rx_desc) *
  1142. (RX_STD_RING_ENTRIES +
  1143. RX_JUMBO_RING_ENTRIES +
  1144. RX_MINI_RING_ENTRIES))));
  1145. info->rx_return_ctrl.flags = 0;
  1146. info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
  1147. memset(ap->rx_return_ring, 0,
  1148. RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
  1149. set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
  1150. *(ap->rx_ret_prd) = 0;
  1151. writel(TX_RING_BASE, &regs->WinBase);
  1152. if (ACE_IS_TIGON_I(ap)) {
  1153. ap->tx_ring = (struct tx_desc *) regs->Window;
  1154. for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
  1155. * sizeof(struct tx_desc)) / sizeof(u32); i++)
  1156. writel(0, (void __iomem *)ap->tx_ring + i * 4);
  1157. set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
  1158. } else {
  1159. memset(ap->tx_ring, 0,
  1160. MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
  1161. set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
  1162. }
  1163. info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
  1164. tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG;
  1165. /*
  1166. * The Tigon I does not like having the TX ring in host memory ;-(
  1167. */
  1168. if (!ACE_IS_TIGON_I(ap))
  1169. tmp |= RCB_FLG_TX_HOST_RING;
  1170. #if TX_COAL_INTS_ONLY
  1171. tmp |= RCB_FLG_COAL_INT_ONLY;
  1172. #endif
  1173. info->tx_ctrl.flags = tmp;
  1174. set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
  1175. /*
  1176. * Potential item for tuning parameter
  1177. */
  1178. #if 0 /* NO */
  1179. writel(DMA_THRESH_16W, &regs->DmaReadCfg);
  1180. writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
  1181. #else
  1182. writel(DMA_THRESH_8W, &regs->DmaReadCfg);
  1183. writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
  1184. #endif
  1185. writel(0, &regs->MaskInt);
  1186. writel(1, &regs->IfIdx);
  1187. #if 0
  1188. /*
  1189. * McKinley boxes do not like us fiddling with AssistState
  1190. * this early
  1191. */
  1192. writel(1, &regs->AssistState);
  1193. #endif
  1194. writel(DEF_STAT, &regs->TuneStatTicks);
  1195. writel(DEF_TRACE, &regs->TuneTrace);
  1196. ace_set_rxtx_parms(dev, 0);
  1197. if (board_idx == BOARD_IDX_OVERFLOW) {
  1198. printk(KERN_WARNING "%s: more than %i NICs detected, "
  1199. "ignoring module parameters!\n",
  1200. ap->name, ACE_MAX_MOD_PARMS);
  1201. } else if (board_idx >= 0) {
  1202. if (tx_coal_tick[board_idx])
  1203. writel(tx_coal_tick[board_idx],
  1204. &regs->TuneTxCoalTicks);
  1205. if (max_tx_desc[board_idx])
  1206. writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
  1207. if (rx_coal_tick[board_idx])
  1208. writel(rx_coal_tick[board_idx],
  1209. &regs->TuneRxCoalTicks);
  1210. if (max_rx_desc[board_idx])
  1211. writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
  1212. if (trace[board_idx])
  1213. writel(trace[board_idx], &regs->TuneTrace);
  1214. if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
  1215. writel(tx_ratio[board_idx], &regs->TxBufRat);
  1216. }
  1217. /*
  1218. * Default link parameters
  1219. */
  1220. tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
  1221. LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
  1222. if(ap->version >= 2)
  1223. tmp |= LNK_TX_FLOW_CTL_Y;
  1224. /*
  1225. * Override link default parameters
  1226. */
  1227. if ((board_idx >= 0) && link[board_idx]) {
  1228. int option = link[board_idx];
  1229. tmp = LNK_ENABLE;
  1230. if (option & 0x01) {
  1231. printk(KERN_INFO "%s: Setting half duplex link\n",
  1232. ap->name);
  1233. tmp &= ~LNK_FULL_DUPLEX;
  1234. }
  1235. if (option & 0x02)
  1236. tmp &= ~LNK_NEGOTIATE;
  1237. if (option & 0x10)
  1238. tmp |= LNK_10MB;
  1239. if (option & 0x20)
  1240. tmp |= LNK_100MB;
  1241. if (option & 0x40)
  1242. tmp |= LNK_1000MB;
  1243. if ((option & 0x70) == 0) {
  1244. printk(KERN_WARNING "%s: No media speed specified, "
  1245. "forcing auto negotiation\n", ap->name);
  1246. tmp |= LNK_NEGOTIATE | LNK_1000MB |
  1247. LNK_100MB | LNK_10MB;
  1248. }
  1249. if ((option & 0x100) == 0)
  1250. tmp |= LNK_NEG_FCTL;
  1251. else
  1252. printk(KERN_INFO "%s: Disabling flow control "
  1253. "negotiation\n", ap->name);
  1254. if (option & 0x200)
  1255. tmp |= LNK_RX_FLOW_CTL_Y;
  1256. if ((option & 0x400) && (ap->version >= 2)) {
  1257. printk(KERN_INFO "%s: Enabling TX flow control\n",
  1258. ap->name);
  1259. tmp |= LNK_TX_FLOW_CTL_Y;
  1260. }
  1261. }
  1262. ap->link = tmp;
  1263. writel(tmp, &regs->TuneLink);
  1264. if (ap->version >= 2)
  1265. writel(tmp, &regs->TuneFastLink);
  1266. if (ACE_IS_TIGON_I(ap))
  1267. writel(tigonFwStartAddr, &regs->Pc);
  1268. if (ap->version == 2)
  1269. writel(tigon2FwStartAddr, &regs->Pc);
  1270. writel(0, &regs->Mb0Lo);
  1271. /*
  1272. * Set tx_csm before we start receiving interrupts, otherwise
  1273. * the interrupt handler might think it is supposed to process
  1274. * tx ints before we are up and running, which may cause a null
  1275. * pointer access in the int handler.
  1276. */
  1277. ap->cur_rx = 0;
  1278. ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
  1279. wmb();
  1280. ace_set_txprd(regs, ap, 0);
  1281. writel(0, &regs->RxRetCsm);
  1282. /*
  1283. * Zero the stats before starting the interface
  1284. */
  1285. memset(&ap->stats, 0, sizeof(ap->stats));
  1286. /*
  1287. * Enable DMA engine now.
  1288. * If we do this sooner, Mckinley box pukes.
  1289. * I assume it's because Tigon II DMA engine wants to check
  1290. * *something* even before the CPU is started.
  1291. */
  1292. writel(1, &regs->AssistState); /* enable DMA */
  1293. /*
  1294. * Start the NIC CPU
  1295. */
  1296. writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
  1297. readl(&regs->CpuCtrl);
  1298. /*
  1299. * Wait for the firmware to spin up - max 3 seconds.
  1300. */
  1301. myjif = jiffies + 3 * HZ;
  1302. while (time_before(jiffies, myjif) && !ap->fw_running)
  1303. cpu_relax();
  1304. if (!ap->fw_running) {
  1305. printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
  1306. ace_dump_trace(ap);
  1307. writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
  1308. readl(&regs->CpuCtrl);
  1309. /* aman@sgi.com - account for badly behaving firmware/NIC:
  1310. * - have observed that the NIC may continue to generate
  1311. * interrupts for some reason; attempt to stop it - halt
  1312. * second CPU for Tigon II cards, and also clear Mb0
  1313. * - if we're a module, we'll fail to load if this was
  1314. * the only GbE card in the system => if the kernel does
  1315. * see an interrupt from the NIC, code to handle it is
  1316. * gone and OOps! - so free_irq also
  1317. */
  1318. if (ap->version >= 2)
  1319. writel(readl(&regs->CpuBCtrl) | CPU_HALT,
  1320. &regs->CpuBCtrl);
  1321. writel(0, &regs->Mb0Lo);
  1322. readl(&regs->Mb0Lo);
  1323. ecode = -EBUSY;
  1324. goto init_error;
  1325. }
  1326. /*
  1327. * We load the ring here as there seem to be no way to tell the
  1328. * firmware to wipe the ring without re-initializing it.
  1329. */
  1330. if (!test_and_set_bit(0, &ap->std_refill_busy))
  1331. ace_load_std_rx_ring(ap, RX_RING_SIZE);
  1332. else
  1333. printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
  1334. ap->name);
  1335. if (ap->version >= 2) {
  1336. if (!test_and_set_bit(0, &ap->mini_refill_busy))
  1337. ace_load_mini_rx_ring(ap, RX_MINI_SIZE);
  1338. else
  1339. printk(KERN_ERR "%s: Someone is busy refilling "
  1340. "the RX mini ring\n", ap->name);
  1341. }
  1342. return 0;
  1343. init_error:
  1344. ace_init_cleanup(dev);
  1345. return ecode;
  1346. }
  1347. static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
  1348. {
  1349. struct ace_private *ap = netdev_priv(dev);
  1350. struct ace_regs __iomem *regs = ap->regs;
  1351. int board_idx = ap->board_idx;
  1352. if (board_idx >= 0) {
  1353. if (!jumbo) {
  1354. if (!tx_coal_tick[board_idx])
  1355. writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
  1356. if (!max_tx_desc[board_idx])
  1357. writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
  1358. if (!rx_coal_tick[board_idx])
  1359. writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
  1360. if (!max_rx_desc[board_idx])
  1361. writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
  1362. if (!tx_ratio[board_idx])
  1363. writel(DEF_TX_RATIO, &regs->TxBufRat);
  1364. } else {
  1365. if (!tx_coal_tick[board_idx])
  1366. writel(DEF_JUMBO_TX_COAL,
  1367. &regs->TuneTxCoalTicks);
  1368. if (!max_tx_desc[board_idx])
  1369. writel(DEF_JUMBO_TX_MAX_DESC,
  1370. &regs->TuneMaxTxDesc);
  1371. if (!rx_coal_tick[board_idx])
  1372. writel(DEF_JUMBO_RX_COAL,
  1373. &regs->TuneRxCoalTicks);
  1374. if (!max_rx_desc[board_idx])
  1375. writel(DEF_JUMBO_RX_MAX_DESC,
  1376. &regs->TuneMaxRxDesc);
  1377. if (!tx_ratio[board_idx])
  1378. writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
  1379. }
  1380. }
  1381. }
  1382. static void ace_watchdog(struct net_device *data)
  1383. {
  1384. struct net_device *dev = data;
  1385. struct ace_private *ap = netdev_priv(dev);
  1386. struct ace_regs __iomem *regs = ap->regs;
  1387. /*
  1388. * We haven't received a stats update event for more than 2.5
  1389. * seconds and there is data in the transmit queue, thus we
  1390. * asume the card is stuck.
  1391. */
  1392. if (*ap->tx_csm != ap->tx_ret_csm) {
  1393. printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
  1394. dev->name, (unsigned int)readl(&regs->HostCtrl));
  1395. /* This can happen due to ieee flow control. */
  1396. } else {
  1397. printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
  1398. dev->name);
  1399. #if 0
  1400. netif_wake_queue(dev);
  1401. #endif
  1402. }
  1403. }
  1404. static void ace_tasklet(unsigned long dev)
  1405. {
  1406. struct ace_private *ap = netdev_priv((struct net_device *)dev);
  1407. int cur_size;
  1408. cur_size = atomic_read(&ap->cur_rx_bufs);
  1409. if ((cur_size < RX_LOW_STD_THRES) &&
  1410. !test_and_set_bit(0, &ap->std_refill_busy)) {
  1411. #ifdef DEBUG
  1412. printk("refilling buffers (current %i)\n", cur_size);
  1413. #endif
  1414. ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size);
  1415. }
  1416. if (ap->version >= 2) {
  1417. cur_size = atomic_read(&ap->cur_mini_bufs);
  1418. if ((cur_size < RX_LOW_MINI_THRES) &&
  1419. !test_and_set_bit(0, &ap->mini_refill_busy)) {
  1420. #ifdef DEBUG
  1421. printk("refilling mini buffers (current %i)\n",
  1422. cur_size);
  1423. #endif
  1424. ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
  1425. }
  1426. }
  1427. cur_size = atomic_read(&ap->cur_jumbo_bufs);
  1428. if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
  1429. !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
  1430. #ifdef DEBUG
  1431. printk("refilling jumbo buffers (current %i)\n", cur_size);
  1432. #endif
  1433. ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
  1434. }
  1435. ap->tasklet_pending = 0;
  1436. }
  1437. /*
  1438. * Copy the contents of the NIC's trace buffer to kernel memory.
  1439. */
  1440. static void ace_dump_trace(struct ace_private *ap)
  1441. {
  1442. #if 0
  1443. if (!ap->trace_buf)
  1444. if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
  1445. return;
  1446. #endif
  1447. }
  1448. /*
  1449. * Load the standard rx ring.
  1450. *
  1451. * Loading rings is safe without holding the spin lock since this is
  1452. * done only before the device is enabled, thus no interrupts are
  1453. * generated and by the interrupt handler/tasklet handler.
  1454. */
  1455. static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs)
  1456. {
  1457. struct ace_regs __iomem *regs = ap->regs;
  1458. short i, idx;
  1459. prefetchw(&ap->cur_rx_bufs);
  1460. idx = ap->rx_std_skbprd;
  1461. for (i = 0; i < nr_bufs; i++) {
  1462. struct sk_buff *skb;
  1463. struct rx_desc *rd;
  1464. dma_addr_t mapping;
  1465. skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
  1466. if (!skb)
  1467. break;
  1468. skb_reserve(skb, NET_IP_ALIGN);
  1469. mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
  1470. offset_in_page(skb->data),
  1471. ACE_STD_BUFSIZE,
  1472. PCI_DMA_FROMDEVICE);
  1473. ap->skb->rx_std_skbuff[idx].skb = skb;
  1474. pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
  1475. mapping, mapping);
  1476. rd = &ap->rx_std_ring[idx];
  1477. set_aceaddr(&rd->addr, mapping);
  1478. rd->size = ACE_STD_BUFSIZE;
  1479. rd->idx = idx;
  1480. idx = (idx + 1) % RX_STD_RING_ENTRIES;
  1481. }
  1482. if (!i)
  1483. goto error_out;
  1484. atomic_add(i, &ap->cur_rx_bufs);
  1485. ap->rx_std_skbprd = idx;
  1486. if (ACE_IS_TIGON_I(ap)) {
  1487. struct cmd cmd;
  1488. cmd.evt = C_SET_RX_PRD_IDX;
  1489. cmd.code = 0;
  1490. cmd.idx = ap->rx_std_skbprd;
  1491. ace_issue_cmd(regs, &cmd);
  1492. } else {
  1493. writel(idx, &regs->RxStdPrd);
  1494. wmb();
  1495. }
  1496. out:
  1497. clear_bit(0, &ap->std_refill_busy);
  1498. return;
  1499. error_out:
  1500. printk(KERN_INFO "Out of memory when allocating "
  1501. "standard receive buffers\n");
  1502. goto out;
  1503. }
  1504. static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs)
  1505. {
  1506. struct ace_regs __iomem *regs = ap->regs;
  1507. short i, idx;
  1508. prefetchw(&ap->cur_mini_bufs);
  1509. idx = ap->rx_mini_skbprd;
  1510. for (i = 0; i < nr_bufs; i++) {
  1511. struct sk_buff *skb;
  1512. struct rx_desc *rd;
  1513. dma_addr_t mapping;
  1514. skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
  1515. if (!skb)
  1516. break;
  1517. skb_reserve(skb, NET_IP_ALIGN);
  1518. mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
  1519. offset_in_page(skb->data),
  1520. ACE_MINI_BUFSIZE,
  1521. PCI_DMA_FROMDEVICE);
  1522. ap->skb->rx_mini_skbuff[idx].skb = skb;
  1523. pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
  1524. mapping, mapping);
  1525. rd = &ap->rx_mini_ring[idx];
  1526. set_aceaddr(&rd->addr, mapping);
  1527. rd->size = ACE_MINI_BUFSIZE;
  1528. rd->idx = idx;
  1529. idx = (idx + 1) % RX_MINI_RING_ENTRIES;
  1530. }
  1531. if (!i)
  1532. goto error_out;
  1533. atomic_add(i, &ap->cur_mini_bufs);
  1534. ap->rx_mini_skbprd = idx;
  1535. writel(idx, &regs->RxMiniPrd);
  1536. wmb();
  1537. out:
  1538. clear_bit(0, &ap->mini_refill_busy);
  1539. return;
  1540. error_out:
  1541. printk(KERN_INFO "Out of memory when allocating "
  1542. "mini receive buffers\n");
  1543. goto out;
  1544. }
  1545. /*
  1546. * Load the jumbo rx ring, this may happen at any time if the MTU
  1547. * is changed to a value > 1500.
  1548. */
  1549. static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs)
  1550. {
  1551. struct ace_regs __iomem *regs = ap->regs;
  1552. short i, idx;
  1553. idx = ap->rx_jumbo_skbprd;
  1554. for (i = 0; i < nr_bufs; i++) {
  1555. struct sk_buff *skb;
  1556. struct rx_desc *rd;
  1557. dma_addr_t mapping;
  1558. skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC);
  1559. if (!skb)
  1560. break;
  1561. skb_reserve(skb, NET_IP_ALIGN);
  1562. mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
  1563. offset_in_page(skb->data),
  1564. ACE_JUMBO_BUFSIZE,
  1565. PCI_DMA_FROMDEVICE);
  1566. ap->skb->rx_jumbo_skbuff[idx].skb = skb;
  1567. pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
  1568. mapping, mapping);
  1569. rd = &ap->rx_jumbo_ring[idx];
  1570. set_aceaddr(&rd->addr, mapping);
  1571. rd->size = ACE_JUMBO_BUFSIZE;
  1572. rd->idx = idx;
  1573. idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
  1574. }
  1575. if (!i)
  1576. goto error_out;
  1577. atomic_add(i, &ap->cur_jumbo_bufs);
  1578. ap->rx_jumbo_skbprd = idx;
  1579. if (ACE_IS_TIGON_I(ap)) {
  1580. struct cmd cmd;
  1581. cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
  1582. cmd.code = 0;
  1583. cmd.idx = ap->rx_jumbo_skbprd;
  1584. ace_issue_cmd(regs, &cmd);
  1585. } else {
  1586. writel(idx, &regs->RxJumboPrd);
  1587. wmb();
  1588. }
  1589. out:
  1590. clear_bit(0, &ap->jumbo_refill_busy);
  1591. return;
  1592. error_out:
  1593. if (net_ratelimit())
  1594. printk(KERN_INFO "Out of memory when allocating "
  1595. "jumbo receive buffers\n");
  1596. goto out;
  1597. }
  1598. /*
  1599. * All events are considered to be slow (RX/TX ints do not generate
  1600. * events) and are handled here, outside the main interrupt handler,
  1601. * to reduce the size of the handler.
  1602. */
  1603. static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
  1604. {
  1605. struct ace_private *ap;
  1606. ap = netdev_priv(dev);
  1607. while (evtcsm != evtprd) {
  1608. switch (ap->evt_ring[evtcsm].evt) {
  1609. case E_FW_RUNNING:
  1610. printk(KERN_INFO "%s: Firmware up and running\n",
  1611. ap->name);
  1612. ap->fw_running = 1;
  1613. wmb();
  1614. break;
  1615. case E_STATS_UPDATED:
  1616. break;
  1617. case E_LNK_STATE:
  1618. {
  1619. u16 code = ap->evt_ring[evtcsm].code;
  1620. switch (code) {
  1621. case E_C_LINK_UP:
  1622. {
  1623. u32 state = readl(&ap->regs->GigLnkState);
  1624. printk(KERN_WARNING "%s: Optical link UP "
  1625. "(%s Duplex, Flow Control: %s%s)\n",
  1626. ap->name,
  1627. state & LNK_FULL_DUPLEX ? "Full":"Half",
  1628. state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
  1629. state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
  1630. break;
  1631. }
  1632. case E_C_LINK_DOWN:
  1633. printk(KERN_WARNING "%s: Optical link DOWN\n",
  1634. ap->name);
  1635. break;
  1636. case E_C_LINK_10_100:
  1637. printk(KERN_WARNING "%s: 10/100BaseT link "
  1638. "UP\n", ap->name);
  1639. break;
  1640. default:
  1641. printk(KERN_ERR "%s: Unknown optical link "
  1642. "state %02x\n", ap->name, code);
  1643. }
  1644. break;
  1645. }
  1646. case E_ERROR:
  1647. switch(ap->evt_ring[evtcsm].code) {
  1648. case E_C_ERR_INVAL_CMD:
  1649. printk(KERN_ERR "%s: invalid command error\n",
  1650. ap->name);
  1651. break;
  1652. case E_C_ERR_UNIMP_CMD:
  1653. printk(KERN_ERR "%s: unimplemented command "
  1654. "error\n", ap->name);
  1655. break;
  1656. case E_C_ERR_BAD_CFG:
  1657. printk(KERN_ERR "%s: bad config error\n",
  1658. ap->name);
  1659. break;
  1660. default:
  1661. printk(KERN_ERR "%s: unknown error %02x\n",
  1662. ap->name, ap->evt_ring[evtcsm].code);
  1663. }
  1664. break;
  1665. case E_RESET_JUMBO_RNG:
  1666. {
  1667. int i;
  1668. for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
  1669. if (ap->skb->rx_jumbo_skbuff[i].skb) {
  1670. ap->rx_jumbo_ring[i].size = 0;
  1671. set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
  1672. dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
  1673. ap->skb->rx_jumbo_skbuff[i].skb = NULL;
  1674. }
  1675. }
  1676. if (ACE_IS_TIGON_I(ap)) {
  1677. struct cmd cmd;
  1678. cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
  1679. cmd.code = 0;
  1680. cmd.idx = 0;
  1681. ace_issue_cmd(ap->regs, &cmd);
  1682. } else {
  1683. writel(0, &((ap->regs)->RxJumboPrd));
  1684. wmb();
  1685. }
  1686. ap->jumbo = 0;
  1687. ap->rx_jumbo_skbprd = 0;
  1688. printk(KERN_INFO "%s: Jumbo ring flushed\n",
  1689. ap->name);
  1690. clear_bit(0, &ap->jumbo_refill_busy);
  1691. break;
  1692. }
  1693. default:
  1694. printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
  1695. ap->name, ap->evt_ring[evtcsm].evt);
  1696. }
  1697. evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
  1698. }
  1699. return evtcsm;
  1700. }
  1701. static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
  1702. {
  1703. struct ace_private *ap = netdev_priv(dev);
  1704. u32 idx;
  1705. int mini_count = 0, std_count = 0;
  1706. idx = rxretcsm;
  1707. prefetchw(&ap->cur_rx_bufs);
  1708. prefetchw(&ap->cur_mini_bufs);
  1709. while (idx != rxretprd) {
  1710. struct ring_info *rip;
  1711. struct sk_buff *skb;
  1712. struct rx_desc *rxdesc, *retdesc;
  1713. u32 skbidx;
  1714. int bd_flags, desc_type, mapsize;
  1715. u16 csum;
  1716. /* make sure the rx descriptor isn't read before rxretprd */
  1717. if (idx == rxretcsm)
  1718. rmb();
  1719. retdesc = &ap->rx_return_ring[idx];
  1720. skbidx = retdesc->idx;
  1721. bd_flags = retdesc->flags;
  1722. desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
  1723. switch(desc_type) {
  1724. /*
  1725. * Normal frames do not have any flags set
  1726. *
  1727. * Mini and normal frames arrive frequently,
  1728. * so use a local counter to avoid doing
  1729. * atomic operations for each packet arriving.
  1730. */
  1731. case 0:
  1732. rip = &ap->skb->rx_std_skbuff[skbidx];
  1733. mapsize = ACE_STD_BUFSIZE;
  1734. rxdesc = &ap->rx_std_ring[skbidx];
  1735. std_count++;
  1736. break;
  1737. case BD_FLG_JUMBO:
  1738. rip = &ap->skb->rx_jumbo_skbuff[skbidx];
  1739. mapsize = ACE_JUMBO_BUFSIZE;
  1740. rxdesc = &ap->rx_jumbo_ring[skbidx];
  1741. atomic_dec(&ap->cur_jumbo_bufs);
  1742. break;
  1743. case BD_FLG_MINI:
  1744. rip = &ap->skb->rx_mini_skbuff[skbidx];
  1745. mapsize = ACE_MINI_BUFSIZE;
  1746. rxdesc = &ap->rx_mini_ring[skbidx];
  1747. mini_count++;
  1748. break;
  1749. default:
  1750. printk(KERN_INFO "%s: unknown frame type (0x%02x) "
  1751. "returned by NIC\n", dev->name,
  1752. retdesc->flags);
  1753. goto error;
  1754. }
  1755. skb = rip->skb;
  1756. rip->skb = NULL;
  1757. pci_unmap_page(ap->pdev,
  1758. pci_unmap_addr(rip, mapping),
  1759. mapsize,
  1760. PCI_DMA_FROMDEVICE);
  1761. skb_put(skb, retdesc->size);
  1762. /*
  1763. * Fly baby, fly!
  1764. */
  1765. csum = retdesc->tcp_udp_csum;
  1766. skb->dev = dev;
  1767. skb->protocol = eth_type_trans(skb, dev);
  1768. /*
  1769. * Instead of forcing the poor tigon mips cpu to calculate
  1770. * pseudo hdr checksum, we do this ourselves.
  1771. */
  1772. if (bd_flags & BD_FLG_TCP_UDP_SUM) {
  1773. skb->csum = htons(csum);
  1774. skb->ip_summed = CHECKSUM_HW;
  1775. } else {
  1776. skb->ip_summed = CHECKSUM_NONE;
  1777. }
  1778. /* send it up */
  1779. #if ACENIC_DO_VLAN
  1780. if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) {
  1781. vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan);
  1782. } else
  1783. #endif
  1784. netif_rx(skb);
  1785. dev->last_rx = jiffies;
  1786. ap->stats.rx_packets++;
  1787. ap->stats.rx_bytes += retdesc->size;
  1788. idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
  1789. }
  1790. atomic_sub(std_count, &ap->cur_rx_bufs);
  1791. if (!ACE_IS_TIGON_I(ap))
  1792. atomic_sub(mini_count, &ap->cur_mini_bufs);
  1793. out:
  1794. /*
  1795. * According to the documentation RxRetCsm is obsolete with
  1796. * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
  1797. */
  1798. if (ACE_IS_TIGON_I(ap)) {
  1799. writel(idx, &ap->regs->RxRetCsm);
  1800. }
  1801. ap->cur_rx = idx;
  1802. return;
  1803. error:
  1804. idx = rxretprd;
  1805. goto out;
  1806. }
  1807. static inline void ace_tx_int(struct net_device *dev,
  1808. u32 txcsm, u32 idx)
  1809. {
  1810. struct ace_private *ap = netdev_priv(dev);
  1811. do {
  1812. struct sk_buff *skb;
  1813. dma_addr_t mapping;
  1814. struct tx_ring_info *info;
  1815. info = ap->skb->tx_skbuff + idx;
  1816. skb = info->skb;
  1817. mapping = pci_unmap_addr(info, mapping);
  1818. if (mapping) {
  1819. pci_unmap_page(ap->pdev, mapping,
  1820. pci_unmap_len(info, maplen),
  1821. PCI_DMA_TODEVICE);
  1822. pci_unmap_addr_set(info, mapping, 0);
  1823. }
  1824. if (skb) {
  1825. ap->stats.tx_packets++;
  1826. ap->stats.tx_bytes += skb->len;
  1827. dev_kfree_skb_irq(skb);
  1828. info->skb = NULL;
  1829. }
  1830. idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
  1831. } while (idx != txcsm);
  1832. if (netif_queue_stopped(dev))
  1833. netif_wake_queue(dev);
  1834. wmb();
  1835. ap->tx_ret_csm = txcsm;
  1836. /* So... tx_ret_csm is advanced _after_ check for device wakeup.
  1837. *
  1838. * We could try to make it before. In this case we would get
  1839. * the following race condition: hard_start_xmit on other cpu
  1840. * enters after we advanced tx_ret_csm and fills space,
  1841. * which we have just freed, so that we make illegal device wakeup.
  1842. * There is no good way to workaround this (at entry
  1843. * to ace_start_xmit detects this condition and prevents
  1844. * ring corruption, but it is not a good workaround.)
  1845. *
  1846. * When tx_ret_csm is advanced after, we wake up device _only_
  1847. * if we really have some space in ring (though the core doing
  1848. * hard_start_xmit can see full ring for some period and has to
  1849. * synchronize.) Superb.
  1850. * BUT! We get another subtle race condition. hard_start_xmit
  1851. * may think that ring is full between wakeup and advancing
  1852. * tx_ret_csm and will stop device instantly! It is not so bad.
  1853. * We are guaranteed that there is something in ring, so that
  1854. * the next irq will resume transmission. To speedup this we could
  1855. * mark descriptor, which closes ring with BD_FLG_COAL_NOW
  1856. * (see ace_start_xmit).
  1857. *
  1858. * Well, this dilemma exists in all lock-free devices.
  1859. * We, following scheme used in drivers by Donald Becker,
  1860. * select the least dangerous.
  1861. * --ANK
  1862. */
  1863. }
  1864. static irqreturn_t ace_interrupt(int irq, void *dev_id, struct pt_regs *ptregs)
  1865. {
  1866. struct net_device *dev = (struct net_device *)dev_id;
  1867. struct ace_private *ap = netdev_priv(dev);
  1868. struct ace_regs __iomem *regs = ap->regs;
  1869. u32 idx;
  1870. u32 txcsm, rxretcsm, rxretprd;
  1871. u32 evtcsm, evtprd;
  1872. /*
  1873. * In case of PCI shared interrupts or spurious interrupts,
  1874. * we want to make sure it is actually our interrupt before
  1875. * spending any time in here.
  1876. */
  1877. if (!(readl(&regs->HostCtrl) & IN_INT))
  1878. return IRQ_NONE;
  1879. /*
  1880. * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
  1881. * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
  1882. * writel(0, &regs->Mb0Lo).
  1883. *
  1884. * "IRQ avoidance" recommended in docs applies to IRQs served
  1885. * threads and it is wrong even for that case.
  1886. */
  1887. writel(0, &regs->Mb0Lo);
  1888. readl(&regs->Mb0Lo);
  1889. /*
  1890. * There is no conflict between transmit handling in
  1891. * start_xmit and receive processing, thus there is no reason
  1892. * to take a spin lock for RX handling. Wait until we start
  1893. * working on the other stuff - hey we don't need a spin lock
  1894. * anymore.
  1895. */
  1896. rxretprd = *ap->rx_ret_prd;
  1897. rxretcsm = ap->cur_rx;
  1898. if (rxretprd != rxretcsm)
  1899. ace_rx_int(dev, rxretprd, rxretcsm);
  1900. txcsm = *ap->tx_csm;
  1901. idx = ap->tx_ret_csm;
  1902. if (txcsm != idx) {
  1903. /*
  1904. * If each skb takes only one descriptor this check degenerates
  1905. * to identity, because new space has just been opened.
  1906. * But if skbs are fragmented we must check that this index
  1907. * update releases enough of space, otherwise we just
  1908. * wait for device to make more work.
  1909. */
  1910. if (!tx_ring_full(ap, txcsm, ap->tx_prd))
  1911. ace_tx_int(dev, txcsm, idx);
  1912. }
  1913. evtcsm = readl(&regs->EvtCsm);
  1914. evtprd = *ap->evt_prd;
  1915. if (evtcsm != evtprd) {
  1916. evtcsm = ace_handle_event(dev, evtcsm, evtprd);
  1917. writel(evtcsm, &regs->EvtCsm);
  1918. }
  1919. /*
  1920. * This has to go last in the interrupt handler and run with
  1921. * the spin lock released ... what lock?
  1922. */
  1923. if (netif_running(dev)) {
  1924. int cur_size;
  1925. int run_tasklet = 0;
  1926. cur_size = atomic_read(&ap->cur_rx_bufs);
  1927. if (cur_size < RX_LOW_STD_THRES) {
  1928. if ((cur_size < RX_PANIC_STD_THRES) &&
  1929. !test_and_set_bit(0, &ap->std_refill_busy)) {
  1930. #ifdef DEBUG
  1931. printk("low on std buffers %i\n", cur_size);
  1932. #endif
  1933. ace_load_std_rx_ring(ap,
  1934. RX_RING_SIZE - cur_size);
  1935. } else
  1936. run_tasklet = 1;
  1937. }
  1938. if (!ACE_IS_TIGON_I(ap)) {
  1939. cur_size = atomic_read(&ap->cur_mini_bufs);
  1940. if (cur_size < RX_LOW_MINI_THRES) {
  1941. if ((cur_size < RX_PANIC_MINI_THRES) &&
  1942. !test_and_set_bit(0,
  1943. &ap->mini_refill_busy)) {
  1944. #ifdef DEBUG
  1945. printk("low on mini buffers %i\n",
  1946. cur_size);
  1947. #endif
  1948. ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size);
  1949. } else
  1950. run_tasklet = 1;
  1951. }
  1952. }
  1953. if (ap->jumbo) {
  1954. cur_size = atomic_read(&ap->cur_jumbo_bufs);
  1955. if (cur_size < RX_LOW_JUMBO_THRES) {
  1956. if ((cur_size < RX_PANIC_JUMBO_THRES) &&
  1957. !test_and_set_bit(0,
  1958. &ap->jumbo_refill_busy)){
  1959. #ifdef DEBUG
  1960. printk("low on jumbo buffers %i\n",
  1961. cur_size);
  1962. #endif
  1963. ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size);
  1964. } else
  1965. run_tasklet = 1;
  1966. }
  1967. }
  1968. if (run_tasklet && !ap->tasklet_pending) {
  1969. ap->tasklet_pending = 1;
  1970. tasklet_schedule(&ap->ace_tasklet);
  1971. }
  1972. }
  1973. return IRQ_HANDLED;
  1974. }
  1975. #if ACENIC_DO_VLAN
  1976. static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  1977. {
  1978. struct ace_private *ap = netdev_priv(dev);
  1979. unsigned long flags;
  1980. local_irq_save(flags);
  1981. ace_mask_irq(dev);
  1982. ap->vlgrp = grp;
  1983. ace_unmask_irq(dev);
  1984. local_irq_restore(flags);
  1985. }
  1986. static void ace_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
  1987. {
  1988. struct ace_private *ap = netdev_priv(dev);
  1989. unsigned long flags;
  1990. local_irq_save(flags);
  1991. ace_mask_irq(dev);
  1992. if (ap->vlgrp)
  1993. ap->vlgrp->vlan_devices[vid] = NULL;
  1994. ace_unmask_irq(dev);
  1995. local_irq_restore(flags);
  1996. }
  1997. #endif /* ACENIC_DO_VLAN */
  1998. static int ace_open(struct net_device *dev)
  1999. {
  2000. struct ace_private *ap = netdev_priv(dev);
  2001. struct ace_regs __iomem *regs = ap->regs;
  2002. struct cmd cmd;
  2003. if (!(ap->fw_running)) {
  2004. printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
  2005. return -EBUSY;
  2006. }
  2007. writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
  2008. cmd.evt = C_CLEAR_STATS;
  2009. cmd.code = 0;
  2010. cmd.idx = 0;
  2011. ace_issue_cmd(regs, &cmd);
  2012. cmd.evt = C_HOST_STATE;
  2013. cmd.code = C_C_STACK_UP;
  2014. cmd.idx = 0;
  2015. ace_issue_cmd(regs, &cmd);
  2016. if (ap->jumbo &&
  2017. !test_and_set_bit(0, &ap->jumbo_refill_busy))
  2018. ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
  2019. if (dev->flags & IFF_PROMISC) {
  2020. cmd.evt = C_SET_PROMISC_MODE;
  2021. cmd.code = C_C_PROMISC_ENABLE;
  2022. cmd.idx = 0;
  2023. ace_issue_cmd(regs, &cmd);
  2024. ap->promisc = 1;
  2025. }else
  2026. ap->promisc = 0;
  2027. ap->mcast_all = 0;
  2028. #if 0
  2029. cmd.evt = C_LNK_NEGOTIATION;
  2030. cmd.code = 0;
  2031. cmd.idx = 0;
  2032. ace_issue_cmd(regs, &cmd);
  2033. #endif
  2034. netif_start_queue(dev);
  2035. /*
  2036. * Setup the bottom half rx ring refill handler
  2037. */
  2038. tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
  2039. return 0;
  2040. }
  2041. static int ace_close(struct net_device *dev)
  2042. {
  2043. struct ace_private *ap = netdev_priv(dev);
  2044. struct ace_regs __iomem *regs = ap->regs;
  2045. struct cmd cmd;
  2046. unsigned long flags;
  2047. short i;
  2048. /*
  2049. * Without (or before) releasing irq and stopping hardware, this
  2050. * is an absolute non-sense, by the way. It will be reset instantly
  2051. * by the first irq.
  2052. */
  2053. netif_stop_queue(dev);
  2054. if (ap->promisc) {
  2055. cmd.evt = C_SET_PROMISC_MODE;
  2056. cmd.code = C_C_PROMISC_DISABLE;
  2057. cmd.idx = 0;
  2058. ace_issue_cmd(regs, &cmd);
  2059. ap->promisc = 0;
  2060. }
  2061. cmd.evt = C_HOST_STATE;
  2062. cmd.code = C_C_STACK_DOWN;
  2063. cmd.idx = 0;
  2064. ace_issue_cmd(regs, &cmd);
  2065. tasklet_kill(&ap->ace_tasklet);
  2066. /*
  2067. * Make sure one CPU is not processing packets while
  2068. * buffers are being released by another.
  2069. */
  2070. local_irq_save(flags);
  2071. ace_mask_irq(dev);
  2072. for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
  2073. struct sk_buff *skb;
  2074. dma_addr_t mapping;
  2075. struct tx_ring_info *info;
  2076. info = ap->skb->tx_skbuff + i;
  2077. skb = info->skb;
  2078. mapping = pci_unmap_addr(info, mapping);
  2079. if (mapping) {
  2080. if (ACE_IS_TIGON_I(ap)) {
  2081. struct tx_desc __iomem *tx
  2082. = (struct tx_desc __iomem *) &ap->tx_ring[i];
  2083. writel(0, &tx->addr.addrhi);
  2084. writel(0, &tx->addr.addrlo);
  2085. writel(0, &tx->flagsize);
  2086. } else
  2087. memset(ap->tx_ring + i, 0,
  2088. sizeof(struct tx_desc));
  2089. pci_unmap_page(ap->pdev, mapping,
  2090. pci_unmap_len(info, maplen),
  2091. PCI_DMA_TODEVICE);
  2092. pci_unmap_addr_set(info, mapping, 0);
  2093. }
  2094. if (skb) {
  2095. dev_kfree_skb(skb);
  2096. info->skb = NULL;
  2097. }
  2098. }
  2099. if (ap->jumbo) {
  2100. cmd.evt = C_RESET_JUMBO_RNG;
  2101. cmd.code = 0;
  2102. cmd.idx = 0;
  2103. ace_issue_cmd(regs, &cmd);
  2104. }
  2105. ace_unmask_irq(dev);
  2106. local_irq_restore(flags);
  2107. return 0;
  2108. }
  2109. static inline dma_addr_t
  2110. ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
  2111. struct sk_buff *tail, u32 idx)
  2112. {
  2113. dma_addr_t mapping;
  2114. struct tx_ring_info *info;
  2115. mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
  2116. offset_in_page(skb->data),
  2117. skb->len, PCI_DMA_TODEVICE);
  2118. info = ap->skb->tx_skbuff + idx;
  2119. info->skb = tail;
  2120. pci_unmap_addr_set(info, mapping, mapping);
  2121. pci_unmap_len_set(info, maplen, skb->len);
  2122. return mapping;
  2123. }
  2124. static inline void
  2125. ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
  2126. u32 flagsize, u32 vlan_tag)
  2127. {
  2128. #if !USE_TX_COAL_NOW
  2129. flagsize &= ~BD_FLG_COAL_NOW;
  2130. #endif
  2131. if (ACE_IS_TIGON_I(ap)) {
  2132. struct tx_desc __iomem *io = (struct tx_desc __iomem *) desc;
  2133. writel(addr >> 32, &io->addr.addrhi);
  2134. writel(addr & 0xffffffff, &io->addr.addrlo);
  2135. writel(flagsize, &io->flagsize);
  2136. #if ACENIC_DO_VLAN
  2137. writel(vlan_tag, &io->vlanres);
  2138. #endif
  2139. } else {
  2140. desc->addr.addrhi = addr >> 32;
  2141. desc->addr.addrlo = addr;
  2142. desc->flagsize = flagsize;
  2143. #if ACENIC_DO_VLAN
  2144. desc->vlanres = vlan_tag;
  2145. #endif
  2146. }
  2147. }
  2148. static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev)
  2149. {
  2150. struct ace_private *ap = netdev_priv(dev);
  2151. struct ace_regs __iomem *regs = ap->regs;
  2152. struct tx_desc *desc;
  2153. u32 idx, flagsize;
  2154. unsigned long maxjiff = jiffies + 3*HZ;
  2155. restart:
  2156. idx = ap->tx_prd;
  2157. if (tx_ring_full(ap, ap->tx_ret_csm, idx))
  2158. goto overflow;
  2159. if (!skb_shinfo(skb)->nr_frags) {
  2160. dma_addr_t mapping;
  2161. u32 vlan_tag = 0;
  2162. mapping = ace_map_tx_skb(ap, skb, skb, idx);
  2163. flagsize = (skb->len << 16) | (BD_FLG_END);
  2164. if (skb->ip_summed == CHECKSUM_HW)
  2165. flagsize |= BD_FLG_TCP_UDP_SUM;
  2166. #if ACENIC_DO_VLAN
  2167. if (vlan_tx_tag_present(skb)) {
  2168. flagsize |= BD_FLG_VLAN_TAG;
  2169. vlan_tag = vlan_tx_tag_get(skb);
  2170. }
  2171. #endif
  2172. desc = ap->tx_ring + idx;
  2173. idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
  2174. /* Look at ace_tx_int for explanations. */
  2175. if (tx_ring_full(ap, ap->tx_ret_csm, idx))
  2176. flagsize |= BD_FLG_COAL_NOW;
  2177. ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
  2178. } else {
  2179. dma_addr_t mapping;
  2180. u32 vlan_tag = 0;
  2181. int i, len = 0;
  2182. mapping = ace_map_tx_skb(ap, skb, NULL, idx);
  2183. flagsize = (skb_headlen(skb) << 16);
  2184. if (skb->ip_summed == CHECKSUM_HW)
  2185. flagsize |= BD_FLG_TCP_UDP_SUM;
  2186. #if ACENIC_DO_VLAN
  2187. if (vlan_tx_tag_present(skb)) {
  2188. flagsize |= BD_FLG_VLAN_TAG;
  2189. vlan_tag = vlan_tx_tag_get(skb);
  2190. }
  2191. #endif
  2192. ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
  2193. idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
  2194. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2195. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2196. struct tx_ring_info *info;
  2197. len += frag->size;
  2198. info = ap->skb->tx_skbuff + idx;
  2199. desc = ap->tx_ring + idx;
  2200. mapping = pci_map_page(ap->pdev, frag->page,
  2201. frag->page_offset, frag->size,
  2202. PCI_DMA_TODEVICE);
  2203. flagsize = (frag->size << 16);
  2204. if (skb->ip_summed == CHECKSUM_HW)
  2205. flagsize |= BD_FLG_TCP_UDP_SUM;
  2206. idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
  2207. if (i == skb_shinfo(skb)->nr_frags - 1) {
  2208. flagsize |= BD_FLG_END;
  2209. if (tx_ring_full(ap, ap->tx_ret_csm, idx))
  2210. flagsize |= BD_FLG_COAL_NOW;
  2211. /*
  2212. * Only the last fragment frees
  2213. * the skb!
  2214. */
  2215. info->skb = skb;
  2216. } else {
  2217. info->skb = NULL;
  2218. }
  2219. pci_unmap_addr_set(info, mapping, mapping);
  2220. pci_unmap_len_set(info, maplen, frag->size);
  2221. ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
  2222. }
  2223. }
  2224. wmb();
  2225. ap->tx_prd = idx;
  2226. ace_set_txprd(regs, ap, idx);
  2227. if (flagsize & BD_FLG_COAL_NOW) {
  2228. netif_stop_queue(dev);
  2229. /*
  2230. * A TX-descriptor producer (an IRQ) might have gotten
  2231. * inbetween, making the ring free again. Since xmit is
  2232. * serialized, this is the only situation we have to
  2233. * re-test.
  2234. */
  2235. if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
  2236. netif_wake_queue(dev);
  2237. }
  2238. dev->trans_start = jiffies;
  2239. return NETDEV_TX_OK;
  2240. overflow:
  2241. /*
  2242. * This race condition is unavoidable with lock-free drivers.
  2243. * We wake up the queue _before_ tx_prd is advanced, so that we can
  2244. * enter hard_start_xmit too early, while tx ring still looks closed.
  2245. * This happens ~1-4 times per 100000 packets, so that we can allow
  2246. * to loop syncing to other CPU. Probably, we need an additional
  2247. * wmb() in ace_tx_intr as well.
  2248. *
  2249. * Note that this race is relieved by reserving one more entry
  2250. * in tx ring than it is necessary (see original non-SG driver).
  2251. * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
  2252. * is already overkill.
  2253. *
  2254. * Alternative is to return with 1 not throttling queue. In this
  2255. * case loop becomes longer, no more useful effects.
  2256. */
  2257. if (time_before(jiffies, maxjiff)) {
  2258. barrier();
  2259. cpu_relax();
  2260. goto restart;
  2261. }
  2262. /* The ring is stuck full. */
  2263. printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
  2264. return NETDEV_TX_BUSY;
  2265. }
  2266. static int ace_change_mtu(struct net_device *dev, int new_mtu)
  2267. {
  2268. struct ace_private *ap = netdev_priv(dev);
  2269. struct ace_regs __iomem *regs = ap->regs;
  2270. if (new_mtu > ACE_JUMBO_MTU)
  2271. return -EINVAL;
  2272. writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
  2273. dev->mtu = new_mtu;
  2274. if (new_mtu > ACE_STD_MTU) {
  2275. if (!(ap->jumbo)) {
  2276. printk(KERN_INFO "%s: Enabling Jumbo frame "
  2277. "support\n", dev->name);
  2278. ap->jumbo = 1;
  2279. if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
  2280. ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE);
  2281. ace_set_rxtx_parms(dev, 1);
  2282. }
  2283. } else {
  2284. while (test_and_set_bit(0, &ap->jumbo_refill_busy));
  2285. ace_sync_irq(dev->irq);
  2286. ace_set_rxtx_parms(dev, 0);
  2287. if (ap->jumbo) {
  2288. struct cmd cmd;
  2289. cmd.evt = C_RESET_JUMBO_RNG;
  2290. cmd.code = 0;
  2291. cmd.idx = 0;
  2292. ace_issue_cmd(regs, &cmd);
  2293. }
  2294. }
  2295. return 0;
  2296. }
  2297. static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2298. {
  2299. struct ace_private *ap = netdev_priv(dev);
  2300. struct ace_regs __iomem *regs = ap->regs;
  2301. u32 link;
  2302. memset(ecmd, 0, sizeof(struct ethtool_cmd));
  2303. ecmd->supported =
  2304. (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  2305. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  2306. SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
  2307. SUPPORTED_Autoneg | SUPPORTED_FIBRE);
  2308. ecmd->port = PORT_FIBRE;
  2309. ecmd->transceiver = XCVR_INTERNAL;
  2310. link = readl(&regs->GigLnkState);
  2311. if (link & LNK_1000MB)
  2312. ecmd->speed = SPEED_1000;
  2313. else {
  2314. link = readl(&regs->FastLnkState);
  2315. if (link & LNK_100MB)
  2316. ecmd->speed = SPEED_100;
  2317. else if (link & LNK_10MB)
  2318. ecmd->speed = SPEED_10;
  2319. else
  2320. ecmd->speed = 0;
  2321. }
  2322. if (link & LNK_FULL_DUPLEX)
  2323. ecmd->duplex = DUPLEX_FULL;
  2324. else
  2325. ecmd->duplex = DUPLEX_HALF;
  2326. if (link & LNK_NEGOTIATE)
  2327. ecmd->autoneg = AUTONEG_ENABLE;
  2328. else
  2329. ecmd->autoneg = AUTONEG_DISABLE;
  2330. #if 0
  2331. /*
  2332. * Current struct ethtool_cmd is insufficient
  2333. */
  2334. ecmd->trace = readl(&regs->TuneTrace);
  2335. ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
  2336. ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
  2337. #endif
  2338. ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
  2339. ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
  2340. return 0;
  2341. }
  2342. static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  2343. {
  2344. struct ace_private *ap = netdev_priv(dev);
  2345. struct ace_regs __iomem *regs = ap->regs;
  2346. u32 link, speed;
  2347. link = readl(&regs->GigLnkState);
  2348. if (link & LNK_1000MB)
  2349. speed = SPEED_1000;
  2350. else {
  2351. link = readl(&regs->FastLnkState);
  2352. if (link & LNK_100MB)
  2353. speed = SPEED_100;
  2354. else if (link & LNK_10MB)
  2355. speed = SPEED_10;
  2356. else
  2357. speed = SPEED_100;
  2358. }
  2359. link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
  2360. LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
  2361. if (!ACE_IS_TIGON_I(ap))
  2362. link |= LNK_TX_FLOW_CTL_Y;
  2363. if (ecmd->autoneg == AUTONEG_ENABLE)
  2364. link |= LNK_NEGOTIATE;
  2365. if (ecmd->speed != speed) {
  2366. link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
  2367. switch (speed) {
  2368. case SPEED_1000:
  2369. link |= LNK_1000MB;
  2370. break;
  2371. case SPEED_100:
  2372. link |= LNK_100MB;
  2373. break;
  2374. case SPEED_10:
  2375. link |= LNK_10MB;
  2376. break;
  2377. }
  2378. }
  2379. if (ecmd->duplex == DUPLEX_FULL)
  2380. link |= LNK_FULL_DUPLEX;
  2381. if (link != ap->link) {
  2382. struct cmd cmd;
  2383. printk(KERN_INFO "%s: Renegotiating link state\n",
  2384. dev->name);
  2385. ap->link = link;
  2386. writel(link, &regs->TuneLink);
  2387. if (!ACE_IS_TIGON_I(ap))
  2388. writel(link, &regs->TuneFastLink);
  2389. wmb();
  2390. cmd.evt = C_LNK_NEGOTIATION;
  2391. cmd.code = 0;
  2392. cmd.idx = 0;
  2393. ace_issue_cmd(regs, &cmd);
  2394. }
  2395. return 0;
  2396. }
  2397. static void ace_get_drvinfo(struct net_device *dev,
  2398. struct ethtool_drvinfo *info)
  2399. {
  2400. struct ace_private *ap = netdev_priv(dev);
  2401. strlcpy(info->driver, "acenic", sizeof(info->driver));
  2402. snprintf(info->version, sizeof(info->version), "%i.%i.%i",
  2403. tigonFwReleaseMajor, tigonFwReleaseMinor,
  2404. tigonFwReleaseFix);
  2405. if (ap->pdev)
  2406. strlcpy(info->bus_info, pci_name(ap->pdev),
  2407. sizeof(info->bus_info));
  2408. }
  2409. /*
  2410. * Set the hardware MAC address.
  2411. */
  2412. static int ace_set_mac_addr(struct net_device *dev, void *p)
  2413. {
  2414. struct ace_private *ap = netdev_priv(dev);
  2415. struct ace_regs __iomem *regs = ap->regs;
  2416. struct sockaddr *addr=p;
  2417. u8 *da;
  2418. struct cmd cmd;
  2419. if(netif_running(dev))
  2420. return -EBUSY;
  2421. memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
  2422. da = (u8 *)dev->dev_addr;
  2423. writel(da[0] << 8 | da[1], &regs->MacAddrHi);
  2424. writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
  2425. &regs->MacAddrLo);
  2426. cmd.evt = C_SET_MAC_ADDR;
  2427. cmd.code = 0;
  2428. cmd.idx = 0;
  2429. ace_issue_cmd(regs, &cmd);
  2430. return 0;
  2431. }
  2432. static void ace_set_multicast_list(struct net_device *dev)
  2433. {
  2434. struct ace_private *ap = netdev_priv(dev);
  2435. struct ace_regs __iomem *regs = ap->regs;
  2436. struct cmd cmd;
  2437. if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
  2438. cmd.evt = C_SET_MULTICAST_MODE;
  2439. cmd.code = C_C_MCAST_ENABLE;
  2440. cmd.idx = 0;
  2441. ace_issue_cmd(regs, &cmd);
  2442. ap->mcast_all = 1;
  2443. } else if (ap->mcast_all) {
  2444. cmd.evt = C_SET_MULTICAST_MODE;
  2445. cmd.code = C_C_MCAST_DISABLE;
  2446. cmd.idx = 0;
  2447. ace_issue_cmd(regs, &cmd);
  2448. ap->mcast_all = 0;
  2449. }
  2450. if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
  2451. cmd.evt = C_SET_PROMISC_MODE;
  2452. cmd.code = C_C_PROMISC_ENABLE;
  2453. cmd.idx = 0;
  2454. ace_issue_cmd(regs, &cmd);
  2455. ap->promisc = 1;
  2456. }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
  2457. cmd.evt = C_SET_PROMISC_MODE;
  2458. cmd.code = C_C_PROMISC_DISABLE;
  2459. cmd.idx = 0;
  2460. ace_issue_cmd(regs, &cmd);
  2461. ap->promisc = 0;
  2462. }
  2463. /*
  2464. * For the time being multicast relies on the upper layers
  2465. * filtering it properly. The Firmware does not allow one to
  2466. * set the entire multicast list at a time and keeping track of
  2467. * it here is going to be messy.
  2468. */
  2469. if ((dev->mc_count) && !(ap->mcast_all)) {
  2470. cmd.evt = C_SET_MULTICAST_MODE;
  2471. cmd.code = C_C_MCAST_ENABLE;
  2472. cmd.idx = 0;
  2473. ace_issue_cmd(regs, &cmd);
  2474. }else if (!ap->mcast_all) {
  2475. cmd.evt = C_SET_MULTICAST_MODE;
  2476. cmd.code = C_C_MCAST_DISABLE;
  2477. cmd.idx = 0;
  2478. ace_issue_cmd(regs, &cmd);
  2479. }
  2480. }
  2481. static struct net_device_stats *ace_get_stats(struct net_device *dev)
  2482. {
  2483. struct ace_private *ap = netdev_priv(dev);
  2484. struct ace_mac_stats __iomem *mac_stats =
  2485. (struct ace_mac_stats __iomem *)ap->regs->Stats;
  2486. ap->stats.rx_missed_errors = readl(&mac_stats->drop_space);
  2487. ap->stats.multicast = readl(&mac_stats->kept_mc);
  2488. ap->stats.collisions = readl(&mac_stats->coll);
  2489. return &ap->stats;
  2490. }
  2491. static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src,
  2492. u32 dest, int size)
  2493. {
  2494. void __iomem *tdest;
  2495. u32 *wsrc;
  2496. short tsize, i;
  2497. if (size <= 0)
  2498. return;
  2499. while (size > 0) {
  2500. tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
  2501. min_t(u32, size, ACE_WINDOW_SIZE));
  2502. tdest = (void __iomem *) &regs->Window +
  2503. (dest & (ACE_WINDOW_SIZE - 1));
  2504. writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
  2505. /*
  2506. * This requires byte swapping on big endian, however
  2507. * writel does that for us
  2508. */
  2509. wsrc = src;
  2510. for (i = 0; i < (tsize / 4); i++) {
  2511. writel(wsrc[i], tdest + i*4);
  2512. }
  2513. dest += tsize;
  2514. src += tsize;
  2515. size -= tsize;
  2516. }
  2517. return;
  2518. }
  2519. static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
  2520. {
  2521. void __iomem *tdest;
  2522. short tsize = 0, i;
  2523. if (size <= 0)
  2524. return;
  2525. while (size > 0) {
  2526. tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
  2527. min_t(u32, size, ACE_WINDOW_SIZE));
  2528. tdest = (void __iomem *) &regs->Window +
  2529. (dest & (ACE_WINDOW_SIZE - 1));
  2530. writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
  2531. for (i = 0; i < (tsize / 4); i++) {
  2532. writel(0, tdest + i*4);
  2533. }
  2534. dest += tsize;
  2535. size -= tsize;
  2536. }
  2537. return;
  2538. }
  2539. /*
  2540. * Download the firmware into the SRAM on the NIC
  2541. *
  2542. * This operation requires the NIC to be halted and is performed with
  2543. * interrupts disabled and with the spinlock hold.
  2544. */
  2545. int __devinit ace_load_firmware(struct net_device *dev)
  2546. {
  2547. struct ace_private *ap = netdev_priv(dev);
  2548. struct ace_regs __iomem *regs = ap->regs;
  2549. if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
  2550. printk(KERN_ERR "%s: trying to download firmware while the "
  2551. "CPU is running!\n", ap->name);
  2552. return -EFAULT;
  2553. }
  2554. /*
  2555. * Do not try to clear more than 512KB or we end up seeing
  2556. * funny things on NICs with only 512KB SRAM
  2557. */
  2558. ace_clear(regs, 0x2000, 0x80000-0x2000);
  2559. if (ACE_IS_TIGON_I(ap)) {
  2560. ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen);
  2561. ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen);
  2562. ace_copy(regs, tigonFwRodata, tigonFwRodataAddr,
  2563. tigonFwRodataLen);
  2564. ace_clear(regs, tigonFwBssAddr, tigonFwBssLen);
  2565. ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen);
  2566. }else if (ap->version == 2) {
  2567. ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen);
  2568. ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen);
  2569. ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen);
  2570. ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr,
  2571. tigon2FwRodataLen);
  2572. ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen);
  2573. }
  2574. return 0;
  2575. }
  2576. /*
  2577. * The eeprom on the AceNIC is an Atmel i2c EEPROM.
  2578. *
  2579. * Accessing the EEPROM is `interesting' to say the least - don't read
  2580. * this code right after dinner.
  2581. *
  2582. * This is all about black magic and bit-banging the device .... I
  2583. * wonder in what hospital they have put the guy who designed the i2c
  2584. * specs.
  2585. *
  2586. * Oh yes, this is only the beginning!
  2587. *
  2588. * Thanks to Stevarino Webinski for helping tracking down the bugs in the
  2589. * code i2c readout code by beta testing all my hacks.
  2590. */
  2591. static void __devinit eeprom_start(struct ace_regs __iomem *regs)
  2592. {
  2593. u32 local;
  2594. readl(&regs->LocalCtrl);
  2595. udelay(ACE_SHORT_DELAY);
  2596. local = readl(&regs->LocalCtrl);
  2597. local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
  2598. writel(local, &regs->LocalCtrl);
  2599. readl(&regs->LocalCtrl);
  2600. mb();
  2601. udelay(ACE_SHORT_DELAY);
  2602. local |= EEPROM_CLK_OUT;
  2603. writel(local, &regs->LocalCtrl);
  2604. readl(&regs->LocalCtrl);
  2605. mb();
  2606. udelay(ACE_SHORT_DELAY);
  2607. local &= ~EEPROM_DATA_OUT;
  2608. writel(local, &regs->LocalCtrl);
  2609. readl(&regs->LocalCtrl);
  2610. mb();
  2611. udelay(ACE_SHORT_DELAY);
  2612. local &= ~EEPROM_CLK_OUT;
  2613. writel(local, &regs->LocalCtrl);
  2614. readl(&regs->LocalCtrl);
  2615. mb();
  2616. }
  2617. static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
  2618. {
  2619. short i;
  2620. u32 local;
  2621. udelay(ACE_SHORT_DELAY);
  2622. local = readl(&regs->LocalCtrl);
  2623. local &= ~EEPROM_DATA_OUT;
  2624. local |= EEPROM_WRITE_ENABLE;
  2625. writel(local, &regs->LocalCtrl);
  2626. readl(&regs->LocalCtrl);
  2627. mb();
  2628. for (i = 0; i < 8; i++, magic <<= 1) {
  2629. udelay(ACE_SHORT_DELAY);
  2630. if (magic & 0x80)
  2631. local |= EEPROM_DATA_OUT;
  2632. else
  2633. local &= ~EEPROM_DATA_OUT;
  2634. writel(local, &regs->LocalCtrl);
  2635. readl(&regs->LocalCtrl);
  2636. mb();
  2637. udelay(ACE_SHORT_DELAY);
  2638. local |= EEPROM_CLK_OUT;
  2639. writel(local, &regs->LocalCtrl);
  2640. readl(&regs->LocalCtrl);
  2641. mb();
  2642. udelay(ACE_SHORT_DELAY);
  2643. local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
  2644. writel(local, &regs->LocalCtrl);
  2645. readl(&regs->LocalCtrl);
  2646. mb();
  2647. }
  2648. }
  2649. static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
  2650. {
  2651. int state;
  2652. u32 local;
  2653. local = readl(&regs->LocalCtrl);
  2654. local &= ~EEPROM_WRITE_ENABLE;
  2655. writel(local, &regs->LocalCtrl);
  2656. readl(&regs->LocalCtrl);
  2657. mb();
  2658. udelay(ACE_LONG_DELAY);
  2659. local |= EEPROM_CLK_OUT;
  2660. writel(local, &regs->LocalCtrl);
  2661. readl(&regs->LocalCtrl);
  2662. mb();
  2663. udelay(ACE_SHORT_DELAY);
  2664. /* sample data in middle of high clk */
  2665. state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
  2666. udelay(ACE_SHORT_DELAY);
  2667. mb();
  2668. writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
  2669. readl(&regs->LocalCtrl);
  2670. mb();
  2671. return state;
  2672. }
  2673. static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
  2674. {
  2675. u32 local;
  2676. udelay(ACE_SHORT_DELAY);
  2677. local = readl(&regs->LocalCtrl);
  2678. local |= EEPROM_WRITE_ENABLE;
  2679. writel(local, &regs->LocalCtrl);
  2680. readl(&regs->LocalCtrl);
  2681. mb();
  2682. udelay(ACE_SHORT_DELAY);
  2683. local &= ~EEPROM_DATA_OUT;
  2684. writel(local, &regs->LocalCtrl);
  2685. readl(&regs->LocalCtrl);
  2686. mb();
  2687. udelay(ACE_SHORT_DELAY);
  2688. local |= EEPROM_CLK_OUT;
  2689. writel(local, &regs->LocalCtrl);
  2690. readl(&regs->LocalCtrl);
  2691. mb();
  2692. udelay(ACE_SHORT_DELAY);
  2693. local |= EEPROM_DATA_OUT;
  2694. writel(local, &regs->LocalCtrl);
  2695. readl(&regs->LocalCtrl);
  2696. mb();
  2697. udelay(ACE_LONG_DELAY);
  2698. local &= ~EEPROM_CLK_OUT;
  2699. writel(local, &regs->LocalCtrl);
  2700. mb();
  2701. }
  2702. /*
  2703. * Read a whole byte from the EEPROM.
  2704. */
  2705. static int __devinit read_eeprom_byte(struct net_device *dev,
  2706. unsigned long offset)
  2707. {
  2708. struct ace_private *ap = netdev_priv(dev);
  2709. struct ace_regs __iomem *regs = ap->regs;
  2710. unsigned long flags;
  2711. u32 local;
  2712. int result = 0;
  2713. short i;
  2714. if (!dev) {
  2715. printk(KERN_ERR "No device!\n");
  2716. result = -ENODEV;
  2717. goto out;
  2718. }
  2719. /*
  2720. * Don't take interrupts on this CPU will bit banging
  2721. * the %#%#@$ I2C device
  2722. */
  2723. local_irq_save(flags);
  2724. eeprom_start(regs);
  2725. eeprom_prep(regs, EEPROM_WRITE_SELECT);
  2726. if (eeprom_check_ack(regs)) {
  2727. local_irq_restore(flags);
  2728. printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
  2729. result = -EIO;
  2730. goto eeprom_read_error;
  2731. }
  2732. eeprom_prep(regs, (offset >> 8) & 0xff);
  2733. if (eeprom_check_ack(regs)) {
  2734. local_irq_restore(flags);
  2735. printk(KERN_ERR "%s: Unable to set address byte 0\n",
  2736. ap->name);
  2737. result = -EIO;
  2738. goto eeprom_read_error;
  2739. }
  2740. eeprom_prep(regs, offset & 0xff);
  2741. if (eeprom_check_ack(regs)) {
  2742. local_irq_restore(flags);
  2743. printk(KERN_ERR "%s: Unable to set address byte 1\n",
  2744. ap->name);
  2745. result = -EIO;
  2746. goto eeprom_read_error;
  2747. }
  2748. eeprom_start(regs);
  2749. eeprom_prep(regs, EEPROM_READ_SELECT);
  2750. if (eeprom_check_ack(regs)) {
  2751. local_irq_restore(flags);
  2752. printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
  2753. ap->name);
  2754. result = -EIO;
  2755. goto eeprom_read_error;
  2756. }
  2757. for (i = 0; i < 8; i++) {
  2758. local = readl(&regs->LocalCtrl);
  2759. local &= ~EEPROM_WRITE_ENABLE;
  2760. writel(local, &regs->LocalCtrl);
  2761. readl(&regs->LocalCtrl);
  2762. udelay(ACE_LONG_DELAY);
  2763. mb();
  2764. local |= EEPROM_CLK_OUT;
  2765. writel(local, &regs->LocalCtrl);
  2766. readl(&regs->LocalCtrl);
  2767. mb();
  2768. udelay(ACE_SHORT_DELAY);
  2769. /* sample data mid high clk */
  2770. result = (result << 1) |
  2771. ((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
  2772. udelay(ACE_SHORT_DELAY);
  2773. mb();
  2774. local = readl(&regs->LocalCtrl);
  2775. local &= ~EEPROM_CLK_OUT;
  2776. writel(local, &regs->LocalCtrl);
  2777. readl(&regs->LocalCtrl);
  2778. udelay(ACE_SHORT_DELAY);
  2779. mb();
  2780. if (i == 7) {
  2781. local |= EEPROM_WRITE_ENABLE;
  2782. writel(local, &regs->LocalCtrl);
  2783. readl(&regs->LocalCtrl);
  2784. mb();
  2785. udelay(ACE_SHORT_DELAY);
  2786. }
  2787. }
  2788. local |= EEPROM_DATA_OUT;
  2789. writel(local, &regs->LocalCtrl);
  2790. readl(&regs->LocalCtrl);
  2791. mb();
  2792. udelay(ACE_SHORT_DELAY);
  2793. writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
  2794. readl(&regs->LocalCtrl);
  2795. udelay(ACE_LONG_DELAY);
  2796. writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
  2797. readl(&regs->LocalCtrl);
  2798. mb();
  2799. udelay(ACE_SHORT_DELAY);
  2800. eeprom_stop(regs);
  2801. local_irq_restore(flags);
  2802. out:
  2803. return result;
  2804. eeprom_read_error:
  2805. printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
  2806. ap->name, offset);
  2807. goto out;
  2808. }
  2809. /*
  2810. * Local variables:
  2811. * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c"
  2812. * End:
  2813. */