forcedeth.c 193 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008,2009 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Known bugs:
  33. * We suspect that on some hardware no TX done interrupts are generated.
  34. * This means recovery from netif_stop_queue only happens if the hw timer
  35. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  36. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  37. * If your hardware reliably generates tx done interrupts, then you can remove
  38. * DEV_NEED_TIMERIRQ from the driver_data flags.
  39. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  40. * superfluous timer interrupts from the nic.
  41. */
  42. #define FORCEDETH_VERSION "0.64"
  43. #define DRV_NAME "forcedeth"
  44. #include <linux/module.h>
  45. #include <linux/types.h>
  46. #include <linux/pci.h>
  47. #include <linux/interrupt.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/etherdevice.h>
  50. #include <linux/delay.h>
  51. #include <linux/sched.h>
  52. #include <linux/spinlock.h>
  53. #include <linux/ethtool.h>
  54. #include <linux/timer.h>
  55. #include <linux/skbuff.h>
  56. #include <linux/mii.h>
  57. #include <linux/random.h>
  58. #include <linux/init.h>
  59. #include <linux/if_vlan.h>
  60. #include <linux/dma-mapping.h>
  61. #include <linux/slab.h>
  62. #include <asm/irq.h>
  63. #include <asm/io.h>
  64. #include <asm/uaccess.h>
  65. #include <asm/system.h>
  66. #if 0
  67. #define dprintk printk
  68. #else
  69. #define dprintk(x...) do { } while (0)
  70. #endif
  71. #define TX_WORK_PER_LOOP 64
  72. #define RX_WORK_PER_LOOP 64
  73. /*
  74. * Hardware access:
  75. */
  76. #define DEV_NEED_TIMERIRQ 0x0000001 /* set the timer irq flag in the irq mask */
  77. #define DEV_NEED_LINKTIMER 0x0000002 /* poll link settings. Relies on the timer irq */
  78. #define DEV_HAS_LARGEDESC 0x0000004 /* device supports jumbo frames and needs packet format 2 */
  79. #define DEV_HAS_HIGH_DMA 0x0000008 /* device supports 64bit dma */
  80. #define DEV_HAS_CHECKSUM 0x0000010 /* device supports tx and rx checksum offloads */
  81. #define DEV_HAS_VLAN 0x0000020 /* device supports vlan tagging and striping */
  82. #define DEV_HAS_MSI 0x0000040 /* device supports MSI */
  83. #define DEV_HAS_MSI_X 0x0000080 /* device supports MSI-X */
  84. #define DEV_HAS_POWER_CNTRL 0x0000100 /* device supports power savings */
  85. #define DEV_HAS_STATISTICS_V1 0x0000200 /* device supports hw statistics version 1 */
  86. #define DEV_HAS_STATISTICS_V2 0x0000600 /* device supports hw statistics version 2 */
  87. #define DEV_HAS_STATISTICS_V3 0x0000e00 /* device supports hw statistics version 3 */
  88. #define DEV_HAS_TEST_EXTENDED 0x0001000 /* device supports extended diagnostic test */
  89. #define DEV_HAS_MGMT_UNIT 0x0002000 /* device supports management unit */
  90. #define DEV_HAS_CORRECT_MACADDR 0x0004000 /* device supports correct mac address order */
  91. #define DEV_HAS_COLLISION_FIX 0x0008000 /* device supports tx collision fix */
  92. #define DEV_HAS_PAUSEFRAME_TX_V1 0x0010000 /* device supports tx pause frames version 1 */
  93. #define DEV_HAS_PAUSEFRAME_TX_V2 0x0020000 /* device supports tx pause frames version 2 */
  94. #define DEV_HAS_PAUSEFRAME_TX_V3 0x0040000 /* device supports tx pause frames version 3 */
  95. #define DEV_NEED_TX_LIMIT 0x0080000 /* device needs to limit tx */
  96. #define DEV_NEED_TX_LIMIT2 0x0180000 /* device needs to limit tx, expect for some revs */
  97. #define DEV_HAS_GEAR_MODE 0x0200000 /* device supports gear mode */
  98. #define DEV_NEED_PHY_INIT_FIX 0x0400000 /* device needs specific phy workaround */
  99. #define DEV_NEED_LOW_POWER_FIX 0x0800000 /* device needs special power up workaround */
  100. #define DEV_NEED_MSI_FIX 0x1000000 /* device needs msi workaround */
  101. enum {
  102. NvRegIrqStatus = 0x000,
  103. #define NVREG_IRQSTAT_MIIEVENT 0x040
  104. #define NVREG_IRQSTAT_MASK 0x83ff
  105. NvRegIrqMask = 0x004,
  106. #define NVREG_IRQ_RX_ERROR 0x0001
  107. #define NVREG_IRQ_RX 0x0002
  108. #define NVREG_IRQ_RX_NOBUF 0x0004
  109. #define NVREG_IRQ_TX_ERR 0x0008
  110. #define NVREG_IRQ_TX_OK 0x0010
  111. #define NVREG_IRQ_TIMER 0x0020
  112. #define NVREG_IRQ_LINK 0x0040
  113. #define NVREG_IRQ_RX_FORCED 0x0080
  114. #define NVREG_IRQ_TX_FORCED 0x0100
  115. #define NVREG_IRQ_RECOVER_ERROR 0x8200
  116. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  117. #define NVREG_IRQMASK_CPU 0x0060
  118. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  119. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  120. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  121. NvRegUnknownSetupReg6 = 0x008,
  122. #define NVREG_UNKSETUP6_VAL 3
  123. /*
  124. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  125. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  126. */
  127. NvRegPollingInterval = 0x00c,
  128. #define NVREG_POLL_DEFAULT_THROUGHPUT 65535 /* backup tx cleanup if loop max reached */
  129. #define NVREG_POLL_DEFAULT_CPU 13
  130. NvRegMSIMap0 = 0x020,
  131. NvRegMSIMap1 = 0x024,
  132. NvRegMSIIrqMask = 0x030,
  133. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  134. NvRegMisc1 = 0x080,
  135. #define NVREG_MISC1_PAUSE_TX 0x01
  136. #define NVREG_MISC1_HD 0x02
  137. #define NVREG_MISC1_FORCE 0x3b0f3c
  138. NvRegMacReset = 0x34,
  139. #define NVREG_MAC_RESET_ASSERT 0x0F3
  140. NvRegTransmitterControl = 0x084,
  141. #define NVREG_XMITCTL_START 0x01
  142. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  143. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  144. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  145. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  146. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  147. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  148. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  149. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  150. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  151. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  152. #define NVREG_XMITCTL_DATA_START 0x00100000
  153. #define NVREG_XMITCTL_DATA_READY 0x00010000
  154. #define NVREG_XMITCTL_DATA_ERROR 0x00020000
  155. NvRegTransmitterStatus = 0x088,
  156. #define NVREG_XMITSTAT_BUSY 0x01
  157. NvRegPacketFilterFlags = 0x8c,
  158. #define NVREG_PFF_PAUSE_RX 0x08
  159. #define NVREG_PFF_ALWAYS 0x7F0000
  160. #define NVREG_PFF_PROMISC 0x80
  161. #define NVREG_PFF_MYADDR 0x20
  162. #define NVREG_PFF_LOOPBACK 0x10
  163. NvRegOffloadConfig = 0x90,
  164. #define NVREG_OFFLOAD_HOMEPHY 0x601
  165. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  166. NvRegReceiverControl = 0x094,
  167. #define NVREG_RCVCTL_START 0x01
  168. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  169. NvRegReceiverStatus = 0x98,
  170. #define NVREG_RCVSTAT_BUSY 0x01
  171. NvRegSlotTime = 0x9c,
  172. #define NVREG_SLOTTIME_LEGBF_ENABLED 0x80000000
  173. #define NVREG_SLOTTIME_10_100_FULL 0x00007f00
  174. #define NVREG_SLOTTIME_1000_FULL 0x0003ff00
  175. #define NVREG_SLOTTIME_HALF 0x0000ff00
  176. #define NVREG_SLOTTIME_DEFAULT 0x00007f00
  177. #define NVREG_SLOTTIME_MASK 0x000000ff
  178. NvRegTxDeferral = 0xA0,
  179. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  180. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  181. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  182. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  183. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  184. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  185. NvRegRxDeferral = 0xA4,
  186. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  187. NvRegMacAddrA = 0xA8,
  188. NvRegMacAddrB = 0xAC,
  189. NvRegMulticastAddrA = 0xB0,
  190. #define NVREG_MCASTADDRA_FORCE 0x01
  191. NvRegMulticastAddrB = 0xB4,
  192. NvRegMulticastMaskA = 0xB8,
  193. #define NVREG_MCASTMASKA_NONE 0xffffffff
  194. NvRegMulticastMaskB = 0xBC,
  195. #define NVREG_MCASTMASKB_NONE 0xffff
  196. NvRegPhyInterface = 0xC0,
  197. #define PHY_RGMII 0x10000000
  198. NvRegBackOffControl = 0xC4,
  199. #define NVREG_BKOFFCTRL_DEFAULT 0x70000000
  200. #define NVREG_BKOFFCTRL_SEED_MASK 0x000003ff
  201. #define NVREG_BKOFFCTRL_SELECT 24
  202. #define NVREG_BKOFFCTRL_GEAR 12
  203. NvRegTxRingPhysAddr = 0x100,
  204. NvRegRxRingPhysAddr = 0x104,
  205. NvRegRingSizes = 0x108,
  206. #define NVREG_RINGSZ_TXSHIFT 0
  207. #define NVREG_RINGSZ_RXSHIFT 16
  208. NvRegTransmitPoll = 0x10c,
  209. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  210. NvRegLinkSpeed = 0x110,
  211. #define NVREG_LINKSPEED_FORCE 0x10000
  212. #define NVREG_LINKSPEED_10 1000
  213. #define NVREG_LINKSPEED_100 100
  214. #define NVREG_LINKSPEED_1000 50
  215. #define NVREG_LINKSPEED_MASK (0xFFF)
  216. NvRegUnknownSetupReg5 = 0x130,
  217. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  218. NvRegTxWatermark = 0x13c,
  219. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  220. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  221. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  222. NvRegTxRxControl = 0x144,
  223. #define NVREG_TXRXCTL_KICK 0x0001
  224. #define NVREG_TXRXCTL_BIT1 0x0002
  225. #define NVREG_TXRXCTL_BIT2 0x0004
  226. #define NVREG_TXRXCTL_IDLE 0x0008
  227. #define NVREG_TXRXCTL_RESET 0x0010
  228. #define NVREG_TXRXCTL_RXCHECK 0x0400
  229. #define NVREG_TXRXCTL_DESC_1 0
  230. #define NVREG_TXRXCTL_DESC_2 0x002100
  231. #define NVREG_TXRXCTL_DESC_3 0xc02200
  232. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  233. #define NVREG_TXRXCTL_VLANINS 0x00080
  234. NvRegTxRingPhysAddrHigh = 0x148,
  235. NvRegRxRingPhysAddrHigh = 0x14C,
  236. NvRegTxPauseFrame = 0x170,
  237. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  238. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  239. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  240. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  241. NvRegTxPauseFrameLimit = 0x174,
  242. #define NVREG_TX_PAUSEFRAMELIMIT_ENABLE 0x00010000
  243. NvRegMIIStatus = 0x180,
  244. #define NVREG_MIISTAT_ERROR 0x0001
  245. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  246. #define NVREG_MIISTAT_MASK_RW 0x0007
  247. #define NVREG_MIISTAT_MASK_ALL 0x000f
  248. NvRegMIIMask = 0x184,
  249. #define NVREG_MII_LINKCHANGE 0x0008
  250. NvRegAdapterControl = 0x188,
  251. #define NVREG_ADAPTCTL_START 0x02
  252. #define NVREG_ADAPTCTL_LINKUP 0x04
  253. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  254. #define NVREG_ADAPTCTL_RUNNING 0x100000
  255. #define NVREG_ADAPTCTL_PHYSHIFT 24
  256. NvRegMIISpeed = 0x18c,
  257. #define NVREG_MIISPEED_BIT8 (1<<8)
  258. #define NVREG_MIIDELAY 5
  259. NvRegMIIControl = 0x190,
  260. #define NVREG_MIICTL_INUSE 0x08000
  261. #define NVREG_MIICTL_WRITE 0x00400
  262. #define NVREG_MIICTL_ADDRSHIFT 5
  263. NvRegMIIData = 0x194,
  264. NvRegTxUnicast = 0x1a0,
  265. NvRegTxMulticast = 0x1a4,
  266. NvRegTxBroadcast = 0x1a8,
  267. NvRegWakeUpFlags = 0x200,
  268. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  269. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  270. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  271. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  272. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  273. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  274. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  275. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  276. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  277. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  278. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  279. NvRegMgmtUnitGetVersion = 0x204,
  280. #define NVREG_MGMTUNITGETVERSION 0x01
  281. NvRegMgmtUnitVersion = 0x208,
  282. #define NVREG_MGMTUNITVERSION 0x08
  283. NvRegPowerCap = 0x268,
  284. #define NVREG_POWERCAP_D3SUPP (1<<30)
  285. #define NVREG_POWERCAP_D2SUPP (1<<26)
  286. #define NVREG_POWERCAP_D1SUPP (1<<25)
  287. NvRegPowerState = 0x26c,
  288. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  289. #define NVREG_POWERSTATE_VALID 0x0100
  290. #define NVREG_POWERSTATE_MASK 0x0003
  291. #define NVREG_POWERSTATE_D0 0x0000
  292. #define NVREG_POWERSTATE_D1 0x0001
  293. #define NVREG_POWERSTATE_D2 0x0002
  294. #define NVREG_POWERSTATE_D3 0x0003
  295. NvRegMgmtUnitControl = 0x278,
  296. #define NVREG_MGMTUNITCONTROL_INUSE 0x20000
  297. NvRegTxCnt = 0x280,
  298. NvRegTxZeroReXmt = 0x284,
  299. NvRegTxOneReXmt = 0x288,
  300. NvRegTxManyReXmt = 0x28c,
  301. NvRegTxLateCol = 0x290,
  302. NvRegTxUnderflow = 0x294,
  303. NvRegTxLossCarrier = 0x298,
  304. NvRegTxExcessDef = 0x29c,
  305. NvRegTxRetryErr = 0x2a0,
  306. NvRegRxFrameErr = 0x2a4,
  307. NvRegRxExtraByte = 0x2a8,
  308. NvRegRxLateCol = 0x2ac,
  309. NvRegRxRunt = 0x2b0,
  310. NvRegRxFrameTooLong = 0x2b4,
  311. NvRegRxOverflow = 0x2b8,
  312. NvRegRxFCSErr = 0x2bc,
  313. NvRegRxFrameAlignErr = 0x2c0,
  314. NvRegRxLenErr = 0x2c4,
  315. NvRegRxUnicast = 0x2c8,
  316. NvRegRxMulticast = 0x2cc,
  317. NvRegRxBroadcast = 0x2d0,
  318. NvRegTxDef = 0x2d4,
  319. NvRegTxFrame = 0x2d8,
  320. NvRegRxCnt = 0x2dc,
  321. NvRegTxPause = 0x2e0,
  322. NvRegRxPause = 0x2e4,
  323. NvRegRxDropFrame = 0x2e8,
  324. NvRegVlanControl = 0x300,
  325. #define NVREG_VLANCONTROL_ENABLE 0x2000
  326. NvRegMSIXMap0 = 0x3e0,
  327. NvRegMSIXMap1 = 0x3e4,
  328. NvRegMSIXIrqStatus = 0x3f0,
  329. NvRegPowerState2 = 0x600,
  330. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F15
  331. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  332. #define NVREG_POWERSTATE2_PHY_RESET 0x0004
  333. #define NVREG_POWERSTATE2_GATE_CLOCKS 0x0F00
  334. };
  335. /* Big endian: should work, but is untested */
  336. struct ring_desc {
  337. __le32 buf;
  338. __le32 flaglen;
  339. };
  340. struct ring_desc_ex {
  341. __le32 bufhigh;
  342. __le32 buflow;
  343. __le32 txvlan;
  344. __le32 flaglen;
  345. };
  346. union ring_type {
  347. struct ring_desc* orig;
  348. struct ring_desc_ex* ex;
  349. };
  350. #define FLAG_MASK_V1 0xffff0000
  351. #define FLAG_MASK_V2 0xffffc000
  352. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  353. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  354. #define NV_TX_LASTPACKET (1<<16)
  355. #define NV_TX_RETRYERROR (1<<19)
  356. #define NV_TX_RETRYCOUNT_MASK (0xF<<20)
  357. #define NV_TX_FORCED_INTERRUPT (1<<24)
  358. #define NV_TX_DEFERRED (1<<26)
  359. #define NV_TX_CARRIERLOST (1<<27)
  360. #define NV_TX_LATECOLLISION (1<<28)
  361. #define NV_TX_UNDERFLOW (1<<29)
  362. #define NV_TX_ERROR (1<<30)
  363. #define NV_TX_VALID (1<<31)
  364. #define NV_TX2_LASTPACKET (1<<29)
  365. #define NV_TX2_RETRYERROR (1<<18)
  366. #define NV_TX2_RETRYCOUNT_MASK (0xF<<19)
  367. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  368. #define NV_TX2_DEFERRED (1<<25)
  369. #define NV_TX2_CARRIERLOST (1<<26)
  370. #define NV_TX2_LATECOLLISION (1<<27)
  371. #define NV_TX2_UNDERFLOW (1<<28)
  372. /* error and valid are the same for both */
  373. #define NV_TX2_ERROR (1<<30)
  374. #define NV_TX2_VALID (1<<31)
  375. #define NV_TX2_TSO (1<<28)
  376. #define NV_TX2_TSO_SHIFT 14
  377. #define NV_TX2_TSO_MAX_SHIFT 14
  378. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  379. #define NV_TX2_CHECKSUM_L3 (1<<27)
  380. #define NV_TX2_CHECKSUM_L4 (1<<26)
  381. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  382. #define NV_RX_DESCRIPTORVALID (1<<16)
  383. #define NV_RX_MISSEDFRAME (1<<17)
  384. #define NV_RX_SUBSTRACT1 (1<<18)
  385. #define NV_RX_ERROR1 (1<<23)
  386. #define NV_RX_ERROR2 (1<<24)
  387. #define NV_RX_ERROR3 (1<<25)
  388. #define NV_RX_ERROR4 (1<<26)
  389. #define NV_RX_CRCERR (1<<27)
  390. #define NV_RX_OVERFLOW (1<<28)
  391. #define NV_RX_FRAMINGERR (1<<29)
  392. #define NV_RX_ERROR (1<<30)
  393. #define NV_RX_AVAIL (1<<31)
  394. #define NV_RX_ERROR_MASK (NV_RX_ERROR1|NV_RX_ERROR2|NV_RX_ERROR3|NV_RX_ERROR4|NV_RX_CRCERR|NV_RX_OVERFLOW|NV_RX_FRAMINGERR)
  395. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  396. #define NV_RX2_CHECKSUM_IP (0x10000000)
  397. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  398. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  399. #define NV_RX2_DESCRIPTORVALID (1<<29)
  400. #define NV_RX2_SUBSTRACT1 (1<<25)
  401. #define NV_RX2_ERROR1 (1<<18)
  402. #define NV_RX2_ERROR2 (1<<19)
  403. #define NV_RX2_ERROR3 (1<<20)
  404. #define NV_RX2_ERROR4 (1<<21)
  405. #define NV_RX2_CRCERR (1<<22)
  406. #define NV_RX2_OVERFLOW (1<<23)
  407. #define NV_RX2_FRAMINGERR (1<<24)
  408. /* error and avail are the same for both */
  409. #define NV_RX2_ERROR (1<<30)
  410. #define NV_RX2_AVAIL (1<<31)
  411. #define NV_RX2_ERROR_MASK (NV_RX2_ERROR1|NV_RX2_ERROR2|NV_RX2_ERROR3|NV_RX2_ERROR4|NV_RX2_CRCERR|NV_RX2_OVERFLOW|NV_RX2_FRAMINGERR)
  412. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  413. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  414. /* Miscelaneous hardware related defines: */
  415. #define NV_PCI_REGSZ_VER1 0x270
  416. #define NV_PCI_REGSZ_VER2 0x2d4
  417. #define NV_PCI_REGSZ_VER3 0x604
  418. #define NV_PCI_REGSZ_MAX 0x604
  419. /* various timeout delays: all in usec */
  420. #define NV_TXRX_RESET_DELAY 4
  421. #define NV_TXSTOP_DELAY1 10
  422. #define NV_TXSTOP_DELAY1MAX 500000
  423. #define NV_TXSTOP_DELAY2 100
  424. #define NV_RXSTOP_DELAY1 10
  425. #define NV_RXSTOP_DELAY1MAX 500000
  426. #define NV_RXSTOP_DELAY2 100
  427. #define NV_SETUP5_DELAY 5
  428. #define NV_SETUP5_DELAYMAX 50000
  429. #define NV_POWERUP_DELAY 5
  430. #define NV_POWERUP_DELAYMAX 5000
  431. #define NV_MIIBUSY_DELAY 50
  432. #define NV_MIIPHY_DELAY 10
  433. #define NV_MIIPHY_DELAYMAX 10000
  434. #define NV_MAC_RESET_DELAY 64
  435. #define NV_WAKEUPPATTERNS 5
  436. #define NV_WAKEUPMASKENTRIES 4
  437. /* General driver defaults */
  438. #define NV_WATCHDOG_TIMEO (5*HZ)
  439. #define RX_RING_DEFAULT 512
  440. #define TX_RING_DEFAULT 256
  441. #define RX_RING_MIN 128
  442. #define TX_RING_MIN 64
  443. #define RING_MAX_DESC_VER_1 1024
  444. #define RING_MAX_DESC_VER_2_3 16384
  445. /* rx/tx mac addr + type + vlan + align + slack*/
  446. #define NV_RX_HEADERS (64)
  447. /* even more slack. */
  448. #define NV_RX_ALLOC_PAD (64)
  449. /* maximum mtu size */
  450. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  451. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  452. #define OOM_REFILL (1+HZ/20)
  453. #define POLL_WAIT (1+HZ/100)
  454. #define LINK_TIMEOUT (3*HZ)
  455. #define STATS_INTERVAL (10*HZ)
  456. /*
  457. * desc_ver values:
  458. * The nic supports three different descriptor types:
  459. * - DESC_VER_1: Original
  460. * - DESC_VER_2: support for jumbo frames.
  461. * - DESC_VER_3: 64-bit format.
  462. */
  463. #define DESC_VER_1 1
  464. #define DESC_VER_2 2
  465. #define DESC_VER_3 3
  466. /* PHY defines */
  467. #define PHY_OUI_MARVELL 0x5043
  468. #define PHY_OUI_CICADA 0x03f1
  469. #define PHY_OUI_VITESSE 0x01c1
  470. #define PHY_OUI_REALTEK 0x0732
  471. #define PHY_OUI_REALTEK2 0x0020
  472. #define PHYID1_OUI_MASK 0x03ff
  473. #define PHYID1_OUI_SHFT 6
  474. #define PHYID2_OUI_MASK 0xfc00
  475. #define PHYID2_OUI_SHFT 10
  476. #define PHYID2_MODEL_MASK 0x03f0
  477. #define PHY_MODEL_REALTEK_8211 0x0110
  478. #define PHY_REV_MASK 0x0001
  479. #define PHY_REV_REALTEK_8211B 0x0000
  480. #define PHY_REV_REALTEK_8211C 0x0001
  481. #define PHY_MODEL_REALTEK_8201 0x0200
  482. #define PHY_MODEL_MARVELL_E3016 0x0220
  483. #define PHY_MARVELL_E3016_INITMASK 0x0300
  484. #define PHY_CICADA_INIT1 0x0f000
  485. #define PHY_CICADA_INIT2 0x0e00
  486. #define PHY_CICADA_INIT3 0x01000
  487. #define PHY_CICADA_INIT4 0x0200
  488. #define PHY_CICADA_INIT5 0x0004
  489. #define PHY_CICADA_INIT6 0x02000
  490. #define PHY_VITESSE_INIT_REG1 0x1f
  491. #define PHY_VITESSE_INIT_REG2 0x10
  492. #define PHY_VITESSE_INIT_REG3 0x11
  493. #define PHY_VITESSE_INIT_REG4 0x12
  494. #define PHY_VITESSE_INIT_MSK1 0xc
  495. #define PHY_VITESSE_INIT_MSK2 0x0180
  496. #define PHY_VITESSE_INIT1 0x52b5
  497. #define PHY_VITESSE_INIT2 0xaf8a
  498. #define PHY_VITESSE_INIT3 0x8
  499. #define PHY_VITESSE_INIT4 0x8f8a
  500. #define PHY_VITESSE_INIT5 0xaf86
  501. #define PHY_VITESSE_INIT6 0x8f86
  502. #define PHY_VITESSE_INIT7 0xaf82
  503. #define PHY_VITESSE_INIT8 0x0100
  504. #define PHY_VITESSE_INIT9 0x8f82
  505. #define PHY_VITESSE_INIT10 0x0
  506. #define PHY_REALTEK_INIT_REG1 0x1f
  507. #define PHY_REALTEK_INIT_REG2 0x19
  508. #define PHY_REALTEK_INIT_REG3 0x13
  509. #define PHY_REALTEK_INIT_REG4 0x14
  510. #define PHY_REALTEK_INIT_REG5 0x18
  511. #define PHY_REALTEK_INIT_REG6 0x11
  512. #define PHY_REALTEK_INIT_REG7 0x01
  513. #define PHY_REALTEK_INIT1 0x0000
  514. #define PHY_REALTEK_INIT2 0x8e00
  515. #define PHY_REALTEK_INIT3 0x0001
  516. #define PHY_REALTEK_INIT4 0xad17
  517. #define PHY_REALTEK_INIT5 0xfb54
  518. #define PHY_REALTEK_INIT6 0xf5c7
  519. #define PHY_REALTEK_INIT7 0x1000
  520. #define PHY_REALTEK_INIT8 0x0003
  521. #define PHY_REALTEK_INIT9 0x0008
  522. #define PHY_REALTEK_INIT10 0x0005
  523. #define PHY_REALTEK_INIT11 0x0200
  524. #define PHY_REALTEK_INIT_MSK1 0x0003
  525. #define PHY_GIGABIT 0x0100
  526. #define PHY_TIMEOUT 0x1
  527. #define PHY_ERROR 0x2
  528. #define PHY_100 0x1
  529. #define PHY_1000 0x2
  530. #define PHY_HALF 0x100
  531. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  532. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  533. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  534. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  535. #define NV_PAUSEFRAME_RX_REQ 0x0010
  536. #define NV_PAUSEFRAME_TX_REQ 0x0020
  537. #define NV_PAUSEFRAME_AUTONEG 0x0040
  538. /* MSI/MSI-X defines */
  539. #define NV_MSI_X_MAX_VECTORS 8
  540. #define NV_MSI_X_VECTORS_MASK 0x000f
  541. #define NV_MSI_CAPABLE 0x0010
  542. #define NV_MSI_X_CAPABLE 0x0020
  543. #define NV_MSI_ENABLED 0x0040
  544. #define NV_MSI_X_ENABLED 0x0080
  545. #define NV_MSI_X_VECTOR_ALL 0x0
  546. #define NV_MSI_X_VECTOR_RX 0x0
  547. #define NV_MSI_X_VECTOR_TX 0x1
  548. #define NV_MSI_X_VECTOR_OTHER 0x2
  549. #define NV_MSI_PRIV_OFFSET 0x68
  550. #define NV_MSI_PRIV_VALUE 0xffffffff
  551. #define NV_RESTART_TX 0x1
  552. #define NV_RESTART_RX 0x2
  553. #define NV_TX_LIMIT_COUNT 16
  554. #define NV_DYNAMIC_THRESHOLD 4
  555. #define NV_DYNAMIC_MAX_QUIET_COUNT 2048
  556. /* statistics */
  557. struct nv_ethtool_str {
  558. char name[ETH_GSTRING_LEN];
  559. };
  560. static const struct nv_ethtool_str nv_estats_str[] = {
  561. { "tx_bytes" },
  562. { "tx_zero_rexmt" },
  563. { "tx_one_rexmt" },
  564. { "tx_many_rexmt" },
  565. { "tx_late_collision" },
  566. { "tx_fifo_errors" },
  567. { "tx_carrier_errors" },
  568. { "tx_excess_deferral" },
  569. { "tx_retry_error" },
  570. { "rx_frame_error" },
  571. { "rx_extra_byte" },
  572. { "rx_late_collision" },
  573. { "rx_runt" },
  574. { "rx_frame_too_long" },
  575. { "rx_over_errors" },
  576. { "rx_crc_errors" },
  577. { "rx_frame_align_error" },
  578. { "rx_length_error" },
  579. { "rx_unicast" },
  580. { "rx_multicast" },
  581. { "rx_broadcast" },
  582. { "rx_packets" },
  583. { "rx_errors_total" },
  584. { "tx_errors_total" },
  585. /* version 2 stats */
  586. { "tx_deferral" },
  587. { "tx_packets" },
  588. { "rx_bytes" },
  589. { "tx_pause" },
  590. { "rx_pause" },
  591. { "rx_drop_frame" },
  592. /* version 3 stats */
  593. { "tx_unicast" },
  594. { "tx_multicast" },
  595. { "tx_broadcast" }
  596. };
  597. struct nv_ethtool_stats {
  598. u64 tx_bytes;
  599. u64 tx_zero_rexmt;
  600. u64 tx_one_rexmt;
  601. u64 tx_many_rexmt;
  602. u64 tx_late_collision;
  603. u64 tx_fifo_errors;
  604. u64 tx_carrier_errors;
  605. u64 tx_excess_deferral;
  606. u64 tx_retry_error;
  607. u64 rx_frame_error;
  608. u64 rx_extra_byte;
  609. u64 rx_late_collision;
  610. u64 rx_runt;
  611. u64 rx_frame_too_long;
  612. u64 rx_over_errors;
  613. u64 rx_crc_errors;
  614. u64 rx_frame_align_error;
  615. u64 rx_length_error;
  616. u64 rx_unicast;
  617. u64 rx_multicast;
  618. u64 rx_broadcast;
  619. u64 rx_packets;
  620. u64 rx_errors_total;
  621. u64 tx_errors_total;
  622. /* version 2 stats */
  623. u64 tx_deferral;
  624. u64 tx_packets;
  625. u64 rx_bytes;
  626. u64 tx_pause;
  627. u64 rx_pause;
  628. u64 rx_drop_frame;
  629. /* version 3 stats */
  630. u64 tx_unicast;
  631. u64 tx_multicast;
  632. u64 tx_broadcast;
  633. };
  634. #define NV_DEV_STATISTICS_V3_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  635. #define NV_DEV_STATISTICS_V2_COUNT (NV_DEV_STATISTICS_V3_COUNT - 3)
  636. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  637. /* diagnostics */
  638. #define NV_TEST_COUNT_BASE 3
  639. #define NV_TEST_COUNT_EXTENDED 4
  640. static const struct nv_ethtool_str nv_etests_str[] = {
  641. { "link (online/offline)" },
  642. { "register (offline) " },
  643. { "interrupt (offline) " },
  644. { "loopback (offline) " }
  645. };
  646. struct register_test {
  647. __u32 reg;
  648. __u32 mask;
  649. };
  650. static const struct register_test nv_registers_test[] = {
  651. { NvRegUnknownSetupReg6, 0x01 },
  652. { NvRegMisc1, 0x03c },
  653. { NvRegOffloadConfig, 0x03ff },
  654. { NvRegMulticastAddrA, 0xffffffff },
  655. { NvRegTxWatermark, 0x0ff },
  656. { NvRegWakeUpFlags, 0x07777 },
  657. { 0,0 }
  658. };
  659. struct nv_skb_map {
  660. struct sk_buff *skb;
  661. dma_addr_t dma;
  662. unsigned int dma_len:31;
  663. unsigned int dma_single:1;
  664. struct ring_desc_ex *first_tx_desc;
  665. struct nv_skb_map *next_tx_ctx;
  666. };
  667. /*
  668. * SMP locking:
  669. * All hardware access under netdev_priv(dev)->lock, except the performance
  670. * critical parts:
  671. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  672. * by the arch code for interrupts.
  673. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  674. * needs netdev_priv(dev)->lock :-(
  675. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  676. */
  677. /* in dev: base, irq */
  678. struct fe_priv {
  679. spinlock_t lock;
  680. struct net_device *dev;
  681. struct napi_struct napi;
  682. /* General data:
  683. * Locking: spin_lock(&np->lock); */
  684. struct nv_ethtool_stats estats;
  685. int in_shutdown;
  686. u32 linkspeed;
  687. int duplex;
  688. int autoneg;
  689. int fixed_mode;
  690. int phyaddr;
  691. int wolenabled;
  692. unsigned int phy_oui;
  693. unsigned int phy_model;
  694. unsigned int phy_rev;
  695. u16 gigabit;
  696. int intr_test;
  697. int recover_error;
  698. int quiet_count;
  699. /* General data: RO fields */
  700. dma_addr_t ring_addr;
  701. struct pci_dev *pci_dev;
  702. u32 orig_mac[2];
  703. u32 events;
  704. u32 irqmask;
  705. u32 desc_ver;
  706. u32 txrxctl_bits;
  707. u32 vlanctl_bits;
  708. u32 driver_data;
  709. u32 device_id;
  710. u32 register_size;
  711. int rx_csum;
  712. u32 mac_in_use;
  713. int mgmt_version;
  714. int mgmt_sema;
  715. void __iomem *base;
  716. /* rx specific fields.
  717. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  718. */
  719. union ring_type get_rx, put_rx, first_rx, last_rx;
  720. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  721. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  722. struct nv_skb_map *rx_skb;
  723. union ring_type rx_ring;
  724. unsigned int rx_buf_sz;
  725. unsigned int pkt_limit;
  726. struct timer_list oom_kick;
  727. struct timer_list nic_poll;
  728. struct timer_list stats_poll;
  729. u32 nic_poll_irq;
  730. int rx_ring_size;
  731. /* media detection workaround.
  732. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  733. */
  734. int need_linktimer;
  735. unsigned long link_timeout;
  736. /*
  737. * tx specific fields.
  738. */
  739. union ring_type get_tx, put_tx, first_tx, last_tx;
  740. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  741. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  742. struct nv_skb_map *tx_skb;
  743. union ring_type tx_ring;
  744. u32 tx_flags;
  745. int tx_ring_size;
  746. int tx_limit;
  747. u32 tx_pkts_in_progress;
  748. struct nv_skb_map *tx_change_owner;
  749. struct nv_skb_map *tx_end_flip;
  750. int tx_stop;
  751. /* vlan fields */
  752. struct vlan_group *vlangrp;
  753. /* msi/msi-x fields */
  754. u32 msi_flags;
  755. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  756. /* flow control */
  757. u32 pause_flags;
  758. /* power saved state */
  759. u32 saved_config_space[NV_PCI_REGSZ_MAX/4];
  760. /* for different msi-x irq type */
  761. char name_rx[IFNAMSIZ + 3]; /* -rx */
  762. char name_tx[IFNAMSIZ + 3]; /* -tx */
  763. char name_other[IFNAMSIZ + 6]; /* -other */
  764. };
  765. /*
  766. * Maximum number of loops until we assume that a bit in the irq mask
  767. * is stuck. Overridable with module param.
  768. */
  769. static int max_interrupt_work = 4;
  770. /*
  771. * Optimization can be either throuput mode or cpu mode
  772. *
  773. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  774. * CPU Mode: Interrupts are controlled by a timer.
  775. */
  776. enum {
  777. NV_OPTIMIZATION_MODE_THROUGHPUT,
  778. NV_OPTIMIZATION_MODE_CPU,
  779. NV_OPTIMIZATION_MODE_DYNAMIC
  780. };
  781. static int optimization_mode = NV_OPTIMIZATION_MODE_DYNAMIC;
  782. /*
  783. * Poll interval for timer irq
  784. *
  785. * This interval determines how frequent an interrupt is generated.
  786. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  787. * Min = 0, and Max = 65535
  788. */
  789. static int poll_interval = -1;
  790. /*
  791. * MSI interrupts
  792. */
  793. enum {
  794. NV_MSI_INT_DISABLED,
  795. NV_MSI_INT_ENABLED
  796. };
  797. static int msi = NV_MSI_INT_ENABLED;
  798. /*
  799. * MSIX interrupts
  800. */
  801. enum {
  802. NV_MSIX_INT_DISABLED,
  803. NV_MSIX_INT_ENABLED
  804. };
  805. static int msix = NV_MSIX_INT_ENABLED;
  806. /*
  807. * DMA 64bit
  808. */
  809. enum {
  810. NV_DMA_64BIT_DISABLED,
  811. NV_DMA_64BIT_ENABLED
  812. };
  813. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  814. /*
  815. * Crossover Detection
  816. * Realtek 8201 phy + some OEM boards do not work properly.
  817. */
  818. enum {
  819. NV_CROSSOVER_DETECTION_DISABLED,
  820. NV_CROSSOVER_DETECTION_ENABLED
  821. };
  822. static int phy_cross = NV_CROSSOVER_DETECTION_DISABLED;
  823. /*
  824. * Power down phy when interface is down (persists through reboot;
  825. * older Linux and other OSes may not power it up again)
  826. */
  827. static int phy_power_down = 0;
  828. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  829. {
  830. return netdev_priv(dev);
  831. }
  832. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  833. {
  834. return ((struct fe_priv *)netdev_priv(dev))->base;
  835. }
  836. static inline void pci_push(u8 __iomem *base)
  837. {
  838. /* force out pending posted writes */
  839. readl(base);
  840. }
  841. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  842. {
  843. return le32_to_cpu(prd->flaglen)
  844. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  845. }
  846. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  847. {
  848. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  849. }
  850. static bool nv_optimized(struct fe_priv *np)
  851. {
  852. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  853. return false;
  854. return true;
  855. }
  856. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  857. int delay, int delaymax, const char *msg)
  858. {
  859. u8 __iomem *base = get_hwbase(dev);
  860. pci_push(base);
  861. do {
  862. udelay(delay);
  863. delaymax -= delay;
  864. if (delaymax < 0) {
  865. if (msg)
  866. printk("%s", msg);
  867. return 1;
  868. }
  869. } while ((readl(base + offset) & mask) != target);
  870. return 0;
  871. }
  872. #define NV_SETUP_RX_RING 0x01
  873. #define NV_SETUP_TX_RING 0x02
  874. static inline u32 dma_low(dma_addr_t addr)
  875. {
  876. return addr;
  877. }
  878. static inline u32 dma_high(dma_addr_t addr)
  879. {
  880. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  881. }
  882. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  883. {
  884. struct fe_priv *np = get_nvpriv(dev);
  885. u8 __iomem *base = get_hwbase(dev);
  886. if (!nv_optimized(np)) {
  887. if (rxtx_flags & NV_SETUP_RX_RING) {
  888. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  889. }
  890. if (rxtx_flags & NV_SETUP_TX_RING) {
  891. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  892. }
  893. } else {
  894. if (rxtx_flags & NV_SETUP_RX_RING) {
  895. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  896. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  897. }
  898. if (rxtx_flags & NV_SETUP_TX_RING) {
  899. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  900. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  901. }
  902. }
  903. }
  904. static void free_rings(struct net_device *dev)
  905. {
  906. struct fe_priv *np = get_nvpriv(dev);
  907. if (!nv_optimized(np)) {
  908. if (np->rx_ring.orig)
  909. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  910. np->rx_ring.orig, np->ring_addr);
  911. } else {
  912. if (np->rx_ring.ex)
  913. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  914. np->rx_ring.ex, np->ring_addr);
  915. }
  916. if (np->rx_skb)
  917. kfree(np->rx_skb);
  918. if (np->tx_skb)
  919. kfree(np->tx_skb);
  920. }
  921. static int using_multi_irqs(struct net_device *dev)
  922. {
  923. struct fe_priv *np = get_nvpriv(dev);
  924. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  925. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  926. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  927. return 0;
  928. else
  929. return 1;
  930. }
  931. static void nv_txrx_gate(struct net_device *dev, bool gate)
  932. {
  933. struct fe_priv *np = get_nvpriv(dev);
  934. u8 __iomem *base = get_hwbase(dev);
  935. u32 powerstate;
  936. if (!np->mac_in_use &&
  937. (np->driver_data & DEV_HAS_POWER_CNTRL)) {
  938. powerstate = readl(base + NvRegPowerState2);
  939. if (gate)
  940. powerstate |= NVREG_POWERSTATE2_GATE_CLOCKS;
  941. else
  942. powerstate &= ~NVREG_POWERSTATE2_GATE_CLOCKS;
  943. writel(powerstate, base + NvRegPowerState2);
  944. }
  945. }
  946. static void nv_enable_irq(struct net_device *dev)
  947. {
  948. struct fe_priv *np = get_nvpriv(dev);
  949. if (!using_multi_irqs(dev)) {
  950. if (np->msi_flags & NV_MSI_X_ENABLED)
  951. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  952. else
  953. enable_irq(np->pci_dev->irq);
  954. } else {
  955. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  956. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  957. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  958. }
  959. }
  960. static void nv_disable_irq(struct net_device *dev)
  961. {
  962. struct fe_priv *np = get_nvpriv(dev);
  963. if (!using_multi_irqs(dev)) {
  964. if (np->msi_flags & NV_MSI_X_ENABLED)
  965. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  966. else
  967. disable_irq(np->pci_dev->irq);
  968. } else {
  969. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  970. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  971. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  972. }
  973. }
  974. /* In MSIX mode, a write to irqmask behaves as XOR */
  975. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  976. {
  977. u8 __iomem *base = get_hwbase(dev);
  978. writel(mask, base + NvRegIrqMask);
  979. }
  980. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  981. {
  982. struct fe_priv *np = get_nvpriv(dev);
  983. u8 __iomem *base = get_hwbase(dev);
  984. if (np->msi_flags & NV_MSI_X_ENABLED) {
  985. writel(mask, base + NvRegIrqMask);
  986. } else {
  987. if (np->msi_flags & NV_MSI_ENABLED)
  988. writel(0, base + NvRegMSIIrqMask);
  989. writel(0, base + NvRegIrqMask);
  990. }
  991. }
  992. static void nv_napi_enable(struct net_device *dev)
  993. {
  994. #ifdef CONFIG_FORCEDETH_NAPI
  995. struct fe_priv *np = get_nvpriv(dev);
  996. napi_enable(&np->napi);
  997. #endif
  998. }
  999. static void nv_napi_disable(struct net_device *dev)
  1000. {
  1001. #ifdef CONFIG_FORCEDETH_NAPI
  1002. struct fe_priv *np = get_nvpriv(dev);
  1003. napi_disable(&np->napi);
  1004. #endif
  1005. }
  1006. #define MII_READ (-1)
  1007. /* mii_rw: read/write a register on the PHY.
  1008. *
  1009. * Caller must guarantee serialization
  1010. */
  1011. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  1012. {
  1013. u8 __iomem *base = get_hwbase(dev);
  1014. u32 reg;
  1015. int retval;
  1016. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  1017. reg = readl(base + NvRegMIIControl);
  1018. if (reg & NVREG_MIICTL_INUSE) {
  1019. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  1020. udelay(NV_MIIBUSY_DELAY);
  1021. }
  1022. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  1023. if (value != MII_READ) {
  1024. writel(value, base + NvRegMIIData);
  1025. reg |= NVREG_MIICTL_WRITE;
  1026. }
  1027. writel(reg, base + NvRegMIIControl);
  1028. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  1029. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  1030. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  1031. dev->name, miireg, addr);
  1032. retval = -1;
  1033. } else if (value != MII_READ) {
  1034. /* it was a write operation - fewer failures are detectable */
  1035. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1036. dev->name, value, miireg, addr);
  1037. retval = 0;
  1038. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1039. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1040. dev->name, miireg, addr);
  1041. retval = -1;
  1042. } else {
  1043. retval = readl(base + NvRegMIIData);
  1044. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1045. dev->name, miireg, addr, retval);
  1046. }
  1047. return retval;
  1048. }
  1049. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1050. {
  1051. struct fe_priv *np = netdev_priv(dev);
  1052. u32 miicontrol;
  1053. unsigned int tries = 0;
  1054. miicontrol = BMCR_RESET | bmcr_setup;
  1055. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1056. return -1;
  1057. }
  1058. /* wait for 500ms */
  1059. msleep(500);
  1060. /* must wait till reset is deasserted */
  1061. while (miicontrol & BMCR_RESET) {
  1062. msleep(10);
  1063. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1064. /* FIXME: 100 tries seem excessive */
  1065. if (tries++ > 100)
  1066. return -1;
  1067. }
  1068. return 0;
  1069. }
  1070. static int phy_init(struct net_device *dev)
  1071. {
  1072. struct fe_priv *np = get_nvpriv(dev);
  1073. u8 __iomem *base = get_hwbase(dev);
  1074. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1075. /* phy errata for E3016 phy */
  1076. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1077. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1078. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1079. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1080. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1081. return PHY_ERROR;
  1082. }
  1083. }
  1084. if (np->phy_oui == PHY_OUI_REALTEK) {
  1085. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1086. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1087. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1088. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1089. return PHY_ERROR;
  1090. }
  1091. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1092. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1093. return PHY_ERROR;
  1094. }
  1095. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1096. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1097. return PHY_ERROR;
  1098. }
  1099. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1100. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1101. return PHY_ERROR;
  1102. }
  1103. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1104. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1105. return PHY_ERROR;
  1106. }
  1107. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1108. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1109. return PHY_ERROR;
  1110. }
  1111. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1112. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1113. return PHY_ERROR;
  1114. }
  1115. }
  1116. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1117. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1118. u32 powerstate = readl(base + NvRegPowerState2);
  1119. /* need to perform hw phy reset */
  1120. powerstate |= NVREG_POWERSTATE2_PHY_RESET;
  1121. writel(powerstate, base + NvRegPowerState2);
  1122. msleep(25);
  1123. powerstate &= ~NVREG_POWERSTATE2_PHY_RESET;
  1124. writel(powerstate, base + NvRegPowerState2);
  1125. msleep(25);
  1126. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1127. reg |= PHY_REALTEK_INIT9;
  1128. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, reg)) {
  1129. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1130. return PHY_ERROR;
  1131. }
  1132. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT10)) {
  1133. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1134. return PHY_ERROR;
  1135. }
  1136. reg = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, MII_READ);
  1137. if (!(reg & PHY_REALTEK_INIT11)) {
  1138. reg |= PHY_REALTEK_INIT11;
  1139. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG7, reg)) {
  1140. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1141. return PHY_ERROR;
  1142. }
  1143. }
  1144. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1145. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1146. return PHY_ERROR;
  1147. }
  1148. }
  1149. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1150. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1151. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1152. phy_reserved |= PHY_REALTEK_INIT7;
  1153. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1154. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1155. return PHY_ERROR;
  1156. }
  1157. }
  1158. }
  1159. }
  1160. /* set advertise register */
  1161. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1162. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1163. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1164. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1165. return PHY_ERROR;
  1166. }
  1167. /* get phy interface type */
  1168. phyinterface = readl(base + NvRegPhyInterface);
  1169. /* see if gigabit phy */
  1170. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1171. if (mii_status & PHY_GIGABIT) {
  1172. np->gigabit = PHY_GIGABIT;
  1173. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1174. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1175. if (phyinterface & PHY_RGMII)
  1176. mii_control_1000 |= ADVERTISE_1000FULL;
  1177. else
  1178. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1179. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1180. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1181. return PHY_ERROR;
  1182. }
  1183. }
  1184. else
  1185. np->gigabit = 0;
  1186. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1187. mii_control |= BMCR_ANENABLE;
  1188. if (np->phy_oui == PHY_OUI_REALTEK &&
  1189. np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1190. np->phy_rev == PHY_REV_REALTEK_8211C) {
  1191. /* start autoneg since we already performed hw reset above */
  1192. mii_control |= BMCR_ANRESTART;
  1193. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1194. printk(KERN_INFO "%s: phy init failed\n", pci_name(np->pci_dev));
  1195. return PHY_ERROR;
  1196. }
  1197. } else {
  1198. /* reset the phy
  1199. * (certain phys need bmcr to be setup with reset)
  1200. */
  1201. if (phy_reset(dev, mii_control)) {
  1202. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1203. return PHY_ERROR;
  1204. }
  1205. }
  1206. /* phy vendor specific configuration */
  1207. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1208. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1209. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1210. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1211. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1212. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1213. return PHY_ERROR;
  1214. }
  1215. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1216. phy_reserved |= PHY_CICADA_INIT5;
  1217. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1218. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1219. return PHY_ERROR;
  1220. }
  1221. }
  1222. if (np->phy_oui == PHY_OUI_CICADA) {
  1223. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1224. phy_reserved |= PHY_CICADA_INIT6;
  1225. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1226. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1227. return PHY_ERROR;
  1228. }
  1229. }
  1230. if (np->phy_oui == PHY_OUI_VITESSE) {
  1231. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1232. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1233. return PHY_ERROR;
  1234. }
  1235. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1236. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1237. return PHY_ERROR;
  1238. }
  1239. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1240. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1241. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1242. return PHY_ERROR;
  1243. }
  1244. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1245. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1246. phy_reserved |= PHY_VITESSE_INIT3;
  1247. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1248. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1249. return PHY_ERROR;
  1250. }
  1251. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1252. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1253. return PHY_ERROR;
  1254. }
  1255. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1256. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1257. return PHY_ERROR;
  1258. }
  1259. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1260. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1261. phy_reserved |= PHY_VITESSE_INIT3;
  1262. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1263. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1264. return PHY_ERROR;
  1265. }
  1266. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1267. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1268. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1269. return PHY_ERROR;
  1270. }
  1271. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1272. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1273. return PHY_ERROR;
  1274. }
  1275. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1276. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1277. return PHY_ERROR;
  1278. }
  1279. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1280. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1281. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1282. return PHY_ERROR;
  1283. }
  1284. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1285. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1286. phy_reserved |= PHY_VITESSE_INIT8;
  1287. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1288. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1289. return PHY_ERROR;
  1290. }
  1291. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1292. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1293. return PHY_ERROR;
  1294. }
  1295. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1296. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1297. return PHY_ERROR;
  1298. }
  1299. }
  1300. if (np->phy_oui == PHY_OUI_REALTEK) {
  1301. if (np->phy_model == PHY_MODEL_REALTEK_8211 &&
  1302. np->phy_rev == PHY_REV_REALTEK_8211B) {
  1303. /* reset could have cleared these out, set them back */
  1304. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1305. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1306. return PHY_ERROR;
  1307. }
  1308. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1309. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1310. return PHY_ERROR;
  1311. }
  1312. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1313. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1314. return PHY_ERROR;
  1315. }
  1316. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1317. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1318. return PHY_ERROR;
  1319. }
  1320. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG4, PHY_REALTEK_INIT5)) {
  1321. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1322. return PHY_ERROR;
  1323. }
  1324. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG5, PHY_REALTEK_INIT6)) {
  1325. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1326. return PHY_ERROR;
  1327. }
  1328. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1329. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1330. return PHY_ERROR;
  1331. }
  1332. }
  1333. if (np->phy_model == PHY_MODEL_REALTEK_8201) {
  1334. if (np->driver_data & DEV_NEED_PHY_INIT_FIX) {
  1335. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, MII_READ);
  1336. phy_reserved |= PHY_REALTEK_INIT7;
  1337. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG6, phy_reserved)) {
  1338. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1339. return PHY_ERROR;
  1340. }
  1341. }
  1342. if (phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  1343. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1344. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1345. return PHY_ERROR;
  1346. }
  1347. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  1348. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  1349. phy_reserved |= PHY_REALTEK_INIT3;
  1350. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved)) {
  1351. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1352. return PHY_ERROR;
  1353. }
  1354. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1355. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1356. return PHY_ERROR;
  1357. }
  1358. }
  1359. }
  1360. }
  1361. /* some phys clear out pause advertisment on reset, set it back */
  1362. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1363. /* restart auto negotiation, power down phy */
  1364. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1365. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1366. if (phy_power_down) {
  1367. mii_control |= BMCR_PDOWN;
  1368. }
  1369. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1370. return PHY_ERROR;
  1371. }
  1372. return 0;
  1373. }
  1374. static void nv_start_rx(struct net_device *dev)
  1375. {
  1376. struct fe_priv *np = netdev_priv(dev);
  1377. u8 __iomem *base = get_hwbase(dev);
  1378. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1379. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1380. /* Already running? Stop it. */
  1381. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1382. rx_ctrl &= ~NVREG_RCVCTL_START;
  1383. writel(rx_ctrl, base + NvRegReceiverControl);
  1384. pci_push(base);
  1385. }
  1386. writel(np->linkspeed, base + NvRegLinkSpeed);
  1387. pci_push(base);
  1388. rx_ctrl |= NVREG_RCVCTL_START;
  1389. if (np->mac_in_use)
  1390. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1391. writel(rx_ctrl, base + NvRegReceiverControl);
  1392. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1393. dev->name, np->duplex, np->linkspeed);
  1394. pci_push(base);
  1395. }
  1396. static void nv_stop_rx(struct net_device *dev)
  1397. {
  1398. struct fe_priv *np = netdev_priv(dev);
  1399. u8 __iomem *base = get_hwbase(dev);
  1400. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1401. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1402. if (!np->mac_in_use)
  1403. rx_ctrl &= ~NVREG_RCVCTL_START;
  1404. else
  1405. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1406. writel(rx_ctrl, base + NvRegReceiverControl);
  1407. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1408. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1409. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1410. udelay(NV_RXSTOP_DELAY2);
  1411. if (!np->mac_in_use)
  1412. writel(0, base + NvRegLinkSpeed);
  1413. }
  1414. static void nv_start_tx(struct net_device *dev)
  1415. {
  1416. struct fe_priv *np = netdev_priv(dev);
  1417. u8 __iomem *base = get_hwbase(dev);
  1418. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1419. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1420. tx_ctrl |= NVREG_XMITCTL_START;
  1421. if (np->mac_in_use)
  1422. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1423. writel(tx_ctrl, base + NvRegTransmitterControl);
  1424. pci_push(base);
  1425. }
  1426. static void nv_stop_tx(struct net_device *dev)
  1427. {
  1428. struct fe_priv *np = netdev_priv(dev);
  1429. u8 __iomem *base = get_hwbase(dev);
  1430. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1431. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1432. if (!np->mac_in_use)
  1433. tx_ctrl &= ~NVREG_XMITCTL_START;
  1434. else
  1435. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1436. writel(tx_ctrl, base + NvRegTransmitterControl);
  1437. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1438. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1439. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1440. udelay(NV_TXSTOP_DELAY2);
  1441. if (!np->mac_in_use)
  1442. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1443. base + NvRegTransmitPoll);
  1444. }
  1445. static void nv_start_rxtx(struct net_device *dev)
  1446. {
  1447. nv_start_rx(dev);
  1448. nv_start_tx(dev);
  1449. }
  1450. static void nv_stop_rxtx(struct net_device *dev)
  1451. {
  1452. nv_stop_rx(dev);
  1453. nv_stop_tx(dev);
  1454. }
  1455. static void nv_txrx_reset(struct net_device *dev)
  1456. {
  1457. struct fe_priv *np = netdev_priv(dev);
  1458. u8 __iomem *base = get_hwbase(dev);
  1459. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1460. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1461. pci_push(base);
  1462. udelay(NV_TXRX_RESET_DELAY);
  1463. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1464. pci_push(base);
  1465. }
  1466. static void nv_mac_reset(struct net_device *dev)
  1467. {
  1468. struct fe_priv *np = netdev_priv(dev);
  1469. u8 __iomem *base = get_hwbase(dev);
  1470. u32 temp1, temp2, temp3;
  1471. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1472. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1473. pci_push(base);
  1474. /* save registers since they will be cleared on reset */
  1475. temp1 = readl(base + NvRegMacAddrA);
  1476. temp2 = readl(base + NvRegMacAddrB);
  1477. temp3 = readl(base + NvRegTransmitPoll);
  1478. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1479. pci_push(base);
  1480. udelay(NV_MAC_RESET_DELAY);
  1481. writel(0, base + NvRegMacReset);
  1482. pci_push(base);
  1483. udelay(NV_MAC_RESET_DELAY);
  1484. /* restore saved registers */
  1485. writel(temp1, base + NvRegMacAddrA);
  1486. writel(temp2, base + NvRegMacAddrB);
  1487. writel(temp3, base + NvRegTransmitPoll);
  1488. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1489. pci_push(base);
  1490. }
  1491. static void nv_get_hw_stats(struct net_device *dev)
  1492. {
  1493. struct fe_priv *np = netdev_priv(dev);
  1494. u8 __iomem *base = get_hwbase(dev);
  1495. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1496. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1497. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1498. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1499. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1500. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1501. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1502. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1503. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1504. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1505. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1506. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1507. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1508. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1509. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1510. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1511. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1512. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1513. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1514. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1515. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1516. np->estats.rx_packets =
  1517. np->estats.rx_unicast +
  1518. np->estats.rx_multicast +
  1519. np->estats.rx_broadcast;
  1520. np->estats.rx_errors_total =
  1521. np->estats.rx_crc_errors +
  1522. np->estats.rx_over_errors +
  1523. np->estats.rx_frame_error +
  1524. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1525. np->estats.rx_late_collision +
  1526. np->estats.rx_runt +
  1527. np->estats.rx_frame_too_long;
  1528. np->estats.tx_errors_total =
  1529. np->estats.tx_late_collision +
  1530. np->estats.tx_fifo_errors +
  1531. np->estats.tx_carrier_errors +
  1532. np->estats.tx_excess_deferral +
  1533. np->estats.tx_retry_error;
  1534. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1535. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1536. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1537. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1538. np->estats.tx_pause += readl(base + NvRegTxPause);
  1539. np->estats.rx_pause += readl(base + NvRegRxPause);
  1540. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1541. }
  1542. if (np->driver_data & DEV_HAS_STATISTICS_V3) {
  1543. np->estats.tx_unicast += readl(base + NvRegTxUnicast);
  1544. np->estats.tx_multicast += readl(base + NvRegTxMulticast);
  1545. np->estats.tx_broadcast += readl(base + NvRegTxBroadcast);
  1546. }
  1547. }
  1548. /*
  1549. * nv_get_stats: dev->get_stats function
  1550. * Get latest stats value from the nic.
  1551. * Called with read_lock(&dev_base_lock) held for read -
  1552. * only synchronized against unregister_netdevice.
  1553. */
  1554. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1555. {
  1556. struct fe_priv *np = netdev_priv(dev);
  1557. /* If the nic supports hw counters then retrieve latest values */
  1558. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3)) {
  1559. nv_get_hw_stats(dev);
  1560. /* copy to net_device stats */
  1561. dev->stats.tx_bytes = np->estats.tx_bytes;
  1562. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1563. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1564. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1565. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1566. dev->stats.rx_errors = np->estats.rx_errors_total;
  1567. dev->stats.tx_errors = np->estats.tx_errors_total;
  1568. }
  1569. return &dev->stats;
  1570. }
  1571. /*
  1572. * nv_alloc_rx: fill rx ring entries.
  1573. * Return 1 if the allocations for the skbs failed and the
  1574. * rx engine is without Available descriptors
  1575. */
  1576. static int nv_alloc_rx(struct net_device *dev)
  1577. {
  1578. struct fe_priv *np = netdev_priv(dev);
  1579. struct ring_desc* less_rx;
  1580. less_rx = np->get_rx.orig;
  1581. if (less_rx-- == np->first_rx.orig)
  1582. less_rx = np->last_rx.orig;
  1583. while (np->put_rx.orig != less_rx) {
  1584. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1585. if (skb) {
  1586. np->put_rx_ctx->skb = skb;
  1587. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1588. skb->data,
  1589. skb_tailroom(skb),
  1590. PCI_DMA_FROMDEVICE);
  1591. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1592. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1593. wmb();
  1594. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1595. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1596. np->put_rx.orig = np->first_rx.orig;
  1597. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1598. np->put_rx_ctx = np->first_rx_ctx;
  1599. } else {
  1600. return 1;
  1601. }
  1602. }
  1603. return 0;
  1604. }
  1605. static int nv_alloc_rx_optimized(struct net_device *dev)
  1606. {
  1607. struct fe_priv *np = netdev_priv(dev);
  1608. struct ring_desc_ex* less_rx;
  1609. less_rx = np->get_rx.ex;
  1610. if (less_rx-- == np->first_rx.ex)
  1611. less_rx = np->last_rx.ex;
  1612. while (np->put_rx.ex != less_rx) {
  1613. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1614. if (skb) {
  1615. np->put_rx_ctx->skb = skb;
  1616. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1617. skb->data,
  1618. skb_tailroom(skb),
  1619. PCI_DMA_FROMDEVICE);
  1620. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1621. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1622. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1623. wmb();
  1624. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1625. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1626. np->put_rx.ex = np->first_rx.ex;
  1627. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1628. np->put_rx_ctx = np->first_rx_ctx;
  1629. } else {
  1630. return 1;
  1631. }
  1632. }
  1633. return 0;
  1634. }
  1635. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1636. #ifdef CONFIG_FORCEDETH_NAPI
  1637. static void nv_do_rx_refill(unsigned long data)
  1638. {
  1639. struct net_device *dev = (struct net_device *) data;
  1640. struct fe_priv *np = netdev_priv(dev);
  1641. /* Just reschedule NAPI rx processing */
  1642. napi_schedule(&np->napi);
  1643. }
  1644. #else
  1645. static void nv_do_rx_refill(unsigned long data)
  1646. {
  1647. struct net_device *dev = (struct net_device *) data;
  1648. struct fe_priv *np = netdev_priv(dev);
  1649. int retcode;
  1650. if (!using_multi_irqs(dev)) {
  1651. if (np->msi_flags & NV_MSI_X_ENABLED)
  1652. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1653. else
  1654. disable_irq(np->pci_dev->irq);
  1655. } else {
  1656. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1657. }
  1658. if (!nv_optimized(np))
  1659. retcode = nv_alloc_rx(dev);
  1660. else
  1661. retcode = nv_alloc_rx_optimized(dev);
  1662. if (retcode) {
  1663. spin_lock_irq(&np->lock);
  1664. if (!np->in_shutdown)
  1665. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1666. spin_unlock_irq(&np->lock);
  1667. }
  1668. if (!using_multi_irqs(dev)) {
  1669. if (np->msi_flags & NV_MSI_X_ENABLED)
  1670. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1671. else
  1672. enable_irq(np->pci_dev->irq);
  1673. } else {
  1674. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1675. }
  1676. }
  1677. #endif
  1678. static void nv_init_rx(struct net_device *dev)
  1679. {
  1680. struct fe_priv *np = netdev_priv(dev);
  1681. int i;
  1682. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1683. if (!nv_optimized(np))
  1684. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1685. else
  1686. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1687. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1688. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1689. for (i = 0; i < np->rx_ring_size; i++) {
  1690. if (!nv_optimized(np)) {
  1691. np->rx_ring.orig[i].flaglen = 0;
  1692. np->rx_ring.orig[i].buf = 0;
  1693. } else {
  1694. np->rx_ring.ex[i].flaglen = 0;
  1695. np->rx_ring.ex[i].txvlan = 0;
  1696. np->rx_ring.ex[i].bufhigh = 0;
  1697. np->rx_ring.ex[i].buflow = 0;
  1698. }
  1699. np->rx_skb[i].skb = NULL;
  1700. np->rx_skb[i].dma = 0;
  1701. }
  1702. }
  1703. static void nv_init_tx(struct net_device *dev)
  1704. {
  1705. struct fe_priv *np = netdev_priv(dev);
  1706. int i;
  1707. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1708. if (!nv_optimized(np))
  1709. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1710. else
  1711. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1712. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1713. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1714. np->tx_pkts_in_progress = 0;
  1715. np->tx_change_owner = NULL;
  1716. np->tx_end_flip = NULL;
  1717. np->tx_stop = 0;
  1718. for (i = 0; i < np->tx_ring_size; i++) {
  1719. if (!nv_optimized(np)) {
  1720. np->tx_ring.orig[i].flaglen = 0;
  1721. np->tx_ring.orig[i].buf = 0;
  1722. } else {
  1723. np->tx_ring.ex[i].flaglen = 0;
  1724. np->tx_ring.ex[i].txvlan = 0;
  1725. np->tx_ring.ex[i].bufhigh = 0;
  1726. np->tx_ring.ex[i].buflow = 0;
  1727. }
  1728. np->tx_skb[i].skb = NULL;
  1729. np->tx_skb[i].dma = 0;
  1730. np->tx_skb[i].dma_len = 0;
  1731. np->tx_skb[i].dma_single = 0;
  1732. np->tx_skb[i].first_tx_desc = NULL;
  1733. np->tx_skb[i].next_tx_ctx = NULL;
  1734. }
  1735. }
  1736. static int nv_init_ring(struct net_device *dev)
  1737. {
  1738. struct fe_priv *np = netdev_priv(dev);
  1739. nv_init_tx(dev);
  1740. nv_init_rx(dev);
  1741. if (!nv_optimized(np))
  1742. return nv_alloc_rx(dev);
  1743. else
  1744. return nv_alloc_rx_optimized(dev);
  1745. }
  1746. static void nv_unmap_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1747. {
  1748. if (tx_skb->dma) {
  1749. if (tx_skb->dma_single)
  1750. pci_unmap_single(np->pci_dev, tx_skb->dma,
  1751. tx_skb->dma_len,
  1752. PCI_DMA_TODEVICE);
  1753. else
  1754. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1755. tx_skb->dma_len,
  1756. PCI_DMA_TODEVICE);
  1757. tx_skb->dma = 0;
  1758. }
  1759. }
  1760. static int nv_release_txskb(struct fe_priv *np, struct nv_skb_map *tx_skb)
  1761. {
  1762. nv_unmap_txskb(np, tx_skb);
  1763. if (tx_skb->skb) {
  1764. dev_kfree_skb_any(tx_skb->skb);
  1765. tx_skb->skb = NULL;
  1766. return 1;
  1767. }
  1768. return 0;
  1769. }
  1770. static void nv_drain_tx(struct net_device *dev)
  1771. {
  1772. struct fe_priv *np = netdev_priv(dev);
  1773. unsigned int i;
  1774. for (i = 0; i < np->tx_ring_size; i++) {
  1775. if (!nv_optimized(np)) {
  1776. np->tx_ring.orig[i].flaglen = 0;
  1777. np->tx_ring.orig[i].buf = 0;
  1778. } else {
  1779. np->tx_ring.ex[i].flaglen = 0;
  1780. np->tx_ring.ex[i].txvlan = 0;
  1781. np->tx_ring.ex[i].bufhigh = 0;
  1782. np->tx_ring.ex[i].buflow = 0;
  1783. }
  1784. if (nv_release_txskb(np, &np->tx_skb[i]))
  1785. dev->stats.tx_dropped++;
  1786. np->tx_skb[i].dma = 0;
  1787. np->tx_skb[i].dma_len = 0;
  1788. np->tx_skb[i].dma_single = 0;
  1789. np->tx_skb[i].first_tx_desc = NULL;
  1790. np->tx_skb[i].next_tx_ctx = NULL;
  1791. }
  1792. np->tx_pkts_in_progress = 0;
  1793. np->tx_change_owner = NULL;
  1794. np->tx_end_flip = NULL;
  1795. }
  1796. static void nv_drain_rx(struct net_device *dev)
  1797. {
  1798. struct fe_priv *np = netdev_priv(dev);
  1799. int i;
  1800. for (i = 0; i < np->rx_ring_size; i++) {
  1801. if (!nv_optimized(np)) {
  1802. np->rx_ring.orig[i].flaglen = 0;
  1803. np->rx_ring.orig[i].buf = 0;
  1804. } else {
  1805. np->rx_ring.ex[i].flaglen = 0;
  1806. np->rx_ring.ex[i].txvlan = 0;
  1807. np->rx_ring.ex[i].bufhigh = 0;
  1808. np->rx_ring.ex[i].buflow = 0;
  1809. }
  1810. wmb();
  1811. if (np->rx_skb[i].skb) {
  1812. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1813. (skb_end_pointer(np->rx_skb[i].skb) -
  1814. np->rx_skb[i].skb->data),
  1815. PCI_DMA_FROMDEVICE);
  1816. dev_kfree_skb(np->rx_skb[i].skb);
  1817. np->rx_skb[i].skb = NULL;
  1818. }
  1819. }
  1820. }
  1821. static void nv_drain_rxtx(struct net_device *dev)
  1822. {
  1823. nv_drain_tx(dev);
  1824. nv_drain_rx(dev);
  1825. }
  1826. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1827. {
  1828. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1829. }
  1830. static void nv_legacybackoff_reseed(struct net_device *dev)
  1831. {
  1832. u8 __iomem *base = get_hwbase(dev);
  1833. u32 reg;
  1834. u32 low;
  1835. int tx_status = 0;
  1836. reg = readl(base + NvRegSlotTime) & ~NVREG_SLOTTIME_MASK;
  1837. get_random_bytes(&low, sizeof(low));
  1838. reg |= low & NVREG_SLOTTIME_MASK;
  1839. /* Need to stop tx before change takes effect.
  1840. * Caller has already gained np->lock.
  1841. */
  1842. tx_status = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START;
  1843. if (tx_status)
  1844. nv_stop_tx(dev);
  1845. nv_stop_rx(dev);
  1846. writel(reg, base + NvRegSlotTime);
  1847. if (tx_status)
  1848. nv_start_tx(dev);
  1849. nv_start_rx(dev);
  1850. }
  1851. /* Gear Backoff Seeds */
  1852. #define BACKOFF_SEEDSET_ROWS 8
  1853. #define BACKOFF_SEEDSET_LFSRS 15
  1854. /* Known Good seed sets */
  1855. static const u32 main_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1856. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1857. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 385, 761, 790, 974},
  1858. {145, 155, 165, 175, 185, 196, 235, 245, 255, 265, 275, 285, 660, 690, 874},
  1859. {245, 255, 265, 575, 385, 298, 335, 345, 355, 366, 375, 386, 761, 790, 974},
  1860. {266, 265, 276, 585, 397, 208, 345, 355, 365, 376, 385, 396, 771, 700, 984},
  1861. {266, 265, 276, 586, 397, 208, 346, 355, 365, 376, 285, 396, 771, 700, 984},
  1862. {366, 365, 376, 686, 497, 308, 447, 455, 466, 476, 485, 496, 871, 800, 84},
  1863. {466, 465, 476, 786, 597, 408, 547, 555, 566, 576, 585, 597, 971, 900, 184}};
  1864. static const u32 gear_seedset[BACKOFF_SEEDSET_ROWS][BACKOFF_SEEDSET_LFSRS] = {
  1865. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1866. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1867. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 397},
  1868. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1869. {251, 262, 273, 324, 319, 508, 375, 364, 341, 371, 398, 193, 375, 30, 295},
  1870. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1871. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395},
  1872. {351, 375, 373, 469, 551, 639, 477, 464, 441, 472, 498, 293, 476, 130, 395}};
  1873. static void nv_gear_backoff_reseed(struct net_device *dev)
  1874. {
  1875. u8 __iomem *base = get_hwbase(dev);
  1876. u32 miniseed1, miniseed2, miniseed2_reversed, miniseed3, miniseed3_reversed;
  1877. u32 temp, seedset, combinedSeed;
  1878. int i;
  1879. /* Setup seed for free running LFSR */
  1880. /* We are going to read the time stamp counter 3 times
  1881. and swizzle bits around to increase randomness */
  1882. get_random_bytes(&miniseed1, sizeof(miniseed1));
  1883. miniseed1 &= 0x0fff;
  1884. if (miniseed1 == 0)
  1885. miniseed1 = 0xabc;
  1886. get_random_bytes(&miniseed2, sizeof(miniseed2));
  1887. miniseed2 &= 0x0fff;
  1888. if (miniseed2 == 0)
  1889. miniseed2 = 0xabc;
  1890. miniseed2_reversed =
  1891. ((miniseed2 & 0xF00) >> 8) |
  1892. (miniseed2 & 0x0F0) |
  1893. ((miniseed2 & 0x00F) << 8);
  1894. get_random_bytes(&miniseed3, sizeof(miniseed3));
  1895. miniseed3 &= 0x0fff;
  1896. if (miniseed3 == 0)
  1897. miniseed3 = 0xabc;
  1898. miniseed3_reversed =
  1899. ((miniseed3 & 0xF00) >> 8) |
  1900. (miniseed3 & 0x0F0) |
  1901. ((miniseed3 & 0x00F) << 8);
  1902. combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) |
  1903. (miniseed2 ^ miniseed3_reversed);
  1904. /* Seeds can not be zero */
  1905. if ((combinedSeed & NVREG_BKOFFCTRL_SEED_MASK) == 0)
  1906. combinedSeed |= 0x08;
  1907. if ((combinedSeed & (NVREG_BKOFFCTRL_SEED_MASK << NVREG_BKOFFCTRL_GEAR)) == 0)
  1908. combinedSeed |= 0x8000;
  1909. /* No need to disable tx here */
  1910. temp = NVREG_BKOFFCTRL_DEFAULT | (0 << NVREG_BKOFFCTRL_SELECT);
  1911. temp |= combinedSeed & NVREG_BKOFFCTRL_SEED_MASK;
  1912. temp |= combinedSeed >> NVREG_BKOFFCTRL_GEAR;
  1913. writel(temp,base + NvRegBackOffControl);
  1914. /* Setup seeds for all gear LFSRs. */
  1915. get_random_bytes(&seedset, sizeof(seedset));
  1916. seedset = seedset % BACKOFF_SEEDSET_ROWS;
  1917. for (i = 1; i <= BACKOFF_SEEDSET_LFSRS; i++)
  1918. {
  1919. temp = NVREG_BKOFFCTRL_DEFAULT | (i << NVREG_BKOFFCTRL_SELECT);
  1920. temp |= main_seedset[seedset][i-1] & 0x3ff;
  1921. temp |= ((gear_seedset[seedset][i-1] & 0x3ff) << NVREG_BKOFFCTRL_GEAR);
  1922. writel(temp, base + NvRegBackOffControl);
  1923. }
  1924. }
  1925. /*
  1926. * nv_start_xmit: dev->hard_start_xmit function
  1927. * Called with netif_tx_lock held.
  1928. */
  1929. static netdev_tx_t nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1930. {
  1931. struct fe_priv *np = netdev_priv(dev);
  1932. u32 tx_flags = 0;
  1933. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1934. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1935. unsigned int i;
  1936. u32 offset = 0;
  1937. u32 bcnt;
  1938. u32 size = skb->len-skb->data_len;
  1939. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1940. u32 empty_slots;
  1941. struct ring_desc* put_tx;
  1942. struct ring_desc* start_tx;
  1943. struct ring_desc* prev_tx;
  1944. struct nv_skb_map* prev_tx_ctx;
  1945. unsigned long flags;
  1946. /* add fragments to entries count */
  1947. for (i = 0; i < fragments; i++) {
  1948. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1949. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1950. }
  1951. spin_lock_irqsave(&np->lock, flags);
  1952. empty_slots = nv_get_empty_tx_slots(np);
  1953. if (unlikely(empty_slots <= entries)) {
  1954. netif_stop_queue(dev);
  1955. np->tx_stop = 1;
  1956. spin_unlock_irqrestore(&np->lock, flags);
  1957. return NETDEV_TX_BUSY;
  1958. }
  1959. spin_unlock_irqrestore(&np->lock, flags);
  1960. start_tx = put_tx = np->put_tx.orig;
  1961. /* setup the header buffer */
  1962. do {
  1963. prev_tx = put_tx;
  1964. prev_tx_ctx = np->put_tx_ctx;
  1965. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1966. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1967. PCI_DMA_TODEVICE);
  1968. np->put_tx_ctx->dma_len = bcnt;
  1969. np->put_tx_ctx->dma_single = 1;
  1970. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1971. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1972. tx_flags = np->tx_flags;
  1973. offset += bcnt;
  1974. size -= bcnt;
  1975. if (unlikely(put_tx++ == np->last_tx.orig))
  1976. put_tx = np->first_tx.orig;
  1977. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1978. np->put_tx_ctx = np->first_tx_ctx;
  1979. } while (size);
  1980. /* setup the fragments */
  1981. for (i = 0; i < fragments; i++) {
  1982. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1983. u32 size = frag->size;
  1984. offset = 0;
  1985. do {
  1986. prev_tx = put_tx;
  1987. prev_tx_ctx = np->put_tx_ctx;
  1988. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1989. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1990. PCI_DMA_TODEVICE);
  1991. np->put_tx_ctx->dma_len = bcnt;
  1992. np->put_tx_ctx->dma_single = 0;
  1993. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1994. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1995. offset += bcnt;
  1996. size -= bcnt;
  1997. if (unlikely(put_tx++ == np->last_tx.orig))
  1998. put_tx = np->first_tx.orig;
  1999. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2000. np->put_tx_ctx = np->first_tx_ctx;
  2001. } while (size);
  2002. }
  2003. /* set last fragment flag */
  2004. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  2005. /* save skb in this slot's context area */
  2006. prev_tx_ctx->skb = skb;
  2007. if (skb_is_gso(skb))
  2008. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2009. else
  2010. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2011. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2012. spin_lock_irqsave(&np->lock, flags);
  2013. /* set tx flags */
  2014. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2015. np->put_tx.orig = put_tx;
  2016. spin_unlock_irqrestore(&np->lock, flags);
  2017. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  2018. dev->name, entries, tx_flags_extra);
  2019. {
  2020. int j;
  2021. for (j=0; j<64; j++) {
  2022. if ((j%16) == 0)
  2023. dprintk("\n%03x:", j);
  2024. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2025. }
  2026. dprintk("\n");
  2027. }
  2028. dev->trans_start = jiffies;
  2029. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2030. return NETDEV_TX_OK;
  2031. }
  2032. static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb,
  2033. struct net_device *dev)
  2034. {
  2035. struct fe_priv *np = netdev_priv(dev);
  2036. u32 tx_flags = 0;
  2037. u32 tx_flags_extra;
  2038. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  2039. unsigned int i;
  2040. u32 offset = 0;
  2041. u32 bcnt;
  2042. u32 size = skb->len-skb->data_len;
  2043. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2044. u32 empty_slots;
  2045. struct ring_desc_ex* put_tx;
  2046. struct ring_desc_ex* start_tx;
  2047. struct ring_desc_ex* prev_tx;
  2048. struct nv_skb_map* prev_tx_ctx;
  2049. struct nv_skb_map* start_tx_ctx;
  2050. unsigned long flags;
  2051. /* add fragments to entries count */
  2052. for (i = 0; i < fragments; i++) {
  2053. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  2054. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  2055. }
  2056. spin_lock_irqsave(&np->lock, flags);
  2057. empty_slots = nv_get_empty_tx_slots(np);
  2058. if (unlikely(empty_slots <= entries)) {
  2059. netif_stop_queue(dev);
  2060. np->tx_stop = 1;
  2061. spin_unlock_irqrestore(&np->lock, flags);
  2062. return NETDEV_TX_BUSY;
  2063. }
  2064. spin_unlock_irqrestore(&np->lock, flags);
  2065. start_tx = put_tx = np->put_tx.ex;
  2066. start_tx_ctx = np->put_tx_ctx;
  2067. /* setup the header buffer */
  2068. do {
  2069. prev_tx = put_tx;
  2070. prev_tx_ctx = np->put_tx_ctx;
  2071. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2072. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  2073. PCI_DMA_TODEVICE);
  2074. np->put_tx_ctx->dma_len = bcnt;
  2075. np->put_tx_ctx->dma_single = 1;
  2076. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2077. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2078. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2079. tx_flags = NV_TX2_VALID;
  2080. offset += bcnt;
  2081. size -= bcnt;
  2082. if (unlikely(put_tx++ == np->last_tx.ex))
  2083. put_tx = np->first_tx.ex;
  2084. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2085. np->put_tx_ctx = np->first_tx_ctx;
  2086. } while (size);
  2087. /* setup the fragments */
  2088. for (i = 0; i < fragments; i++) {
  2089. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  2090. u32 size = frag->size;
  2091. offset = 0;
  2092. do {
  2093. prev_tx = put_tx;
  2094. prev_tx_ctx = np->put_tx_ctx;
  2095. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  2096. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  2097. PCI_DMA_TODEVICE);
  2098. np->put_tx_ctx->dma_len = bcnt;
  2099. np->put_tx_ctx->dma_single = 0;
  2100. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  2101. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  2102. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  2103. offset += bcnt;
  2104. size -= bcnt;
  2105. if (unlikely(put_tx++ == np->last_tx.ex))
  2106. put_tx = np->first_tx.ex;
  2107. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  2108. np->put_tx_ctx = np->first_tx_ctx;
  2109. } while (size);
  2110. }
  2111. /* set last fragment flag */
  2112. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  2113. /* save skb in this slot's context area */
  2114. prev_tx_ctx->skb = skb;
  2115. if (skb_is_gso(skb))
  2116. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  2117. else
  2118. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  2119. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  2120. /* vlan tag */
  2121. if (likely(!np->vlangrp)) {
  2122. start_tx->txvlan = 0;
  2123. } else {
  2124. if (vlan_tx_tag_present(skb))
  2125. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  2126. else
  2127. start_tx->txvlan = 0;
  2128. }
  2129. spin_lock_irqsave(&np->lock, flags);
  2130. if (np->tx_limit) {
  2131. /* Limit the number of outstanding tx. Setup all fragments, but
  2132. * do not set the VALID bit on the first descriptor. Save a pointer
  2133. * to that descriptor and also for next skb_map element.
  2134. */
  2135. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  2136. if (!np->tx_change_owner)
  2137. np->tx_change_owner = start_tx_ctx;
  2138. /* remove VALID bit */
  2139. tx_flags &= ~NV_TX2_VALID;
  2140. start_tx_ctx->first_tx_desc = start_tx;
  2141. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  2142. np->tx_end_flip = np->put_tx_ctx;
  2143. } else {
  2144. np->tx_pkts_in_progress++;
  2145. }
  2146. }
  2147. /* set tx flags */
  2148. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  2149. np->put_tx.ex = put_tx;
  2150. spin_unlock_irqrestore(&np->lock, flags);
  2151. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  2152. dev->name, entries, tx_flags_extra);
  2153. {
  2154. int j;
  2155. for (j=0; j<64; j++) {
  2156. if ((j%16) == 0)
  2157. dprintk("\n%03x:", j);
  2158. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2159. }
  2160. dprintk("\n");
  2161. }
  2162. dev->trans_start = jiffies;
  2163. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2164. return NETDEV_TX_OK;
  2165. }
  2166. static inline void nv_tx_flip_ownership(struct net_device *dev)
  2167. {
  2168. struct fe_priv *np = netdev_priv(dev);
  2169. np->tx_pkts_in_progress--;
  2170. if (np->tx_change_owner) {
  2171. np->tx_change_owner->first_tx_desc->flaglen |=
  2172. cpu_to_le32(NV_TX2_VALID);
  2173. np->tx_pkts_in_progress++;
  2174. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  2175. if (np->tx_change_owner == np->tx_end_flip)
  2176. np->tx_change_owner = NULL;
  2177. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2178. }
  2179. }
  2180. /*
  2181. * nv_tx_done: check for completed packets, release the skbs.
  2182. *
  2183. * Caller must own np->lock.
  2184. */
  2185. static int nv_tx_done(struct net_device *dev, int limit)
  2186. {
  2187. struct fe_priv *np = netdev_priv(dev);
  2188. u32 flags;
  2189. int tx_work = 0;
  2190. struct ring_desc* orig_get_tx = np->get_tx.orig;
  2191. while ((np->get_tx.orig != np->put_tx.orig) &&
  2192. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID) &&
  2193. (tx_work < limit)) {
  2194. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  2195. dev->name, flags);
  2196. nv_unmap_txskb(np, np->get_tx_ctx);
  2197. if (np->desc_ver == DESC_VER_1) {
  2198. if (flags & NV_TX_LASTPACKET) {
  2199. if (flags & NV_TX_ERROR) {
  2200. if (flags & NV_TX_UNDERFLOW)
  2201. dev->stats.tx_fifo_errors++;
  2202. if (flags & NV_TX_CARRIERLOST)
  2203. dev->stats.tx_carrier_errors++;
  2204. if ((flags & NV_TX_RETRYERROR) && !(flags & NV_TX_RETRYCOUNT_MASK))
  2205. nv_legacybackoff_reseed(dev);
  2206. dev->stats.tx_errors++;
  2207. } else {
  2208. dev->stats.tx_packets++;
  2209. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2210. }
  2211. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2212. np->get_tx_ctx->skb = NULL;
  2213. tx_work++;
  2214. }
  2215. } else {
  2216. if (flags & NV_TX2_LASTPACKET) {
  2217. if (flags & NV_TX2_ERROR) {
  2218. if (flags & NV_TX2_UNDERFLOW)
  2219. dev->stats.tx_fifo_errors++;
  2220. if (flags & NV_TX2_CARRIERLOST)
  2221. dev->stats.tx_carrier_errors++;
  2222. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK))
  2223. nv_legacybackoff_reseed(dev);
  2224. dev->stats.tx_errors++;
  2225. } else {
  2226. dev->stats.tx_packets++;
  2227. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  2228. }
  2229. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2230. np->get_tx_ctx->skb = NULL;
  2231. tx_work++;
  2232. }
  2233. }
  2234. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  2235. np->get_tx.orig = np->first_tx.orig;
  2236. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2237. np->get_tx_ctx = np->first_tx_ctx;
  2238. }
  2239. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  2240. np->tx_stop = 0;
  2241. netif_wake_queue(dev);
  2242. }
  2243. return tx_work;
  2244. }
  2245. static int nv_tx_done_optimized(struct net_device *dev, int limit)
  2246. {
  2247. struct fe_priv *np = netdev_priv(dev);
  2248. u32 flags;
  2249. int tx_work = 0;
  2250. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  2251. while ((np->get_tx.ex != np->put_tx.ex) &&
  2252. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  2253. (tx_work < limit)) {
  2254. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  2255. dev->name, flags);
  2256. nv_unmap_txskb(np, np->get_tx_ctx);
  2257. if (flags & NV_TX2_LASTPACKET) {
  2258. if (!(flags & NV_TX2_ERROR))
  2259. dev->stats.tx_packets++;
  2260. else {
  2261. if ((flags & NV_TX2_RETRYERROR) && !(flags & NV_TX2_RETRYCOUNT_MASK)) {
  2262. if (np->driver_data & DEV_HAS_GEAR_MODE)
  2263. nv_gear_backoff_reseed(dev);
  2264. else
  2265. nv_legacybackoff_reseed(dev);
  2266. }
  2267. }
  2268. dev_kfree_skb_any(np->get_tx_ctx->skb);
  2269. np->get_tx_ctx->skb = NULL;
  2270. tx_work++;
  2271. if (np->tx_limit) {
  2272. nv_tx_flip_ownership(dev);
  2273. }
  2274. }
  2275. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  2276. np->get_tx.ex = np->first_tx.ex;
  2277. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  2278. np->get_tx_ctx = np->first_tx_ctx;
  2279. }
  2280. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  2281. np->tx_stop = 0;
  2282. netif_wake_queue(dev);
  2283. }
  2284. return tx_work;
  2285. }
  2286. /*
  2287. * nv_tx_timeout: dev->tx_timeout function
  2288. * Called with netif_tx_lock held.
  2289. */
  2290. static void nv_tx_timeout(struct net_device *dev)
  2291. {
  2292. struct fe_priv *np = netdev_priv(dev);
  2293. u8 __iomem *base = get_hwbase(dev);
  2294. u32 status;
  2295. union ring_type put_tx;
  2296. int saved_tx_limit;
  2297. if (np->msi_flags & NV_MSI_X_ENABLED)
  2298. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2299. else
  2300. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2301. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2302. {
  2303. int i;
  2304. printk(KERN_INFO "%s: Ring at %lx\n",
  2305. dev->name, (unsigned long)np->ring_addr);
  2306. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2307. for (i=0;i<=np->register_size;i+= 32) {
  2308. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2309. i,
  2310. readl(base + i + 0), readl(base + i + 4),
  2311. readl(base + i + 8), readl(base + i + 12),
  2312. readl(base + i + 16), readl(base + i + 20),
  2313. readl(base + i + 24), readl(base + i + 28));
  2314. }
  2315. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2316. for (i=0;i<np->tx_ring_size;i+= 4) {
  2317. if (!nv_optimized(np)) {
  2318. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2319. i,
  2320. le32_to_cpu(np->tx_ring.orig[i].buf),
  2321. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2322. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2323. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2324. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2325. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2326. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2327. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2328. } else {
  2329. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2330. i,
  2331. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2332. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2333. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2334. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2335. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2336. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2337. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2338. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2339. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2340. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2341. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2342. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2343. }
  2344. }
  2345. }
  2346. spin_lock_irq(&np->lock);
  2347. /* 1) stop tx engine */
  2348. nv_stop_tx(dev);
  2349. /* 2) complete any outstanding tx and do not give HW any limited tx pkts */
  2350. saved_tx_limit = np->tx_limit;
  2351. np->tx_limit = 0; /* prevent giving HW any limited pkts */
  2352. np->tx_stop = 0; /* prevent waking tx queue */
  2353. if (!nv_optimized(np))
  2354. nv_tx_done(dev, np->tx_ring_size);
  2355. else
  2356. nv_tx_done_optimized(dev, np->tx_ring_size);
  2357. /* save current HW postion */
  2358. if (np->tx_change_owner)
  2359. put_tx.ex = np->tx_change_owner->first_tx_desc;
  2360. else
  2361. put_tx = np->put_tx;
  2362. /* 3) clear all tx state */
  2363. nv_drain_tx(dev);
  2364. nv_init_tx(dev);
  2365. /* 4) restore state to current HW position */
  2366. np->get_tx = np->put_tx = put_tx;
  2367. np->tx_limit = saved_tx_limit;
  2368. /* 5) restart tx engine */
  2369. nv_start_tx(dev);
  2370. netif_wake_queue(dev);
  2371. spin_unlock_irq(&np->lock);
  2372. }
  2373. /*
  2374. * Called when the nic notices a mismatch between the actual data len on the
  2375. * wire and the len indicated in the 802 header
  2376. */
  2377. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2378. {
  2379. int hdrlen; /* length of the 802 header */
  2380. int protolen; /* length as stored in the proto field */
  2381. /* 1) calculate len according to header */
  2382. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2383. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2384. hdrlen = VLAN_HLEN;
  2385. } else {
  2386. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2387. hdrlen = ETH_HLEN;
  2388. }
  2389. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2390. dev->name, datalen, protolen, hdrlen);
  2391. if (protolen > ETH_DATA_LEN)
  2392. return datalen; /* Value in proto field not a len, no checks possible */
  2393. protolen += hdrlen;
  2394. /* consistency checks: */
  2395. if (datalen > ETH_ZLEN) {
  2396. if (datalen >= protolen) {
  2397. /* more data on wire than in 802 header, trim of
  2398. * additional data.
  2399. */
  2400. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2401. dev->name, protolen);
  2402. return protolen;
  2403. } else {
  2404. /* less data on wire than mentioned in header.
  2405. * Discard the packet.
  2406. */
  2407. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2408. dev->name);
  2409. return -1;
  2410. }
  2411. } else {
  2412. /* short packet. Accept only if 802 values are also short */
  2413. if (protolen > ETH_ZLEN) {
  2414. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2415. dev->name);
  2416. return -1;
  2417. }
  2418. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2419. dev->name, datalen);
  2420. return datalen;
  2421. }
  2422. }
  2423. static int nv_rx_process(struct net_device *dev, int limit)
  2424. {
  2425. struct fe_priv *np = netdev_priv(dev);
  2426. u32 flags;
  2427. int rx_work = 0;
  2428. struct sk_buff *skb;
  2429. int len;
  2430. while((np->get_rx.orig != np->put_rx.orig) &&
  2431. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2432. (rx_work < limit)) {
  2433. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2434. dev->name, flags);
  2435. /*
  2436. * the packet is for us - immediately tear down the pci mapping.
  2437. * TODO: check if a prefetch of the first cacheline improves
  2438. * the performance.
  2439. */
  2440. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2441. np->get_rx_ctx->dma_len,
  2442. PCI_DMA_FROMDEVICE);
  2443. skb = np->get_rx_ctx->skb;
  2444. np->get_rx_ctx->skb = NULL;
  2445. {
  2446. int j;
  2447. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2448. for (j=0; j<64; j++) {
  2449. if ((j%16) == 0)
  2450. dprintk("\n%03x:", j);
  2451. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2452. }
  2453. dprintk("\n");
  2454. }
  2455. /* look at what we actually got: */
  2456. if (np->desc_ver == DESC_VER_1) {
  2457. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2458. len = flags & LEN_MASK_V1;
  2459. if (unlikely(flags & NV_RX_ERROR)) {
  2460. if ((flags & NV_RX_ERROR_MASK) == NV_RX_ERROR4) {
  2461. len = nv_getlen(dev, skb->data, len);
  2462. if (len < 0) {
  2463. dev->stats.rx_errors++;
  2464. dev_kfree_skb(skb);
  2465. goto next_pkt;
  2466. }
  2467. }
  2468. /* framing errors are soft errors */
  2469. else if ((flags & NV_RX_ERROR_MASK) == NV_RX_FRAMINGERR) {
  2470. if (flags & NV_RX_SUBSTRACT1) {
  2471. len--;
  2472. }
  2473. }
  2474. /* the rest are hard errors */
  2475. else {
  2476. if (flags & NV_RX_MISSEDFRAME)
  2477. dev->stats.rx_missed_errors++;
  2478. if (flags & NV_RX_CRCERR)
  2479. dev->stats.rx_crc_errors++;
  2480. if (flags & NV_RX_OVERFLOW)
  2481. dev->stats.rx_over_errors++;
  2482. dev->stats.rx_errors++;
  2483. dev_kfree_skb(skb);
  2484. goto next_pkt;
  2485. }
  2486. }
  2487. } else {
  2488. dev_kfree_skb(skb);
  2489. goto next_pkt;
  2490. }
  2491. } else {
  2492. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2493. len = flags & LEN_MASK_V2;
  2494. if (unlikely(flags & NV_RX2_ERROR)) {
  2495. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2496. len = nv_getlen(dev, skb->data, len);
  2497. if (len < 0) {
  2498. dev->stats.rx_errors++;
  2499. dev_kfree_skb(skb);
  2500. goto next_pkt;
  2501. }
  2502. }
  2503. /* framing errors are soft errors */
  2504. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2505. if (flags & NV_RX2_SUBSTRACT1) {
  2506. len--;
  2507. }
  2508. }
  2509. /* the rest are hard errors */
  2510. else {
  2511. if (flags & NV_RX2_CRCERR)
  2512. dev->stats.rx_crc_errors++;
  2513. if (flags & NV_RX2_OVERFLOW)
  2514. dev->stats.rx_over_errors++;
  2515. dev->stats.rx_errors++;
  2516. dev_kfree_skb(skb);
  2517. goto next_pkt;
  2518. }
  2519. }
  2520. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2521. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2522. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2523. } else {
  2524. dev_kfree_skb(skb);
  2525. goto next_pkt;
  2526. }
  2527. }
  2528. /* got a valid packet - forward it to the network core */
  2529. skb_put(skb, len);
  2530. skb->protocol = eth_type_trans(skb, dev);
  2531. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2532. dev->name, len, skb->protocol);
  2533. #ifdef CONFIG_FORCEDETH_NAPI
  2534. netif_receive_skb(skb);
  2535. #else
  2536. netif_rx(skb);
  2537. #endif
  2538. dev->stats.rx_packets++;
  2539. dev->stats.rx_bytes += len;
  2540. next_pkt:
  2541. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2542. np->get_rx.orig = np->first_rx.orig;
  2543. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2544. np->get_rx_ctx = np->first_rx_ctx;
  2545. rx_work++;
  2546. }
  2547. return rx_work;
  2548. }
  2549. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2550. {
  2551. struct fe_priv *np = netdev_priv(dev);
  2552. u32 flags;
  2553. u32 vlanflags = 0;
  2554. int rx_work = 0;
  2555. struct sk_buff *skb;
  2556. int len;
  2557. while((np->get_rx.ex != np->put_rx.ex) &&
  2558. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2559. (rx_work < limit)) {
  2560. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2561. dev->name, flags);
  2562. /*
  2563. * the packet is for us - immediately tear down the pci mapping.
  2564. * TODO: check if a prefetch of the first cacheline improves
  2565. * the performance.
  2566. */
  2567. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2568. np->get_rx_ctx->dma_len,
  2569. PCI_DMA_FROMDEVICE);
  2570. skb = np->get_rx_ctx->skb;
  2571. np->get_rx_ctx->skb = NULL;
  2572. {
  2573. int j;
  2574. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2575. for (j=0; j<64; j++) {
  2576. if ((j%16) == 0)
  2577. dprintk("\n%03x:", j);
  2578. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2579. }
  2580. dprintk("\n");
  2581. }
  2582. /* look at what we actually got: */
  2583. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2584. len = flags & LEN_MASK_V2;
  2585. if (unlikely(flags & NV_RX2_ERROR)) {
  2586. if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_ERROR4) {
  2587. len = nv_getlen(dev, skb->data, len);
  2588. if (len < 0) {
  2589. dev_kfree_skb(skb);
  2590. goto next_pkt;
  2591. }
  2592. }
  2593. /* framing errors are soft errors */
  2594. else if ((flags & NV_RX2_ERROR_MASK) == NV_RX2_FRAMINGERR) {
  2595. if (flags & NV_RX2_SUBSTRACT1) {
  2596. len--;
  2597. }
  2598. }
  2599. /* the rest are hard errors */
  2600. else {
  2601. dev_kfree_skb(skb);
  2602. goto next_pkt;
  2603. }
  2604. }
  2605. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2606. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2607. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2608. /* got a valid packet - forward it to the network core */
  2609. skb_put(skb, len);
  2610. skb->protocol = eth_type_trans(skb, dev);
  2611. prefetch(skb->data);
  2612. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2613. dev->name, len, skb->protocol);
  2614. if (likely(!np->vlangrp)) {
  2615. #ifdef CONFIG_FORCEDETH_NAPI
  2616. netif_receive_skb(skb);
  2617. #else
  2618. netif_rx(skb);
  2619. #endif
  2620. } else {
  2621. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2622. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2623. #ifdef CONFIG_FORCEDETH_NAPI
  2624. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2625. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2626. #else
  2627. vlan_hwaccel_rx(skb, np->vlangrp,
  2628. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2629. #endif
  2630. } else {
  2631. #ifdef CONFIG_FORCEDETH_NAPI
  2632. netif_receive_skb(skb);
  2633. #else
  2634. netif_rx(skb);
  2635. #endif
  2636. }
  2637. }
  2638. dev->stats.rx_packets++;
  2639. dev->stats.rx_bytes += len;
  2640. } else {
  2641. dev_kfree_skb(skb);
  2642. }
  2643. next_pkt:
  2644. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2645. np->get_rx.ex = np->first_rx.ex;
  2646. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2647. np->get_rx_ctx = np->first_rx_ctx;
  2648. rx_work++;
  2649. }
  2650. return rx_work;
  2651. }
  2652. static void set_bufsize(struct net_device *dev)
  2653. {
  2654. struct fe_priv *np = netdev_priv(dev);
  2655. if (dev->mtu <= ETH_DATA_LEN)
  2656. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2657. else
  2658. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2659. }
  2660. /*
  2661. * nv_change_mtu: dev->change_mtu function
  2662. * Called with dev_base_lock held for read.
  2663. */
  2664. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2665. {
  2666. struct fe_priv *np = netdev_priv(dev);
  2667. int old_mtu;
  2668. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2669. return -EINVAL;
  2670. old_mtu = dev->mtu;
  2671. dev->mtu = new_mtu;
  2672. /* return early if the buffer sizes will not change */
  2673. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2674. return 0;
  2675. if (old_mtu == new_mtu)
  2676. return 0;
  2677. /* synchronized against open : rtnl_lock() held by caller */
  2678. if (netif_running(dev)) {
  2679. u8 __iomem *base = get_hwbase(dev);
  2680. /*
  2681. * It seems that the nic preloads valid ring entries into an
  2682. * internal buffer. The procedure for flushing everything is
  2683. * guessed, there is probably a simpler approach.
  2684. * Changing the MTU is a rare event, it shouldn't matter.
  2685. */
  2686. nv_disable_irq(dev);
  2687. nv_napi_disable(dev);
  2688. netif_tx_lock_bh(dev);
  2689. netif_addr_lock(dev);
  2690. spin_lock(&np->lock);
  2691. /* stop engines */
  2692. nv_stop_rxtx(dev);
  2693. nv_txrx_reset(dev);
  2694. /* drain rx queue */
  2695. nv_drain_rxtx(dev);
  2696. /* reinit driver view of the rx queue */
  2697. set_bufsize(dev);
  2698. if (nv_init_ring(dev)) {
  2699. if (!np->in_shutdown)
  2700. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2701. }
  2702. /* reinit nic view of the rx queue */
  2703. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2704. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2705. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2706. base + NvRegRingSizes);
  2707. pci_push(base);
  2708. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2709. pci_push(base);
  2710. /* restart rx engine */
  2711. nv_start_rxtx(dev);
  2712. spin_unlock(&np->lock);
  2713. netif_addr_unlock(dev);
  2714. netif_tx_unlock_bh(dev);
  2715. nv_napi_enable(dev);
  2716. nv_enable_irq(dev);
  2717. }
  2718. return 0;
  2719. }
  2720. static void nv_copy_mac_to_hw(struct net_device *dev)
  2721. {
  2722. u8 __iomem *base = get_hwbase(dev);
  2723. u32 mac[2];
  2724. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2725. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2726. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2727. writel(mac[0], base + NvRegMacAddrA);
  2728. writel(mac[1], base + NvRegMacAddrB);
  2729. }
  2730. /*
  2731. * nv_set_mac_address: dev->set_mac_address function
  2732. * Called with rtnl_lock() held.
  2733. */
  2734. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2735. {
  2736. struct fe_priv *np = netdev_priv(dev);
  2737. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2738. if (!is_valid_ether_addr(macaddr->sa_data))
  2739. return -EADDRNOTAVAIL;
  2740. /* synchronized against open : rtnl_lock() held by caller */
  2741. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2742. if (netif_running(dev)) {
  2743. netif_tx_lock_bh(dev);
  2744. netif_addr_lock(dev);
  2745. spin_lock_irq(&np->lock);
  2746. /* stop rx engine */
  2747. nv_stop_rx(dev);
  2748. /* set mac address */
  2749. nv_copy_mac_to_hw(dev);
  2750. /* restart rx engine */
  2751. nv_start_rx(dev);
  2752. spin_unlock_irq(&np->lock);
  2753. netif_addr_unlock(dev);
  2754. netif_tx_unlock_bh(dev);
  2755. } else {
  2756. nv_copy_mac_to_hw(dev);
  2757. }
  2758. return 0;
  2759. }
  2760. /*
  2761. * nv_set_multicast: dev->set_multicast function
  2762. * Called with netif_tx_lock held.
  2763. */
  2764. static void nv_set_multicast(struct net_device *dev)
  2765. {
  2766. struct fe_priv *np = netdev_priv(dev);
  2767. u8 __iomem *base = get_hwbase(dev);
  2768. u32 addr[2];
  2769. u32 mask[2];
  2770. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2771. memset(addr, 0, sizeof(addr));
  2772. memset(mask, 0, sizeof(mask));
  2773. if (dev->flags & IFF_PROMISC) {
  2774. pff |= NVREG_PFF_PROMISC;
  2775. } else {
  2776. pff |= NVREG_PFF_MYADDR;
  2777. if (dev->flags & IFF_ALLMULTI || !netdev_mc_empty(dev)) {
  2778. u32 alwaysOff[2];
  2779. u32 alwaysOn[2];
  2780. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2781. if (dev->flags & IFF_ALLMULTI) {
  2782. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2783. } else {
  2784. struct netdev_hw_addr *ha;
  2785. netdev_for_each_mc_addr(ha, dev) {
  2786. unsigned char *addr = ha->addr;
  2787. u32 a, b;
  2788. a = le32_to_cpu(*(__le32 *) addr);
  2789. b = le16_to_cpu(*(__le16 *) (&addr[4]));
  2790. alwaysOn[0] &= a;
  2791. alwaysOff[0] &= ~a;
  2792. alwaysOn[1] &= b;
  2793. alwaysOff[1] &= ~b;
  2794. }
  2795. }
  2796. addr[0] = alwaysOn[0];
  2797. addr[1] = alwaysOn[1];
  2798. mask[0] = alwaysOn[0] | alwaysOff[0];
  2799. mask[1] = alwaysOn[1] | alwaysOff[1];
  2800. } else {
  2801. mask[0] = NVREG_MCASTMASKA_NONE;
  2802. mask[1] = NVREG_MCASTMASKB_NONE;
  2803. }
  2804. }
  2805. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2806. pff |= NVREG_PFF_ALWAYS;
  2807. spin_lock_irq(&np->lock);
  2808. nv_stop_rx(dev);
  2809. writel(addr[0], base + NvRegMulticastAddrA);
  2810. writel(addr[1], base + NvRegMulticastAddrB);
  2811. writel(mask[0], base + NvRegMulticastMaskA);
  2812. writel(mask[1], base + NvRegMulticastMaskB);
  2813. writel(pff, base + NvRegPacketFilterFlags);
  2814. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2815. dev->name);
  2816. nv_start_rx(dev);
  2817. spin_unlock_irq(&np->lock);
  2818. }
  2819. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2820. {
  2821. struct fe_priv *np = netdev_priv(dev);
  2822. u8 __iomem *base = get_hwbase(dev);
  2823. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2824. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2825. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2826. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2827. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2828. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2829. } else {
  2830. writel(pff, base + NvRegPacketFilterFlags);
  2831. }
  2832. }
  2833. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2834. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2835. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2836. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2837. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2838. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2839. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3) {
  2840. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2841. /* limit the number of tx pause frames to a default of 8 */
  2842. writel(readl(base + NvRegTxPauseFrameLimit)|NVREG_TX_PAUSEFRAMELIMIT_ENABLE, base + NvRegTxPauseFrameLimit);
  2843. }
  2844. writel(pause_enable, base + NvRegTxPauseFrame);
  2845. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2846. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2847. } else {
  2848. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2849. writel(regmisc, base + NvRegMisc1);
  2850. }
  2851. }
  2852. }
  2853. /**
  2854. * nv_update_linkspeed: Setup the MAC according to the link partner
  2855. * @dev: Network device to be configured
  2856. *
  2857. * The function queries the PHY and checks if there is a link partner.
  2858. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2859. * set to 10 MBit HD.
  2860. *
  2861. * The function returns 0 if there is no link partner and 1 if there is
  2862. * a good link partner.
  2863. */
  2864. static int nv_update_linkspeed(struct net_device *dev)
  2865. {
  2866. struct fe_priv *np = netdev_priv(dev);
  2867. u8 __iomem *base = get_hwbase(dev);
  2868. int adv = 0;
  2869. int lpa = 0;
  2870. int adv_lpa, adv_pause, lpa_pause;
  2871. int newls = np->linkspeed;
  2872. int newdup = np->duplex;
  2873. int mii_status;
  2874. int retval = 0;
  2875. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2876. u32 txrxFlags = 0;
  2877. u32 phy_exp;
  2878. /* BMSR_LSTATUS is latched, read it twice:
  2879. * we want the current value.
  2880. */
  2881. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2882. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2883. if (!(mii_status & BMSR_LSTATUS)) {
  2884. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2885. dev->name);
  2886. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2887. newdup = 0;
  2888. retval = 0;
  2889. goto set_speed;
  2890. }
  2891. if (np->autoneg == 0) {
  2892. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2893. dev->name, np->fixed_mode);
  2894. if (np->fixed_mode & LPA_100FULL) {
  2895. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2896. newdup = 1;
  2897. } else if (np->fixed_mode & LPA_100HALF) {
  2898. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2899. newdup = 0;
  2900. } else if (np->fixed_mode & LPA_10FULL) {
  2901. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2902. newdup = 1;
  2903. } else {
  2904. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2905. newdup = 0;
  2906. }
  2907. retval = 1;
  2908. goto set_speed;
  2909. }
  2910. /* check auto negotiation is complete */
  2911. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2912. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2913. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2914. newdup = 0;
  2915. retval = 0;
  2916. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2917. goto set_speed;
  2918. }
  2919. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2920. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2921. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2922. dev->name, adv, lpa);
  2923. retval = 1;
  2924. if (np->gigabit == PHY_GIGABIT) {
  2925. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2926. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2927. if ((control_1000 & ADVERTISE_1000FULL) &&
  2928. (status_1000 & LPA_1000FULL)) {
  2929. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2930. dev->name);
  2931. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2932. newdup = 1;
  2933. goto set_speed;
  2934. }
  2935. }
  2936. /* FIXME: handle parallel detection properly */
  2937. adv_lpa = lpa & adv;
  2938. if (adv_lpa & LPA_100FULL) {
  2939. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2940. newdup = 1;
  2941. } else if (adv_lpa & LPA_100HALF) {
  2942. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2943. newdup = 0;
  2944. } else if (adv_lpa & LPA_10FULL) {
  2945. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2946. newdup = 1;
  2947. } else if (adv_lpa & LPA_10HALF) {
  2948. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2949. newdup = 0;
  2950. } else {
  2951. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2952. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2953. newdup = 0;
  2954. }
  2955. set_speed:
  2956. if (np->duplex == newdup && np->linkspeed == newls)
  2957. return retval;
  2958. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2959. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2960. np->duplex = newdup;
  2961. np->linkspeed = newls;
  2962. /* The transmitter and receiver must be restarted for safe update */
  2963. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2964. txrxFlags |= NV_RESTART_TX;
  2965. nv_stop_tx(dev);
  2966. }
  2967. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2968. txrxFlags |= NV_RESTART_RX;
  2969. nv_stop_rx(dev);
  2970. }
  2971. if (np->gigabit == PHY_GIGABIT) {
  2972. phyreg = readl(base + NvRegSlotTime);
  2973. phyreg &= ~(0x3FF00);
  2974. if (((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10) ||
  2975. ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100))
  2976. phyreg |= NVREG_SLOTTIME_10_100_FULL;
  2977. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2978. phyreg |= NVREG_SLOTTIME_1000_FULL;
  2979. writel(phyreg, base + NvRegSlotTime);
  2980. }
  2981. phyreg = readl(base + NvRegPhyInterface);
  2982. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2983. if (np->duplex == 0)
  2984. phyreg |= PHY_HALF;
  2985. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2986. phyreg |= PHY_100;
  2987. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2988. phyreg |= PHY_1000;
  2989. writel(phyreg, base + NvRegPhyInterface);
  2990. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2991. if (phyreg & PHY_RGMII) {
  2992. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2993. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2994. } else {
  2995. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2996. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2997. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2998. else
  2999. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  3000. } else {
  3001. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  3002. }
  3003. }
  3004. } else {
  3005. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  3006. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  3007. else
  3008. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  3009. }
  3010. writel(txreg, base + NvRegTxDeferral);
  3011. if (np->desc_ver == DESC_VER_1) {
  3012. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  3013. } else {
  3014. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  3015. txreg = NVREG_TX_WM_DESC2_3_1000;
  3016. else
  3017. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  3018. }
  3019. writel(txreg, base + NvRegTxWatermark);
  3020. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  3021. base + NvRegMisc1);
  3022. pci_push(base);
  3023. writel(np->linkspeed, base + NvRegLinkSpeed);
  3024. pci_push(base);
  3025. pause_flags = 0;
  3026. /* setup pause frame */
  3027. if (np->duplex != 0) {
  3028. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  3029. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  3030. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  3031. switch (adv_pause) {
  3032. case ADVERTISE_PAUSE_CAP:
  3033. if (lpa_pause & LPA_PAUSE_CAP) {
  3034. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3035. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3036. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3037. }
  3038. break;
  3039. case ADVERTISE_PAUSE_ASYM:
  3040. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  3041. {
  3042. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3043. }
  3044. break;
  3045. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  3046. if (lpa_pause & LPA_PAUSE_CAP)
  3047. {
  3048. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3049. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3050. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3051. }
  3052. if (lpa_pause == LPA_PAUSE_ASYM)
  3053. {
  3054. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3055. }
  3056. break;
  3057. }
  3058. } else {
  3059. pause_flags = np->pause_flags;
  3060. }
  3061. }
  3062. nv_update_pause(dev, pause_flags);
  3063. if (txrxFlags & NV_RESTART_TX)
  3064. nv_start_tx(dev);
  3065. if (txrxFlags & NV_RESTART_RX)
  3066. nv_start_rx(dev);
  3067. return retval;
  3068. }
  3069. static void nv_linkchange(struct net_device *dev)
  3070. {
  3071. if (nv_update_linkspeed(dev)) {
  3072. if (!netif_carrier_ok(dev)) {
  3073. netif_carrier_on(dev);
  3074. printk(KERN_INFO "%s: link up.\n", dev->name);
  3075. nv_txrx_gate(dev, false);
  3076. nv_start_rx(dev);
  3077. }
  3078. } else {
  3079. if (netif_carrier_ok(dev)) {
  3080. netif_carrier_off(dev);
  3081. printk(KERN_INFO "%s: link down.\n", dev->name);
  3082. nv_txrx_gate(dev, true);
  3083. nv_stop_rx(dev);
  3084. }
  3085. }
  3086. }
  3087. static void nv_link_irq(struct net_device *dev)
  3088. {
  3089. u8 __iomem *base = get_hwbase(dev);
  3090. u32 miistat;
  3091. miistat = readl(base + NvRegMIIStatus);
  3092. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  3093. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  3094. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  3095. nv_linkchange(dev);
  3096. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  3097. }
  3098. static void nv_msi_workaround(struct fe_priv *np)
  3099. {
  3100. /* Need to toggle the msi irq mask within the ethernet device,
  3101. * otherwise, future interrupts will not be detected.
  3102. */
  3103. if (np->msi_flags & NV_MSI_ENABLED) {
  3104. u8 __iomem *base = np->base;
  3105. writel(0, base + NvRegMSIIrqMask);
  3106. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3107. }
  3108. }
  3109. static inline int nv_change_interrupt_mode(struct net_device *dev, int total_work)
  3110. {
  3111. struct fe_priv *np = netdev_priv(dev);
  3112. if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC) {
  3113. if (total_work > NV_DYNAMIC_THRESHOLD) {
  3114. /* transition to poll based interrupts */
  3115. np->quiet_count = 0;
  3116. if (np->irqmask != NVREG_IRQMASK_CPU) {
  3117. np->irqmask = NVREG_IRQMASK_CPU;
  3118. return 1;
  3119. }
  3120. } else {
  3121. if (np->quiet_count < NV_DYNAMIC_MAX_QUIET_COUNT) {
  3122. np->quiet_count++;
  3123. } else {
  3124. /* reached a period of low activity, switch
  3125. to per tx/rx packet interrupts */
  3126. if (np->irqmask != NVREG_IRQMASK_THROUGHPUT) {
  3127. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  3128. return 1;
  3129. }
  3130. }
  3131. }
  3132. }
  3133. return 0;
  3134. }
  3135. static irqreturn_t nv_nic_irq(int foo, void *data)
  3136. {
  3137. struct net_device *dev = (struct net_device *) data;
  3138. struct fe_priv *np = netdev_priv(dev);
  3139. u8 __iomem *base = get_hwbase(dev);
  3140. #ifndef CONFIG_FORCEDETH_NAPI
  3141. int total_work = 0;
  3142. int loop_count = 0;
  3143. #endif
  3144. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  3145. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3146. np->events = readl(base + NvRegIrqStatus);
  3147. writel(np->events, base + NvRegIrqStatus);
  3148. } else {
  3149. np->events = readl(base + NvRegMSIXIrqStatus);
  3150. writel(np->events, base + NvRegMSIXIrqStatus);
  3151. }
  3152. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3153. if (!(np->events & np->irqmask))
  3154. return IRQ_NONE;
  3155. nv_msi_workaround(np);
  3156. #ifdef CONFIG_FORCEDETH_NAPI
  3157. if (napi_schedule_prep(&np->napi)) {
  3158. /*
  3159. * Disable further irq's (msix not enabled with napi)
  3160. */
  3161. writel(0, base + NvRegIrqMask);
  3162. __napi_schedule(&np->napi);
  3163. }
  3164. #else
  3165. do
  3166. {
  3167. int work = 0;
  3168. if ((work = nv_rx_process(dev, RX_WORK_PER_LOOP))) {
  3169. if (unlikely(nv_alloc_rx(dev))) {
  3170. spin_lock(&np->lock);
  3171. if (!np->in_shutdown)
  3172. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3173. spin_unlock(&np->lock);
  3174. }
  3175. }
  3176. spin_lock(&np->lock);
  3177. work += nv_tx_done(dev, TX_WORK_PER_LOOP);
  3178. spin_unlock(&np->lock);
  3179. if (!work)
  3180. break;
  3181. total_work += work;
  3182. loop_count++;
  3183. }
  3184. while (loop_count < max_interrupt_work);
  3185. if (nv_change_interrupt_mode(dev, total_work)) {
  3186. /* setup new irq mask */
  3187. writel(np->irqmask, base + NvRegIrqMask);
  3188. }
  3189. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3190. spin_lock(&np->lock);
  3191. nv_link_irq(dev);
  3192. spin_unlock(&np->lock);
  3193. }
  3194. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3195. spin_lock(&np->lock);
  3196. nv_linkchange(dev);
  3197. spin_unlock(&np->lock);
  3198. np->link_timeout = jiffies + LINK_TIMEOUT;
  3199. }
  3200. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3201. spin_lock(&np->lock);
  3202. /* disable interrupts on the nic */
  3203. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3204. writel(0, base + NvRegIrqMask);
  3205. else
  3206. writel(np->irqmask, base + NvRegIrqMask);
  3207. pci_push(base);
  3208. if (!np->in_shutdown) {
  3209. np->nic_poll_irq = np->irqmask;
  3210. np->recover_error = 1;
  3211. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3212. }
  3213. spin_unlock(&np->lock);
  3214. }
  3215. #endif
  3216. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  3217. return IRQ_HANDLED;
  3218. }
  3219. /**
  3220. * All _optimized functions are used to help increase performance
  3221. * (reduce CPU and increase throughput). They use descripter version 3,
  3222. * compiler directives, and reduce memory accesses.
  3223. */
  3224. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  3225. {
  3226. struct net_device *dev = (struct net_device *) data;
  3227. struct fe_priv *np = netdev_priv(dev);
  3228. u8 __iomem *base = get_hwbase(dev);
  3229. #ifndef CONFIG_FORCEDETH_NAPI
  3230. int total_work = 0;
  3231. int loop_count = 0;
  3232. #endif
  3233. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  3234. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3235. np->events = readl(base + NvRegIrqStatus);
  3236. writel(np->events, base + NvRegIrqStatus);
  3237. } else {
  3238. np->events = readl(base + NvRegMSIXIrqStatus);
  3239. writel(np->events, base + NvRegMSIXIrqStatus);
  3240. }
  3241. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, np->events);
  3242. if (!(np->events & np->irqmask))
  3243. return IRQ_NONE;
  3244. nv_msi_workaround(np);
  3245. #ifdef CONFIG_FORCEDETH_NAPI
  3246. if (napi_schedule_prep(&np->napi)) {
  3247. /*
  3248. * Disable further irq's (msix not enabled with napi)
  3249. */
  3250. writel(0, base + NvRegIrqMask);
  3251. __napi_schedule(&np->napi);
  3252. }
  3253. #else
  3254. do
  3255. {
  3256. int work = 0;
  3257. if ((work = nv_rx_process_optimized(dev, RX_WORK_PER_LOOP))) {
  3258. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3259. spin_lock(&np->lock);
  3260. if (!np->in_shutdown)
  3261. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3262. spin_unlock(&np->lock);
  3263. }
  3264. }
  3265. spin_lock(&np->lock);
  3266. work += nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3267. spin_unlock(&np->lock);
  3268. if (!work)
  3269. break;
  3270. total_work += work;
  3271. loop_count++;
  3272. }
  3273. while (loop_count < max_interrupt_work);
  3274. if (nv_change_interrupt_mode(dev, total_work)) {
  3275. /* setup new irq mask */
  3276. writel(np->irqmask, base + NvRegIrqMask);
  3277. }
  3278. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3279. spin_lock(&np->lock);
  3280. nv_link_irq(dev);
  3281. spin_unlock(&np->lock);
  3282. }
  3283. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3284. spin_lock(&np->lock);
  3285. nv_linkchange(dev);
  3286. spin_unlock(&np->lock);
  3287. np->link_timeout = jiffies + LINK_TIMEOUT;
  3288. }
  3289. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3290. spin_lock(&np->lock);
  3291. /* disable interrupts on the nic */
  3292. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3293. writel(0, base + NvRegIrqMask);
  3294. else
  3295. writel(np->irqmask, base + NvRegIrqMask);
  3296. pci_push(base);
  3297. if (!np->in_shutdown) {
  3298. np->nic_poll_irq = np->irqmask;
  3299. np->recover_error = 1;
  3300. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3301. }
  3302. spin_unlock(&np->lock);
  3303. }
  3304. #endif
  3305. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3306. return IRQ_HANDLED;
  3307. }
  3308. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3309. {
  3310. struct net_device *dev = (struct net_device *) data;
  3311. struct fe_priv *np = netdev_priv(dev);
  3312. u8 __iomem *base = get_hwbase(dev);
  3313. u32 events;
  3314. int i;
  3315. unsigned long flags;
  3316. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3317. for (i=0; ; i++) {
  3318. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3319. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3320. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3321. if (!(events & np->irqmask))
  3322. break;
  3323. spin_lock_irqsave(&np->lock, flags);
  3324. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3325. spin_unlock_irqrestore(&np->lock, flags);
  3326. if (unlikely(i > max_interrupt_work)) {
  3327. spin_lock_irqsave(&np->lock, flags);
  3328. /* disable interrupts on the nic */
  3329. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3330. pci_push(base);
  3331. if (!np->in_shutdown) {
  3332. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3333. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3334. }
  3335. spin_unlock_irqrestore(&np->lock, flags);
  3336. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3337. break;
  3338. }
  3339. }
  3340. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3341. return IRQ_RETVAL(i);
  3342. }
  3343. #ifdef CONFIG_FORCEDETH_NAPI
  3344. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3345. {
  3346. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3347. struct net_device *dev = np->dev;
  3348. u8 __iomem *base = get_hwbase(dev);
  3349. unsigned long flags;
  3350. int retcode;
  3351. int tx_work, rx_work;
  3352. if (!nv_optimized(np)) {
  3353. spin_lock_irqsave(&np->lock, flags);
  3354. tx_work = nv_tx_done(dev, np->tx_ring_size);
  3355. spin_unlock_irqrestore(&np->lock, flags);
  3356. rx_work = nv_rx_process(dev, budget);
  3357. retcode = nv_alloc_rx(dev);
  3358. } else {
  3359. spin_lock_irqsave(&np->lock, flags);
  3360. tx_work = nv_tx_done_optimized(dev, np->tx_ring_size);
  3361. spin_unlock_irqrestore(&np->lock, flags);
  3362. rx_work = nv_rx_process_optimized(dev, budget);
  3363. retcode = nv_alloc_rx_optimized(dev);
  3364. }
  3365. if (retcode) {
  3366. spin_lock_irqsave(&np->lock, flags);
  3367. if (!np->in_shutdown)
  3368. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3369. spin_unlock_irqrestore(&np->lock, flags);
  3370. }
  3371. nv_change_interrupt_mode(dev, tx_work + rx_work);
  3372. if (unlikely(np->events & NVREG_IRQ_LINK)) {
  3373. spin_lock_irqsave(&np->lock, flags);
  3374. nv_link_irq(dev);
  3375. spin_unlock_irqrestore(&np->lock, flags);
  3376. }
  3377. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  3378. spin_lock_irqsave(&np->lock, flags);
  3379. nv_linkchange(dev);
  3380. spin_unlock_irqrestore(&np->lock, flags);
  3381. np->link_timeout = jiffies + LINK_TIMEOUT;
  3382. }
  3383. if (unlikely(np->events & NVREG_IRQ_RECOVER_ERROR)) {
  3384. spin_lock_irqsave(&np->lock, flags);
  3385. if (!np->in_shutdown) {
  3386. np->nic_poll_irq = np->irqmask;
  3387. np->recover_error = 1;
  3388. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3389. }
  3390. spin_unlock_irqrestore(&np->lock, flags);
  3391. napi_complete(napi);
  3392. return rx_work;
  3393. }
  3394. if (rx_work < budget) {
  3395. /* re-enable interrupts
  3396. (msix not enabled in napi) */
  3397. napi_complete(napi);
  3398. writel(np->irqmask, base + NvRegIrqMask);
  3399. }
  3400. return rx_work;
  3401. }
  3402. #endif
  3403. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3404. {
  3405. struct net_device *dev = (struct net_device *) data;
  3406. struct fe_priv *np = netdev_priv(dev);
  3407. u8 __iomem *base = get_hwbase(dev);
  3408. u32 events;
  3409. int i;
  3410. unsigned long flags;
  3411. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3412. for (i=0; ; i++) {
  3413. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3414. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3415. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3416. if (!(events & np->irqmask))
  3417. break;
  3418. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3419. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3420. spin_lock_irqsave(&np->lock, flags);
  3421. if (!np->in_shutdown)
  3422. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3423. spin_unlock_irqrestore(&np->lock, flags);
  3424. }
  3425. }
  3426. if (unlikely(i > max_interrupt_work)) {
  3427. spin_lock_irqsave(&np->lock, flags);
  3428. /* disable interrupts on the nic */
  3429. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3430. pci_push(base);
  3431. if (!np->in_shutdown) {
  3432. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3433. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3434. }
  3435. spin_unlock_irqrestore(&np->lock, flags);
  3436. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3437. break;
  3438. }
  3439. }
  3440. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3441. return IRQ_RETVAL(i);
  3442. }
  3443. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3444. {
  3445. struct net_device *dev = (struct net_device *) data;
  3446. struct fe_priv *np = netdev_priv(dev);
  3447. u8 __iomem *base = get_hwbase(dev);
  3448. u32 events;
  3449. int i;
  3450. unsigned long flags;
  3451. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3452. for (i=0; ; i++) {
  3453. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3454. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3455. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3456. if (!(events & np->irqmask))
  3457. break;
  3458. /* check tx in case we reached max loop limit in tx isr */
  3459. spin_lock_irqsave(&np->lock, flags);
  3460. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3461. spin_unlock_irqrestore(&np->lock, flags);
  3462. if (events & NVREG_IRQ_LINK) {
  3463. spin_lock_irqsave(&np->lock, flags);
  3464. nv_link_irq(dev);
  3465. spin_unlock_irqrestore(&np->lock, flags);
  3466. }
  3467. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3468. spin_lock_irqsave(&np->lock, flags);
  3469. nv_linkchange(dev);
  3470. spin_unlock_irqrestore(&np->lock, flags);
  3471. np->link_timeout = jiffies + LINK_TIMEOUT;
  3472. }
  3473. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3474. spin_lock_irq(&np->lock);
  3475. /* disable interrupts on the nic */
  3476. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3477. pci_push(base);
  3478. if (!np->in_shutdown) {
  3479. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3480. np->recover_error = 1;
  3481. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3482. }
  3483. spin_unlock_irq(&np->lock);
  3484. break;
  3485. }
  3486. if (unlikely(i > max_interrupt_work)) {
  3487. spin_lock_irqsave(&np->lock, flags);
  3488. /* disable interrupts on the nic */
  3489. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3490. pci_push(base);
  3491. if (!np->in_shutdown) {
  3492. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3493. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3494. }
  3495. spin_unlock_irqrestore(&np->lock, flags);
  3496. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3497. break;
  3498. }
  3499. }
  3500. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3501. return IRQ_RETVAL(i);
  3502. }
  3503. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3504. {
  3505. struct net_device *dev = (struct net_device *) data;
  3506. struct fe_priv *np = netdev_priv(dev);
  3507. u8 __iomem *base = get_hwbase(dev);
  3508. u32 events;
  3509. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3510. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3511. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3512. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3513. } else {
  3514. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3515. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3516. }
  3517. pci_push(base);
  3518. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3519. if (!(events & NVREG_IRQ_TIMER))
  3520. return IRQ_RETVAL(0);
  3521. nv_msi_workaround(np);
  3522. spin_lock(&np->lock);
  3523. np->intr_test = 1;
  3524. spin_unlock(&np->lock);
  3525. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3526. return IRQ_RETVAL(1);
  3527. }
  3528. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3529. {
  3530. u8 __iomem *base = get_hwbase(dev);
  3531. int i;
  3532. u32 msixmap = 0;
  3533. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3534. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3535. * the remaining 8 interrupts.
  3536. */
  3537. for (i = 0; i < 8; i++) {
  3538. if ((irqmask >> i) & 0x1) {
  3539. msixmap |= vector << (i << 2);
  3540. }
  3541. }
  3542. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3543. msixmap = 0;
  3544. for (i = 0; i < 8; i++) {
  3545. if ((irqmask >> (i + 8)) & 0x1) {
  3546. msixmap |= vector << (i << 2);
  3547. }
  3548. }
  3549. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3550. }
  3551. static int nv_request_irq(struct net_device *dev, int intr_test)
  3552. {
  3553. struct fe_priv *np = get_nvpriv(dev);
  3554. u8 __iomem *base = get_hwbase(dev);
  3555. int ret = 1;
  3556. int i;
  3557. irqreturn_t (*handler)(int foo, void *data);
  3558. if (intr_test) {
  3559. handler = nv_nic_irq_test;
  3560. } else {
  3561. if (nv_optimized(np))
  3562. handler = nv_nic_irq_optimized;
  3563. else
  3564. handler = nv_nic_irq;
  3565. }
  3566. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3567. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3568. np->msi_x_entry[i].entry = i;
  3569. }
  3570. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3571. np->msi_flags |= NV_MSI_X_ENABLED;
  3572. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3573. /* Request irq for rx handling */
  3574. sprintf(np->name_rx, "%s-rx", dev->name);
  3575. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector,
  3576. nv_nic_irq_rx, IRQF_SHARED, np->name_rx, dev) != 0) {
  3577. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3578. pci_disable_msix(np->pci_dev);
  3579. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3580. goto out_err;
  3581. }
  3582. /* Request irq for tx handling */
  3583. sprintf(np->name_tx, "%s-tx", dev->name);
  3584. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector,
  3585. nv_nic_irq_tx, IRQF_SHARED, np->name_tx, dev) != 0) {
  3586. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3587. pci_disable_msix(np->pci_dev);
  3588. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3589. goto out_free_rx;
  3590. }
  3591. /* Request irq for link and timer handling */
  3592. sprintf(np->name_other, "%s-other", dev->name);
  3593. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector,
  3594. nv_nic_irq_other, IRQF_SHARED, np->name_other, dev) != 0) {
  3595. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3596. pci_disable_msix(np->pci_dev);
  3597. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3598. goto out_free_tx;
  3599. }
  3600. /* map interrupts to their respective vector */
  3601. writel(0, base + NvRegMSIXMap0);
  3602. writel(0, base + NvRegMSIXMap1);
  3603. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3604. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3605. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3606. } else {
  3607. /* Request irq for all interrupts */
  3608. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3609. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3610. pci_disable_msix(np->pci_dev);
  3611. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3612. goto out_err;
  3613. }
  3614. /* map interrupts to vector 0 */
  3615. writel(0, base + NvRegMSIXMap0);
  3616. writel(0, base + NvRegMSIXMap1);
  3617. }
  3618. }
  3619. }
  3620. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3621. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3622. np->msi_flags |= NV_MSI_ENABLED;
  3623. dev->irq = np->pci_dev->irq;
  3624. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3625. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3626. pci_disable_msi(np->pci_dev);
  3627. np->msi_flags &= ~NV_MSI_ENABLED;
  3628. dev->irq = np->pci_dev->irq;
  3629. goto out_err;
  3630. }
  3631. /* map interrupts to vector 0 */
  3632. writel(0, base + NvRegMSIMap0);
  3633. writel(0, base + NvRegMSIMap1);
  3634. /* enable msi vector 0 */
  3635. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3636. }
  3637. }
  3638. if (ret != 0) {
  3639. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3640. goto out_err;
  3641. }
  3642. return 0;
  3643. out_free_tx:
  3644. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3645. out_free_rx:
  3646. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3647. out_err:
  3648. return 1;
  3649. }
  3650. static void nv_free_irq(struct net_device *dev)
  3651. {
  3652. struct fe_priv *np = get_nvpriv(dev);
  3653. int i;
  3654. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3655. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3656. free_irq(np->msi_x_entry[i].vector, dev);
  3657. }
  3658. pci_disable_msix(np->pci_dev);
  3659. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3660. } else {
  3661. free_irq(np->pci_dev->irq, dev);
  3662. if (np->msi_flags & NV_MSI_ENABLED) {
  3663. pci_disable_msi(np->pci_dev);
  3664. np->msi_flags &= ~NV_MSI_ENABLED;
  3665. }
  3666. }
  3667. }
  3668. static void nv_do_nic_poll(unsigned long data)
  3669. {
  3670. struct net_device *dev = (struct net_device *) data;
  3671. struct fe_priv *np = netdev_priv(dev);
  3672. u8 __iomem *base = get_hwbase(dev);
  3673. u32 mask = 0;
  3674. /*
  3675. * First disable irq(s) and then
  3676. * reenable interrupts on the nic, we have to do this before calling
  3677. * nv_nic_irq because that may decide to do otherwise
  3678. */
  3679. if (!using_multi_irqs(dev)) {
  3680. if (np->msi_flags & NV_MSI_X_ENABLED)
  3681. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3682. else
  3683. disable_irq_lockdep(np->pci_dev->irq);
  3684. mask = np->irqmask;
  3685. } else {
  3686. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3687. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3688. mask |= NVREG_IRQ_RX_ALL;
  3689. }
  3690. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3691. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3692. mask |= NVREG_IRQ_TX_ALL;
  3693. }
  3694. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3695. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3696. mask |= NVREG_IRQ_OTHER;
  3697. }
  3698. }
  3699. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3700. if (np->recover_error) {
  3701. np->recover_error = 0;
  3702. printk(KERN_INFO "%s: MAC in recoverable error state\n", dev->name);
  3703. if (netif_running(dev)) {
  3704. netif_tx_lock_bh(dev);
  3705. netif_addr_lock(dev);
  3706. spin_lock(&np->lock);
  3707. /* stop engines */
  3708. nv_stop_rxtx(dev);
  3709. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  3710. nv_mac_reset(dev);
  3711. nv_txrx_reset(dev);
  3712. /* drain rx queue */
  3713. nv_drain_rxtx(dev);
  3714. /* reinit driver view of the rx queue */
  3715. set_bufsize(dev);
  3716. if (nv_init_ring(dev)) {
  3717. if (!np->in_shutdown)
  3718. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3719. }
  3720. /* reinit nic view of the rx queue */
  3721. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3722. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3723. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3724. base + NvRegRingSizes);
  3725. pci_push(base);
  3726. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3727. pci_push(base);
  3728. /* clear interrupts */
  3729. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3730. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3731. else
  3732. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3733. /* restart rx engine */
  3734. nv_start_rxtx(dev);
  3735. spin_unlock(&np->lock);
  3736. netif_addr_unlock(dev);
  3737. netif_tx_unlock_bh(dev);
  3738. }
  3739. }
  3740. writel(mask, base + NvRegIrqMask);
  3741. pci_push(base);
  3742. if (!using_multi_irqs(dev)) {
  3743. np->nic_poll_irq = 0;
  3744. if (nv_optimized(np))
  3745. nv_nic_irq_optimized(0, dev);
  3746. else
  3747. nv_nic_irq(0, dev);
  3748. if (np->msi_flags & NV_MSI_X_ENABLED)
  3749. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3750. else
  3751. enable_irq_lockdep(np->pci_dev->irq);
  3752. } else {
  3753. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3754. np->nic_poll_irq &= ~NVREG_IRQ_RX_ALL;
  3755. nv_nic_irq_rx(0, dev);
  3756. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3757. }
  3758. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3759. np->nic_poll_irq &= ~NVREG_IRQ_TX_ALL;
  3760. nv_nic_irq_tx(0, dev);
  3761. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3762. }
  3763. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3764. np->nic_poll_irq &= ~NVREG_IRQ_OTHER;
  3765. nv_nic_irq_other(0, dev);
  3766. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3767. }
  3768. }
  3769. }
  3770. #ifdef CONFIG_NET_POLL_CONTROLLER
  3771. static void nv_poll_controller(struct net_device *dev)
  3772. {
  3773. nv_do_nic_poll((unsigned long) dev);
  3774. }
  3775. #endif
  3776. static void nv_do_stats_poll(unsigned long data)
  3777. {
  3778. struct net_device *dev = (struct net_device *) data;
  3779. struct fe_priv *np = netdev_priv(dev);
  3780. nv_get_hw_stats(dev);
  3781. if (!np->in_shutdown)
  3782. mod_timer(&np->stats_poll,
  3783. round_jiffies(jiffies + STATS_INTERVAL));
  3784. }
  3785. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3786. {
  3787. struct fe_priv *np = netdev_priv(dev);
  3788. strcpy(info->driver, DRV_NAME);
  3789. strcpy(info->version, FORCEDETH_VERSION);
  3790. strcpy(info->bus_info, pci_name(np->pci_dev));
  3791. }
  3792. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3793. {
  3794. struct fe_priv *np = netdev_priv(dev);
  3795. wolinfo->supported = WAKE_MAGIC;
  3796. spin_lock_irq(&np->lock);
  3797. if (np->wolenabled)
  3798. wolinfo->wolopts = WAKE_MAGIC;
  3799. spin_unlock_irq(&np->lock);
  3800. }
  3801. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3802. {
  3803. struct fe_priv *np = netdev_priv(dev);
  3804. u8 __iomem *base = get_hwbase(dev);
  3805. u32 flags = 0;
  3806. if (wolinfo->wolopts == 0) {
  3807. np->wolenabled = 0;
  3808. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3809. np->wolenabled = 1;
  3810. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3811. }
  3812. if (netif_running(dev)) {
  3813. spin_lock_irq(&np->lock);
  3814. writel(flags, base + NvRegWakeUpFlags);
  3815. spin_unlock_irq(&np->lock);
  3816. }
  3817. return 0;
  3818. }
  3819. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3820. {
  3821. struct fe_priv *np = netdev_priv(dev);
  3822. int adv;
  3823. spin_lock_irq(&np->lock);
  3824. ecmd->port = PORT_MII;
  3825. if (!netif_running(dev)) {
  3826. /* We do not track link speed / duplex setting if the
  3827. * interface is disabled. Force a link check */
  3828. if (nv_update_linkspeed(dev)) {
  3829. if (!netif_carrier_ok(dev))
  3830. netif_carrier_on(dev);
  3831. } else {
  3832. if (netif_carrier_ok(dev))
  3833. netif_carrier_off(dev);
  3834. }
  3835. }
  3836. if (netif_carrier_ok(dev)) {
  3837. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3838. case NVREG_LINKSPEED_10:
  3839. ecmd->speed = SPEED_10;
  3840. break;
  3841. case NVREG_LINKSPEED_100:
  3842. ecmd->speed = SPEED_100;
  3843. break;
  3844. case NVREG_LINKSPEED_1000:
  3845. ecmd->speed = SPEED_1000;
  3846. break;
  3847. }
  3848. ecmd->duplex = DUPLEX_HALF;
  3849. if (np->duplex)
  3850. ecmd->duplex = DUPLEX_FULL;
  3851. } else {
  3852. ecmd->speed = -1;
  3853. ecmd->duplex = -1;
  3854. }
  3855. ecmd->autoneg = np->autoneg;
  3856. ecmd->advertising = ADVERTISED_MII;
  3857. if (np->autoneg) {
  3858. ecmd->advertising |= ADVERTISED_Autoneg;
  3859. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3860. if (adv & ADVERTISE_10HALF)
  3861. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3862. if (adv & ADVERTISE_10FULL)
  3863. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3864. if (adv & ADVERTISE_100HALF)
  3865. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3866. if (adv & ADVERTISE_100FULL)
  3867. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3868. if (np->gigabit == PHY_GIGABIT) {
  3869. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3870. if (adv & ADVERTISE_1000FULL)
  3871. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3872. }
  3873. }
  3874. ecmd->supported = (SUPPORTED_Autoneg |
  3875. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3876. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3877. SUPPORTED_MII);
  3878. if (np->gigabit == PHY_GIGABIT)
  3879. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3880. ecmd->phy_address = np->phyaddr;
  3881. ecmd->transceiver = XCVR_EXTERNAL;
  3882. /* ignore maxtxpkt, maxrxpkt for now */
  3883. spin_unlock_irq(&np->lock);
  3884. return 0;
  3885. }
  3886. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3887. {
  3888. struct fe_priv *np = netdev_priv(dev);
  3889. if (ecmd->port != PORT_MII)
  3890. return -EINVAL;
  3891. if (ecmd->transceiver != XCVR_EXTERNAL)
  3892. return -EINVAL;
  3893. if (ecmd->phy_address != np->phyaddr) {
  3894. /* TODO: support switching between multiple phys. Should be
  3895. * trivial, but not enabled due to lack of test hardware. */
  3896. return -EINVAL;
  3897. }
  3898. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3899. u32 mask;
  3900. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3901. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3902. if (np->gigabit == PHY_GIGABIT)
  3903. mask |= ADVERTISED_1000baseT_Full;
  3904. if ((ecmd->advertising & mask) == 0)
  3905. return -EINVAL;
  3906. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3907. /* Note: autonegotiation disable, speed 1000 intentionally
  3908. * forbidden - noone should need that. */
  3909. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3910. return -EINVAL;
  3911. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3912. return -EINVAL;
  3913. } else {
  3914. return -EINVAL;
  3915. }
  3916. netif_carrier_off(dev);
  3917. if (netif_running(dev)) {
  3918. unsigned long flags;
  3919. nv_disable_irq(dev);
  3920. netif_tx_lock_bh(dev);
  3921. netif_addr_lock(dev);
  3922. /* with plain spinlock lockdep complains */
  3923. spin_lock_irqsave(&np->lock, flags);
  3924. /* stop engines */
  3925. /* FIXME:
  3926. * this can take some time, and interrupts are disabled
  3927. * due to spin_lock_irqsave, but let's hope no daemon
  3928. * is going to change the settings very often...
  3929. * Worst case:
  3930. * NV_RXSTOP_DELAY1MAX + NV_TXSTOP_DELAY1MAX
  3931. * + some minor delays, which is up to a second approximately
  3932. */
  3933. nv_stop_rxtx(dev);
  3934. spin_unlock_irqrestore(&np->lock, flags);
  3935. netif_addr_unlock(dev);
  3936. netif_tx_unlock_bh(dev);
  3937. }
  3938. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3939. int adv, bmcr;
  3940. np->autoneg = 1;
  3941. /* advertise only what has been requested */
  3942. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3943. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3944. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3945. adv |= ADVERTISE_10HALF;
  3946. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3947. adv |= ADVERTISE_10FULL;
  3948. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3949. adv |= ADVERTISE_100HALF;
  3950. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3951. adv |= ADVERTISE_100FULL;
  3952. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3953. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3954. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3955. adv |= ADVERTISE_PAUSE_ASYM;
  3956. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3957. if (np->gigabit == PHY_GIGABIT) {
  3958. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3959. adv &= ~ADVERTISE_1000FULL;
  3960. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3961. adv |= ADVERTISE_1000FULL;
  3962. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3963. }
  3964. if (netif_running(dev))
  3965. printk(KERN_INFO "%s: link down.\n", dev->name);
  3966. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3967. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3968. bmcr |= BMCR_ANENABLE;
  3969. /* reset the phy in order for settings to stick,
  3970. * and cause autoneg to start */
  3971. if (phy_reset(dev, bmcr)) {
  3972. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3973. return -EINVAL;
  3974. }
  3975. } else {
  3976. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3977. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3978. }
  3979. } else {
  3980. int adv, bmcr;
  3981. np->autoneg = 0;
  3982. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3983. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3984. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3985. adv |= ADVERTISE_10HALF;
  3986. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3987. adv |= ADVERTISE_10FULL;
  3988. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3989. adv |= ADVERTISE_100HALF;
  3990. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3991. adv |= ADVERTISE_100FULL;
  3992. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3993. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3994. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3995. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3996. }
  3997. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3998. adv |= ADVERTISE_PAUSE_ASYM;
  3999. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4000. }
  4001. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4002. np->fixed_mode = adv;
  4003. if (np->gigabit == PHY_GIGABIT) {
  4004. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  4005. adv &= ~ADVERTISE_1000FULL;
  4006. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  4007. }
  4008. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4009. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  4010. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  4011. bmcr |= BMCR_FULLDPLX;
  4012. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  4013. bmcr |= BMCR_SPEED100;
  4014. if (np->phy_oui == PHY_OUI_MARVELL) {
  4015. /* reset the phy in order for forced mode settings to stick */
  4016. if (phy_reset(dev, bmcr)) {
  4017. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4018. return -EINVAL;
  4019. }
  4020. } else {
  4021. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4022. if (netif_running(dev)) {
  4023. /* Wait a bit and then reconfigure the nic. */
  4024. udelay(10);
  4025. nv_linkchange(dev);
  4026. }
  4027. }
  4028. }
  4029. if (netif_running(dev)) {
  4030. nv_start_rxtx(dev);
  4031. nv_enable_irq(dev);
  4032. }
  4033. return 0;
  4034. }
  4035. #define FORCEDETH_REGS_VER 1
  4036. static int nv_get_regs_len(struct net_device *dev)
  4037. {
  4038. struct fe_priv *np = netdev_priv(dev);
  4039. return np->register_size;
  4040. }
  4041. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  4042. {
  4043. struct fe_priv *np = netdev_priv(dev);
  4044. u8 __iomem *base = get_hwbase(dev);
  4045. u32 *rbuf = buf;
  4046. int i;
  4047. regs->version = FORCEDETH_REGS_VER;
  4048. spin_lock_irq(&np->lock);
  4049. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  4050. rbuf[i] = readl(base + i*sizeof(u32));
  4051. spin_unlock_irq(&np->lock);
  4052. }
  4053. static int nv_nway_reset(struct net_device *dev)
  4054. {
  4055. struct fe_priv *np = netdev_priv(dev);
  4056. int ret;
  4057. if (np->autoneg) {
  4058. int bmcr;
  4059. netif_carrier_off(dev);
  4060. if (netif_running(dev)) {
  4061. nv_disable_irq(dev);
  4062. netif_tx_lock_bh(dev);
  4063. netif_addr_lock(dev);
  4064. spin_lock(&np->lock);
  4065. /* stop engines */
  4066. nv_stop_rxtx(dev);
  4067. spin_unlock(&np->lock);
  4068. netif_addr_unlock(dev);
  4069. netif_tx_unlock_bh(dev);
  4070. printk(KERN_INFO "%s: link down.\n", dev->name);
  4071. }
  4072. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4073. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  4074. bmcr |= BMCR_ANENABLE;
  4075. /* reset the phy in order for settings to stick*/
  4076. if (phy_reset(dev, bmcr)) {
  4077. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  4078. return -EINVAL;
  4079. }
  4080. } else {
  4081. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4082. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4083. }
  4084. if (netif_running(dev)) {
  4085. nv_start_rxtx(dev);
  4086. nv_enable_irq(dev);
  4087. }
  4088. ret = 0;
  4089. } else {
  4090. ret = -EINVAL;
  4091. }
  4092. return ret;
  4093. }
  4094. static int nv_set_tso(struct net_device *dev, u32 value)
  4095. {
  4096. struct fe_priv *np = netdev_priv(dev);
  4097. if ((np->driver_data & DEV_HAS_CHECKSUM))
  4098. return ethtool_op_set_tso(dev, value);
  4099. else
  4100. return -EOPNOTSUPP;
  4101. }
  4102. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4103. {
  4104. struct fe_priv *np = netdev_priv(dev);
  4105. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4106. ring->rx_mini_max_pending = 0;
  4107. ring->rx_jumbo_max_pending = 0;
  4108. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  4109. ring->rx_pending = np->rx_ring_size;
  4110. ring->rx_mini_pending = 0;
  4111. ring->rx_jumbo_pending = 0;
  4112. ring->tx_pending = np->tx_ring_size;
  4113. }
  4114. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  4115. {
  4116. struct fe_priv *np = netdev_priv(dev);
  4117. u8 __iomem *base = get_hwbase(dev);
  4118. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  4119. dma_addr_t ring_addr;
  4120. if (ring->rx_pending < RX_RING_MIN ||
  4121. ring->tx_pending < TX_RING_MIN ||
  4122. ring->rx_mini_pending != 0 ||
  4123. ring->rx_jumbo_pending != 0 ||
  4124. (np->desc_ver == DESC_VER_1 &&
  4125. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  4126. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  4127. (np->desc_ver != DESC_VER_1 &&
  4128. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  4129. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  4130. return -EINVAL;
  4131. }
  4132. /* allocate new rings */
  4133. if (!nv_optimized(np)) {
  4134. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4135. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4136. &ring_addr);
  4137. } else {
  4138. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  4139. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4140. &ring_addr);
  4141. }
  4142. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  4143. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  4144. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  4145. /* fall back to old rings */
  4146. if (!nv_optimized(np)) {
  4147. if (rxtx_ring)
  4148. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  4149. rxtx_ring, ring_addr);
  4150. } else {
  4151. if (rxtx_ring)
  4152. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  4153. rxtx_ring, ring_addr);
  4154. }
  4155. if (rx_skbuff)
  4156. kfree(rx_skbuff);
  4157. if (tx_skbuff)
  4158. kfree(tx_skbuff);
  4159. goto exit;
  4160. }
  4161. if (netif_running(dev)) {
  4162. nv_disable_irq(dev);
  4163. nv_napi_disable(dev);
  4164. netif_tx_lock_bh(dev);
  4165. netif_addr_lock(dev);
  4166. spin_lock(&np->lock);
  4167. /* stop engines */
  4168. nv_stop_rxtx(dev);
  4169. nv_txrx_reset(dev);
  4170. /* drain queues */
  4171. nv_drain_rxtx(dev);
  4172. /* delete queues */
  4173. free_rings(dev);
  4174. }
  4175. /* set new values */
  4176. np->rx_ring_size = ring->rx_pending;
  4177. np->tx_ring_size = ring->tx_pending;
  4178. if (!nv_optimized(np)) {
  4179. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  4180. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4181. } else {
  4182. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  4183. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4184. }
  4185. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  4186. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  4187. np->ring_addr = ring_addr;
  4188. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  4189. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  4190. if (netif_running(dev)) {
  4191. /* reinit driver view of the queues */
  4192. set_bufsize(dev);
  4193. if (nv_init_ring(dev)) {
  4194. if (!np->in_shutdown)
  4195. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4196. }
  4197. /* reinit nic view of the queues */
  4198. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4199. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4200. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4201. base + NvRegRingSizes);
  4202. pci_push(base);
  4203. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4204. pci_push(base);
  4205. /* restart engines */
  4206. nv_start_rxtx(dev);
  4207. spin_unlock(&np->lock);
  4208. netif_addr_unlock(dev);
  4209. netif_tx_unlock_bh(dev);
  4210. nv_napi_enable(dev);
  4211. nv_enable_irq(dev);
  4212. }
  4213. return 0;
  4214. exit:
  4215. return -ENOMEM;
  4216. }
  4217. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4218. {
  4219. struct fe_priv *np = netdev_priv(dev);
  4220. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  4221. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  4222. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  4223. }
  4224. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  4225. {
  4226. struct fe_priv *np = netdev_priv(dev);
  4227. int adv, bmcr;
  4228. if ((!np->autoneg && np->duplex == 0) ||
  4229. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  4230. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  4231. dev->name);
  4232. return -EINVAL;
  4233. }
  4234. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  4235. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  4236. return -EINVAL;
  4237. }
  4238. netif_carrier_off(dev);
  4239. if (netif_running(dev)) {
  4240. nv_disable_irq(dev);
  4241. netif_tx_lock_bh(dev);
  4242. netif_addr_lock(dev);
  4243. spin_lock(&np->lock);
  4244. /* stop engines */
  4245. nv_stop_rxtx(dev);
  4246. spin_unlock(&np->lock);
  4247. netif_addr_unlock(dev);
  4248. netif_tx_unlock_bh(dev);
  4249. }
  4250. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  4251. if (pause->rx_pause)
  4252. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  4253. if (pause->tx_pause)
  4254. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  4255. if (np->autoneg && pause->autoneg) {
  4256. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  4257. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  4258. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  4259. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  4260. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  4261. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  4262. adv |= ADVERTISE_PAUSE_ASYM;
  4263. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  4264. if (netif_running(dev))
  4265. printk(KERN_INFO "%s: link down.\n", dev->name);
  4266. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  4267. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  4268. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  4269. } else {
  4270. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  4271. if (pause->rx_pause)
  4272. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  4273. if (pause->tx_pause)
  4274. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  4275. if (!netif_running(dev))
  4276. nv_update_linkspeed(dev);
  4277. else
  4278. nv_update_pause(dev, np->pause_flags);
  4279. }
  4280. if (netif_running(dev)) {
  4281. nv_start_rxtx(dev);
  4282. nv_enable_irq(dev);
  4283. }
  4284. return 0;
  4285. }
  4286. static u32 nv_get_rx_csum(struct net_device *dev)
  4287. {
  4288. struct fe_priv *np = netdev_priv(dev);
  4289. return (np->rx_csum) != 0;
  4290. }
  4291. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  4292. {
  4293. struct fe_priv *np = netdev_priv(dev);
  4294. u8 __iomem *base = get_hwbase(dev);
  4295. int retcode = 0;
  4296. if (np->driver_data & DEV_HAS_CHECKSUM) {
  4297. if (data) {
  4298. np->rx_csum = 1;
  4299. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4300. } else {
  4301. np->rx_csum = 0;
  4302. /* vlan is dependent on rx checksum offload */
  4303. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  4304. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  4305. }
  4306. if (netif_running(dev)) {
  4307. spin_lock_irq(&np->lock);
  4308. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4309. spin_unlock_irq(&np->lock);
  4310. }
  4311. } else {
  4312. return -EINVAL;
  4313. }
  4314. return retcode;
  4315. }
  4316. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  4317. {
  4318. struct fe_priv *np = netdev_priv(dev);
  4319. if (np->driver_data & DEV_HAS_CHECKSUM)
  4320. return ethtool_op_set_tx_csum(dev, data);
  4321. else
  4322. return -EOPNOTSUPP;
  4323. }
  4324. static int nv_set_sg(struct net_device *dev, u32 data)
  4325. {
  4326. struct fe_priv *np = netdev_priv(dev);
  4327. if (np->driver_data & DEV_HAS_CHECKSUM)
  4328. return ethtool_op_set_sg(dev, data);
  4329. else
  4330. return -EOPNOTSUPP;
  4331. }
  4332. static int nv_get_sset_count(struct net_device *dev, int sset)
  4333. {
  4334. struct fe_priv *np = netdev_priv(dev);
  4335. switch (sset) {
  4336. case ETH_SS_TEST:
  4337. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4338. return NV_TEST_COUNT_EXTENDED;
  4339. else
  4340. return NV_TEST_COUNT_BASE;
  4341. case ETH_SS_STATS:
  4342. if (np->driver_data & DEV_HAS_STATISTICS_V3)
  4343. return NV_DEV_STATISTICS_V3_COUNT;
  4344. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4345. return NV_DEV_STATISTICS_V2_COUNT;
  4346. else if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4347. return NV_DEV_STATISTICS_V1_COUNT;
  4348. else
  4349. return 0;
  4350. default:
  4351. return -EOPNOTSUPP;
  4352. }
  4353. }
  4354. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4355. {
  4356. struct fe_priv *np = netdev_priv(dev);
  4357. /* update stats */
  4358. nv_do_stats_poll((unsigned long)dev);
  4359. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4360. }
  4361. static int nv_link_test(struct net_device *dev)
  4362. {
  4363. struct fe_priv *np = netdev_priv(dev);
  4364. int mii_status;
  4365. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4366. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4367. /* check phy link status */
  4368. if (!(mii_status & BMSR_LSTATUS))
  4369. return 0;
  4370. else
  4371. return 1;
  4372. }
  4373. static int nv_register_test(struct net_device *dev)
  4374. {
  4375. u8 __iomem *base = get_hwbase(dev);
  4376. int i = 0;
  4377. u32 orig_read, new_read;
  4378. do {
  4379. orig_read = readl(base + nv_registers_test[i].reg);
  4380. /* xor with mask to toggle bits */
  4381. orig_read ^= nv_registers_test[i].mask;
  4382. writel(orig_read, base + nv_registers_test[i].reg);
  4383. new_read = readl(base + nv_registers_test[i].reg);
  4384. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4385. return 0;
  4386. /* restore original value */
  4387. orig_read ^= nv_registers_test[i].mask;
  4388. writel(orig_read, base + nv_registers_test[i].reg);
  4389. } while (nv_registers_test[++i].reg != 0);
  4390. return 1;
  4391. }
  4392. static int nv_interrupt_test(struct net_device *dev)
  4393. {
  4394. struct fe_priv *np = netdev_priv(dev);
  4395. u8 __iomem *base = get_hwbase(dev);
  4396. int ret = 1;
  4397. int testcnt;
  4398. u32 save_msi_flags, save_poll_interval = 0;
  4399. if (netif_running(dev)) {
  4400. /* free current irq */
  4401. nv_free_irq(dev);
  4402. save_poll_interval = readl(base+NvRegPollingInterval);
  4403. }
  4404. /* flag to test interrupt handler */
  4405. np->intr_test = 0;
  4406. /* setup test irq */
  4407. save_msi_flags = np->msi_flags;
  4408. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4409. np->msi_flags |= 0x001; /* setup 1 vector */
  4410. if (nv_request_irq(dev, 1))
  4411. return 0;
  4412. /* setup timer interrupt */
  4413. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4414. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4415. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4416. /* wait for at least one interrupt */
  4417. msleep(100);
  4418. spin_lock_irq(&np->lock);
  4419. /* flag should be set within ISR */
  4420. testcnt = np->intr_test;
  4421. if (!testcnt)
  4422. ret = 2;
  4423. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4424. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4425. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4426. else
  4427. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4428. spin_unlock_irq(&np->lock);
  4429. nv_free_irq(dev);
  4430. np->msi_flags = save_msi_flags;
  4431. if (netif_running(dev)) {
  4432. writel(save_poll_interval, base + NvRegPollingInterval);
  4433. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4434. /* restore original irq */
  4435. if (nv_request_irq(dev, 0))
  4436. return 0;
  4437. }
  4438. return ret;
  4439. }
  4440. static int nv_loopback_test(struct net_device *dev)
  4441. {
  4442. struct fe_priv *np = netdev_priv(dev);
  4443. u8 __iomem *base = get_hwbase(dev);
  4444. struct sk_buff *tx_skb, *rx_skb;
  4445. dma_addr_t test_dma_addr;
  4446. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4447. u32 flags;
  4448. int len, i, pkt_len;
  4449. u8 *pkt_data;
  4450. u32 filter_flags = 0;
  4451. u32 misc1_flags = 0;
  4452. int ret = 1;
  4453. if (netif_running(dev)) {
  4454. nv_disable_irq(dev);
  4455. filter_flags = readl(base + NvRegPacketFilterFlags);
  4456. misc1_flags = readl(base + NvRegMisc1);
  4457. } else {
  4458. nv_txrx_reset(dev);
  4459. }
  4460. /* reinit driver view of the rx queue */
  4461. set_bufsize(dev);
  4462. nv_init_ring(dev);
  4463. /* setup hardware for loopback */
  4464. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4465. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4466. /* reinit nic view of the rx queue */
  4467. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4468. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4469. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4470. base + NvRegRingSizes);
  4471. pci_push(base);
  4472. /* restart rx engine */
  4473. nv_start_rxtx(dev);
  4474. /* setup packet for tx */
  4475. pkt_len = ETH_DATA_LEN;
  4476. tx_skb = dev_alloc_skb(pkt_len);
  4477. if (!tx_skb) {
  4478. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4479. " of %s\n", dev->name);
  4480. ret = 0;
  4481. goto out;
  4482. }
  4483. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4484. skb_tailroom(tx_skb),
  4485. PCI_DMA_FROMDEVICE);
  4486. pkt_data = skb_put(tx_skb, pkt_len);
  4487. for (i = 0; i < pkt_len; i++)
  4488. pkt_data[i] = (u8)(i & 0xff);
  4489. if (!nv_optimized(np)) {
  4490. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4491. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4492. } else {
  4493. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4494. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4495. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4496. }
  4497. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4498. pci_push(get_hwbase(dev));
  4499. msleep(500);
  4500. /* check for rx of the packet */
  4501. if (!nv_optimized(np)) {
  4502. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4503. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4504. } else {
  4505. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4506. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4507. }
  4508. if (flags & NV_RX_AVAIL) {
  4509. ret = 0;
  4510. } else if (np->desc_ver == DESC_VER_1) {
  4511. if (flags & NV_RX_ERROR)
  4512. ret = 0;
  4513. } else {
  4514. if (flags & NV_RX2_ERROR) {
  4515. ret = 0;
  4516. }
  4517. }
  4518. if (ret) {
  4519. if (len != pkt_len) {
  4520. ret = 0;
  4521. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4522. dev->name, len, pkt_len);
  4523. } else {
  4524. rx_skb = np->rx_skb[0].skb;
  4525. for (i = 0; i < pkt_len; i++) {
  4526. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4527. ret = 0;
  4528. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4529. dev->name, i);
  4530. break;
  4531. }
  4532. }
  4533. }
  4534. } else {
  4535. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4536. }
  4537. pci_unmap_single(np->pci_dev, test_dma_addr,
  4538. (skb_end_pointer(tx_skb) - tx_skb->data),
  4539. PCI_DMA_TODEVICE);
  4540. dev_kfree_skb_any(tx_skb);
  4541. out:
  4542. /* stop engines */
  4543. nv_stop_rxtx(dev);
  4544. nv_txrx_reset(dev);
  4545. /* drain rx queue */
  4546. nv_drain_rxtx(dev);
  4547. if (netif_running(dev)) {
  4548. writel(misc1_flags, base + NvRegMisc1);
  4549. writel(filter_flags, base + NvRegPacketFilterFlags);
  4550. nv_enable_irq(dev);
  4551. }
  4552. return ret;
  4553. }
  4554. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4555. {
  4556. struct fe_priv *np = netdev_priv(dev);
  4557. u8 __iomem *base = get_hwbase(dev);
  4558. int result;
  4559. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4560. if (!nv_link_test(dev)) {
  4561. test->flags |= ETH_TEST_FL_FAILED;
  4562. buffer[0] = 1;
  4563. }
  4564. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4565. if (netif_running(dev)) {
  4566. netif_stop_queue(dev);
  4567. nv_napi_disable(dev);
  4568. netif_tx_lock_bh(dev);
  4569. netif_addr_lock(dev);
  4570. spin_lock_irq(&np->lock);
  4571. nv_disable_hw_interrupts(dev, np->irqmask);
  4572. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4573. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4574. } else {
  4575. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4576. }
  4577. /* stop engines */
  4578. nv_stop_rxtx(dev);
  4579. nv_txrx_reset(dev);
  4580. /* drain rx queue */
  4581. nv_drain_rxtx(dev);
  4582. spin_unlock_irq(&np->lock);
  4583. netif_addr_unlock(dev);
  4584. netif_tx_unlock_bh(dev);
  4585. }
  4586. if (!nv_register_test(dev)) {
  4587. test->flags |= ETH_TEST_FL_FAILED;
  4588. buffer[1] = 1;
  4589. }
  4590. result = nv_interrupt_test(dev);
  4591. if (result != 1) {
  4592. test->flags |= ETH_TEST_FL_FAILED;
  4593. buffer[2] = 1;
  4594. }
  4595. if (result == 0) {
  4596. /* bail out */
  4597. return;
  4598. }
  4599. if (!nv_loopback_test(dev)) {
  4600. test->flags |= ETH_TEST_FL_FAILED;
  4601. buffer[3] = 1;
  4602. }
  4603. if (netif_running(dev)) {
  4604. /* reinit driver view of the rx queue */
  4605. set_bufsize(dev);
  4606. if (nv_init_ring(dev)) {
  4607. if (!np->in_shutdown)
  4608. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4609. }
  4610. /* reinit nic view of the rx queue */
  4611. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4612. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4613. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4614. base + NvRegRingSizes);
  4615. pci_push(base);
  4616. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4617. pci_push(base);
  4618. /* restart rx engine */
  4619. nv_start_rxtx(dev);
  4620. netif_start_queue(dev);
  4621. nv_napi_enable(dev);
  4622. nv_enable_hw_interrupts(dev, np->irqmask);
  4623. }
  4624. }
  4625. }
  4626. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4627. {
  4628. switch (stringset) {
  4629. case ETH_SS_STATS:
  4630. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4631. break;
  4632. case ETH_SS_TEST:
  4633. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4634. break;
  4635. }
  4636. }
  4637. static const struct ethtool_ops ops = {
  4638. .get_drvinfo = nv_get_drvinfo,
  4639. .get_link = ethtool_op_get_link,
  4640. .get_wol = nv_get_wol,
  4641. .set_wol = nv_set_wol,
  4642. .get_settings = nv_get_settings,
  4643. .set_settings = nv_set_settings,
  4644. .get_regs_len = nv_get_regs_len,
  4645. .get_regs = nv_get_regs,
  4646. .nway_reset = nv_nway_reset,
  4647. .set_tso = nv_set_tso,
  4648. .get_ringparam = nv_get_ringparam,
  4649. .set_ringparam = nv_set_ringparam,
  4650. .get_pauseparam = nv_get_pauseparam,
  4651. .set_pauseparam = nv_set_pauseparam,
  4652. .get_rx_csum = nv_get_rx_csum,
  4653. .set_rx_csum = nv_set_rx_csum,
  4654. .set_tx_csum = nv_set_tx_csum,
  4655. .set_sg = nv_set_sg,
  4656. .get_strings = nv_get_strings,
  4657. .get_ethtool_stats = nv_get_ethtool_stats,
  4658. .get_sset_count = nv_get_sset_count,
  4659. .self_test = nv_self_test,
  4660. };
  4661. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4662. {
  4663. struct fe_priv *np = get_nvpriv(dev);
  4664. spin_lock_irq(&np->lock);
  4665. /* save vlan group */
  4666. np->vlangrp = grp;
  4667. if (grp) {
  4668. /* enable vlan on MAC */
  4669. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4670. } else {
  4671. /* disable vlan on MAC */
  4672. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4673. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4674. }
  4675. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4676. spin_unlock_irq(&np->lock);
  4677. }
  4678. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4679. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4680. {
  4681. struct fe_priv *np = netdev_priv(dev);
  4682. u8 __iomem *base = get_hwbase(dev);
  4683. int i;
  4684. u32 tx_ctrl, mgmt_sema;
  4685. for (i = 0; i < 10; i++) {
  4686. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4687. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4688. break;
  4689. msleep(500);
  4690. }
  4691. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4692. return 0;
  4693. for (i = 0; i < 2; i++) {
  4694. tx_ctrl = readl(base + NvRegTransmitterControl);
  4695. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4696. writel(tx_ctrl, base + NvRegTransmitterControl);
  4697. /* verify that semaphore was acquired */
  4698. tx_ctrl = readl(base + NvRegTransmitterControl);
  4699. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4700. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE)) {
  4701. np->mgmt_sema = 1;
  4702. return 1;
  4703. }
  4704. else
  4705. udelay(50);
  4706. }
  4707. return 0;
  4708. }
  4709. static void nv_mgmt_release_sema(struct net_device *dev)
  4710. {
  4711. struct fe_priv *np = netdev_priv(dev);
  4712. u8 __iomem *base = get_hwbase(dev);
  4713. u32 tx_ctrl;
  4714. if (np->driver_data & DEV_HAS_MGMT_UNIT) {
  4715. if (np->mgmt_sema) {
  4716. tx_ctrl = readl(base + NvRegTransmitterControl);
  4717. tx_ctrl &= ~NVREG_XMITCTL_HOST_SEMA_ACQ;
  4718. writel(tx_ctrl, base + NvRegTransmitterControl);
  4719. }
  4720. }
  4721. }
  4722. static int nv_mgmt_get_version(struct net_device *dev)
  4723. {
  4724. struct fe_priv *np = netdev_priv(dev);
  4725. u8 __iomem *base = get_hwbase(dev);
  4726. u32 data_ready = readl(base + NvRegTransmitterControl);
  4727. u32 data_ready2 = 0;
  4728. unsigned long start;
  4729. int ready = 0;
  4730. writel(NVREG_MGMTUNITGETVERSION, base + NvRegMgmtUnitGetVersion);
  4731. writel(data_ready ^ NVREG_XMITCTL_DATA_START, base + NvRegTransmitterControl);
  4732. start = jiffies;
  4733. while (time_before(jiffies, start + 5*HZ)) {
  4734. data_ready2 = readl(base + NvRegTransmitterControl);
  4735. if ((data_ready & NVREG_XMITCTL_DATA_READY) != (data_ready2 & NVREG_XMITCTL_DATA_READY)) {
  4736. ready = 1;
  4737. break;
  4738. }
  4739. schedule_timeout_uninterruptible(1);
  4740. }
  4741. if (!ready || (data_ready2 & NVREG_XMITCTL_DATA_ERROR))
  4742. return 0;
  4743. np->mgmt_version = readl(base + NvRegMgmtUnitVersion) & NVREG_MGMTUNITVERSION;
  4744. return 1;
  4745. }
  4746. static int nv_open(struct net_device *dev)
  4747. {
  4748. struct fe_priv *np = netdev_priv(dev);
  4749. u8 __iomem *base = get_hwbase(dev);
  4750. int ret = 1;
  4751. int oom, i;
  4752. u32 low;
  4753. dprintk(KERN_DEBUG "nv_open: begin\n");
  4754. /* power up phy */
  4755. mii_rw(dev, np->phyaddr, MII_BMCR,
  4756. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ) & ~BMCR_PDOWN);
  4757. nv_txrx_gate(dev, false);
  4758. /* erase previous misconfiguration */
  4759. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4760. nv_mac_reset(dev);
  4761. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4762. writel(0, base + NvRegMulticastAddrB);
  4763. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4764. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4765. writel(0, base + NvRegPacketFilterFlags);
  4766. writel(0, base + NvRegTransmitterControl);
  4767. writel(0, base + NvRegReceiverControl);
  4768. writel(0, base + NvRegAdapterControl);
  4769. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4770. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4771. /* initialize descriptor rings */
  4772. set_bufsize(dev);
  4773. oom = nv_init_ring(dev);
  4774. writel(0, base + NvRegLinkSpeed);
  4775. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4776. nv_txrx_reset(dev);
  4777. writel(0, base + NvRegUnknownSetupReg6);
  4778. np->in_shutdown = 0;
  4779. /* give hw rings */
  4780. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4781. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4782. base + NvRegRingSizes);
  4783. writel(np->linkspeed, base + NvRegLinkSpeed);
  4784. if (np->desc_ver == DESC_VER_1)
  4785. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4786. else
  4787. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4788. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4789. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4790. pci_push(base);
  4791. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4792. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4793. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4794. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4795. writel(0, base + NvRegMIIMask);
  4796. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4797. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4798. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4799. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4800. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4801. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4802. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4803. get_random_bytes(&low, sizeof(low));
  4804. low &= NVREG_SLOTTIME_MASK;
  4805. if (np->desc_ver == DESC_VER_1) {
  4806. writel(low|NVREG_SLOTTIME_DEFAULT, base + NvRegSlotTime);
  4807. } else {
  4808. if (!(np->driver_data & DEV_HAS_GEAR_MODE)) {
  4809. /* setup legacy backoff */
  4810. writel(NVREG_SLOTTIME_LEGBF_ENABLED|NVREG_SLOTTIME_10_100_FULL|low, base + NvRegSlotTime);
  4811. } else {
  4812. writel(NVREG_SLOTTIME_10_100_FULL, base + NvRegSlotTime);
  4813. nv_gear_backoff_reseed(dev);
  4814. }
  4815. }
  4816. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4817. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4818. if (poll_interval == -1) {
  4819. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4820. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4821. else
  4822. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4823. }
  4824. else
  4825. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4826. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4827. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4828. base + NvRegAdapterControl);
  4829. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4830. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4831. if (np->wolenabled)
  4832. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4833. i = readl(base + NvRegPowerState);
  4834. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4835. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4836. pci_push(base);
  4837. udelay(10);
  4838. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4839. nv_disable_hw_interrupts(dev, np->irqmask);
  4840. pci_push(base);
  4841. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4842. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4843. pci_push(base);
  4844. if (nv_request_irq(dev, 0)) {
  4845. goto out_drain;
  4846. }
  4847. /* ask for interrupts */
  4848. nv_enable_hw_interrupts(dev, np->irqmask);
  4849. spin_lock_irq(&np->lock);
  4850. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4851. writel(0, base + NvRegMulticastAddrB);
  4852. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4853. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4854. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4855. /* One manual link speed update: Interrupts are enabled, future link
  4856. * speed changes cause interrupts and are handled by nv_link_irq().
  4857. */
  4858. {
  4859. u32 miistat;
  4860. miistat = readl(base + NvRegMIIStatus);
  4861. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4862. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4863. }
  4864. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4865. * to init hw */
  4866. np->linkspeed = 0;
  4867. ret = nv_update_linkspeed(dev);
  4868. nv_start_rxtx(dev);
  4869. netif_start_queue(dev);
  4870. nv_napi_enable(dev);
  4871. if (ret) {
  4872. netif_carrier_on(dev);
  4873. } else {
  4874. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4875. netif_carrier_off(dev);
  4876. }
  4877. if (oom)
  4878. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4879. /* start statistics timer */
  4880. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4881. mod_timer(&np->stats_poll,
  4882. round_jiffies(jiffies + STATS_INTERVAL));
  4883. spin_unlock_irq(&np->lock);
  4884. return 0;
  4885. out_drain:
  4886. nv_drain_rxtx(dev);
  4887. return ret;
  4888. }
  4889. static int nv_close(struct net_device *dev)
  4890. {
  4891. struct fe_priv *np = netdev_priv(dev);
  4892. u8 __iomem *base;
  4893. spin_lock_irq(&np->lock);
  4894. np->in_shutdown = 1;
  4895. spin_unlock_irq(&np->lock);
  4896. nv_napi_disable(dev);
  4897. synchronize_irq(np->pci_dev->irq);
  4898. del_timer_sync(&np->oom_kick);
  4899. del_timer_sync(&np->nic_poll);
  4900. del_timer_sync(&np->stats_poll);
  4901. netif_stop_queue(dev);
  4902. spin_lock_irq(&np->lock);
  4903. nv_stop_rxtx(dev);
  4904. nv_txrx_reset(dev);
  4905. /* disable interrupts on the nic or we will lock up */
  4906. base = get_hwbase(dev);
  4907. nv_disable_hw_interrupts(dev, np->irqmask);
  4908. pci_push(base);
  4909. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4910. spin_unlock_irq(&np->lock);
  4911. nv_free_irq(dev);
  4912. nv_drain_rxtx(dev);
  4913. if (np->wolenabled || !phy_power_down) {
  4914. nv_txrx_gate(dev, false);
  4915. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4916. nv_start_rx(dev);
  4917. } else {
  4918. /* power down phy */
  4919. mii_rw(dev, np->phyaddr, MII_BMCR,
  4920. mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ)|BMCR_PDOWN);
  4921. nv_txrx_gate(dev, true);
  4922. }
  4923. /* FIXME: power down nic */
  4924. return 0;
  4925. }
  4926. static const struct net_device_ops nv_netdev_ops = {
  4927. .ndo_open = nv_open,
  4928. .ndo_stop = nv_close,
  4929. .ndo_get_stats = nv_get_stats,
  4930. .ndo_start_xmit = nv_start_xmit,
  4931. .ndo_tx_timeout = nv_tx_timeout,
  4932. .ndo_change_mtu = nv_change_mtu,
  4933. .ndo_validate_addr = eth_validate_addr,
  4934. .ndo_set_mac_address = nv_set_mac_address,
  4935. .ndo_set_multicast_list = nv_set_multicast,
  4936. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4937. #ifdef CONFIG_NET_POLL_CONTROLLER
  4938. .ndo_poll_controller = nv_poll_controller,
  4939. #endif
  4940. };
  4941. static const struct net_device_ops nv_netdev_ops_optimized = {
  4942. .ndo_open = nv_open,
  4943. .ndo_stop = nv_close,
  4944. .ndo_get_stats = nv_get_stats,
  4945. .ndo_start_xmit = nv_start_xmit_optimized,
  4946. .ndo_tx_timeout = nv_tx_timeout,
  4947. .ndo_change_mtu = nv_change_mtu,
  4948. .ndo_validate_addr = eth_validate_addr,
  4949. .ndo_set_mac_address = nv_set_mac_address,
  4950. .ndo_set_multicast_list = nv_set_multicast,
  4951. .ndo_vlan_rx_register = nv_vlan_rx_register,
  4952. #ifdef CONFIG_NET_POLL_CONTROLLER
  4953. .ndo_poll_controller = nv_poll_controller,
  4954. #endif
  4955. };
  4956. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4957. {
  4958. struct net_device *dev;
  4959. struct fe_priv *np;
  4960. unsigned long addr;
  4961. u8 __iomem *base;
  4962. int err, i;
  4963. u32 powerstate, txreg;
  4964. u32 phystate_orig = 0, phystate;
  4965. int phyinitialized = 0;
  4966. static int printed_version;
  4967. if (!printed_version++)
  4968. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4969. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4970. dev = alloc_etherdev(sizeof(struct fe_priv));
  4971. err = -ENOMEM;
  4972. if (!dev)
  4973. goto out;
  4974. np = netdev_priv(dev);
  4975. np->dev = dev;
  4976. np->pci_dev = pci_dev;
  4977. spin_lock_init(&np->lock);
  4978. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4979. init_timer(&np->oom_kick);
  4980. np->oom_kick.data = (unsigned long) dev;
  4981. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4982. init_timer(&np->nic_poll);
  4983. np->nic_poll.data = (unsigned long) dev;
  4984. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4985. init_timer(&np->stats_poll);
  4986. np->stats_poll.data = (unsigned long) dev;
  4987. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4988. err = pci_enable_device(pci_dev);
  4989. if (err)
  4990. goto out_free;
  4991. pci_set_master(pci_dev);
  4992. err = pci_request_regions(pci_dev, DRV_NAME);
  4993. if (err < 0)
  4994. goto out_disable;
  4995. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2|DEV_HAS_STATISTICS_V3))
  4996. np->register_size = NV_PCI_REGSZ_VER3;
  4997. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4998. np->register_size = NV_PCI_REGSZ_VER2;
  4999. else
  5000. np->register_size = NV_PCI_REGSZ_VER1;
  5001. err = -EINVAL;
  5002. addr = 0;
  5003. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  5004. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  5005. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  5006. pci_resource_len(pci_dev, i),
  5007. pci_resource_flags(pci_dev, i));
  5008. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  5009. pci_resource_len(pci_dev, i) >= np->register_size) {
  5010. addr = pci_resource_start(pci_dev, i);
  5011. break;
  5012. }
  5013. }
  5014. if (i == DEVICE_COUNT_RESOURCE) {
  5015. dev_printk(KERN_INFO, &pci_dev->dev,
  5016. "Couldn't find register window\n");
  5017. goto out_relreg;
  5018. }
  5019. /* copy of driver data */
  5020. np->driver_data = id->driver_data;
  5021. /* copy of device id */
  5022. np->device_id = id->device;
  5023. /* handle different descriptor versions */
  5024. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  5025. /* packet format 3: supports 40-bit addressing */
  5026. np->desc_ver = DESC_VER_3;
  5027. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  5028. if (dma_64bit) {
  5029. if (pci_set_dma_mask(pci_dev, DMA_BIT_MASK(39)))
  5030. dev_printk(KERN_INFO, &pci_dev->dev,
  5031. "64-bit DMA failed, using 32-bit addressing\n");
  5032. else
  5033. dev->features |= NETIF_F_HIGHDMA;
  5034. if (pci_set_consistent_dma_mask(pci_dev, DMA_BIT_MASK(39))) {
  5035. dev_printk(KERN_INFO, &pci_dev->dev,
  5036. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  5037. }
  5038. }
  5039. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  5040. /* packet format 2: supports jumbo frames */
  5041. np->desc_ver = DESC_VER_2;
  5042. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  5043. } else {
  5044. /* original packet format */
  5045. np->desc_ver = DESC_VER_1;
  5046. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  5047. }
  5048. np->pkt_limit = NV_PKTLIMIT_1;
  5049. if (id->driver_data & DEV_HAS_LARGEDESC)
  5050. np->pkt_limit = NV_PKTLIMIT_2;
  5051. if (id->driver_data & DEV_HAS_CHECKSUM) {
  5052. np->rx_csum = 1;
  5053. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  5054. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  5055. dev->features |= NETIF_F_TSO;
  5056. }
  5057. np->vlanctl_bits = 0;
  5058. if (id->driver_data & DEV_HAS_VLAN) {
  5059. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  5060. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  5061. }
  5062. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  5063. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  5064. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  5065. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  5066. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  5067. }
  5068. err = -ENOMEM;
  5069. np->base = ioremap(addr, np->register_size);
  5070. if (!np->base)
  5071. goto out_relreg;
  5072. dev->base_addr = (unsigned long)np->base;
  5073. dev->irq = pci_dev->irq;
  5074. np->rx_ring_size = RX_RING_DEFAULT;
  5075. np->tx_ring_size = TX_RING_DEFAULT;
  5076. if (!nv_optimized(np)) {
  5077. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  5078. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  5079. &np->ring_addr);
  5080. if (!np->rx_ring.orig)
  5081. goto out_unmap;
  5082. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  5083. } else {
  5084. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  5085. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  5086. &np->ring_addr);
  5087. if (!np->rx_ring.ex)
  5088. goto out_unmap;
  5089. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  5090. }
  5091. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5092. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  5093. if (!np->rx_skb || !np->tx_skb)
  5094. goto out_freering;
  5095. if (!nv_optimized(np))
  5096. dev->netdev_ops = &nv_netdev_ops;
  5097. else
  5098. dev->netdev_ops = &nv_netdev_ops_optimized;
  5099. #ifdef CONFIG_FORCEDETH_NAPI
  5100. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  5101. #endif
  5102. SET_ETHTOOL_OPS(dev, &ops);
  5103. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  5104. pci_set_drvdata(pci_dev, dev);
  5105. /* read the mac address */
  5106. base = get_hwbase(dev);
  5107. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  5108. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  5109. /* check the workaround bit for correct mac address order */
  5110. txreg = readl(base + NvRegTransmitPoll);
  5111. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  5112. /* mac address is already in correct order */
  5113. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5114. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5115. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5116. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5117. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5118. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5119. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  5120. /* mac address is already in correct order */
  5121. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  5122. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  5123. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  5124. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  5125. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  5126. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  5127. /*
  5128. * Set orig mac address back to the reversed version.
  5129. * This flag will be cleared during low power transition.
  5130. * Therefore, we should always put back the reversed address.
  5131. */
  5132. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  5133. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  5134. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  5135. } else {
  5136. /* need to reverse mac address to correct order */
  5137. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  5138. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  5139. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  5140. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  5141. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  5142. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  5143. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  5144. printk(KERN_DEBUG "nv_probe: set workaround bit for reversed mac addr\n");
  5145. }
  5146. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  5147. if (!is_valid_ether_addr(dev->perm_addr)) {
  5148. /*
  5149. * Bad mac address. At least one bios sets the mac address
  5150. * to 01:23:45:67:89:ab
  5151. */
  5152. dev_printk(KERN_ERR, &pci_dev->dev,
  5153. "Invalid Mac address detected: %pM\n",
  5154. dev->dev_addr);
  5155. dev_printk(KERN_ERR, &pci_dev->dev,
  5156. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  5157. random_ether_addr(dev->dev_addr);
  5158. }
  5159. dprintk(KERN_DEBUG "%s: MAC Address %pM\n",
  5160. pci_name(pci_dev), dev->dev_addr);
  5161. /* set mac address */
  5162. nv_copy_mac_to_hw(dev);
  5163. /* Workaround current PCI init glitch: wakeup bits aren't
  5164. * being set from PCI PM capability.
  5165. */
  5166. device_init_wakeup(&pci_dev->dev, 1);
  5167. /* disable WOL */
  5168. writel(0, base + NvRegWakeUpFlags);
  5169. np->wolenabled = 0;
  5170. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  5171. /* take phy and nic out of low power mode */
  5172. powerstate = readl(base + NvRegPowerState2);
  5173. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  5174. if ((id->driver_data & DEV_NEED_LOW_POWER_FIX) &&
  5175. pci_dev->revision >= 0xA3)
  5176. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  5177. writel(powerstate, base + NvRegPowerState2);
  5178. }
  5179. if (np->desc_ver == DESC_VER_1) {
  5180. np->tx_flags = NV_TX_VALID;
  5181. } else {
  5182. np->tx_flags = NV_TX2_VALID;
  5183. }
  5184. np->msi_flags = 0;
  5185. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  5186. np->msi_flags |= NV_MSI_CAPABLE;
  5187. }
  5188. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  5189. /* msix has had reported issues when modifying irqmask
  5190. as in the case of napi, therefore, disable for now
  5191. */
  5192. #ifndef CONFIG_FORCEDETH_NAPI
  5193. np->msi_flags |= NV_MSI_X_CAPABLE;
  5194. #endif
  5195. }
  5196. if (optimization_mode == NV_OPTIMIZATION_MODE_CPU) {
  5197. np->irqmask = NVREG_IRQMASK_CPU;
  5198. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5199. np->msi_flags |= 0x0001;
  5200. } else if (optimization_mode == NV_OPTIMIZATION_MODE_DYNAMIC &&
  5201. !(id->driver_data & DEV_NEED_TIMERIRQ)) {
  5202. /* start off in throughput mode */
  5203. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5204. /* remove support for msix mode */
  5205. np->msi_flags &= ~NV_MSI_X_CAPABLE;
  5206. } else {
  5207. optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  5208. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  5209. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  5210. np->msi_flags |= 0x0003;
  5211. }
  5212. if (id->driver_data & DEV_NEED_TIMERIRQ)
  5213. np->irqmask |= NVREG_IRQ_TIMER;
  5214. if (id->driver_data & DEV_NEED_LINKTIMER) {
  5215. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  5216. np->need_linktimer = 1;
  5217. np->link_timeout = jiffies + LINK_TIMEOUT;
  5218. } else {
  5219. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  5220. np->need_linktimer = 0;
  5221. }
  5222. /* Limit the number of tx's outstanding for hw bug */
  5223. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  5224. np->tx_limit = 1;
  5225. if ((id->driver_data & DEV_NEED_TX_LIMIT2) &&
  5226. pci_dev->revision >= 0xA2)
  5227. np->tx_limit = 0;
  5228. }
  5229. /* clear phy state and temporarily halt phy interrupts */
  5230. writel(0, base + NvRegMIIMask);
  5231. phystate = readl(base + NvRegAdapterControl);
  5232. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  5233. phystate_orig = 1;
  5234. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  5235. writel(phystate, base + NvRegAdapterControl);
  5236. }
  5237. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  5238. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  5239. /* management unit running on the mac? */
  5240. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST) &&
  5241. (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) &&
  5242. nv_mgmt_acquire_sema(dev) &&
  5243. nv_mgmt_get_version(dev)) {
  5244. np->mac_in_use = 1;
  5245. if (np->mgmt_version > 0) {
  5246. np->mac_in_use = readl(base + NvRegMgmtUnitControl) & NVREG_MGMTUNITCONTROL_INUSE;
  5247. }
  5248. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n",
  5249. pci_name(pci_dev), np->mac_in_use);
  5250. /* management unit setup the phy already? */
  5251. if (np->mac_in_use &&
  5252. ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  5253. NVREG_XMITCTL_SYNC_PHY_INIT)) {
  5254. /* phy is inited by mgmt unit */
  5255. phyinitialized = 1;
  5256. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n",
  5257. pci_name(pci_dev));
  5258. } else {
  5259. /* we need to init the phy */
  5260. }
  5261. }
  5262. }
  5263. /* find a suitable phy */
  5264. for (i = 1; i <= 32; i++) {
  5265. int id1, id2;
  5266. int phyaddr = i & 0x1F;
  5267. spin_lock_irq(&np->lock);
  5268. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  5269. spin_unlock_irq(&np->lock);
  5270. if (id1 < 0 || id1 == 0xffff)
  5271. continue;
  5272. spin_lock_irq(&np->lock);
  5273. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  5274. spin_unlock_irq(&np->lock);
  5275. if (id2 < 0 || id2 == 0xffff)
  5276. continue;
  5277. np->phy_model = id2 & PHYID2_MODEL_MASK;
  5278. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  5279. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  5280. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  5281. pci_name(pci_dev), id1, id2, phyaddr);
  5282. np->phyaddr = phyaddr;
  5283. np->phy_oui = id1 | id2;
  5284. /* Realtek hardcoded phy id1 to all zero's on certain phys */
  5285. if (np->phy_oui == PHY_OUI_REALTEK2)
  5286. np->phy_oui = PHY_OUI_REALTEK;
  5287. /* Setup phy revision for Realtek */
  5288. if (np->phy_oui == PHY_OUI_REALTEK && np->phy_model == PHY_MODEL_REALTEK_8211)
  5289. np->phy_rev = mii_rw(dev, phyaddr, MII_RESV1, MII_READ) & PHY_REV_MASK;
  5290. break;
  5291. }
  5292. if (i == 33) {
  5293. dev_printk(KERN_INFO, &pci_dev->dev,
  5294. "open: Could not find a valid PHY.\n");
  5295. goto out_error;
  5296. }
  5297. if (!phyinitialized) {
  5298. /* reset it */
  5299. phy_init(dev);
  5300. } else {
  5301. /* see if it is a gigabit phy */
  5302. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  5303. if (mii_status & PHY_GIGABIT) {
  5304. np->gigabit = PHY_GIGABIT;
  5305. }
  5306. }
  5307. /* set default link speed settings */
  5308. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  5309. np->duplex = 0;
  5310. np->autoneg = 1;
  5311. err = register_netdev(dev);
  5312. if (err) {
  5313. dev_printk(KERN_INFO, &pci_dev->dev,
  5314. "unable to register netdev: %d\n", err);
  5315. goto out_error;
  5316. }
  5317. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  5318. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  5319. dev->name,
  5320. np->phy_oui,
  5321. np->phyaddr,
  5322. dev->dev_addr[0],
  5323. dev->dev_addr[1],
  5324. dev->dev_addr[2],
  5325. dev->dev_addr[3],
  5326. dev->dev_addr[4],
  5327. dev->dev_addr[5]);
  5328. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  5329. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  5330. dev->features & (NETIF_F_IP_CSUM | NETIF_F_SG) ?
  5331. "csum " : "",
  5332. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  5333. "vlan " : "",
  5334. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  5335. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  5336. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  5337. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  5338. np->need_linktimer ? "lnktim " : "",
  5339. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  5340. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  5341. np->desc_ver);
  5342. return 0;
  5343. out_error:
  5344. if (phystate_orig)
  5345. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  5346. pci_set_drvdata(pci_dev, NULL);
  5347. out_freering:
  5348. free_rings(dev);
  5349. out_unmap:
  5350. iounmap(get_hwbase(dev));
  5351. out_relreg:
  5352. pci_release_regions(pci_dev);
  5353. out_disable:
  5354. pci_disable_device(pci_dev);
  5355. out_free:
  5356. free_netdev(dev);
  5357. out:
  5358. return err;
  5359. }
  5360. static void nv_restore_phy(struct net_device *dev)
  5361. {
  5362. struct fe_priv *np = netdev_priv(dev);
  5363. u16 phy_reserved, mii_control;
  5364. if (np->phy_oui == PHY_OUI_REALTEK &&
  5365. np->phy_model == PHY_MODEL_REALTEK_8201 &&
  5366. phy_cross == NV_CROSSOVER_DETECTION_DISABLED) {
  5367. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3);
  5368. phy_reserved = mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, MII_READ);
  5369. phy_reserved &= ~PHY_REALTEK_INIT_MSK1;
  5370. phy_reserved |= PHY_REALTEK_INIT8;
  5371. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, phy_reserved);
  5372. mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1);
  5373. /* restart auto negotiation */
  5374. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  5375. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  5376. mii_rw(dev, np->phyaddr, MII_BMCR, mii_control);
  5377. }
  5378. }
  5379. static void nv_restore_mac_addr(struct pci_dev *pci_dev)
  5380. {
  5381. struct net_device *dev = pci_get_drvdata(pci_dev);
  5382. struct fe_priv *np = netdev_priv(dev);
  5383. u8 __iomem *base = get_hwbase(dev);
  5384. /* special op: write back the misordered MAC address - otherwise
  5385. * the next nv_probe would see a wrong address.
  5386. */
  5387. writel(np->orig_mac[0], base + NvRegMacAddrA);
  5388. writel(np->orig_mac[1], base + NvRegMacAddrB);
  5389. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  5390. base + NvRegTransmitPoll);
  5391. }
  5392. static void __devexit nv_remove(struct pci_dev *pci_dev)
  5393. {
  5394. struct net_device *dev = pci_get_drvdata(pci_dev);
  5395. unregister_netdev(dev);
  5396. nv_restore_mac_addr(pci_dev);
  5397. /* restore any phy related changes */
  5398. nv_restore_phy(dev);
  5399. nv_mgmt_release_sema(dev);
  5400. /* free all structures */
  5401. free_rings(dev);
  5402. iounmap(get_hwbase(dev));
  5403. pci_release_regions(pci_dev);
  5404. pci_disable_device(pci_dev);
  5405. free_netdev(dev);
  5406. pci_set_drvdata(pci_dev, NULL);
  5407. }
  5408. #ifdef CONFIG_PM
  5409. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  5410. {
  5411. struct net_device *dev = pci_get_drvdata(pdev);
  5412. struct fe_priv *np = netdev_priv(dev);
  5413. u8 __iomem *base = get_hwbase(dev);
  5414. int i;
  5415. if (netif_running(dev)) {
  5416. // Gross.
  5417. nv_close(dev);
  5418. }
  5419. netif_device_detach(dev);
  5420. /* save non-pci configuration space */
  5421. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5422. np->saved_config_space[i] = readl(base + i*sizeof(u32));
  5423. pci_save_state(pdev);
  5424. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  5425. pci_disable_device(pdev);
  5426. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  5427. return 0;
  5428. }
  5429. static int nv_resume(struct pci_dev *pdev)
  5430. {
  5431. struct net_device *dev = pci_get_drvdata(pdev);
  5432. struct fe_priv *np = netdev_priv(dev);
  5433. u8 __iomem *base = get_hwbase(dev);
  5434. int i, rc = 0;
  5435. pci_set_power_state(pdev, PCI_D0);
  5436. pci_restore_state(pdev);
  5437. /* ack any pending wake events, disable PME */
  5438. pci_enable_wake(pdev, PCI_D0, 0);
  5439. /* restore non-pci configuration space */
  5440. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  5441. writel(np->saved_config_space[i], base+i*sizeof(u32));
  5442. if (np->driver_data & DEV_NEED_MSI_FIX)
  5443. pci_write_config_dword(pdev, NV_MSI_PRIV_OFFSET, NV_MSI_PRIV_VALUE);
  5444. /* restore phy state, including autoneg */
  5445. phy_init(dev);
  5446. netif_device_attach(dev);
  5447. if (netif_running(dev)) {
  5448. rc = nv_open(dev);
  5449. nv_set_multicast(dev);
  5450. }
  5451. return rc;
  5452. }
  5453. static void nv_shutdown(struct pci_dev *pdev)
  5454. {
  5455. struct net_device *dev = pci_get_drvdata(pdev);
  5456. struct fe_priv *np = netdev_priv(dev);
  5457. if (netif_running(dev))
  5458. nv_close(dev);
  5459. /*
  5460. * Restore the MAC so a kernel started by kexec won't get confused.
  5461. * If we really go for poweroff, we must not restore the MAC,
  5462. * otherwise the MAC for WOL will be reversed at least on some boards.
  5463. */
  5464. if (system_state != SYSTEM_POWER_OFF) {
  5465. nv_restore_mac_addr(pdev);
  5466. }
  5467. pci_disable_device(pdev);
  5468. /*
  5469. * Apparently it is not possible to reinitialise from D3 hot,
  5470. * only put the device into D3 if we really go for poweroff.
  5471. */
  5472. if (system_state == SYSTEM_POWER_OFF) {
  5473. if (pci_enable_wake(pdev, PCI_D3cold, np->wolenabled))
  5474. pci_enable_wake(pdev, PCI_D3hot, np->wolenabled);
  5475. pci_set_power_state(pdev, PCI_D3hot);
  5476. }
  5477. }
  5478. #else
  5479. #define nv_suspend NULL
  5480. #define nv_shutdown NULL
  5481. #define nv_resume NULL
  5482. #endif /* CONFIG_PM */
  5483. static DEFINE_PCI_DEVICE_TABLE(pci_tbl) = {
  5484. { /* nForce Ethernet Controller */
  5485. PCI_DEVICE(0x10DE, 0x01C3),
  5486. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5487. },
  5488. { /* nForce2 Ethernet Controller */
  5489. PCI_DEVICE(0x10DE, 0x0066),
  5490. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5491. },
  5492. { /* nForce3 Ethernet Controller */
  5493. PCI_DEVICE(0x10DE, 0x00D6),
  5494. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5495. },
  5496. { /* nForce3 Ethernet Controller */
  5497. PCI_DEVICE(0x10DE, 0x0086),
  5498. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5499. },
  5500. { /* nForce3 Ethernet Controller */
  5501. PCI_DEVICE(0x10DE, 0x008C),
  5502. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5503. },
  5504. { /* nForce3 Ethernet Controller */
  5505. PCI_DEVICE(0x10DE, 0x00E6),
  5506. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5507. },
  5508. { /* nForce3 Ethernet Controller */
  5509. PCI_DEVICE(0x10DE, 0x00DF),
  5510. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5511. },
  5512. { /* CK804 Ethernet Controller */
  5513. PCI_DEVICE(0x10DE, 0x0056),
  5514. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5515. },
  5516. { /* CK804 Ethernet Controller */
  5517. PCI_DEVICE(0x10DE, 0x0057),
  5518. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5519. },
  5520. { /* MCP04 Ethernet Controller */
  5521. PCI_DEVICE(0x10DE, 0x0037),
  5522. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5523. },
  5524. { /* MCP04 Ethernet Controller */
  5525. PCI_DEVICE(0x10DE, 0x0038),
  5526. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5527. },
  5528. { /* MCP51 Ethernet Controller */
  5529. PCI_DEVICE(0x10DE, 0x0268),
  5530. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5531. },
  5532. { /* MCP51 Ethernet Controller */
  5533. PCI_DEVICE(0x10DE, 0x0269),
  5534. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1|DEV_NEED_LOW_POWER_FIX,
  5535. },
  5536. { /* MCP55 Ethernet Controller */
  5537. PCI_DEVICE(0x10DE, 0x0372),
  5538. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5539. },
  5540. { /* MCP55 Ethernet Controller */
  5541. PCI_DEVICE(0x10DE, 0x0373),
  5542. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT|DEV_NEED_MSI_FIX,
  5543. },
  5544. { /* MCP61 Ethernet Controller */
  5545. PCI_DEVICE(0x10DE, 0x03E5),
  5546. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5547. },
  5548. { /* MCP61 Ethernet Controller */
  5549. PCI_DEVICE(0x10DE, 0x03E6),
  5550. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5551. },
  5552. { /* MCP61 Ethernet Controller */
  5553. PCI_DEVICE(0x10DE, 0x03EE),
  5554. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5555. },
  5556. { /* MCP61 Ethernet Controller */
  5557. PCI_DEVICE(0x10DE, 0x03EF),
  5558. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_MSI_FIX,
  5559. },
  5560. { /* MCP65 Ethernet Controller */
  5561. PCI_DEVICE(0x10DE, 0x0450),
  5562. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5563. },
  5564. { /* MCP65 Ethernet Controller */
  5565. PCI_DEVICE(0x10DE, 0x0451),
  5566. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5567. },
  5568. { /* MCP65 Ethernet Controller */
  5569. PCI_DEVICE(0x10DE, 0x0452),
  5570. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5571. },
  5572. { /* MCP65 Ethernet Controller */
  5573. PCI_DEVICE(0x10DE, 0x0453),
  5574. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5575. },
  5576. { /* MCP67 Ethernet Controller */
  5577. PCI_DEVICE(0x10DE, 0x054C),
  5578. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5579. },
  5580. { /* MCP67 Ethernet Controller */
  5581. PCI_DEVICE(0x10DE, 0x054D),
  5582. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5583. },
  5584. { /* MCP67 Ethernet Controller */
  5585. PCI_DEVICE(0x10DE, 0x054E),
  5586. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5587. },
  5588. { /* MCP67 Ethernet Controller */
  5589. PCI_DEVICE(0x10DE, 0x054F),
  5590. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5591. },
  5592. { /* MCP73 Ethernet Controller */
  5593. PCI_DEVICE(0x10DE, 0x07DC),
  5594. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5595. },
  5596. { /* MCP73 Ethernet Controller */
  5597. PCI_DEVICE(0x10DE, 0x07DD),
  5598. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5599. },
  5600. { /* MCP73 Ethernet Controller */
  5601. PCI_DEVICE(0x10DE, 0x07DE),
  5602. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5603. },
  5604. { /* MCP73 Ethernet Controller */
  5605. PCI_DEVICE(0x10DE, 0x07DF),
  5606. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_MSI_FIX,
  5607. },
  5608. { /* MCP77 Ethernet Controller */
  5609. PCI_DEVICE(0x10DE, 0x0760),
  5610. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5611. },
  5612. { /* MCP77 Ethernet Controller */
  5613. PCI_DEVICE(0x10DE, 0x0761),
  5614. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5615. },
  5616. { /* MCP77 Ethernet Controller */
  5617. PCI_DEVICE(0x10DE, 0x0762),
  5618. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5619. },
  5620. { /* MCP77 Ethernet Controller */
  5621. PCI_DEVICE(0x10DE, 0x0763),
  5622. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5623. },
  5624. { /* MCP79 Ethernet Controller */
  5625. PCI_DEVICE(0x10DE, 0x0AB0),
  5626. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5627. },
  5628. { /* MCP79 Ethernet Controller */
  5629. PCI_DEVICE(0x10DE, 0x0AB1),
  5630. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5631. },
  5632. { /* MCP79 Ethernet Controller */
  5633. PCI_DEVICE(0x10DE, 0x0AB2),
  5634. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5635. },
  5636. { /* MCP79 Ethernet Controller */
  5637. PCI_DEVICE(0x10DE, 0x0AB3),
  5638. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT2|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX|DEV_NEED_MSI_FIX,
  5639. },
  5640. { /* MCP89 Ethernet Controller */
  5641. PCI_DEVICE(0x10DE, 0x0D7D),
  5642. .driver_data = DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V3|DEV_HAS_TEST_EXTENDED|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_HAS_GEAR_MODE|DEV_NEED_PHY_INIT_FIX,
  5643. },
  5644. {0,},
  5645. };
  5646. static struct pci_driver driver = {
  5647. .name = DRV_NAME,
  5648. .id_table = pci_tbl,
  5649. .probe = nv_probe,
  5650. .remove = __devexit_p(nv_remove),
  5651. .suspend = nv_suspend,
  5652. .resume = nv_resume,
  5653. .shutdown = nv_shutdown,
  5654. };
  5655. static int __init init_nic(void)
  5656. {
  5657. return pci_register_driver(&driver);
  5658. }
  5659. static void __exit exit_nic(void)
  5660. {
  5661. pci_unregister_driver(&driver);
  5662. }
  5663. module_param(max_interrupt_work, int, 0);
  5664. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5665. module_param(optimization_mode, int, 0);
  5666. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer. In dynamic mode (2), the mode toggles between throughput and CPU mode based on network load.");
  5667. module_param(poll_interval, int, 0);
  5668. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5669. module_param(msi, int, 0);
  5670. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5671. module_param(msix, int, 0);
  5672. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5673. module_param(dma_64bit, int, 0);
  5674. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5675. module_param(phy_cross, int, 0);
  5676. MODULE_PARM_DESC(phy_cross, "Phy crossover detection for Realtek 8201 phy is enabled by setting to 1 and disabled by setting to 0.");
  5677. module_param(phy_power_down, int, 0);
  5678. MODULE_PARM_DESC(phy_power_down, "Power down phy and disable link when interface is down (1), or leave phy powered up (0).");
  5679. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5680. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5681. MODULE_LICENSE("GPL");
  5682. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5683. module_init(init_nic);
  5684. module_exit(exit_nic);