input.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/slab.h>
  16. #include <linux/random.h>
  17. #include <linux/major.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/sched.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/poll.h>
  22. #include <linux/device.h>
  23. #include <linux/mutex.h>
  24. #include <linux/rcupdate.h>
  25. #include <linux/smp_lock.h>
  26. #include "input-compat.h"
  27. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  28. MODULE_DESCRIPTION("Input core");
  29. MODULE_LICENSE("GPL");
  30. #define INPUT_DEVICES 256
  31. /*
  32. * EV_ABS events which should not be cached are listed here.
  33. */
  34. static unsigned int input_abs_bypass_init_data[] __initdata = {
  35. ABS_MT_TOUCH_MAJOR,
  36. ABS_MT_TOUCH_MINOR,
  37. ABS_MT_WIDTH_MAJOR,
  38. ABS_MT_WIDTH_MINOR,
  39. ABS_MT_ORIENTATION,
  40. ABS_MT_POSITION_X,
  41. ABS_MT_POSITION_Y,
  42. ABS_MT_TOOL_TYPE,
  43. ABS_MT_BLOB_ID,
  44. ABS_MT_TRACKING_ID,
  45. ABS_MT_PRESSURE,
  46. 0
  47. };
  48. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  49. static LIST_HEAD(input_dev_list);
  50. static LIST_HEAD(input_handler_list);
  51. /*
  52. * input_mutex protects access to both input_dev_list and input_handler_list.
  53. * This also causes input_[un]register_device and input_[un]register_handler
  54. * be mutually exclusive which simplifies locking in drivers implementing
  55. * input handlers.
  56. */
  57. static DEFINE_MUTEX(input_mutex);
  58. static struct input_handler *input_table[8];
  59. static inline int is_event_supported(unsigned int code,
  60. unsigned long *bm, unsigned int max)
  61. {
  62. return code <= max && test_bit(code, bm);
  63. }
  64. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  65. {
  66. if (fuzz) {
  67. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  68. return old_val;
  69. if (value > old_val - fuzz && value < old_val + fuzz)
  70. return (old_val * 3 + value) / 4;
  71. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  72. return (old_val + value) / 2;
  73. }
  74. return value;
  75. }
  76. /*
  77. * Pass event first through all filters and then, if event has not been
  78. * filtered out, through all open handles. This function is called with
  79. * dev->event_lock held and interrupts disabled.
  80. */
  81. static void input_pass_event(struct input_dev *dev,
  82. unsigned int type, unsigned int code, int value)
  83. {
  84. struct input_handler *handler;
  85. struct input_handle *handle;
  86. rcu_read_lock();
  87. handle = rcu_dereference(dev->grab);
  88. if (handle)
  89. handle->handler->event(handle, type, code, value);
  90. else {
  91. bool filtered = false;
  92. list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
  93. if (!handle->open)
  94. continue;
  95. handler = handle->handler;
  96. if (!handler->filter) {
  97. if (filtered)
  98. break;
  99. handler->event(handle, type, code, value);
  100. } else if (handler->filter(handle, type, code, value))
  101. filtered = true;
  102. }
  103. }
  104. rcu_read_unlock();
  105. }
  106. /*
  107. * Generate software autorepeat event. Note that we take
  108. * dev->event_lock here to avoid racing with input_event
  109. * which may cause keys get "stuck".
  110. */
  111. static void input_repeat_key(unsigned long data)
  112. {
  113. struct input_dev *dev = (void *) data;
  114. unsigned long flags;
  115. spin_lock_irqsave(&dev->event_lock, flags);
  116. if (test_bit(dev->repeat_key, dev->key) &&
  117. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  118. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  119. if (dev->sync) {
  120. /*
  121. * Only send SYN_REPORT if we are not in a middle
  122. * of driver parsing a new hardware packet.
  123. * Otherwise assume that the driver will send
  124. * SYN_REPORT once it's done.
  125. */
  126. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  127. }
  128. if (dev->rep[REP_PERIOD])
  129. mod_timer(&dev->timer, jiffies +
  130. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  131. }
  132. spin_unlock_irqrestore(&dev->event_lock, flags);
  133. }
  134. static void input_start_autorepeat(struct input_dev *dev, int code)
  135. {
  136. if (test_bit(EV_REP, dev->evbit) &&
  137. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  138. dev->timer.data) {
  139. dev->repeat_key = code;
  140. mod_timer(&dev->timer,
  141. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  142. }
  143. }
  144. static void input_stop_autorepeat(struct input_dev *dev)
  145. {
  146. del_timer(&dev->timer);
  147. }
  148. #define INPUT_IGNORE_EVENT 0
  149. #define INPUT_PASS_TO_HANDLERS 1
  150. #define INPUT_PASS_TO_DEVICE 2
  151. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  152. static void input_handle_event(struct input_dev *dev,
  153. unsigned int type, unsigned int code, int value)
  154. {
  155. int disposition = INPUT_IGNORE_EVENT;
  156. switch (type) {
  157. case EV_SYN:
  158. switch (code) {
  159. case SYN_CONFIG:
  160. disposition = INPUT_PASS_TO_ALL;
  161. break;
  162. case SYN_REPORT:
  163. if (!dev->sync) {
  164. dev->sync = 1;
  165. disposition = INPUT_PASS_TO_HANDLERS;
  166. }
  167. break;
  168. case SYN_MT_REPORT:
  169. dev->sync = 0;
  170. disposition = INPUT_PASS_TO_HANDLERS;
  171. break;
  172. }
  173. break;
  174. case EV_KEY:
  175. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  176. !!test_bit(code, dev->key) != value) {
  177. if (value != 2) {
  178. __change_bit(code, dev->key);
  179. if (value)
  180. input_start_autorepeat(dev, code);
  181. else
  182. input_stop_autorepeat(dev);
  183. }
  184. disposition = INPUT_PASS_TO_HANDLERS;
  185. }
  186. break;
  187. case EV_SW:
  188. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  189. !!test_bit(code, dev->sw) != value) {
  190. __change_bit(code, dev->sw);
  191. disposition = INPUT_PASS_TO_HANDLERS;
  192. }
  193. break;
  194. case EV_ABS:
  195. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  196. if (test_bit(code, input_abs_bypass)) {
  197. disposition = INPUT_PASS_TO_HANDLERS;
  198. break;
  199. }
  200. value = input_defuzz_abs_event(value,
  201. dev->abs[code], dev->absfuzz[code]);
  202. if (dev->abs[code] != value) {
  203. dev->abs[code] = value;
  204. disposition = INPUT_PASS_TO_HANDLERS;
  205. }
  206. }
  207. break;
  208. case EV_REL:
  209. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  210. disposition = INPUT_PASS_TO_HANDLERS;
  211. break;
  212. case EV_MSC:
  213. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  214. disposition = INPUT_PASS_TO_ALL;
  215. break;
  216. case EV_LED:
  217. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  218. !!test_bit(code, dev->led) != value) {
  219. __change_bit(code, dev->led);
  220. disposition = INPUT_PASS_TO_ALL;
  221. }
  222. break;
  223. case EV_SND:
  224. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  225. if (!!test_bit(code, dev->snd) != !!value)
  226. __change_bit(code, dev->snd);
  227. disposition = INPUT_PASS_TO_ALL;
  228. }
  229. break;
  230. case EV_REP:
  231. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  232. dev->rep[code] = value;
  233. disposition = INPUT_PASS_TO_ALL;
  234. }
  235. break;
  236. case EV_FF:
  237. if (value >= 0)
  238. disposition = INPUT_PASS_TO_ALL;
  239. break;
  240. case EV_PWR:
  241. disposition = INPUT_PASS_TO_ALL;
  242. break;
  243. }
  244. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  245. dev->sync = 0;
  246. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  247. dev->event(dev, type, code, value);
  248. if (disposition & INPUT_PASS_TO_HANDLERS)
  249. input_pass_event(dev, type, code, value);
  250. }
  251. /**
  252. * input_event() - report new input event
  253. * @dev: device that generated the event
  254. * @type: type of the event
  255. * @code: event code
  256. * @value: value of the event
  257. *
  258. * This function should be used by drivers implementing various input
  259. * devices to report input events. See also input_inject_event().
  260. *
  261. * NOTE: input_event() may be safely used right after input device was
  262. * allocated with input_allocate_device(), even before it is registered
  263. * with input_register_device(), but the event will not reach any of the
  264. * input handlers. Such early invocation of input_event() may be used
  265. * to 'seed' initial state of a switch or initial position of absolute
  266. * axis, etc.
  267. */
  268. void input_event(struct input_dev *dev,
  269. unsigned int type, unsigned int code, int value)
  270. {
  271. unsigned long flags;
  272. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  273. spin_lock_irqsave(&dev->event_lock, flags);
  274. add_input_randomness(type, code, value);
  275. input_handle_event(dev, type, code, value);
  276. spin_unlock_irqrestore(&dev->event_lock, flags);
  277. }
  278. }
  279. EXPORT_SYMBOL(input_event);
  280. /**
  281. * input_inject_event() - send input event from input handler
  282. * @handle: input handle to send event through
  283. * @type: type of the event
  284. * @code: event code
  285. * @value: value of the event
  286. *
  287. * Similar to input_event() but will ignore event if device is
  288. * "grabbed" and handle injecting event is not the one that owns
  289. * the device.
  290. */
  291. void input_inject_event(struct input_handle *handle,
  292. unsigned int type, unsigned int code, int value)
  293. {
  294. struct input_dev *dev = handle->dev;
  295. struct input_handle *grab;
  296. unsigned long flags;
  297. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  298. spin_lock_irqsave(&dev->event_lock, flags);
  299. rcu_read_lock();
  300. grab = rcu_dereference(dev->grab);
  301. if (!grab || grab == handle)
  302. input_handle_event(dev, type, code, value);
  303. rcu_read_unlock();
  304. spin_unlock_irqrestore(&dev->event_lock, flags);
  305. }
  306. }
  307. EXPORT_SYMBOL(input_inject_event);
  308. /**
  309. * input_grab_device - grabs device for exclusive use
  310. * @handle: input handle that wants to own the device
  311. *
  312. * When a device is grabbed by an input handle all events generated by
  313. * the device are delivered only to this handle. Also events injected
  314. * by other input handles are ignored while device is grabbed.
  315. */
  316. int input_grab_device(struct input_handle *handle)
  317. {
  318. struct input_dev *dev = handle->dev;
  319. int retval;
  320. retval = mutex_lock_interruptible(&dev->mutex);
  321. if (retval)
  322. return retval;
  323. if (dev->grab) {
  324. retval = -EBUSY;
  325. goto out;
  326. }
  327. rcu_assign_pointer(dev->grab, handle);
  328. synchronize_rcu();
  329. out:
  330. mutex_unlock(&dev->mutex);
  331. return retval;
  332. }
  333. EXPORT_SYMBOL(input_grab_device);
  334. static void __input_release_device(struct input_handle *handle)
  335. {
  336. struct input_dev *dev = handle->dev;
  337. if (dev->grab == handle) {
  338. rcu_assign_pointer(dev->grab, NULL);
  339. /* Make sure input_pass_event() notices that grab is gone */
  340. synchronize_rcu();
  341. list_for_each_entry(handle, &dev->h_list, d_node)
  342. if (handle->open && handle->handler->start)
  343. handle->handler->start(handle);
  344. }
  345. }
  346. /**
  347. * input_release_device - release previously grabbed device
  348. * @handle: input handle that owns the device
  349. *
  350. * Releases previously grabbed device so that other input handles can
  351. * start receiving input events. Upon release all handlers attached
  352. * to the device have their start() method called so they have a change
  353. * to synchronize device state with the rest of the system.
  354. */
  355. void input_release_device(struct input_handle *handle)
  356. {
  357. struct input_dev *dev = handle->dev;
  358. mutex_lock(&dev->mutex);
  359. __input_release_device(handle);
  360. mutex_unlock(&dev->mutex);
  361. }
  362. EXPORT_SYMBOL(input_release_device);
  363. /**
  364. * input_open_device - open input device
  365. * @handle: handle through which device is being accessed
  366. *
  367. * This function should be called by input handlers when they
  368. * want to start receive events from given input device.
  369. */
  370. int input_open_device(struct input_handle *handle)
  371. {
  372. struct input_dev *dev = handle->dev;
  373. int retval;
  374. retval = mutex_lock_interruptible(&dev->mutex);
  375. if (retval)
  376. return retval;
  377. if (dev->going_away) {
  378. retval = -ENODEV;
  379. goto out;
  380. }
  381. handle->open++;
  382. if (!dev->users++ && dev->open)
  383. retval = dev->open(dev);
  384. if (retval) {
  385. dev->users--;
  386. if (!--handle->open) {
  387. /*
  388. * Make sure we are not delivering any more events
  389. * through this handle
  390. */
  391. synchronize_rcu();
  392. }
  393. }
  394. out:
  395. mutex_unlock(&dev->mutex);
  396. return retval;
  397. }
  398. EXPORT_SYMBOL(input_open_device);
  399. int input_flush_device(struct input_handle *handle, struct file *file)
  400. {
  401. struct input_dev *dev = handle->dev;
  402. int retval;
  403. retval = mutex_lock_interruptible(&dev->mutex);
  404. if (retval)
  405. return retval;
  406. if (dev->flush)
  407. retval = dev->flush(dev, file);
  408. mutex_unlock(&dev->mutex);
  409. return retval;
  410. }
  411. EXPORT_SYMBOL(input_flush_device);
  412. /**
  413. * input_close_device - close input device
  414. * @handle: handle through which device is being accessed
  415. *
  416. * This function should be called by input handlers when they
  417. * want to stop receive events from given input device.
  418. */
  419. void input_close_device(struct input_handle *handle)
  420. {
  421. struct input_dev *dev = handle->dev;
  422. mutex_lock(&dev->mutex);
  423. __input_release_device(handle);
  424. if (!--dev->users && dev->close)
  425. dev->close(dev);
  426. if (!--handle->open) {
  427. /*
  428. * synchronize_rcu() makes sure that input_pass_event()
  429. * completed and that no more input events are delivered
  430. * through this handle
  431. */
  432. synchronize_rcu();
  433. }
  434. mutex_unlock(&dev->mutex);
  435. }
  436. EXPORT_SYMBOL(input_close_device);
  437. /*
  438. * Prepare device for unregistering
  439. */
  440. static void input_disconnect_device(struct input_dev *dev)
  441. {
  442. struct input_handle *handle;
  443. int code;
  444. /*
  445. * Mark device as going away. Note that we take dev->mutex here
  446. * not to protect access to dev->going_away but rather to ensure
  447. * that there are no threads in the middle of input_open_device()
  448. */
  449. mutex_lock(&dev->mutex);
  450. dev->going_away = true;
  451. mutex_unlock(&dev->mutex);
  452. spin_lock_irq(&dev->event_lock);
  453. /*
  454. * Simulate keyup events for all pressed keys so that handlers
  455. * are not left with "stuck" keys. The driver may continue
  456. * generate events even after we done here but they will not
  457. * reach any handlers.
  458. */
  459. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  460. for (code = 0; code <= KEY_MAX; code++) {
  461. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  462. __test_and_clear_bit(code, dev->key)) {
  463. input_pass_event(dev, EV_KEY, code, 0);
  464. }
  465. }
  466. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  467. }
  468. list_for_each_entry(handle, &dev->h_list, d_node)
  469. handle->open = 0;
  470. spin_unlock_irq(&dev->event_lock);
  471. }
  472. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  473. {
  474. switch (dev->keycodesize) {
  475. case 1:
  476. return ((u8 *)dev->keycode)[scancode];
  477. case 2:
  478. return ((u16 *)dev->keycode)[scancode];
  479. default:
  480. return ((u32 *)dev->keycode)[scancode];
  481. }
  482. }
  483. static int input_default_getkeycode(struct input_dev *dev,
  484. unsigned int scancode,
  485. unsigned int *keycode)
  486. {
  487. if (!dev->keycodesize)
  488. return -EINVAL;
  489. if (scancode >= dev->keycodemax)
  490. return -EINVAL;
  491. *keycode = input_fetch_keycode(dev, scancode);
  492. return 0;
  493. }
  494. static int input_default_setkeycode(struct input_dev *dev,
  495. unsigned int scancode,
  496. unsigned int keycode)
  497. {
  498. int old_keycode;
  499. int i;
  500. if (scancode >= dev->keycodemax)
  501. return -EINVAL;
  502. if (!dev->keycodesize)
  503. return -EINVAL;
  504. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  505. return -EINVAL;
  506. switch (dev->keycodesize) {
  507. case 1: {
  508. u8 *k = (u8 *)dev->keycode;
  509. old_keycode = k[scancode];
  510. k[scancode] = keycode;
  511. break;
  512. }
  513. case 2: {
  514. u16 *k = (u16 *)dev->keycode;
  515. old_keycode = k[scancode];
  516. k[scancode] = keycode;
  517. break;
  518. }
  519. default: {
  520. u32 *k = (u32 *)dev->keycode;
  521. old_keycode = k[scancode];
  522. k[scancode] = keycode;
  523. break;
  524. }
  525. }
  526. __clear_bit(old_keycode, dev->keybit);
  527. __set_bit(keycode, dev->keybit);
  528. for (i = 0; i < dev->keycodemax; i++) {
  529. if (input_fetch_keycode(dev, i) == old_keycode) {
  530. __set_bit(old_keycode, dev->keybit);
  531. break; /* Setting the bit twice is useless, so break */
  532. }
  533. }
  534. return 0;
  535. }
  536. /**
  537. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  538. * @dev: input device which keymap is being queried
  539. * @scancode: scancode (or its equivalent for device in question) for which
  540. * keycode is needed
  541. * @keycode: result
  542. *
  543. * This function should be called by anyone interested in retrieving current
  544. * keymap. Presently keyboard and evdev handlers use it.
  545. */
  546. int input_get_keycode(struct input_dev *dev,
  547. unsigned int scancode, unsigned int *keycode)
  548. {
  549. return dev->getkeycode(dev, scancode, keycode);
  550. }
  551. EXPORT_SYMBOL(input_get_keycode);
  552. /**
  553. * input_get_keycode - assign new keycode to a given scancode
  554. * @dev: input device which keymap is being updated
  555. * @scancode: scancode (or its equivalent for device in question)
  556. * @keycode: new keycode to be assigned to the scancode
  557. *
  558. * This function should be called by anyone needing to update current
  559. * keymap. Presently keyboard and evdev handlers use it.
  560. */
  561. int input_set_keycode(struct input_dev *dev,
  562. unsigned int scancode, unsigned int keycode)
  563. {
  564. unsigned long flags;
  565. int old_keycode;
  566. int retval;
  567. if (keycode > KEY_MAX)
  568. return -EINVAL;
  569. spin_lock_irqsave(&dev->event_lock, flags);
  570. retval = dev->getkeycode(dev, scancode, &old_keycode);
  571. if (retval)
  572. goto out;
  573. retval = dev->setkeycode(dev, scancode, keycode);
  574. if (retval)
  575. goto out;
  576. /* Make sure KEY_RESERVED did not get enabled. */
  577. __clear_bit(KEY_RESERVED, dev->keybit);
  578. /*
  579. * Simulate keyup event if keycode is not present
  580. * in the keymap anymore
  581. */
  582. if (test_bit(EV_KEY, dev->evbit) &&
  583. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  584. __test_and_clear_bit(old_keycode, dev->key)) {
  585. input_pass_event(dev, EV_KEY, old_keycode, 0);
  586. if (dev->sync)
  587. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  588. }
  589. out:
  590. spin_unlock_irqrestore(&dev->event_lock, flags);
  591. return retval;
  592. }
  593. EXPORT_SYMBOL(input_set_keycode);
  594. #define MATCH_BIT(bit, max) \
  595. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  596. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  597. break; \
  598. if (i != BITS_TO_LONGS(max)) \
  599. continue;
  600. static const struct input_device_id *input_match_device(struct input_handler *handler,
  601. struct input_dev *dev)
  602. {
  603. const struct input_device_id *id;
  604. int i;
  605. for (id = handler->id_table; id->flags || id->driver_info; id++) {
  606. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  607. if (id->bustype != dev->id.bustype)
  608. continue;
  609. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  610. if (id->vendor != dev->id.vendor)
  611. continue;
  612. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  613. if (id->product != dev->id.product)
  614. continue;
  615. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  616. if (id->version != dev->id.version)
  617. continue;
  618. MATCH_BIT(evbit, EV_MAX);
  619. MATCH_BIT(keybit, KEY_MAX);
  620. MATCH_BIT(relbit, REL_MAX);
  621. MATCH_BIT(absbit, ABS_MAX);
  622. MATCH_BIT(mscbit, MSC_MAX);
  623. MATCH_BIT(ledbit, LED_MAX);
  624. MATCH_BIT(sndbit, SND_MAX);
  625. MATCH_BIT(ffbit, FF_MAX);
  626. MATCH_BIT(swbit, SW_MAX);
  627. if (!handler->match || handler->match(handler, dev))
  628. return id;
  629. }
  630. return NULL;
  631. }
  632. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  633. {
  634. const struct input_device_id *id;
  635. int error;
  636. id = input_match_device(handler, dev);
  637. if (!id)
  638. return -ENODEV;
  639. error = handler->connect(handler, dev, id);
  640. if (error && error != -ENODEV)
  641. printk(KERN_ERR
  642. "input: failed to attach handler %s to device %s, "
  643. "error: %d\n",
  644. handler->name, kobject_name(&dev->dev.kobj), error);
  645. return error;
  646. }
  647. #ifdef CONFIG_COMPAT
  648. static int input_bits_to_string(char *buf, int buf_size,
  649. unsigned long bits, bool skip_empty)
  650. {
  651. int len = 0;
  652. if (INPUT_COMPAT_TEST) {
  653. u32 dword = bits >> 32;
  654. if (dword || !skip_empty)
  655. len += snprintf(buf, buf_size, "%x ", dword);
  656. dword = bits & 0xffffffffUL;
  657. if (dword || !skip_empty || len)
  658. len += snprintf(buf + len, max(buf_size - len, 0),
  659. "%x", dword);
  660. } else {
  661. if (bits || !skip_empty)
  662. len += snprintf(buf, buf_size, "%lx", bits);
  663. }
  664. return len;
  665. }
  666. #else /* !CONFIG_COMPAT */
  667. static int input_bits_to_string(char *buf, int buf_size,
  668. unsigned long bits, bool skip_empty)
  669. {
  670. return bits || !skip_empty ?
  671. snprintf(buf, buf_size, "%lx", bits) : 0;
  672. }
  673. #endif
  674. #ifdef CONFIG_PROC_FS
  675. static struct proc_dir_entry *proc_bus_input_dir;
  676. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  677. static int input_devices_state;
  678. static inline void input_wakeup_procfs_readers(void)
  679. {
  680. input_devices_state++;
  681. wake_up(&input_devices_poll_wait);
  682. }
  683. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  684. {
  685. poll_wait(file, &input_devices_poll_wait, wait);
  686. if (file->f_version != input_devices_state) {
  687. file->f_version = input_devices_state;
  688. return POLLIN | POLLRDNORM;
  689. }
  690. return 0;
  691. }
  692. union input_seq_state {
  693. struct {
  694. unsigned short pos;
  695. bool mutex_acquired;
  696. };
  697. void *p;
  698. };
  699. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  700. {
  701. union input_seq_state *state = (union input_seq_state *)&seq->private;
  702. int error;
  703. /* We need to fit into seq->private pointer */
  704. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  705. error = mutex_lock_interruptible(&input_mutex);
  706. if (error) {
  707. state->mutex_acquired = false;
  708. return ERR_PTR(error);
  709. }
  710. state->mutex_acquired = true;
  711. return seq_list_start(&input_dev_list, *pos);
  712. }
  713. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  714. {
  715. return seq_list_next(v, &input_dev_list, pos);
  716. }
  717. static void input_seq_stop(struct seq_file *seq, void *v)
  718. {
  719. union input_seq_state *state = (union input_seq_state *)&seq->private;
  720. if (state->mutex_acquired)
  721. mutex_unlock(&input_mutex);
  722. }
  723. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  724. unsigned long *bitmap, int max)
  725. {
  726. int i;
  727. bool skip_empty = true;
  728. char buf[18];
  729. seq_printf(seq, "B: %s=", name);
  730. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  731. if (input_bits_to_string(buf, sizeof(buf),
  732. bitmap[i], skip_empty)) {
  733. skip_empty = false;
  734. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  735. }
  736. }
  737. /*
  738. * If no output was produced print a single 0.
  739. */
  740. if (skip_empty)
  741. seq_puts(seq, "0");
  742. seq_putc(seq, '\n');
  743. }
  744. static int input_devices_seq_show(struct seq_file *seq, void *v)
  745. {
  746. struct input_dev *dev = container_of(v, struct input_dev, node);
  747. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  748. struct input_handle *handle;
  749. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  750. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  751. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  752. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  753. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  754. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  755. seq_printf(seq, "H: Handlers=");
  756. list_for_each_entry(handle, &dev->h_list, d_node)
  757. seq_printf(seq, "%s ", handle->name);
  758. seq_putc(seq, '\n');
  759. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  760. if (test_bit(EV_KEY, dev->evbit))
  761. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  762. if (test_bit(EV_REL, dev->evbit))
  763. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  764. if (test_bit(EV_ABS, dev->evbit))
  765. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  766. if (test_bit(EV_MSC, dev->evbit))
  767. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  768. if (test_bit(EV_LED, dev->evbit))
  769. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  770. if (test_bit(EV_SND, dev->evbit))
  771. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  772. if (test_bit(EV_FF, dev->evbit))
  773. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  774. if (test_bit(EV_SW, dev->evbit))
  775. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  776. seq_putc(seq, '\n');
  777. kfree(path);
  778. return 0;
  779. }
  780. static const struct seq_operations input_devices_seq_ops = {
  781. .start = input_devices_seq_start,
  782. .next = input_devices_seq_next,
  783. .stop = input_seq_stop,
  784. .show = input_devices_seq_show,
  785. };
  786. static int input_proc_devices_open(struct inode *inode, struct file *file)
  787. {
  788. return seq_open(file, &input_devices_seq_ops);
  789. }
  790. static const struct file_operations input_devices_fileops = {
  791. .owner = THIS_MODULE,
  792. .open = input_proc_devices_open,
  793. .poll = input_proc_devices_poll,
  794. .read = seq_read,
  795. .llseek = seq_lseek,
  796. .release = seq_release,
  797. };
  798. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  799. {
  800. union input_seq_state *state = (union input_seq_state *)&seq->private;
  801. int error;
  802. /* We need to fit into seq->private pointer */
  803. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  804. error = mutex_lock_interruptible(&input_mutex);
  805. if (error) {
  806. state->mutex_acquired = false;
  807. return ERR_PTR(error);
  808. }
  809. state->mutex_acquired = true;
  810. state->pos = *pos;
  811. return seq_list_start(&input_handler_list, *pos);
  812. }
  813. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  814. {
  815. union input_seq_state *state = (union input_seq_state *)&seq->private;
  816. state->pos = *pos + 1;
  817. return seq_list_next(v, &input_handler_list, pos);
  818. }
  819. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  820. {
  821. struct input_handler *handler = container_of(v, struct input_handler, node);
  822. union input_seq_state *state = (union input_seq_state *)&seq->private;
  823. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  824. if (handler->filter)
  825. seq_puts(seq, " (filter)");
  826. if (handler->fops)
  827. seq_printf(seq, " Minor=%d", handler->minor);
  828. seq_putc(seq, '\n');
  829. return 0;
  830. }
  831. static const struct seq_operations input_handlers_seq_ops = {
  832. .start = input_handlers_seq_start,
  833. .next = input_handlers_seq_next,
  834. .stop = input_seq_stop,
  835. .show = input_handlers_seq_show,
  836. };
  837. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  838. {
  839. return seq_open(file, &input_handlers_seq_ops);
  840. }
  841. static const struct file_operations input_handlers_fileops = {
  842. .owner = THIS_MODULE,
  843. .open = input_proc_handlers_open,
  844. .read = seq_read,
  845. .llseek = seq_lseek,
  846. .release = seq_release,
  847. };
  848. static int __init input_proc_init(void)
  849. {
  850. struct proc_dir_entry *entry;
  851. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  852. if (!proc_bus_input_dir)
  853. return -ENOMEM;
  854. entry = proc_create("devices", 0, proc_bus_input_dir,
  855. &input_devices_fileops);
  856. if (!entry)
  857. goto fail1;
  858. entry = proc_create("handlers", 0, proc_bus_input_dir,
  859. &input_handlers_fileops);
  860. if (!entry)
  861. goto fail2;
  862. return 0;
  863. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  864. fail1: remove_proc_entry("bus/input", NULL);
  865. return -ENOMEM;
  866. }
  867. static void input_proc_exit(void)
  868. {
  869. remove_proc_entry("devices", proc_bus_input_dir);
  870. remove_proc_entry("handlers", proc_bus_input_dir);
  871. remove_proc_entry("bus/input", NULL);
  872. }
  873. #else /* !CONFIG_PROC_FS */
  874. static inline void input_wakeup_procfs_readers(void) { }
  875. static inline int input_proc_init(void) { return 0; }
  876. static inline void input_proc_exit(void) { }
  877. #endif
  878. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  879. static ssize_t input_dev_show_##name(struct device *dev, \
  880. struct device_attribute *attr, \
  881. char *buf) \
  882. { \
  883. struct input_dev *input_dev = to_input_dev(dev); \
  884. \
  885. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  886. input_dev->name ? input_dev->name : ""); \
  887. } \
  888. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  889. INPUT_DEV_STRING_ATTR_SHOW(name);
  890. INPUT_DEV_STRING_ATTR_SHOW(phys);
  891. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  892. static int input_print_modalias_bits(char *buf, int size,
  893. char name, unsigned long *bm,
  894. unsigned int min_bit, unsigned int max_bit)
  895. {
  896. int len = 0, i;
  897. len += snprintf(buf, max(size, 0), "%c", name);
  898. for (i = min_bit; i < max_bit; i++)
  899. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  900. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  901. return len;
  902. }
  903. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  904. int add_cr)
  905. {
  906. int len;
  907. len = snprintf(buf, max(size, 0),
  908. "input:b%04Xv%04Xp%04Xe%04X-",
  909. id->id.bustype, id->id.vendor,
  910. id->id.product, id->id.version);
  911. len += input_print_modalias_bits(buf + len, size - len,
  912. 'e', id->evbit, 0, EV_MAX);
  913. len += input_print_modalias_bits(buf + len, size - len,
  914. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  915. len += input_print_modalias_bits(buf + len, size - len,
  916. 'r', id->relbit, 0, REL_MAX);
  917. len += input_print_modalias_bits(buf + len, size - len,
  918. 'a', id->absbit, 0, ABS_MAX);
  919. len += input_print_modalias_bits(buf + len, size - len,
  920. 'm', id->mscbit, 0, MSC_MAX);
  921. len += input_print_modalias_bits(buf + len, size - len,
  922. 'l', id->ledbit, 0, LED_MAX);
  923. len += input_print_modalias_bits(buf + len, size - len,
  924. 's', id->sndbit, 0, SND_MAX);
  925. len += input_print_modalias_bits(buf + len, size - len,
  926. 'f', id->ffbit, 0, FF_MAX);
  927. len += input_print_modalias_bits(buf + len, size - len,
  928. 'w', id->swbit, 0, SW_MAX);
  929. if (add_cr)
  930. len += snprintf(buf + len, max(size - len, 0), "\n");
  931. return len;
  932. }
  933. static ssize_t input_dev_show_modalias(struct device *dev,
  934. struct device_attribute *attr,
  935. char *buf)
  936. {
  937. struct input_dev *id = to_input_dev(dev);
  938. ssize_t len;
  939. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  940. return min_t(int, len, PAGE_SIZE);
  941. }
  942. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  943. static struct attribute *input_dev_attrs[] = {
  944. &dev_attr_name.attr,
  945. &dev_attr_phys.attr,
  946. &dev_attr_uniq.attr,
  947. &dev_attr_modalias.attr,
  948. NULL
  949. };
  950. static struct attribute_group input_dev_attr_group = {
  951. .attrs = input_dev_attrs,
  952. };
  953. #define INPUT_DEV_ID_ATTR(name) \
  954. static ssize_t input_dev_show_id_##name(struct device *dev, \
  955. struct device_attribute *attr, \
  956. char *buf) \
  957. { \
  958. struct input_dev *input_dev = to_input_dev(dev); \
  959. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  960. } \
  961. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  962. INPUT_DEV_ID_ATTR(bustype);
  963. INPUT_DEV_ID_ATTR(vendor);
  964. INPUT_DEV_ID_ATTR(product);
  965. INPUT_DEV_ID_ATTR(version);
  966. static struct attribute *input_dev_id_attrs[] = {
  967. &dev_attr_bustype.attr,
  968. &dev_attr_vendor.attr,
  969. &dev_attr_product.attr,
  970. &dev_attr_version.attr,
  971. NULL
  972. };
  973. static struct attribute_group input_dev_id_attr_group = {
  974. .name = "id",
  975. .attrs = input_dev_id_attrs,
  976. };
  977. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  978. int max, int add_cr)
  979. {
  980. int i;
  981. int len = 0;
  982. bool skip_empty = true;
  983. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  984. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  985. bitmap[i], skip_empty);
  986. if (len) {
  987. skip_empty = false;
  988. if (i > 0)
  989. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  990. }
  991. }
  992. /*
  993. * If no output was produced print a single 0.
  994. */
  995. if (len == 0)
  996. len = snprintf(buf, buf_size, "%d", 0);
  997. if (add_cr)
  998. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  999. return len;
  1000. }
  1001. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  1002. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  1003. struct device_attribute *attr, \
  1004. char *buf) \
  1005. { \
  1006. struct input_dev *input_dev = to_input_dev(dev); \
  1007. int len = input_print_bitmap(buf, PAGE_SIZE, \
  1008. input_dev->bm##bit, ev##_MAX, \
  1009. true); \
  1010. return min_t(int, len, PAGE_SIZE); \
  1011. } \
  1012. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  1013. INPUT_DEV_CAP_ATTR(EV, ev);
  1014. INPUT_DEV_CAP_ATTR(KEY, key);
  1015. INPUT_DEV_CAP_ATTR(REL, rel);
  1016. INPUT_DEV_CAP_ATTR(ABS, abs);
  1017. INPUT_DEV_CAP_ATTR(MSC, msc);
  1018. INPUT_DEV_CAP_ATTR(LED, led);
  1019. INPUT_DEV_CAP_ATTR(SND, snd);
  1020. INPUT_DEV_CAP_ATTR(FF, ff);
  1021. INPUT_DEV_CAP_ATTR(SW, sw);
  1022. static struct attribute *input_dev_caps_attrs[] = {
  1023. &dev_attr_ev.attr,
  1024. &dev_attr_key.attr,
  1025. &dev_attr_rel.attr,
  1026. &dev_attr_abs.attr,
  1027. &dev_attr_msc.attr,
  1028. &dev_attr_led.attr,
  1029. &dev_attr_snd.attr,
  1030. &dev_attr_ff.attr,
  1031. &dev_attr_sw.attr,
  1032. NULL
  1033. };
  1034. static struct attribute_group input_dev_caps_attr_group = {
  1035. .name = "capabilities",
  1036. .attrs = input_dev_caps_attrs,
  1037. };
  1038. static const struct attribute_group *input_dev_attr_groups[] = {
  1039. &input_dev_attr_group,
  1040. &input_dev_id_attr_group,
  1041. &input_dev_caps_attr_group,
  1042. NULL
  1043. };
  1044. static void input_dev_release(struct device *device)
  1045. {
  1046. struct input_dev *dev = to_input_dev(device);
  1047. input_ff_destroy(dev);
  1048. kfree(dev);
  1049. module_put(THIS_MODULE);
  1050. }
  1051. /*
  1052. * Input uevent interface - loading event handlers based on
  1053. * device bitfields.
  1054. */
  1055. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1056. const char *name, unsigned long *bitmap, int max)
  1057. {
  1058. int len;
  1059. if (add_uevent_var(env, "%s=", name))
  1060. return -ENOMEM;
  1061. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1062. sizeof(env->buf) - env->buflen,
  1063. bitmap, max, false);
  1064. if (len >= (sizeof(env->buf) - env->buflen))
  1065. return -ENOMEM;
  1066. env->buflen += len;
  1067. return 0;
  1068. }
  1069. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1070. struct input_dev *dev)
  1071. {
  1072. int len;
  1073. if (add_uevent_var(env, "MODALIAS="))
  1074. return -ENOMEM;
  1075. len = input_print_modalias(&env->buf[env->buflen - 1],
  1076. sizeof(env->buf) - env->buflen,
  1077. dev, 0);
  1078. if (len >= (sizeof(env->buf) - env->buflen))
  1079. return -ENOMEM;
  1080. env->buflen += len;
  1081. return 0;
  1082. }
  1083. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1084. do { \
  1085. int err = add_uevent_var(env, fmt, val); \
  1086. if (err) \
  1087. return err; \
  1088. } while (0)
  1089. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1090. do { \
  1091. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1092. if (err) \
  1093. return err; \
  1094. } while (0)
  1095. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1096. do { \
  1097. int err = input_add_uevent_modalias_var(env, dev); \
  1098. if (err) \
  1099. return err; \
  1100. } while (0)
  1101. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1102. {
  1103. struct input_dev *dev = to_input_dev(device);
  1104. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1105. dev->id.bustype, dev->id.vendor,
  1106. dev->id.product, dev->id.version);
  1107. if (dev->name)
  1108. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1109. if (dev->phys)
  1110. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1111. if (dev->uniq)
  1112. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1113. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1114. if (test_bit(EV_KEY, dev->evbit))
  1115. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1116. if (test_bit(EV_REL, dev->evbit))
  1117. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1118. if (test_bit(EV_ABS, dev->evbit))
  1119. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1120. if (test_bit(EV_MSC, dev->evbit))
  1121. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1122. if (test_bit(EV_LED, dev->evbit))
  1123. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1124. if (test_bit(EV_SND, dev->evbit))
  1125. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1126. if (test_bit(EV_FF, dev->evbit))
  1127. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1128. if (test_bit(EV_SW, dev->evbit))
  1129. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1130. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1131. return 0;
  1132. }
  1133. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1134. do { \
  1135. int i; \
  1136. bool active; \
  1137. \
  1138. if (!test_bit(EV_##type, dev->evbit)) \
  1139. break; \
  1140. \
  1141. for (i = 0; i < type##_MAX; i++) { \
  1142. if (!test_bit(i, dev->bits##bit)) \
  1143. continue; \
  1144. \
  1145. active = test_bit(i, dev->bits); \
  1146. if (!active && !on) \
  1147. continue; \
  1148. \
  1149. dev->event(dev, EV_##type, i, on ? active : 0); \
  1150. } \
  1151. } while (0)
  1152. #ifdef CONFIG_PM
  1153. static void input_dev_reset(struct input_dev *dev, bool activate)
  1154. {
  1155. if (!dev->event)
  1156. return;
  1157. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1158. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1159. if (activate && test_bit(EV_REP, dev->evbit)) {
  1160. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1161. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1162. }
  1163. }
  1164. static int input_dev_suspend(struct device *dev)
  1165. {
  1166. struct input_dev *input_dev = to_input_dev(dev);
  1167. mutex_lock(&input_dev->mutex);
  1168. input_dev_reset(input_dev, false);
  1169. mutex_unlock(&input_dev->mutex);
  1170. return 0;
  1171. }
  1172. static int input_dev_resume(struct device *dev)
  1173. {
  1174. struct input_dev *input_dev = to_input_dev(dev);
  1175. mutex_lock(&input_dev->mutex);
  1176. input_dev_reset(input_dev, true);
  1177. mutex_unlock(&input_dev->mutex);
  1178. return 0;
  1179. }
  1180. static const struct dev_pm_ops input_dev_pm_ops = {
  1181. .suspend = input_dev_suspend,
  1182. .resume = input_dev_resume,
  1183. .poweroff = input_dev_suspend,
  1184. .restore = input_dev_resume,
  1185. };
  1186. #endif /* CONFIG_PM */
  1187. static struct device_type input_dev_type = {
  1188. .groups = input_dev_attr_groups,
  1189. .release = input_dev_release,
  1190. .uevent = input_dev_uevent,
  1191. #ifdef CONFIG_PM
  1192. .pm = &input_dev_pm_ops,
  1193. #endif
  1194. };
  1195. static char *input_devnode(struct device *dev, mode_t *mode)
  1196. {
  1197. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1198. }
  1199. struct class input_class = {
  1200. .name = "input",
  1201. .devnode = input_devnode,
  1202. };
  1203. EXPORT_SYMBOL_GPL(input_class);
  1204. /**
  1205. * input_allocate_device - allocate memory for new input device
  1206. *
  1207. * Returns prepared struct input_dev or NULL.
  1208. *
  1209. * NOTE: Use input_free_device() to free devices that have not been
  1210. * registered; input_unregister_device() should be used for already
  1211. * registered devices.
  1212. */
  1213. struct input_dev *input_allocate_device(void)
  1214. {
  1215. struct input_dev *dev;
  1216. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1217. if (dev) {
  1218. dev->dev.type = &input_dev_type;
  1219. dev->dev.class = &input_class;
  1220. device_initialize(&dev->dev);
  1221. mutex_init(&dev->mutex);
  1222. spin_lock_init(&dev->event_lock);
  1223. INIT_LIST_HEAD(&dev->h_list);
  1224. INIT_LIST_HEAD(&dev->node);
  1225. __module_get(THIS_MODULE);
  1226. }
  1227. return dev;
  1228. }
  1229. EXPORT_SYMBOL(input_allocate_device);
  1230. /**
  1231. * input_free_device - free memory occupied by input_dev structure
  1232. * @dev: input device to free
  1233. *
  1234. * This function should only be used if input_register_device()
  1235. * was not called yet or if it failed. Once device was registered
  1236. * use input_unregister_device() and memory will be freed once last
  1237. * reference to the device is dropped.
  1238. *
  1239. * Device should be allocated by input_allocate_device().
  1240. *
  1241. * NOTE: If there are references to the input device then memory
  1242. * will not be freed until last reference is dropped.
  1243. */
  1244. void input_free_device(struct input_dev *dev)
  1245. {
  1246. if (dev)
  1247. input_put_device(dev);
  1248. }
  1249. EXPORT_SYMBOL(input_free_device);
  1250. /**
  1251. * input_set_capability - mark device as capable of a certain event
  1252. * @dev: device that is capable of emitting or accepting event
  1253. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1254. * @code: event code
  1255. *
  1256. * In addition to setting up corresponding bit in appropriate capability
  1257. * bitmap the function also adjusts dev->evbit.
  1258. */
  1259. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1260. {
  1261. switch (type) {
  1262. case EV_KEY:
  1263. __set_bit(code, dev->keybit);
  1264. break;
  1265. case EV_REL:
  1266. __set_bit(code, dev->relbit);
  1267. break;
  1268. case EV_ABS:
  1269. __set_bit(code, dev->absbit);
  1270. break;
  1271. case EV_MSC:
  1272. __set_bit(code, dev->mscbit);
  1273. break;
  1274. case EV_SW:
  1275. __set_bit(code, dev->swbit);
  1276. break;
  1277. case EV_LED:
  1278. __set_bit(code, dev->ledbit);
  1279. break;
  1280. case EV_SND:
  1281. __set_bit(code, dev->sndbit);
  1282. break;
  1283. case EV_FF:
  1284. __set_bit(code, dev->ffbit);
  1285. break;
  1286. case EV_PWR:
  1287. /* do nothing */
  1288. break;
  1289. default:
  1290. printk(KERN_ERR
  1291. "input_set_capability: unknown type %u (code %u)\n",
  1292. type, code);
  1293. dump_stack();
  1294. return;
  1295. }
  1296. __set_bit(type, dev->evbit);
  1297. }
  1298. EXPORT_SYMBOL(input_set_capability);
  1299. #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
  1300. do { \
  1301. if (!test_bit(EV_##type, dev->evbit)) \
  1302. memset(dev->bits##bit, 0, \
  1303. sizeof(dev->bits##bit)); \
  1304. } while (0)
  1305. static void input_cleanse_bitmasks(struct input_dev *dev)
  1306. {
  1307. INPUT_CLEANSE_BITMASK(dev, KEY, key);
  1308. INPUT_CLEANSE_BITMASK(dev, REL, rel);
  1309. INPUT_CLEANSE_BITMASK(dev, ABS, abs);
  1310. INPUT_CLEANSE_BITMASK(dev, MSC, msc);
  1311. INPUT_CLEANSE_BITMASK(dev, LED, led);
  1312. INPUT_CLEANSE_BITMASK(dev, SND, snd);
  1313. INPUT_CLEANSE_BITMASK(dev, FF, ff);
  1314. INPUT_CLEANSE_BITMASK(dev, SW, sw);
  1315. }
  1316. /**
  1317. * input_register_device - register device with input core
  1318. * @dev: device to be registered
  1319. *
  1320. * This function registers device with input core. The device must be
  1321. * allocated with input_allocate_device() and all it's capabilities
  1322. * set up before registering.
  1323. * If function fails the device must be freed with input_free_device().
  1324. * Once device has been successfully registered it can be unregistered
  1325. * with input_unregister_device(); input_free_device() should not be
  1326. * called in this case.
  1327. */
  1328. int input_register_device(struct input_dev *dev)
  1329. {
  1330. static atomic_t input_no = ATOMIC_INIT(0);
  1331. struct input_handler *handler;
  1332. const char *path;
  1333. int error;
  1334. /* Every input device generates EV_SYN/SYN_REPORT events. */
  1335. __set_bit(EV_SYN, dev->evbit);
  1336. /* KEY_RESERVED is not supposed to be transmitted to userspace. */
  1337. __clear_bit(KEY_RESERVED, dev->keybit);
  1338. /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
  1339. input_cleanse_bitmasks(dev);
  1340. /*
  1341. * If delay and period are pre-set by the driver, then autorepeating
  1342. * is handled by the driver itself and we don't do it in input.c.
  1343. */
  1344. init_timer(&dev->timer);
  1345. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1346. dev->timer.data = (long) dev;
  1347. dev->timer.function = input_repeat_key;
  1348. dev->rep[REP_DELAY] = 250;
  1349. dev->rep[REP_PERIOD] = 33;
  1350. }
  1351. if (!dev->getkeycode)
  1352. dev->getkeycode = input_default_getkeycode;
  1353. if (!dev->setkeycode)
  1354. dev->setkeycode = input_default_setkeycode;
  1355. dev_set_name(&dev->dev, "input%ld",
  1356. (unsigned long) atomic_inc_return(&input_no) - 1);
  1357. error = device_add(&dev->dev);
  1358. if (error)
  1359. return error;
  1360. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1361. printk(KERN_INFO "input: %s as %s\n",
  1362. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1363. kfree(path);
  1364. error = mutex_lock_interruptible(&input_mutex);
  1365. if (error) {
  1366. device_del(&dev->dev);
  1367. return error;
  1368. }
  1369. list_add_tail(&dev->node, &input_dev_list);
  1370. list_for_each_entry(handler, &input_handler_list, node)
  1371. input_attach_handler(dev, handler);
  1372. input_wakeup_procfs_readers();
  1373. mutex_unlock(&input_mutex);
  1374. return 0;
  1375. }
  1376. EXPORT_SYMBOL(input_register_device);
  1377. /**
  1378. * input_unregister_device - unregister previously registered device
  1379. * @dev: device to be unregistered
  1380. *
  1381. * This function unregisters an input device. Once device is unregistered
  1382. * the caller should not try to access it as it may get freed at any moment.
  1383. */
  1384. void input_unregister_device(struct input_dev *dev)
  1385. {
  1386. struct input_handle *handle, *next;
  1387. input_disconnect_device(dev);
  1388. mutex_lock(&input_mutex);
  1389. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1390. handle->handler->disconnect(handle);
  1391. WARN_ON(!list_empty(&dev->h_list));
  1392. del_timer_sync(&dev->timer);
  1393. list_del_init(&dev->node);
  1394. input_wakeup_procfs_readers();
  1395. mutex_unlock(&input_mutex);
  1396. device_unregister(&dev->dev);
  1397. }
  1398. EXPORT_SYMBOL(input_unregister_device);
  1399. /**
  1400. * input_register_handler - register a new input handler
  1401. * @handler: handler to be registered
  1402. *
  1403. * This function registers a new input handler (interface) for input
  1404. * devices in the system and attaches it to all input devices that
  1405. * are compatible with the handler.
  1406. */
  1407. int input_register_handler(struct input_handler *handler)
  1408. {
  1409. struct input_dev *dev;
  1410. int retval;
  1411. retval = mutex_lock_interruptible(&input_mutex);
  1412. if (retval)
  1413. return retval;
  1414. INIT_LIST_HEAD(&handler->h_list);
  1415. if (handler->fops != NULL) {
  1416. if (input_table[handler->minor >> 5]) {
  1417. retval = -EBUSY;
  1418. goto out;
  1419. }
  1420. input_table[handler->minor >> 5] = handler;
  1421. }
  1422. list_add_tail(&handler->node, &input_handler_list);
  1423. list_for_each_entry(dev, &input_dev_list, node)
  1424. input_attach_handler(dev, handler);
  1425. input_wakeup_procfs_readers();
  1426. out:
  1427. mutex_unlock(&input_mutex);
  1428. return retval;
  1429. }
  1430. EXPORT_SYMBOL(input_register_handler);
  1431. /**
  1432. * input_unregister_handler - unregisters an input handler
  1433. * @handler: handler to be unregistered
  1434. *
  1435. * This function disconnects a handler from its input devices and
  1436. * removes it from lists of known handlers.
  1437. */
  1438. void input_unregister_handler(struct input_handler *handler)
  1439. {
  1440. struct input_handle *handle, *next;
  1441. mutex_lock(&input_mutex);
  1442. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1443. handler->disconnect(handle);
  1444. WARN_ON(!list_empty(&handler->h_list));
  1445. list_del_init(&handler->node);
  1446. if (handler->fops != NULL)
  1447. input_table[handler->minor >> 5] = NULL;
  1448. input_wakeup_procfs_readers();
  1449. mutex_unlock(&input_mutex);
  1450. }
  1451. EXPORT_SYMBOL(input_unregister_handler);
  1452. /**
  1453. * input_handler_for_each_handle - handle iterator
  1454. * @handler: input handler to iterate
  1455. * @data: data for the callback
  1456. * @fn: function to be called for each handle
  1457. *
  1458. * Iterate over @bus's list of devices, and call @fn for each, passing
  1459. * it @data and stop when @fn returns a non-zero value. The function is
  1460. * using RCU to traverse the list and therefore may be usind in atonic
  1461. * contexts. The @fn callback is invoked from RCU critical section and
  1462. * thus must not sleep.
  1463. */
  1464. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1465. int (*fn)(struct input_handle *, void *))
  1466. {
  1467. struct input_handle *handle;
  1468. int retval = 0;
  1469. rcu_read_lock();
  1470. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1471. retval = fn(handle, data);
  1472. if (retval)
  1473. break;
  1474. }
  1475. rcu_read_unlock();
  1476. return retval;
  1477. }
  1478. EXPORT_SYMBOL(input_handler_for_each_handle);
  1479. /**
  1480. * input_register_handle - register a new input handle
  1481. * @handle: handle to register
  1482. *
  1483. * This function puts a new input handle onto device's
  1484. * and handler's lists so that events can flow through
  1485. * it once it is opened using input_open_device().
  1486. *
  1487. * This function is supposed to be called from handler's
  1488. * connect() method.
  1489. */
  1490. int input_register_handle(struct input_handle *handle)
  1491. {
  1492. struct input_handler *handler = handle->handler;
  1493. struct input_dev *dev = handle->dev;
  1494. int error;
  1495. /*
  1496. * We take dev->mutex here to prevent race with
  1497. * input_release_device().
  1498. */
  1499. error = mutex_lock_interruptible(&dev->mutex);
  1500. if (error)
  1501. return error;
  1502. /*
  1503. * Filters go to the head of the list, normal handlers
  1504. * to the tail.
  1505. */
  1506. if (handler->filter)
  1507. list_add_rcu(&handle->d_node, &dev->h_list);
  1508. else
  1509. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1510. mutex_unlock(&dev->mutex);
  1511. /*
  1512. * Since we are supposed to be called from ->connect()
  1513. * which is mutually exclusive with ->disconnect()
  1514. * we can't be racing with input_unregister_handle()
  1515. * and so separate lock is not needed here.
  1516. */
  1517. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1518. if (handler->start)
  1519. handler->start(handle);
  1520. return 0;
  1521. }
  1522. EXPORT_SYMBOL(input_register_handle);
  1523. /**
  1524. * input_unregister_handle - unregister an input handle
  1525. * @handle: handle to unregister
  1526. *
  1527. * This function removes input handle from device's
  1528. * and handler's lists.
  1529. *
  1530. * This function is supposed to be called from handler's
  1531. * disconnect() method.
  1532. */
  1533. void input_unregister_handle(struct input_handle *handle)
  1534. {
  1535. struct input_dev *dev = handle->dev;
  1536. list_del_rcu(&handle->h_node);
  1537. /*
  1538. * Take dev->mutex to prevent race with input_release_device().
  1539. */
  1540. mutex_lock(&dev->mutex);
  1541. list_del_rcu(&handle->d_node);
  1542. mutex_unlock(&dev->mutex);
  1543. synchronize_rcu();
  1544. }
  1545. EXPORT_SYMBOL(input_unregister_handle);
  1546. static int input_open_file(struct inode *inode, struct file *file)
  1547. {
  1548. struct input_handler *handler;
  1549. const struct file_operations *old_fops, *new_fops = NULL;
  1550. int err;
  1551. err = mutex_lock_interruptible(&input_mutex);
  1552. if (err)
  1553. return err;
  1554. /* No load-on-demand here? */
  1555. handler = input_table[iminor(inode) >> 5];
  1556. if (handler)
  1557. new_fops = fops_get(handler->fops);
  1558. mutex_unlock(&input_mutex);
  1559. /*
  1560. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1561. * not "no device". Oh, well...
  1562. */
  1563. if (!new_fops || !new_fops->open) {
  1564. fops_put(new_fops);
  1565. err = -ENODEV;
  1566. goto out;
  1567. }
  1568. old_fops = file->f_op;
  1569. file->f_op = new_fops;
  1570. err = new_fops->open(inode, file);
  1571. if (err) {
  1572. fops_put(file->f_op);
  1573. file->f_op = fops_get(old_fops);
  1574. }
  1575. fops_put(old_fops);
  1576. out:
  1577. return err;
  1578. }
  1579. static const struct file_operations input_fops = {
  1580. .owner = THIS_MODULE,
  1581. .open = input_open_file,
  1582. };
  1583. static void __init input_init_abs_bypass(void)
  1584. {
  1585. const unsigned int *p;
  1586. for (p = input_abs_bypass_init_data; *p; p++)
  1587. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1588. }
  1589. static int __init input_init(void)
  1590. {
  1591. int err;
  1592. input_init_abs_bypass();
  1593. err = class_register(&input_class);
  1594. if (err) {
  1595. printk(KERN_ERR "input: unable to register input_dev class\n");
  1596. return err;
  1597. }
  1598. err = input_proc_init();
  1599. if (err)
  1600. goto fail1;
  1601. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1602. if (err) {
  1603. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1604. goto fail2;
  1605. }
  1606. return 0;
  1607. fail2: input_proc_exit();
  1608. fail1: class_unregister(&input_class);
  1609. return err;
  1610. }
  1611. static void __exit input_exit(void)
  1612. {
  1613. input_proc_exit();
  1614. unregister_chrdev(INPUT_MAJOR, "input");
  1615. class_unregister(&input_class);
  1616. }
  1617. subsys_initcall(input_init);
  1618. module_exit(input_exit);