md.c 178 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/buffer_head.h> /* for invalidate_bdev */
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/hdreg.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/random.h>
  36. #include <linux/reboot.h>
  37. #include <linux/file.h>
  38. #include <linux/delay.h>
  39. #include <linux/raid/md_p.h>
  40. #include <linux/raid/md_u.h>
  41. #include "md.h"
  42. #include "bitmap.h"
  43. #define DEBUG 0
  44. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  45. #ifndef MODULE
  46. static void autostart_arrays(int part);
  47. #endif
  48. static LIST_HEAD(pers_list);
  49. static DEFINE_SPINLOCK(pers_lock);
  50. static void md_print_devices(void);
  51. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  52. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  53. /*
  54. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  55. * is 1000 KB/sec, so the extra system load does not show up that much.
  56. * Increase it if you want to have more _guaranteed_ speed. Note that
  57. * the RAID driver will use the maximum available bandwidth if the IO
  58. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  59. * speed limit - in case reconstruction slows down your system despite
  60. * idle IO detection.
  61. *
  62. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  63. * or /sys/block/mdX/md/sync_speed_{min,max}
  64. */
  65. static int sysctl_speed_limit_min = 1000;
  66. static int sysctl_speed_limit_max = 200000;
  67. static inline int speed_min(mddev_t *mddev)
  68. {
  69. return mddev->sync_speed_min ?
  70. mddev->sync_speed_min : sysctl_speed_limit_min;
  71. }
  72. static inline int speed_max(mddev_t *mddev)
  73. {
  74. return mddev->sync_speed_max ?
  75. mddev->sync_speed_max : sysctl_speed_limit_max;
  76. }
  77. static struct ctl_table_header *raid_table_header;
  78. static ctl_table raid_table[] = {
  79. {
  80. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  81. .procname = "speed_limit_min",
  82. .data = &sysctl_speed_limit_min,
  83. .maxlen = sizeof(int),
  84. .mode = S_IRUGO|S_IWUSR,
  85. .proc_handler = &proc_dointvec,
  86. },
  87. {
  88. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  89. .procname = "speed_limit_max",
  90. .data = &sysctl_speed_limit_max,
  91. .maxlen = sizeof(int),
  92. .mode = S_IRUGO|S_IWUSR,
  93. .proc_handler = &proc_dointvec,
  94. },
  95. { .ctl_name = 0 }
  96. };
  97. static ctl_table raid_dir_table[] = {
  98. {
  99. .ctl_name = DEV_RAID,
  100. .procname = "raid",
  101. .maxlen = 0,
  102. .mode = S_IRUGO|S_IXUGO,
  103. .child = raid_table,
  104. },
  105. { .ctl_name = 0 }
  106. };
  107. static ctl_table raid_root_table[] = {
  108. {
  109. .ctl_name = CTL_DEV,
  110. .procname = "dev",
  111. .maxlen = 0,
  112. .mode = 0555,
  113. .child = raid_dir_table,
  114. },
  115. { .ctl_name = 0 }
  116. };
  117. static struct block_device_operations md_fops;
  118. static int start_readonly;
  119. /*
  120. * We have a system wide 'event count' that is incremented
  121. * on any 'interesting' event, and readers of /proc/mdstat
  122. * can use 'poll' or 'select' to find out when the event
  123. * count increases.
  124. *
  125. * Events are:
  126. * start array, stop array, error, add device, remove device,
  127. * start build, activate spare
  128. */
  129. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  130. static atomic_t md_event_count;
  131. void md_new_event(mddev_t *mddev)
  132. {
  133. atomic_inc(&md_event_count);
  134. wake_up(&md_event_waiters);
  135. }
  136. EXPORT_SYMBOL_GPL(md_new_event);
  137. /* Alternate version that can be called from interrupts
  138. * when calling sysfs_notify isn't needed.
  139. */
  140. static void md_new_event_inintr(mddev_t *mddev)
  141. {
  142. atomic_inc(&md_event_count);
  143. wake_up(&md_event_waiters);
  144. }
  145. /*
  146. * Enables to iterate over all existing md arrays
  147. * all_mddevs_lock protects this list.
  148. */
  149. static LIST_HEAD(all_mddevs);
  150. static DEFINE_SPINLOCK(all_mddevs_lock);
  151. /*
  152. * iterates through all used mddevs in the system.
  153. * We take care to grab the all_mddevs_lock whenever navigating
  154. * the list, and to always hold a refcount when unlocked.
  155. * Any code which breaks out of this loop while own
  156. * a reference to the current mddev and must mddev_put it.
  157. */
  158. #define for_each_mddev(mddev,tmp) \
  159. \
  160. for (({ spin_lock(&all_mddevs_lock); \
  161. tmp = all_mddevs.next; \
  162. mddev = NULL;}); \
  163. ({ if (tmp != &all_mddevs) \
  164. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  165. spin_unlock(&all_mddevs_lock); \
  166. if (mddev) mddev_put(mddev); \
  167. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  168. tmp != &all_mddevs;}); \
  169. ({ spin_lock(&all_mddevs_lock); \
  170. tmp = tmp->next;}) \
  171. )
  172. /* Rather than calling directly into the personality make_request function,
  173. * IO requests come here first so that we can check if the device is
  174. * being suspended pending a reconfiguration.
  175. * We hold a refcount over the call to ->make_request. By the time that
  176. * call has finished, the bio has been linked into some internal structure
  177. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  178. */
  179. static int md_make_request(struct request_queue *q, struct bio *bio)
  180. {
  181. mddev_t *mddev = q->queuedata;
  182. int rv;
  183. if (mddev == NULL || mddev->pers == NULL) {
  184. bio_io_error(bio);
  185. return 0;
  186. }
  187. rcu_read_lock();
  188. if (mddev->suspended) {
  189. DEFINE_WAIT(__wait);
  190. for (;;) {
  191. prepare_to_wait(&mddev->sb_wait, &__wait,
  192. TASK_UNINTERRUPTIBLE);
  193. if (!mddev->suspended)
  194. break;
  195. rcu_read_unlock();
  196. schedule();
  197. rcu_read_lock();
  198. }
  199. finish_wait(&mddev->sb_wait, &__wait);
  200. }
  201. atomic_inc(&mddev->active_io);
  202. rcu_read_unlock();
  203. rv = mddev->pers->make_request(q, bio);
  204. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  205. wake_up(&mddev->sb_wait);
  206. return rv;
  207. }
  208. static void mddev_suspend(mddev_t *mddev)
  209. {
  210. BUG_ON(mddev->suspended);
  211. mddev->suspended = 1;
  212. synchronize_rcu();
  213. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  214. mddev->pers->quiesce(mddev, 1);
  215. md_unregister_thread(mddev->thread);
  216. mddev->thread = NULL;
  217. /* we now know that no code is executing in the personality module,
  218. * except possibly the tail end of a ->bi_end_io function, but that
  219. * is certain to complete before the module has a chance to get
  220. * unloaded
  221. */
  222. }
  223. static void mddev_resume(mddev_t *mddev)
  224. {
  225. mddev->suspended = 0;
  226. wake_up(&mddev->sb_wait);
  227. mddev->pers->quiesce(mddev, 0);
  228. }
  229. static inline mddev_t *mddev_get(mddev_t *mddev)
  230. {
  231. atomic_inc(&mddev->active);
  232. return mddev;
  233. }
  234. static void mddev_delayed_delete(struct work_struct *ws);
  235. static void mddev_put(mddev_t *mddev)
  236. {
  237. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  238. return;
  239. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  240. !mddev->hold_active) {
  241. list_del(&mddev->all_mddevs);
  242. if (mddev->gendisk) {
  243. /* we did a probe so need to clean up.
  244. * Call schedule_work inside the spinlock
  245. * so that flush_scheduled_work() after
  246. * mddev_find will succeed in waiting for the
  247. * work to be done.
  248. */
  249. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  250. schedule_work(&mddev->del_work);
  251. } else
  252. kfree(mddev);
  253. }
  254. spin_unlock(&all_mddevs_lock);
  255. }
  256. static mddev_t * mddev_find(dev_t unit)
  257. {
  258. mddev_t *mddev, *new = NULL;
  259. retry:
  260. spin_lock(&all_mddevs_lock);
  261. if (unit) {
  262. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  263. if (mddev->unit == unit) {
  264. mddev_get(mddev);
  265. spin_unlock(&all_mddevs_lock);
  266. kfree(new);
  267. return mddev;
  268. }
  269. if (new) {
  270. list_add(&new->all_mddevs, &all_mddevs);
  271. spin_unlock(&all_mddevs_lock);
  272. new->hold_active = UNTIL_IOCTL;
  273. return new;
  274. }
  275. } else if (new) {
  276. /* find an unused unit number */
  277. static int next_minor = 512;
  278. int start = next_minor;
  279. int is_free = 0;
  280. int dev = 0;
  281. while (!is_free) {
  282. dev = MKDEV(MD_MAJOR, next_minor);
  283. next_minor++;
  284. if (next_minor > MINORMASK)
  285. next_minor = 0;
  286. if (next_minor == start) {
  287. /* Oh dear, all in use. */
  288. spin_unlock(&all_mddevs_lock);
  289. kfree(new);
  290. return NULL;
  291. }
  292. is_free = 1;
  293. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  294. if (mddev->unit == dev) {
  295. is_free = 0;
  296. break;
  297. }
  298. }
  299. new->unit = dev;
  300. new->md_minor = MINOR(dev);
  301. new->hold_active = UNTIL_STOP;
  302. list_add(&new->all_mddevs, &all_mddevs);
  303. spin_unlock(&all_mddevs_lock);
  304. return new;
  305. }
  306. spin_unlock(&all_mddevs_lock);
  307. new = kzalloc(sizeof(*new), GFP_KERNEL);
  308. if (!new)
  309. return NULL;
  310. new->unit = unit;
  311. if (MAJOR(unit) == MD_MAJOR)
  312. new->md_minor = MINOR(unit);
  313. else
  314. new->md_minor = MINOR(unit) >> MdpMinorShift;
  315. mutex_init(&new->reconfig_mutex);
  316. INIT_LIST_HEAD(&new->disks);
  317. INIT_LIST_HEAD(&new->all_mddevs);
  318. init_timer(&new->safemode_timer);
  319. atomic_set(&new->active, 1);
  320. atomic_set(&new->openers, 0);
  321. atomic_set(&new->active_io, 0);
  322. spin_lock_init(&new->write_lock);
  323. init_waitqueue_head(&new->sb_wait);
  324. init_waitqueue_head(&new->recovery_wait);
  325. new->reshape_position = MaxSector;
  326. new->resync_min = 0;
  327. new->resync_max = MaxSector;
  328. new->level = LEVEL_NONE;
  329. goto retry;
  330. }
  331. static inline int mddev_lock(mddev_t * mddev)
  332. {
  333. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  334. }
  335. static inline int mddev_is_locked(mddev_t *mddev)
  336. {
  337. return mutex_is_locked(&mddev->reconfig_mutex);
  338. }
  339. static inline int mddev_trylock(mddev_t * mddev)
  340. {
  341. return mutex_trylock(&mddev->reconfig_mutex);
  342. }
  343. static inline void mddev_unlock(mddev_t * mddev)
  344. {
  345. mutex_unlock(&mddev->reconfig_mutex);
  346. md_wakeup_thread(mddev->thread);
  347. }
  348. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  349. {
  350. mdk_rdev_t *rdev;
  351. list_for_each_entry(rdev, &mddev->disks, same_set)
  352. if (rdev->desc_nr == nr)
  353. return rdev;
  354. return NULL;
  355. }
  356. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  357. {
  358. mdk_rdev_t *rdev;
  359. list_for_each_entry(rdev, &mddev->disks, same_set)
  360. if (rdev->bdev->bd_dev == dev)
  361. return rdev;
  362. return NULL;
  363. }
  364. static struct mdk_personality *find_pers(int level, char *clevel)
  365. {
  366. struct mdk_personality *pers;
  367. list_for_each_entry(pers, &pers_list, list) {
  368. if (level != LEVEL_NONE && pers->level == level)
  369. return pers;
  370. if (strcmp(pers->name, clevel)==0)
  371. return pers;
  372. }
  373. return NULL;
  374. }
  375. /* return the offset of the super block in 512byte sectors */
  376. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  377. {
  378. sector_t num_sectors = bdev->bd_inode->i_size / 512;
  379. return MD_NEW_SIZE_SECTORS(num_sectors);
  380. }
  381. static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
  382. {
  383. sector_t num_sectors = rdev->sb_start;
  384. if (chunk_size) {
  385. unsigned chunk_sects = chunk_size>>9;
  386. sector_div(num_sectors, chunk_sects);
  387. num_sectors *= chunk_sects;
  388. }
  389. return num_sectors;
  390. }
  391. static int alloc_disk_sb(mdk_rdev_t * rdev)
  392. {
  393. if (rdev->sb_page)
  394. MD_BUG();
  395. rdev->sb_page = alloc_page(GFP_KERNEL);
  396. if (!rdev->sb_page) {
  397. printk(KERN_ALERT "md: out of memory.\n");
  398. return -ENOMEM;
  399. }
  400. return 0;
  401. }
  402. static void free_disk_sb(mdk_rdev_t * rdev)
  403. {
  404. if (rdev->sb_page) {
  405. put_page(rdev->sb_page);
  406. rdev->sb_loaded = 0;
  407. rdev->sb_page = NULL;
  408. rdev->sb_start = 0;
  409. rdev->sectors = 0;
  410. }
  411. }
  412. static void super_written(struct bio *bio, int error)
  413. {
  414. mdk_rdev_t *rdev = bio->bi_private;
  415. mddev_t *mddev = rdev->mddev;
  416. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  417. printk("md: super_written gets error=%d, uptodate=%d\n",
  418. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  419. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  420. md_error(mddev, rdev);
  421. }
  422. if (atomic_dec_and_test(&mddev->pending_writes))
  423. wake_up(&mddev->sb_wait);
  424. bio_put(bio);
  425. }
  426. static void super_written_barrier(struct bio *bio, int error)
  427. {
  428. struct bio *bio2 = bio->bi_private;
  429. mdk_rdev_t *rdev = bio2->bi_private;
  430. mddev_t *mddev = rdev->mddev;
  431. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  432. error == -EOPNOTSUPP) {
  433. unsigned long flags;
  434. /* barriers don't appear to be supported :-( */
  435. set_bit(BarriersNotsupp, &rdev->flags);
  436. mddev->barriers_work = 0;
  437. spin_lock_irqsave(&mddev->write_lock, flags);
  438. bio2->bi_next = mddev->biolist;
  439. mddev->biolist = bio2;
  440. spin_unlock_irqrestore(&mddev->write_lock, flags);
  441. wake_up(&mddev->sb_wait);
  442. bio_put(bio);
  443. } else {
  444. bio_put(bio2);
  445. bio->bi_private = rdev;
  446. super_written(bio, error);
  447. }
  448. }
  449. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  450. sector_t sector, int size, struct page *page)
  451. {
  452. /* write first size bytes of page to sector of rdev
  453. * Increment mddev->pending_writes before returning
  454. * and decrement it on completion, waking up sb_wait
  455. * if zero is reached.
  456. * If an error occurred, call md_error
  457. *
  458. * As we might need to resubmit the request if BIO_RW_BARRIER
  459. * causes ENOTSUPP, we allocate a spare bio...
  460. */
  461. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  462. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
  463. bio->bi_bdev = rdev->bdev;
  464. bio->bi_sector = sector;
  465. bio_add_page(bio, page, size, 0);
  466. bio->bi_private = rdev;
  467. bio->bi_end_io = super_written;
  468. bio->bi_rw = rw;
  469. atomic_inc(&mddev->pending_writes);
  470. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  471. struct bio *rbio;
  472. rw |= (1<<BIO_RW_BARRIER);
  473. rbio = bio_clone(bio, GFP_NOIO);
  474. rbio->bi_private = bio;
  475. rbio->bi_end_io = super_written_barrier;
  476. submit_bio(rw, rbio);
  477. } else
  478. submit_bio(rw, bio);
  479. }
  480. void md_super_wait(mddev_t *mddev)
  481. {
  482. /* wait for all superblock writes that were scheduled to complete.
  483. * if any had to be retried (due to BARRIER problems), retry them
  484. */
  485. DEFINE_WAIT(wq);
  486. for(;;) {
  487. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  488. if (atomic_read(&mddev->pending_writes)==0)
  489. break;
  490. while (mddev->biolist) {
  491. struct bio *bio;
  492. spin_lock_irq(&mddev->write_lock);
  493. bio = mddev->biolist;
  494. mddev->biolist = bio->bi_next ;
  495. bio->bi_next = NULL;
  496. spin_unlock_irq(&mddev->write_lock);
  497. submit_bio(bio->bi_rw, bio);
  498. }
  499. schedule();
  500. }
  501. finish_wait(&mddev->sb_wait, &wq);
  502. }
  503. static void bi_complete(struct bio *bio, int error)
  504. {
  505. complete((struct completion*)bio->bi_private);
  506. }
  507. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  508. struct page *page, int rw)
  509. {
  510. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  511. struct completion event;
  512. int ret;
  513. rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
  514. bio->bi_bdev = bdev;
  515. bio->bi_sector = sector;
  516. bio_add_page(bio, page, size, 0);
  517. init_completion(&event);
  518. bio->bi_private = &event;
  519. bio->bi_end_io = bi_complete;
  520. submit_bio(rw, bio);
  521. wait_for_completion(&event);
  522. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  523. bio_put(bio);
  524. return ret;
  525. }
  526. EXPORT_SYMBOL_GPL(sync_page_io);
  527. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  528. {
  529. char b[BDEVNAME_SIZE];
  530. if (!rdev->sb_page) {
  531. MD_BUG();
  532. return -EINVAL;
  533. }
  534. if (rdev->sb_loaded)
  535. return 0;
  536. if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
  537. goto fail;
  538. rdev->sb_loaded = 1;
  539. return 0;
  540. fail:
  541. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  542. bdevname(rdev->bdev,b));
  543. return -EINVAL;
  544. }
  545. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  546. {
  547. return sb1->set_uuid0 == sb2->set_uuid0 &&
  548. sb1->set_uuid1 == sb2->set_uuid1 &&
  549. sb1->set_uuid2 == sb2->set_uuid2 &&
  550. sb1->set_uuid3 == sb2->set_uuid3;
  551. }
  552. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  553. {
  554. int ret;
  555. mdp_super_t *tmp1, *tmp2;
  556. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  557. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  558. if (!tmp1 || !tmp2) {
  559. ret = 0;
  560. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  561. goto abort;
  562. }
  563. *tmp1 = *sb1;
  564. *tmp2 = *sb2;
  565. /*
  566. * nr_disks is not constant
  567. */
  568. tmp1->nr_disks = 0;
  569. tmp2->nr_disks = 0;
  570. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  571. abort:
  572. kfree(tmp1);
  573. kfree(tmp2);
  574. return ret;
  575. }
  576. static u32 md_csum_fold(u32 csum)
  577. {
  578. csum = (csum & 0xffff) + (csum >> 16);
  579. return (csum & 0xffff) + (csum >> 16);
  580. }
  581. static unsigned int calc_sb_csum(mdp_super_t * sb)
  582. {
  583. u64 newcsum = 0;
  584. u32 *sb32 = (u32*)sb;
  585. int i;
  586. unsigned int disk_csum, csum;
  587. disk_csum = sb->sb_csum;
  588. sb->sb_csum = 0;
  589. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  590. newcsum += sb32[i];
  591. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  592. #ifdef CONFIG_ALPHA
  593. /* This used to use csum_partial, which was wrong for several
  594. * reasons including that different results are returned on
  595. * different architectures. It isn't critical that we get exactly
  596. * the same return value as before (we always csum_fold before
  597. * testing, and that removes any differences). However as we
  598. * know that csum_partial always returned a 16bit value on
  599. * alphas, do a fold to maximise conformity to previous behaviour.
  600. */
  601. sb->sb_csum = md_csum_fold(disk_csum);
  602. #else
  603. sb->sb_csum = disk_csum;
  604. #endif
  605. return csum;
  606. }
  607. /*
  608. * Handle superblock details.
  609. * We want to be able to handle multiple superblock formats
  610. * so we have a common interface to them all, and an array of
  611. * different handlers.
  612. * We rely on user-space to write the initial superblock, and support
  613. * reading and updating of superblocks.
  614. * Interface methods are:
  615. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  616. * loads and validates a superblock on dev.
  617. * if refdev != NULL, compare superblocks on both devices
  618. * Return:
  619. * 0 - dev has a superblock that is compatible with refdev
  620. * 1 - dev has a superblock that is compatible and newer than refdev
  621. * so dev should be used as the refdev in future
  622. * -EINVAL superblock incompatible or invalid
  623. * -othererror e.g. -EIO
  624. *
  625. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  626. * Verify that dev is acceptable into mddev.
  627. * The first time, mddev->raid_disks will be 0, and data from
  628. * dev should be merged in. Subsequent calls check that dev
  629. * is new enough. Return 0 or -EINVAL
  630. *
  631. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  632. * Update the superblock for rdev with data in mddev
  633. * This does not write to disc.
  634. *
  635. */
  636. struct super_type {
  637. char *name;
  638. struct module *owner;
  639. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
  640. int minor_version);
  641. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  642. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  643. unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
  644. sector_t num_sectors);
  645. };
  646. /*
  647. * load_super for 0.90.0
  648. */
  649. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  650. {
  651. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  652. mdp_super_t *sb;
  653. int ret;
  654. /*
  655. * Calculate the position of the superblock (512byte sectors),
  656. * it's at the end of the disk.
  657. *
  658. * It also happens to be a multiple of 4Kb.
  659. */
  660. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  661. ret = read_disk_sb(rdev, MD_SB_BYTES);
  662. if (ret) return ret;
  663. ret = -EINVAL;
  664. bdevname(rdev->bdev, b);
  665. sb = (mdp_super_t*)page_address(rdev->sb_page);
  666. if (sb->md_magic != MD_SB_MAGIC) {
  667. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  668. b);
  669. goto abort;
  670. }
  671. if (sb->major_version != 0 ||
  672. sb->minor_version < 90 ||
  673. sb->minor_version > 91) {
  674. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  675. sb->major_version, sb->minor_version,
  676. b);
  677. goto abort;
  678. }
  679. if (sb->raid_disks <= 0)
  680. goto abort;
  681. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  682. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  683. b);
  684. goto abort;
  685. }
  686. rdev->preferred_minor = sb->md_minor;
  687. rdev->data_offset = 0;
  688. rdev->sb_size = MD_SB_BYTES;
  689. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  690. if (sb->level != 1 && sb->level != 4
  691. && sb->level != 5 && sb->level != 6
  692. && sb->level != 10) {
  693. /* FIXME use a better test */
  694. printk(KERN_WARNING
  695. "md: bitmaps not supported for this level.\n");
  696. goto abort;
  697. }
  698. }
  699. if (sb->level == LEVEL_MULTIPATH)
  700. rdev->desc_nr = -1;
  701. else
  702. rdev->desc_nr = sb->this_disk.number;
  703. if (!refdev) {
  704. ret = 1;
  705. } else {
  706. __u64 ev1, ev2;
  707. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  708. if (!uuid_equal(refsb, sb)) {
  709. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  710. b, bdevname(refdev->bdev,b2));
  711. goto abort;
  712. }
  713. if (!sb_equal(refsb, sb)) {
  714. printk(KERN_WARNING "md: %s has same UUID"
  715. " but different superblock to %s\n",
  716. b, bdevname(refdev->bdev, b2));
  717. goto abort;
  718. }
  719. ev1 = md_event(sb);
  720. ev2 = md_event(refsb);
  721. if (ev1 > ev2)
  722. ret = 1;
  723. else
  724. ret = 0;
  725. }
  726. rdev->sectors = calc_num_sectors(rdev, sb->chunk_size);
  727. if (rdev->sectors < sb->size * 2 && sb->level > 1)
  728. /* "this cannot possibly happen" ... */
  729. ret = -EINVAL;
  730. abort:
  731. return ret;
  732. }
  733. /*
  734. * validate_super for 0.90.0
  735. */
  736. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  737. {
  738. mdp_disk_t *desc;
  739. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  740. __u64 ev1 = md_event(sb);
  741. rdev->raid_disk = -1;
  742. clear_bit(Faulty, &rdev->flags);
  743. clear_bit(In_sync, &rdev->flags);
  744. clear_bit(WriteMostly, &rdev->flags);
  745. clear_bit(BarriersNotsupp, &rdev->flags);
  746. if (mddev->raid_disks == 0) {
  747. mddev->major_version = 0;
  748. mddev->minor_version = sb->minor_version;
  749. mddev->patch_version = sb->patch_version;
  750. mddev->external = 0;
  751. mddev->chunk_sectors = sb->chunk_size >> 9;
  752. mddev->ctime = sb->ctime;
  753. mddev->utime = sb->utime;
  754. mddev->level = sb->level;
  755. mddev->clevel[0] = 0;
  756. mddev->layout = sb->layout;
  757. mddev->raid_disks = sb->raid_disks;
  758. mddev->dev_sectors = sb->size * 2;
  759. mddev->events = ev1;
  760. mddev->bitmap_offset = 0;
  761. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  762. if (mddev->minor_version >= 91) {
  763. mddev->reshape_position = sb->reshape_position;
  764. mddev->delta_disks = sb->delta_disks;
  765. mddev->new_level = sb->new_level;
  766. mddev->new_layout = sb->new_layout;
  767. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  768. } else {
  769. mddev->reshape_position = MaxSector;
  770. mddev->delta_disks = 0;
  771. mddev->new_level = mddev->level;
  772. mddev->new_layout = mddev->layout;
  773. mddev->new_chunk_sectors = mddev->chunk_sectors;
  774. }
  775. if (sb->state & (1<<MD_SB_CLEAN))
  776. mddev->recovery_cp = MaxSector;
  777. else {
  778. if (sb->events_hi == sb->cp_events_hi &&
  779. sb->events_lo == sb->cp_events_lo) {
  780. mddev->recovery_cp = sb->recovery_cp;
  781. } else
  782. mddev->recovery_cp = 0;
  783. }
  784. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  785. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  786. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  787. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  788. mddev->max_disks = MD_SB_DISKS;
  789. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  790. mddev->bitmap_file == NULL)
  791. mddev->bitmap_offset = mddev->default_bitmap_offset;
  792. } else if (mddev->pers == NULL) {
  793. /* Insist on good event counter while assembling */
  794. ++ev1;
  795. if (ev1 < mddev->events)
  796. return -EINVAL;
  797. } else if (mddev->bitmap) {
  798. /* if adding to array with a bitmap, then we can accept an
  799. * older device ... but not too old.
  800. */
  801. if (ev1 < mddev->bitmap->events_cleared)
  802. return 0;
  803. } else {
  804. if (ev1 < mddev->events)
  805. /* just a hot-add of a new device, leave raid_disk at -1 */
  806. return 0;
  807. }
  808. if (mddev->level != LEVEL_MULTIPATH) {
  809. desc = sb->disks + rdev->desc_nr;
  810. if (desc->state & (1<<MD_DISK_FAULTY))
  811. set_bit(Faulty, &rdev->flags);
  812. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  813. desc->raid_disk < mddev->raid_disks */) {
  814. set_bit(In_sync, &rdev->flags);
  815. rdev->raid_disk = desc->raid_disk;
  816. }
  817. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  818. set_bit(WriteMostly, &rdev->flags);
  819. } else /* MULTIPATH are always insync */
  820. set_bit(In_sync, &rdev->flags);
  821. return 0;
  822. }
  823. /*
  824. * sync_super for 0.90.0
  825. */
  826. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  827. {
  828. mdp_super_t *sb;
  829. mdk_rdev_t *rdev2;
  830. int next_spare = mddev->raid_disks;
  831. /* make rdev->sb match mddev data..
  832. *
  833. * 1/ zero out disks
  834. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  835. * 3/ any empty disks < next_spare become removed
  836. *
  837. * disks[0] gets initialised to REMOVED because
  838. * we cannot be sure from other fields if it has
  839. * been initialised or not.
  840. */
  841. int i;
  842. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  843. rdev->sb_size = MD_SB_BYTES;
  844. sb = (mdp_super_t*)page_address(rdev->sb_page);
  845. memset(sb, 0, sizeof(*sb));
  846. sb->md_magic = MD_SB_MAGIC;
  847. sb->major_version = mddev->major_version;
  848. sb->patch_version = mddev->patch_version;
  849. sb->gvalid_words = 0; /* ignored */
  850. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  851. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  852. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  853. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  854. sb->ctime = mddev->ctime;
  855. sb->level = mddev->level;
  856. sb->size = mddev->dev_sectors / 2;
  857. sb->raid_disks = mddev->raid_disks;
  858. sb->md_minor = mddev->md_minor;
  859. sb->not_persistent = 0;
  860. sb->utime = mddev->utime;
  861. sb->state = 0;
  862. sb->events_hi = (mddev->events>>32);
  863. sb->events_lo = (u32)mddev->events;
  864. if (mddev->reshape_position == MaxSector)
  865. sb->minor_version = 90;
  866. else {
  867. sb->minor_version = 91;
  868. sb->reshape_position = mddev->reshape_position;
  869. sb->new_level = mddev->new_level;
  870. sb->delta_disks = mddev->delta_disks;
  871. sb->new_layout = mddev->new_layout;
  872. sb->new_chunk = mddev->new_chunk_sectors << 9;
  873. }
  874. mddev->minor_version = sb->minor_version;
  875. if (mddev->in_sync)
  876. {
  877. sb->recovery_cp = mddev->recovery_cp;
  878. sb->cp_events_hi = (mddev->events>>32);
  879. sb->cp_events_lo = (u32)mddev->events;
  880. if (mddev->recovery_cp == MaxSector)
  881. sb->state = (1<< MD_SB_CLEAN);
  882. } else
  883. sb->recovery_cp = 0;
  884. sb->layout = mddev->layout;
  885. sb->chunk_size = mddev->chunk_sectors << 9;
  886. if (mddev->bitmap && mddev->bitmap_file == NULL)
  887. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  888. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  889. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  890. mdp_disk_t *d;
  891. int desc_nr;
  892. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  893. && !test_bit(Faulty, &rdev2->flags))
  894. desc_nr = rdev2->raid_disk;
  895. else
  896. desc_nr = next_spare++;
  897. rdev2->desc_nr = desc_nr;
  898. d = &sb->disks[rdev2->desc_nr];
  899. nr_disks++;
  900. d->number = rdev2->desc_nr;
  901. d->major = MAJOR(rdev2->bdev->bd_dev);
  902. d->minor = MINOR(rdev2->bdev->bd_dev);
  903. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  904. && !test_bit(Faulty, &rdev2->flags))
  905. d->raid_disk = rdev2->raid_disk;
  906. else
  907. d->raid_disk = rdev2->desc_nr; /* compatibility */
  908. if (test_bit(Faulty, &rdev2->flags))
  909. d->state = (1<<MD_DISK_FAULTY);
  910. else if (test_bit(In_sync, &rdev2->flags)) {
  911. d->state = (1<<MD_DISK_ACTIVE);
  912. d->state |= (1<<MD_DISK_SYNC);
  913. active++;
  914. working++;
  915. } else {
  916. d->state = 0;
  917. spare++;
  918. working++;
  919. }
  920. if (test_bit(WriteMostly, &rdev2->flags))
  921. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  922. }
  923. /* now set the "removed" and "faulty" bits on any missing devices */
  924. for (i=0 ; i < mddev->raid_disks ; i++) {
  925. mdp_disk_t *d = &sb->disks[i];
  926. if (d->state == 0 && d->number == 0) {
  927. d->number = i;
  928. d->raid_disk = i;
  929. d->state = (1<<MD_DISK_REMOVED);
  930. d->state |= (1<<MD_DISK_FAULTY);
  931. failed++;
  932. }
  933. }
  934. sb->nr_disks = nr_disks;
  935. sb->active_disks = active;
  936. sb->working_disks = working;
  937. sb->failed_disks = failed;
  938. sb->spare_disks = spare;
  939. sb->this_disk = sb->disks[rdev->desc_nr];
  940. sb->sb_csum = calc_sb_csum(sb);
  941. }
  942. /*
  943. * rdev_size_change for 0.90.0
  944. */
  945. static unsigned long long
  946. super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  947. {
  948. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  949. return 0; /* component must fit device */
  950. if (rdev->mddev->bitmap_offset)
  951. return 0; /* can't move bitmap */
  952. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  953. if (!num_sectors || num_sectors > rdev->sb_start)
  954. num_sectors = rdev->sb_start;
  955. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  956. rdev->sb_page);
  957. md_super_wait(rdev->mddev);
  958. return num_sectors / 2; /* kB for sysfs */
  959. }
  960. /*
  961. * version 1 superblock
  962. */
  963. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  964. {
  965. __le32 disk_csum;
  966. u32 csum;
  967. unsigned long long newcsum;
  968. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  969. __le32 *isuper = (__le32*)sb;
  970. int i;
  971. disk_csum = sb->sb_csum;
  972. sb->sb_csum = 0;
  973. newcsum = 0;
  974. for (i=0; size>=4; size -= 4 )
  975. newcsum += le32_to_cpu(*isuper++);
  976. if (size == 2)
  977. newcsum += le16_to_cpu(*(__le16*) isuper);
  978. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  979. sb->sb_csum = disk_csum;
  980. return cpu_to_le32(csum);
  981. }
  982. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  983. {
  984. struct mdp_superblock_1 *sb;
  985. int ret;
  986. sector_t sb_start;
  987. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  988. int bmask;
  989. /*
  990. * Calculate the position of the superblock in 512byte sectors.
  991. * It is always aligned to a 4K boundary and
  992. * depeding on minor_version, it can be:
  993. * 0: At least 8K, but less than 12K, from end of device
  994. * 1: At start of device
  995. * 2: 4K from start of device.
  996. */
  997. switch(minor_version) {
  998. case 0:
  999. sb_start = rdev->bdev->bd_inode->i_size >> 9;
  1000. sb_start -= 8*2;
  1001. sb_start &= ~(sector_t)(4*2-1);
  1002. break;
  1003. case 1:
  1004. sb_start = 0;
  1005. break;
  1006. case 2:
  1007. sb_start = 8;
  1008. break;
  1009. default:
  1010. return -EINVAL;
  1011. }
  1012. rdev->sb_start = sb_start;
  1013. /* superblock is rarely larger than 1K, but it can be larger,
  1014. * and it is safe to read 4k, so we do that
  1015. */
  1016. ret = read_disk_sb(rdev, 4096);
  1017. if (ret) return ret;
  1018. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1019. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1020. sb->major_version != cpu_to_le32(1) ||
  1021. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1022. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1023. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1024. return -EINVAL;
  1025. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1026. printk("md: invalid superblock checksum on %s\n",
  1027. bdevname(rdev->bdev,b));
  1028. return -EINVAL;
  1029. }
  1030. if (le64_to_cpu(sb->data_size) < 10) {
  1031. printk("md: data_size too small on %s\n",
  1032. bdevname(rdev->bdev,b));
  1033. return -EINVAL;
  1034. }
  1035. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  1036. if (sb->level != cpu_to_le32(1) &&
  1037. sb->level != cpu_to_le32(4) &&
  1038. sb->level != cpu_to_le32(5) &&
  1039. sb->level != cpu_to_le32(6) &&
  1040. sb->level != cpu_to_le32(10)) {
  1041. printk(KERN_WARNING
  1042. "md: bitmaps not supported for this level.\n");
  1043. return -EINVAL;
  1044. }
  1045. }
  1046. rdev->preferred_minor = 0xffff;
  1047. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1048. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1049. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1050. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1051. if (rdev->sb_size & bmask)
  1052. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1053. if (minor_version
  1054. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1055. return -EINVAL;
  1056. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1057. rdev->desc_nr = -1;
  1058. else
  1059. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1060. if (!refdev) {
  1061. ret = 1;
  1062. } else {
  1063. __u64 ev1, ev2;
  1064. struct mdp_superblock_1 *refsb =
  1065. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  1066. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1067. sb->level != refsb->level ||
  1068. sb->layout != refsb->layout ||
  1069. sb->chunksize != refsb->chunksize) {
  1070. printk(KERN_WARNING "md: %s has strangely different"
  1071. " superblock to %s\n",
  1072. bdevname(rdev->bdev,b),
  1073. bdevname(refdev->bdev,b2));
  1074. return -EINVAL;
  1075. }
  1076. ev1 = le64_to_cpu(sb->events);
  1077. ev2 = le64_to_cpu(refsb->events);
  1078. if (ev1 > ev2)
  1079. ret = 1;
  1080. else
  1081. ret = 0;
  1082. }
  1083. if (minor_version)
  1084. rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
  1085. le64_to_cpu(sb->data_offset);
  1086. else
  1087. rdev->sectors = rdev->sb_start;
  1088. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1089. return -EINVAL;
  1090. rdev->sectors = le64_to_cpu(sb->data_size);
  1091. if (le32_to_cpu(sb->chunksize)) {
  1092. int chunk_sects = le32_to_cpu(sb->chunksize);
  1093. sector_t chunks = rdev->sectors;
  1094. sector_div(chunks, chunk_sects);
  1095. rdev->sectors = chunks * chunk_sects;
  1096. }
  1097. if (le64_to_cpu(sb->size) > rdev->sectors)
  1098. return -EINVAL;
  1099. return ret;
  1100. }
  1101. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  1102. {
  1103. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1104. __u64 ev1 = le64_to_cpu(sb->events);
  1105. rdev->raid_disk = -1;
  1106. clear_bit(Faulty, &rdev->flags);
  1107. clear_bit(In_sync, &rdev->flags);
  1108. clear_bit(WriteMostly, &rdev->flags);
  1109. clear_bit(BarriersNotsupp, &rdev->flags);
  1110. if (mddev->raid_disks == 0) {
  1111. mddev->major_version = 1;
  1112. mddev->patch_version = 0;
  1113. mddev->external = 0;
  1114. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1115. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1116. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1117. mddev->level = le32_to_cpu(sb->level);
  1118. mddev->clevel[0] = 0;
  1119. mddev->layout = le32_to_cpu(sb->layout);
  1120. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1121. mddev->dev_sectors = le64_to_cpu(sb->size);
  1122. mddev->events = ev1;
  1123. mddev->bitmap_offset = 0;
  1124. mddev->default_bitmap_offset = 1024 >> 9;
  1125. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1126. memcpy(mddev->uuid, sb->set_uuid, 16);
  1127. mddev->max_disks = (4096-256)/2;
  1128. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1129. mddev->bitmap_file == NULL )
  1130. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1131. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1132. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1133. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1134. mddev->new_level = le32_to_cpu(sb->new_level);
  1135. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1136. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1137. } else {
  1138. mddev->reshape_position = MaxSector;
  1139. mddev->delta_disks = 0;
  1140. mddev->new_level = mddev->level;
  1141. mddev->new_layout = mddev->layout;
  1142. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1143. }
  1144. } else if (mddev->pers == NULL) {
  1145. /* Insist of good event counter while assembling */
  1146. ++ev1;
  1147. if (ev1 < mddev->events)
  1148. return -EINVAL;
  1149. } else if (mddev->bitmap) {
  1150. /* If adding to array with a bitmap, then we can accept an
  1151. * older device, but not too old.
  1152. */
  1153. if (ev1 < mddev->bitmap->events_cleared)
  1154. return 0;
  1155. } else {
  1156. if (ev1 < mddev->events)
  1157. /* just a hot-add of a new device, leave raid_disk at -1 */
  1158. return 0;
  1159. }
  1160. if (mddev->level != LEVEL_MULTIPATH) {
  1161. int role;
  1162. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1163. switch(role) {
  1164. case 0xffff: /* spare */
  1165. break;
  1166. case 0xfffe: /* faulty */
  1167. set_bit(Faulty, &rdev->flags);
  1168. break;
  1169. default:
  1170. if ((le32_to_cpu(sb->feature_map) &
  1171. MD_FEATURE_RECOVERY_OFFSET))
  1172. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1173. else
  1174. set_bit(In_sync, &rdev->flags);
  1175. rdev->raid_disk = role;
  1176. break;
  1177. }
  1178. if (sb->devflags & WriteMostly1)
  1179. set_bit(WriteMostly, &rdev->flags);
  1180. } else /* MULTIPATH are always insync */
  1181. set_bit(In_sync, &rdev->flags);
  1182. return 0;
  1183. }
  1184. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1185. {
  1186. struct mdp_superblock_1 *sb;
  1187. mdk_rdev_t *rdev2;
  1188. int max_dev, i;
  1189. /* make rdev->sb match mddev and rdev data. */
  1190. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1191. sb->feature_map = 0;
  1192. sb->pad0 = 0;
  1193. sb->recovery_offset = cpu_to_le64(0);
  1194. memset(sb->pad1, 0, sizeof(sb->pad1));
  1195. memset(sb->pad2, 0, sizeof(sb->pad2));
  1196. memset(sb->pad3, 0, sizeof(sb->pad3));
  1197. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1198. sb->events = cpu_to_le64(mddev->events);
  1199. if (mddev->in_sync)
  1200. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1201. else
  1202. sb->resync_offset = cpu_to_le64(0);
  1203. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1204. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1205. sb->size = cpu_to_le64(mddev->dev_sectors);
  1206. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1207. sb->level = cpu_to_le32(mddev->level);
  1208. sb->layout = cpu_to_le32(mddev->layout);
  1209. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1210. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1211. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1212. }
  1213. if (rdev->raid_disk >= 0 &&
  1214. !test_bit(In_sync, &rdev->flags)) {
  1215. if (mddev->curr_resync_completed > rdev->recovery_offset)
  1216. rdev->recovery_offset = mddev->curr_resync_completed;
  1217. if (rdev->recovery_offset > 0) {
  1218. sb->feature_map |=
  1219. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1220. sb->recovery_offset =
  1221. cpu_to_le64(rdev->recovery_offset);
  1222. }
  1223. }
  1224. if (mddev->reshape_position != MaxSector) {
  1225. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1226. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1227. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1228. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1229. sb->new_level = cpu_to_le32(mddev->new_level);
  1230. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1231. }
  1232. max_dev = 0;
  1233. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1234. if (rdev2->desc_nr+1 > max_dev)
  1235. max_dev = rdev2->desc_nr+1;
  1236. if (max_dev > le32_to_cpu(sb->max_dev))
  1237. sb->max_dev = cpu_to_le32(max_dev);
  1238. for (i=0; i<max_dev;i++)
  1239. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1240. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1241. i = rdev2->desc_nr;
  1242. if (test_bit(Faulty, &rdev2->flags))
  1243. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1244. else if (test_bit(In_sync, &rdev2->flags))
  1245. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1246. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1247. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1248. else
  1249. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1250. }
  1251. sb->sb_csum = calc_sb_1_csum(sb);
  1252. }
  1253. static unsigned long long
  1254. super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1255. {
  1256. struct mdp_superblock_1 *sb;
  1257. sector_t max_sectors;
  1258. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1259. return 0; /* component must fit device */
  1260. if (rdev->sb_start < rdev->data_offset) {
  1261. /* minor versions 1 and 2; superblock before data */
  1262. max_sectors = rdev->bdev->bd_inode->i_size >> 9;
  1263. max_sectors -= rdev->data_offset;
  1264. if (!num_sectors || num_sectors > max_sectors)
  1265. num_sectors = max_sectors;
  1266. } else if (rdev->mddev->bitmap_offset) {
  1267. /* minor version 0 with bitmap we can't move */
  1268. return 0;
  1269. } else {
  1270. /* minor version 0; superblock after data */
  1271. sector_t sb_start;
  1272. sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
  1273. sb_start &= ~(sector_t)(4*2 - 1);
  1274. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1275. if (!num_sectors || num_sectors > max_sectors)
  1276. num_sectors = max_sectors;
  1277. rdev->sb_start = sb_start;
  1278. }
  1279. sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
  1280. sb->data_size = cpu_to_le64(num_sectors);
  1281. sb->super_offset = rdev->sb_start;
  1282. sb->sb_csum = calc_sb_1_csum(sb);
  1283. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1284. rdev->sb_page);
  1285. md_super_wait(rdev->mddev);
  1286. return num_sectors / 2; /* kB for sysfs */
  1287. }
  1288. static struct super_type super_types[] = {
  1289. [0] = {
  1290. .name = "0.90.0",
  1291. .owner = THIS_MODULE,
  1292. .load_super = super_90_load,
  1293. .validate_super = super_90_validate,
  1294. .sync_super = super_90_sync,
  1295. .rdev_size_change = super_90_rdev_size_change,
  1296. },
  1297. [1] = {
  1298. .name = "md-1",
  1299. .owner = THIS_MODULE,
  1300. .load_super = super_1_load,
  1301. .validate_super = super_1_validate,
  1302. .sync_super = super_1_sync,
  1303. .rdev_size_change = super_1_rdev_size_change,
  1304. },
  1305. };
  1306. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1307. {
  1308. mdk_rdev_t *rdev, *rdev2;
  1309. rcu_read_lock();
  1310. rdev_for_each_rcu(rdev, mddev1)
  1311. rdev_for_each_rcu(rdev2, mddev2)
  1312. if (rdev->bdev->bd_contains ==
  1313. rdev2->bdev->bd_contains) {
  1314. rcu_read_unlock();
  1315. return 1;
  1316. }
  1317. rcu_read_unlock();
  1318. return 0;
  1319. }
  1320. static LIST_HEAD(pending_raid_disks);
  1321. static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
  1322. {
  1323. struct mdk_personality *pers = mddev->pers;
  1324. struct gendisk *disk = mddev->gendisk;
  1325. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1326. struct blk_integrity *bi_mddev = blk_get_integrity(disk);
  1327. /* Data integrity passthrough not supported on RAID 4, 5 and 6 */
  1328. if (pers && pers->level >= 4 && pers->level <= 6)
  1329. return;
  1330. /* If rdev is integrity capable, register profile for mddev */
  1331. if (!bi_mddev && bi_rdev) {
  1332. if (blk_integrity_register(disk, bi_rdev))
  1333. printk(KERN_ERR "%s: %s Could not register integrity!\n",
  1334. __func__, disk->disk_name);
  1335. else
  1336. printk(KERN_NOTICE "Enabling data integrity on %s\n",
  1337. disk->disk_name);
  1338. return;
  1339. }
  1340. /* Check that mddev and rdev have matching profiles */
  1341. if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
  1342. printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
  1343. disk->disk_name, rdev->bdev->bd_disk->disk_name);
  1344. printk(KERN_NOTICE "Disabling data integrity on %s\n",
  1345. disk->disk_name);
  1346. blk_integrity_unregister(disk);
  1347. }
  1348. }
  1349. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1350. {
  1351. char b[BDEVNAME_SIZE];
  1352. struct kobject *ko;
  1353. char *s;
  1354. int err;
  1355. if (rdev->mddev) {
  1356. MD_BUG();
  1357. return -EINVAL;
  1358. }
  1359. /* prevent duplicates */
  1360. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1361. return -EEXIST;
  1362. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1363. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1364. rdev->sectors < mddev->dev_sectors)) {
  1365. if (mddev->pers) {
  1366. /* Cannot change size, so fail
  1367. * If mddev->level <= 0, then we don't care
  1368. * about aligning sizes (e.g. linear)
  1369. */
  1370. if (mddev->level > 0)
  1371. return -ENOSPC;
  1372. } else
  1373. mddev->dev_sectors = rdev->sectors;
  1374. }
  1375. /* Verify rdev->desc_nr is unique.
  1376. * If it is -1, assign a free number, else
  1377. * check number is not in use
  1378. */
  1379. if (rdev->desc_nr < 0) {
  1380. int choice = 0;
  1381. if (mddev->pers) choice = mddev->raid_disks;
  1382. while (find_rdev_nr(mddev, choice))
  1383. choice++;
  1384. rdev->desc_nr = choice;
  1385. } else {
  1386. if (find_rdev_nr(mddev, rdev->desc_nr))
  1387. return -EBUSY;
  1388. }
  1389. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1390. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1391. mdname(mddev), mddev->max_disks);
  1392. return -EBUSY;
  1393. }
  1394. bdevname(rdev->bdev,b);
  1395. while ( (s=strchr(b, '/')) != NULL)
  1396. *s = '!';
  1397. rdev->mddev = mddev;
  1398. printk(KERN_INFO "md: bind<%s>\n", b);
  1399. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1400. goto fail;
  1401. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1402. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1403. kobject_del(&rdev->kobj);
  1404. goto fail;
  1405. }
  1406. rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
  1407. list_add_rcu(&rdev->same_set, &mddev->disks);
  1408. bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
  1409. /* May as well allow recovery to be retried once */
  1410. mddev->recovery_disabled = 0;
  1411. md_integrity_check(rdev, mddev);
  1412. return 0;
  1413. fail:
  1414. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1415. b, mdname(mddev));
  1416. return err;
  1417. }
  1418. static void md_delayed_delete(struct work_struct *ws)
  1419. {
  1420. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1421. kobject_del(&rdev->kobj);
  1422. kobject_put(&rdev->kobj);
  1423. }
  1424. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1425. {
  1426. char b[BDEVNAME_SIZE];
  1427. if (!rdev->mddev) {
  1428. MD_BUG();
  1429. return;
  1430. }
  1431. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1432. list_del_rcu(&rdev->same_set);
  1433. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1434. rdev->mddev = NULL;
  1435. sysfs_remove_link(&rdev->kobj, "block");
  1436. sysfs_put(rdev->sysfs_state);
  1437. rdev->sysfs_state = NULL;
  1438. /* We need to delay this, otherwise we can deadlock when
  1439. * writing to 'remove' to "dev/state". We also need
  1440. * to delay it due to rcu usage.
  1441. */
  1442. synchronize_rcu();
  1443. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1444. kobject_get(&rdev->kobj);
  1445. schedule_work(&rdev->del_work);
  1446. }
  1447. /*
  1448. * prevent the device from being mounted, repartitioned or
  1449. * otherwise reused by a RAID array (or any other kernel
  1450. * subsystem), by bd_claiming the device.
  1451. */
  1452. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1453. {
  1454. int err = 0;
  1455. struct block_device *bdev;
  1456. char b[BDEVNAME_SIZE];
  1457. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1458. if (IS_ERR(bdev)) {
  1459. printk(KERN_ERR "md: could not open %s.\n",
  1460. __bdevname(dev, b));
  1461. return PTR_ERR(bdev);
  1462. }
  1463. err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1464. if (err) {
  1465. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1466. bdevname(bdev, b));
  1467. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1468. return err;
  1469. }
  1470. if (!shared)
  1471. set_bit(AllReserved, &rdev->flags);
  1472. rdev->bdev = bdev;
  1473. return err;
  1474. }
  1475. static void unlock_rdev(mdk_rdev_t *rdev)
  1476. {
  1477. struct block_device *bdev = rdev->bdev;
  1478. rdev->bdev = NULL;
  1479. if (!bdev)
  1480. MD_BUG();
  1481. bd_release(bdev);
  1482. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1483. }
  1484. void md_autodetect_dev(dev_t dev);
  1485. static void export_rdev(mdk_rdev_t * rdev)
  1486. {
  1487. char b[BDEVNAME_SIZE];
  1488. printk(KERN_INFO "md: export_rdev(%s)\n",
  1489. bdevname(rdev->bdev,b));
  1490. if (rdev->mddev)
  1491. MD_BUG();
  1492. free_disk_sb(rdev);
  1493. #ifndef MODULE
  1494. if (test_bit(AutoDetected, &rdev->flags))
  1495. md_autodetect_dev(rdev->bdev->bd_dev);
  1496. #endif
  1497. unlock_rdev(rdev);
  1498. kobject_put(&rdev->kobj);
  1499. }
  1500. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1501. {
  1502. unbind_rdev_from_array(rdev);
  1503. export_rdev(rdev);
  1504. }
  1505. static void export_array(mddev_t *mddev)
  1506. {
  1507. mdk_rdev_t *rdev, *tmp;
  1508. rdev_for_each(rdev, tmp, mddev) {
  1509. if (!rdev->mddev) {
  1510. MD_BUG();
  1511. continue;
  1512. }
  1513. kick_rdev_from_array(rdev);
  1514. }
  1515. if (!list_empty(&mddev->disks))
  1516. MD_BUG();
  1517. mddev->raid_disks = 0;
  1518. mddev->major_version = 0;
  1519. }
  1520. static void print_desc(mdp_disk_t *desc)
  1521. {
  1522. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1523. desc->major,desc->minor,desc->raid_disk,desc->state);
  1524. }
  1525. static void print_sb_90(mdp_super_t *sb)
  1526. {
  1527. int i;
  1528. printk(KERN_INFO
  1529. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1530. sb->major_version, sb->minor_version, sb->patch_version,
  1531. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1532. sb->ctime);
  1533. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1534. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1535. sb->md_minor, sb->layout, sb->chunk_size);
  1536. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1537. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1538. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1539. sb->failed_disks, sb->spare_disks,
  1540. sb->sb_csum, (unsigned long)sb->events_lo);
  1541. printk(KERN_INFO);
  1542. for (i = 0; i < MD_SB_DISKS; i++) {
  1543. mdp_disk_t *desc;
  1544. desc = sb->disks + i;
  1545. if (desc->number || desc->major || desc->minor ||
  1546. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1547. printk(" D %2d: ", i);
  1548. print_desc(desc);
  1549. }
  1550. }
  1551. printk(KERN_INFO "md: THIS: ");
  1552. print_desc(&sb->this_disk);
  1553. }
  1554. static void print_sb_1(struct mdp_superblock_1 *sb)
  1555. {
  1556. __u8 *uuid;
  1557. uuid = sb->set_uuid;
  1558. printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
  1559. ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
  1560. KERN_INFO "md: Name: \"%s\" CT:%llu\n",
  1561. le32_to_cpu(sb->major_version),
  1562. le32_to_cpu(sb->feature_map),
  1563. uuid[0], uuid[1], uuid[2], uuid[3],
  1564. uuid[4], uuid[5], uuid[6], uuid[7],
  1565. uuid[8], uuid[9], uuid[10], uuid[11],
  1566. uuid[12], uuid[13], uuid[14], uuid[15],
  1567. sb->set_name,
  1568. (unsigned long long)le64_to_cpu(sb->ctime)
  1569. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1570. uuid = sb->device_uuid;
  1571. printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1572. " RO:%llu\n"
  1573. KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
  1574. ":%02x%02x%02x%02x%02x%02x\n"
  1575. KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1576. KERN_INFO "md: (MaxDev:%u) \n",
  1577. le32_to_cpu(sb->level),
  1578. (unsigned long long)le64_to_cpu(sb->size),
  1579. le32_to_cpu(sb->raid_disks),
  1580. le32_to_cpu(sb->layout),
  1581. le32_to_cpu(sb->chunksize),
  1582. (unsigned long long)le64_to_cpu(sb->data_offset),
  1583. (unsigned long long)le64_to_cpu(sb->data_size),
  1584. (unsigned long long)le64_to_cpu(sb->super_offset),
  1585. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1586. le32_to_cpu(sb->dev_number),
  1587. uuid[0], uuid[1], uuid[2], uuid[3],
  1588. uuid[4], uuid[5], uuid[6], uuid[7],
  1589. uuid[8], uuid[9], uuid[10], uuid[11],
  1590. uuid[12], uuid[13], uuid[14], uuid[15],
  1591. sb->devflags,
  1592. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1593. (unsigned long long)le64_to_cpu(sb->events),
  1594. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1595. le32_to_cpu(sb->sb_csum),
  1596. le32_to_cpu(sb->max_dev)
  1597. );
  1598. }
  1599. static void print_rdev(mdk_rdev_t *rdev, int major_version)
  1600. {
  1601. char b[BDEVNAME_SIZE];
  1602. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1603. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  1604. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1605. rdev->desc_nr);
  1606. if (rdev->sb_loaded) {
  1607. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  1608. switch (major_version) {
  1609. case 0:
  1610. print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
  1611. break;
  1612. case 1:
  1613. print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
  1614. break;
  1615. }
  1616. } else
  1617. printk(KERN_INFO "md: no rdev superblock!\n");
  1618. }
  1619. static void md_print_devices(void)
  1620. {
  1621. struct list_head *tmp;
  1622. mdk_rdev_t *rdev;
  1623. mddev_t *mddev;
  1624. char b[BDEVNAME_SIZE];
  1625. printk("\n");
  1626. printk("md: **********************************\n");
  1627. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1628. printk("md: **********************************\n");
  1629. for_each_mddev(mddev, tmp) {
  1630. if (mddev->bitmap)
  1631. bitmap_print_sb(mddev->bitmap);
  1632. else
  1633. printk("%s: ", mdname(mddev));
  1634. list_for_each_entry(rdev, &mddev->disks, same_set)
  1635. printk("<%s>", bdevname(rdev->bdev,b));
  1636. printk("\n");
  1637. list_for_each_entry(rdev, &mddev->disks, same_set)
  1638. print_rdev(rdev, mddev->major_version);
  1639. }
  1640. printk("md: **********************************\n");
  1641. printk("\n");
  1642. }
  1643. static void sync_sbs(mddev_t * mddev, int nospares)
  1644. {
  1645. /* Update each superblock (in-memory image), but
  1646. * if we are allowed to, skip spares which already
  1647. * have the right event counter, or have one earlier
  1648. * (which would mean they aren't being marked as dirty
  1649. * with the rest of the array)
  1650. */
  1651. mdk_rdev_t *rdev;
  1652. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1653. if (rdev->sb_events == mddev->events ||
  1654. (nospares &&
  1655. rdev->raid_disk < 0 &&
  1656. (rdev->sb_events&1)==0 &&
  1657. rdev->sb_events+1 == mddev->events)) {
  1658. /* Don't update this superblock */
  1659. rdev->sb_loaded = 2;
  1660. } else {
  1661. super_types[mddev->major_version].
  1662. sync_super(mddev, rdev);
  1663. rdev->sb_loaded = 1;
  1664. }
  1665. }
  1666. }
  1667. static void md_update_sb(mddev_t * mddev, int force_change)
  1668. {
  1669. mdk_rdev_t *rdev;
  1670. int sync_req;
  1671. int nospares = 0;
  1672. mddev->utime = get_seconds();
  1673. if (mddev->external)
  1674. return;
  1675. repeat:
  1676. spin_lock_irq(&mddev->write_lock);
  1677. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1678. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1679. force_change = 1;
  1680. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1681. /* just a clean<-> dirty transition, possibly leave spares alone,
  1682. * though if events isn't the right even/odd, we will have to do
  1683. * spares after all
  1684. */
  1685. nospares = 1;
  1686. if (force_change)
  1687. nospares = 0;
  1688. if (mddev->degraded)
  1689. /* If the array is degraded, then skipping spares is both
  1690. * dangerous and fairly pointless.
  1691. * Dangerous because a device that was removed from the array
  1692. * might have a event_count that still looks up-to-date,
  1693. * so it can be re-added without a resync.
  1694. * Pointless because if there are any spares to skip,
  1695. * then a recovery will happen and soon that array won't
  1696. * be degraded any more and the spare can go back to sleep then.
  1697. */
  1698. nospares = 0;
  1699. sync_req = mddev->in_sync;
  1700. /* If this is just a dirty<->clean transition, and the array is clean
  1701. * and 'events' is odd, we can roll back to the previous clean state */
  1702. if (nospares
  1703. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1704. && (mddev->events & 1)
  1705. && mddev->events != 1)
  1706. mddev->events--;
  1707. else {
  1708. /* otherwise we have to go forward and ... */
  1709. mddev->events ++;
  1710. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1711. /* .. if the array isn't clean, insist on an odd 'events' */
  1712. if ((mddev->events&1)==0) {
  1713. mddev->events++;
  1714. nospares = 0;
  1715. }
  1716. } else {
  1717. /* otherwise insist on an even 'events' (for clean states) */
  1718. if ((mddev->events&1)) {
  1719. mddev->events++;
  1720. nospares = 0;
  1721. }
  1722. }
  1723. }
  1724. if (!mddev->events) {
  1725. /*
  1726. * oops, this 64-bit counter should never wrap.
  1727. * Either we are in around ~1 trillion A.C., assuming
  1728. * 1 reboot per second, or we have a bug:
  1729. */
  1730. MD_BUG();
  1731. mddev->events --;
  1732. }
  1733. /*
  1734. * do not write anything to disk if using
  1735. * nonpersistent superblocks
  1736. */
  1737. if (!mddev->persistent) {
  1738. if (!mddev->external)
  1739. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1740. spin_unlock_irq(&mddev->write_lock);
  1741. wake_up(&mddev->sb_wait);
  1742. return;
  1743. }
  1744. sync_sbs(mddev, nospares);
  1745. spin_unlock_irq(&mddev->write_lock);
  1746. dprintk(KERN_INFO
  1747. "md: updating %s RAID superblock on device (in sync %d)\n",
  1748. mdname(mddev),mddev->in_sync);
  1749. bitmap_update_sb(mddev->bitmap);
  1750. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1751. char b[BDEVNAME_SIZE];
  1752. dprintk(KERN_INFO "md: ");
  1753. if (rdev->sb_loaded != 1)
  1754. continue; /* no noise on spare devices */
  1755. if (test_bit(Faulty, &rdev->flags))
  1756. dprintk("(skipping faulty ");
  1757. dprintk("%s ", bdevname(rdev->bdev,b));
  1758. if (!test_bit(Faulty, &rdev->flags)) {
  1759. md_super_write(mddev,rdev,
  1760. rdev->sb_start, rdev->sb_size,
  1761. rdev->sb_page);
  1762. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1763. bdevname(rdev->bdev,b),
  1764. (unsigned long long)rdev->sb_start);
  1765. rdev->sb_events = mddev->events;
  1766. } else
  1767. dprintk(")\n");
  1768. if (mddev->level == LEVEL_MULTIPATH)
  1769. /* only need to write one superblock... */
  1770. break;
  1771. }
  1772. md_super_wait(mddev);
  1773. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1774. spin_lock_irq(&mddev->write_lock);
  1775. if (mddev->in_sync != sync_req ||
  1776. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1777. /* have to write it out again */
  1778. spin_unlock_irq(&mddev->write_lock);
  1779. goto repeat;
  1780. }
  1781. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1782. spin_unlock_irq(&mddev->write_lock);
  1783. wake_up(&mddev->sb_wait);
  1784. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  1785. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  1786. }
  1787. /* words written to sysfs files may, or may not, be \n terminated.
  1788. * We want to accept with case. For this we use cmd_match.
  1789. */
  1790. static int cmd_match(const char *cmd, const char *str)
  1791. {
  1792. /* See if cmd, written into a sysfs file, matches
  1793. * str. They must either be the same, or cmd can
  1794. * have a trailing newline
  1795. */
  1796. while (*cmd && *str && *cmd == *str) {
  1797. cmd++;
  1798. str++;
  1799. }
  1800. if (*cmd == '\n')
  1801. cmd++;
  1802. if (*str || *cmd)
  1803. return 0;
  1804. return 1;
  1805. }
  1806. struct rdev_sysfs_entry {
  1807. struct attribute attr;
  1808. ssize_t (*show)(mdk_rdev_t *, char *);
  1809. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1810. };
  1811. static ssize_t
  1812. state_show(mdk_rdev_t *rdev, char *page)
  1813. {
  1814. char *sep = "";
  1815. size_t len = 0;
  1816. if (test_bit(Faulty, &rdev->flags)) {
  1817. len+= sprintf(page+len, "%sfaulty",sep);
  1818. sep = ",";
  1819. }
  1820. if (test_bit(In_sync, &rdev->flags)) {
  1821. len += sprintf(page+len, "%sin_sync",sep);
  1822. sep = ",";
  1823. }
  1824. if (test_bit(WriteMostly, &rdev->flags)) {
  1825. len += sprintf(page+len, "%swrite_mostly",sep);
  1826. sep = ",";
  1827. }
  1828. if (test_bit(Blocked, &rdev->flags)) {
  1829. len += sprintf(page+len, "%sblocked", sep);
  1830. sep = ",";
  1831. }
  1832. if (!test_bit(Faulty, &rdev->flags) &&
  1833. !test_bit(In_sync, &rdev->flags)) {
  1834. len += sprintf(page+len, "%sspare", sep);
  1835. sep = ",";
  1836. }
  1837. return len+sprintf(page+len, "\n");
  1838. }
  1839. static ssize_t
  1840. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1841. {
  1842. /* can write
  1843. * faulty - simulates and error
  1844. * remove - disconnects the device
  1845. * writemostly - sets write_mostly
  1846. * -writemostly - clears write_mostly
  1847. * blocked - sets the Blocked flag
  1848. * -blocked - clears the Blocked flag
  1849. * insync - sets Insync providing device isn't active
  1850. */
  1851. int err = -EINVAL;
  1852. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1853. md_error(rdev->mddev, rdev);
  1854. err = 0;
  1855. } else if (cmd_match(buf, "remove")) {
  1856. if (rdev->raid_disk >= 0)
  1857. err = -EBUSY;
  1858. else {
  1859. mddev_t *mddev = rdev->mddev;
  1860. kick_rdev_from_array(rdev);
  1861. if (mddev->pers)
  1862. md_update_sb(mddev, 1);
  1863. md_new_event(mddev);
  1864. err = 0;
  1865. }
  1866. } else if (cmd_match(buf, "writemostly")) {
  1867. set_bit(WriteMostly, &rdev->flags);
  1868. err = 0;
  1869. } else if (cmd_match(buf, "-writemostly")) {
  1870. clear_bit(WriteMostly, &rdev->flags);
  1871. err = 0;
  1872. } else if (cmd_match(buf, "blocked")) {
  1873. set_bit(Blocked, &rdev->flags);
  1874. err = 0;
  1875. } else if (cmd_match(buf, "-blocked")) {
  1876. clear_bit(Blocked, &rdev->flags);
  1877. wake_up(&rdev->blocked_wait);
  1878. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  1879. md_wakeup_thread(rdev->mddev->thread);
  1880. err = 0;
  1881. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  1882. set_bit(In_sync, &rdev->flags);
  1883. err = 0;
  1884. }
  1885. if (!err && rdev->sysfs_state)
  1886. sysfs_notify_dirent(rdev->sysfs_state);
  1887. return err ? err : len;
  1888. }
  1889. static struct rdev_sysfs_entry rdev_state =
  1890. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1891. static ssize_t
  1892. errors_show(mdk_rdev_t *rdev, char *page)
  1893. {
  1894. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1895. }
  1896. static ssize_t
  1897. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1898. {
  1899. char *e;
  1900. unsigned long n = simple_strtoul(buf, &e, 10);
  1901. if (*buf && (*e == 0 || *e == '\n')) {
  1902. atomic_set(&rdev->corrected_errors, n);
  1903. return len;
  1904. }
  1905. return -EINVAL;
  1906. }
  1907. static struct rdev_sysfs_entry rdev_errors =
  1908. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1909. static ssize_t
  1910. slot_show(mdk_rdev_t *rdev, char *page)
  1911. {
  1912. if (rdev->raid_disk < 0)
  1913. return sprintf(page, "none\n");
  1914. else
  1915. return sprintf(page, "%d\n", rdev->raid_disk);
  1916. }
  1917. static ssize_t
  1918. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1919. {
  1920. char *e;
  1921. int err;
  1922. char nm[20];
  1923. int slot = simple_strtoul(buf, &e, 10);
  1924. if (strncmp(buf, "none", 4)==0)
  1925. slot = -1;
  1926. else if (e==buf || (*e && *e!= '\n'))
  1927. return -EINVAL;
  1928. if (rdev->mddev->pers && slot == -1) {
  1929. /* Setting 'slot' on an active array requires also
  1930. * updating the 'rd%d' link, and communicating
  1931. * with the personality with ->hot_*_disk.
  1932. * For now we only support removing
  1933. * failed/spare devices. This normally happens automatically,
  1934. * but not when the metadata is externally managed.
  1935. */
  1936. if (rdev->raid_disk == -1)
  1937. return -EEXIST;
  1938. /* personality does all needed checks */
  1939. if (rdev->mddev->pers->hot_add_disk == NULL)
  1940. return -EINVAL;
  1941. err = rdev->mddev->pers->
  1942. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  1943. if (err)
  1944. return err;
  1945. sprintf(nm, "rd%d", rdev->raid_disk);
  1946. sysfs_remove_link(&rdev->mddev->kobj, nm);
  1947. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  1948. md_wakeup_thread(rdev->mddev->thread);
  1949. } else if (rdev->mddev->pers) {
  1950. mdk_rdev_t *rdev2;
  1951. /* Activating a spare .. or possibly reactivating
  1952. * if we ever get bitmaps working here.
  1953. */
  1954. if (rdev->raid_disk != -1)
  1955. return -EBUSY;
  1956. if (rdev->mddev->pers->hot_add_disk == NULL)
  1957. return -EINVAL;
  1958. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  1959. if (rdev2->raid_disk == slot)
  1960. return -EEXIST;
  1961. rdev->raid_disk = slot;
  1962. if (test_bit(In_sync, &rdev->flags))
  1963. rdev->saved_raid_disk = slot;
  1964. else
  1965. rdev->saved_raid_disk = -1;
  1966. err = rdev->mddev->pers->
  1967. hot_add_disk(rdev->mddev, rdev);
  1968. if (err) {
  1969. rdev->raid_disk = -1;
  1970. return err;
  1971. } else
  1972. sysfs_notify_dirent(rdev->sysfs_state);
  1973. sprintf(nm, "rd%d", rdev->raid_disk);
  1974. if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
  1975. printk(KERN_WARNING
  1976. "md: cannot register "
  1977. "%s for %s\n",
  1978. nm, mdname(rdev->mddev));
  1979. /* don't wakeup anyone, leave that to userspace. */
  1980. } else {
  1981. if (slot >= rdev->mddev->raid_disks)
  1982. return -ENOSPC;
  1983. rdev->raid_disk = slot;
  1984. /* assume it is working */
  1985. clear_bit(Faulty, &rdev->flags);
  1986. clear_bit(WriteMostly, &rdev->flags);
  1987. set_bit(In_sync, &rdev->flags);
  1988. sysfs_notify_dirent(rdev->sysfs_state);
  1989. }
  1990. return len;
  1991. }
  1992. static struct rdev_sysfs_entry rdev_slot =
  1993. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1994. static ssize_t
  1995. offset_show(mdk_rdev_t *rdev, char *page)
  1996. {
  1997. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1998. }
  1999. static ssize_t
  2000. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2001. {
  2002. char *e;
  2003. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2004. if (e==buf || (*e && *e != '\n'))
  2005. return -EINVAL;
  2006. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2007. return -EBUSY;
  2008. if (rdev->sectors && rdev->mddev->external)
  2009. /* Must set offset before size, so overlap checks
  2010. * can be sane */
  2011. return -EBUSY;
  2012. rdev->data_offset = offset;
  2013. return len;
  2014. }
  2015. static struct rdev_sysfs_entry rdev_offset =
  2016. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2017. static ssize_t
  2018. rdev_size_show(mdk_rdev_t *rdev, char *page)
  2019. {
  2020. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2021. }
  2022. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2023. {
  2024. /* check if two start/length pairs overlap */
  2025. if (s1+l1 <= s2)
  2026. return 0;
  2027. if (s2+l2 <= s1)
  2028. return 0;
  2029. return 1;
  2030. }
  2031. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2032. {
  2033. unsigned long long blocks;
  2034. sector_t new;
  2035. if (strict_strtoull(buf, 10, &blocks) < 0)
  2036. return -EINVAL;
  2037. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2038. return -EINVAL; /* sector conversion overflow */
  2039. new = blocks * 2;
  2040. if (new != blocks * 2)
  2041. return -EINVAL; /* unsigned long long to sector_t overflow */
  2042. *sectors = new;
  2043. return 0;
  2044. }
  2045. static ssize_t
  2046. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2047. {
  2048. mddev_t *my_mddev = rdev->mddev;
  2049. sector_t oldsectors = rdev->sectors;
  2050. sector_t sectors;
  2051. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2052. return -EINVAL;
  2053. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2054. if (my_mddev->persistent) {
  2055. sectors = super_types[my_mddev->major_version].
  2056. rdev_size_change(rdev, sectors);
  2057. if (!sectors)
  2058. return -EBUSY;
  2059. } else if (!sectors)
  2060. sectors = (rdev->bdev->bd_inode->i_size >> 9) -
  2061. rdev->data_offset;
  2062. }
  2063. if (sectors < my_mddev->dev_sectors)
  2064. return -EINVAL; /* component must fit device */
  2065. rdev->sectors = sectors;
  2066. if (sectors > oldsectors && my_mddev->external) {
  2067. /* need to check that all other rdevs with the same ->bdev
  2068. * do not overlap. We need to unlock the mddev to avoid
  2069. * a deadlock. We have already changed rdev->sectors, and if
  2070. * we have to change it back, we will have the lock again.
  2071. */
  2072. mddev_t *mddev;
  2073. int overlap = 0;
  2074. struct list_head *tmp;
  2075. mddev_unlock(my_mddev);
  2076. for_each_mddev(mddev, tmp) {
  2077. mdk_rdev_t *rdev2;
  2078. mddev_lock(mddev);
  2079. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2080. if (test_bit(AllReserved, &rdev2->flags) ||
  2081. (rdev->bdev == rdev2->bdev &&
  2082. rdev != rdev2 &&
  2083. overlaps(rdev->data_offset, rdev->sectors,
  2084. rdev2->data_offset,
  2085. rdev2->sectors))) {
  2086. overlap = 1;
  2087. break;
  2088. }
  2089. mddev_unlock(mddev);
  2090. if (overlap) {
  2091. mddev_put(mddev);
  2092. break;
  2093. }
  2094. }
  2095. mddev_lock(my_mddev);
  2096. if (overlap) {
  2097. /* Someone else could have slipped in a size
  2098. * change here, but doing so is just silly.
  2099. * We put oldsectors back because we *know* it is
  2100. * safe, and trust userspace not to race with
  2101. * itself
  2102. */
  2103. rdev->sectors = oldsectors;
  2104. return -EBUSY;
  2105. }
  2106. }
  2107. return len;
  2108. }
  2109. static struct rdev_sysfs_entry rdev_size =
  2110. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2111. static struct attribute *rdev_default_attrs[] = {
  2112. &rdev_state.attr,
  2113. &rdev_errors.attr,
  2114. &rdev_slot.attr,
  2115. &rdev_offset.attr,
  2116. &rdev_size.attr,
  2117. NULL,
  2118. };
  2119. static ssize_t
  2120. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2121. {
  2122. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2123. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2124. mddev_t *mddev = rdev->mddev;
  2125. ssize_t rv;
  2126. if (!entry->show)
  2127. return -EIO;
  2128. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2129. if (!rv) {
  2130. if (rdev->mddev == NULL)
  2131. rv = -EBUSY;
  2132. else
  2133. rv = entry->show(rdev, page);
  2134. mddev_unlock(mddev);
  2135. }
  2136. return rv;
  2137. }
  2138. static ssize_t
  2139. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2140. const char *page, size_t length)
  2141. {
  2142. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2143. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2144. ssize_t rv;
  2145. mddev_t *mddev = rdev->mddev;
  2146. if (!entry->store)
  2147. return -EIO;
  2148. if (!capable(CAP_SYS_ADMIN))
  2149. return -EACCES;
  2150. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2151. if (!rv) {
  2152. if (rdev->mddev == NULL)
  2153. rv = -EBUSY;
  2154. else
  2155. rv = entry->store(rdev, page, length);
  2156. mddev_unlock(mddev);
  2157. }
  2158. return rv;
  2159. }
  2160. static void rdev_free(struct kobject *ko)
  2161. {
  2162. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  2163. kfree(rdev);
  2164. }
  2165. static struct sysfs_ops rdev_sysfs_ops = {
  2166. .show = rdev_attr_show,
  2167. .store = rdev_attr_store,
  2168. };
  2169. static struct kobj_type rdev_ktype = {
  2170. .release = rdev_free,
  2171. .sysfs_ops = &rdev_sysfs_ops,
  2172. .default_attrs = rdev_default_attrs,
  2173. };
  2174. /*
  2175. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2176. *
  2177. * mark the device faulty if:
  2178. *
  2179. * - the device is nonexistent (zero size)
  2180. * - the device has no valid superblock
  2181. *
  2182. * a faulty rdev _never_ has rdev->sb set.
  2183. */
  2184. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  2185. {
  2186. char b[BDEVNAME_SIZE];
  2187. int err;
  2188. mdk_rdev_t *rdev;
  2189. sector_t size;
  2190. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2191. if (!rdev) {
  2192. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2193. return ERR_PTR(-ENOMEM);
  2194. }
  2195. if ((err = alloc_disk_sb(rdev)))
  2196. goto abort_free;
  2197. err = lock_rdev(rdev, newdev, super_format == -2);
  2198. if (err)
  2199. goto abort_free;
  2200. kobject_init(&rdev->kobj, &rdev_ktype);
  2201. rdev->desc_nr = -1;
  2202. rdev->saved_raid_disk = -1;
  2203. rdev->raid_disk = -1;
  2204. rdev->flags = 0;
  2205. rdev->data_offset = 0;
  2206. rdev->sb_events = 0;
  2207. atomic_set(&rdev->nr_pending, 0);
  2208. atomic_set(&rdev->read_errors, 0);
  2209. atomic_set(&rdev->corrected_errors, 0);
  2210. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2211. if (!size) {
  2212. printk(KERN_WARNING
  2213. "md: %s has zero or unknown size, marking faulty!\n",
  2214. bdevname(rdev->bdev,b));
  2215. err = -EINVAL;
  2216. goto abort_free;
  2217. }
  2218. if (super_format >= 0) {
  2219. err = super_types[super_format].
  2220. load_super(rdev, NULL, super_minor);
  2221. if (err == -EINVAL) {
  2222. printk(KERN_WARNING
  2223. "md: %s does not have a valid v%d.%d "
  2224. "superblock, not importing!\n",
  2225. bdevname(rdev->bdev,b),
  2226. super_format, super_minor);
  2227. goto abort_free;
  2228. }
  2229. if (err < 0) {
  2230. printk(KERN_WARNING
  2231. "md: could not read %s's sb, not importing!\n",
  2232. bdevname(rdev->bdev,b));
  2233. goto abort_free;
  2234. }
  2235. }
  2236. INIT_LIST_HEAD(&rdev->same_set);
  2237. init_waitqueue_head(&rdev->blocked_wait);
  2238. return rdev;
  2239. abort_free:
  2240. if (rdev->sb_page) {
  2241. if (rdev->bdev)
  2242. unlock_rdev(rdev);
  2243. free_disk_sb(rdev);
  2244. }
  2245. kfree(rdev);
  2246. return ERR_PTR(err);
  2247. }
  2248. /*
  2249. * Check a full RAID array for plausibility
  2250. */
  2251. static void analyze_sbs(mddev_t * mddev)
  2252. {
  2253. int i;
  2254. mdk_rdev_t *rdev, *freshest, *tmp;
  2255. char b[BDEVNAME_SIZE];
  2256. freshest = NULL;
  2257. rdev_for_each(rdev, tmp, mddev)
  2258. switch (super_types[mddev->major_version].
  2259. load_super(rdev, freshest, mddev->minor_version)) {
  2260. case 1:
  2261. freshest = rdev;
  2262. break;
  2263. case 0:
  2264. break;
  2265. default:
  2266. printk( KERN_ERR \
  2267. "md: fatal superblock inconsistency in %s"
  2268. " -- removing from array\n",
  2269. bdevname(rdev->bdev,b));
  2270. kick_rdev_from_array(rdev);
  2271. }
  2272. super_types[mddev->major_version].
  2273. validate_super(mddev, freshest);
  2274. i = 0;
  2275. rdev_for_each(rdev, tmp, mddev) {
  2276. if (rdev->desc_nr >= mddev->max_disks ||
  2277. i > mddev->max_disks) {
  2278. printk(KERN_WARNING
  2279. "md: %s: %s: only %d devices permitted\n",
  2280. mdname(mddev), bdevname(rdev->bdev, b),
  2281. mddev->max_disks);
  2282. kick_rdev_from_array(rdev);
  2283. continue;
  2284. }
  2285. if (rdev != freshest)
  2286. if (super_types[mddev->major_version].
  2287. validate_super(mddev, rdev)) {
  2288. printk(KERN_WARNING "md: kicking non-fresh %s"
  2289. " from array!\n",
  2290. bdevname(rdev->bdev,b));
  2291. kick_rdev_from_array(rdev);
  2292. continue;
  2293. }
  2294. if (mddev->level == LEVEL_MULTIPATH) {
  2295. rdev->desc_nr = i++;
  2296. rdev->raid_disk = rdev->desc_nr;
  2297. set_bit(In_sync, &rdev->flags);
  2298. } else if (rdev->raid_disk >= mddev->raid_disks) {
  2299. rdev->raid_disk = -1;
  2300. clear_bit(In_sync, &rdev->flags);
  2301. }
  2302. }
  2303. }
  2304. static void md_safemode_timeout(unsigned long data);
  2305. static ssize_t
  2306. safe_delay_show(mddev_t *mddev, char *page)
  2307. {
  2308. int msec = (mddev->safemode_delay*1000)/HZ;
  2309. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2310. }
  2311. static ssize_t
  2312. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  2313. {
  2314. int scale=1;
  2315. int dot=0;
  2316. int i;
  2317. unsigned long msec;
  2318. char buf[30];
  2319. /* remove a period, and count digits after it */
  2320. if (len >= sizeof(buf))
  2321. return -EINVAL;
  2322. strlcpy(buf, cbuf, sizeof(buf));
  2323. for (i=0; i<len; i++) {
  2324. if (dot) {
  2325. if (isdigit(buf[i])) {
  2326. buf[i-1] = buf[i];
  2327. scale *= 10;
  2328. }
  2329. buf[i] = 0;
  2330. } else if (buf[i] == '.') {
  2331. dot=1;
  2332. buf[i] = 0;
  2333. }
  2334. }
  2335. if (strict_strtoul(buf, 10, &msec) < 0)
  2336. return -EINVAL;
  2337. msec = (msec * 1000) / scale;
  2338. if (msec == 0)
  2339. mddev->safemode_delay = 0;
  2340. else {
  2341. unsigned long old_delay = mddev->safemode_delay;
  2342. mddev->safemode_delay = (msec*HZ)/1000;
  2343. if (mddev->safemode_delay == 0)
  2344. mddev->safemode_delay = 1;
  2345. if (mddev->safemode_delay < old_delay)
  2346. md_safemode_timeout((unsigned long)mddev);
  2347. }
  2348. return len;
  2349. }
  2350. static struct md_sysfs_entry md_safe_delay =
  2351. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2352. static ssize_t
  2353. level_show(mddev_t *mddev, char *page)
  2354. {
  2355. struct mdk_personality *p = mddev->pers;
  2356. if (p)
  2357. return sprintf(page, "%s\n", p->name);
  2358. else if (mddev->clevel[0])
  2359. return sprintf(page, "%s\n", mddev->clevel);
  2360. else if (mddev->level != LEVEL_NONE)
  2361. return sprintf(page, "%d\n", mddev->level);
  2362. else
  2363. return 0;
  2364. }
  2365. static ssize_t
  2366. level_store(mddev_t *mddev, const char *buf, size_t len)
  2367. {
  2368. char level[16];
  2369. ssize_t rv = len;
  2370. struct mdk_personality *pers;
  2371. void *priv;
  2372. if (mddev->pers == NULL) {
  2373. if (len == 0)
  2374. return 0;
  2375. if (len >= sizeof(mddev->clevel))
  2376. return -ENOSPC;
  2377. strncpy(mddev->clevel, buf, len);
  2378. if (mddev->clevel[len-1] == '\n')
  2379. len--;
  2380. mddev->clevel[len] = 0;
  2381. mddev->level = LEVEL_NONE;
  2382. return rv;
  2383. }
  2384. /* request to change the personality. Need to ensure:
  2385. * - array is not engaged in resync/recovery/reshape
  2386. * - old personality can be suspended
  2387. * - new personality will access other array.
  2388. */
  2389. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  2390. return -EBUSY;
  2391. if (!mddev->pers->quiesce) {
  2392. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2393. mdname(mddev), mddev->pers->name);
  2394. return -EINVAL;
  2395. }
  2396. /* Now find the new personality */
  2397. if (len == 0 || len >= sizeof(level))
  2398. return -EINVAL;
  2399. strncpy(level, buf, len);
  2400. if (level[len-1] == '\n')
  2401. len--;
  2402. level[len] = 0;
  2403. request_module("md-%s", level);
  2404. spin_lock(&pers_lock);
  2405. pers = find_pers(LEVEL_NONE, level);
  2406. if (!pers || !try_module_get(pers->owner)) {
  2407. spin_unlock(&pers_lock);
  2408. printk(KERN_WARNING "md: personality %s not loaded\n", level);
  2409. return -EINVAL;
  2410. }
  2411. spin_unlock(&pers_lock);
  2412. if (pers == mddev->pers) {
  2413. /* Nothing to do! */
  2414. module_put(pers->owner);
  2415. return rv;
  2416. }
  2417. if (!pers->takeover) {
  2418. module_put(pers->owner);
  2419. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2420. mdname(mddev), level);
  2421. return -EINVAL;
  2422. }
  2423. /* ->takeover must set new_* and/or delta_disks
  2424. * if it succeeds, and may set them when it fails.
  2425. */
  2426. priv = pers->takeover(mddev);
  2427. if (IS_ERR(priv)) {
  2428. mddev->new_level = mddev->level;
  2429. mddev->new_layout = mddev->layout;
  2430. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2431. mddev->raid_disks -= mddev->delta_disks;
  2432. mddev->delta_disks = 0;
  2433. module_put(pers->owner);
  2434. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2435. mdname(mddev), level);
  2436. return PTR_ERR(priv);
  2437. }
  2438. /* Looks like we have a winner */
  2439. mddev_suspend(mddev);
  2440. mddev->pers->stop(mddev);
  2441. module_put(mddev->pers->owner);
  2442. mddev->pers = pers;
  2443. mddev->private = priv;
  2444. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2445. mddev->level = mddev->new_level;
  2446. mddev->layout = mddev->new_layout;
  2447. mddev->chunk_sectors = mddev->new_chunk_sectors;
  2448. mddev->delta_disks = 0;
  2449. pers->run(mddev);
  2450. mddev_resume(mddev);
  2451. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2452. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2453. md_wakeup_thread(mddev->thread);
  2454. return rv;
  2455. }
  2456. static struct md_sysfs_entry md_level =
  2457. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  2458. static ssize_t
  2459. layout_show(mddev_t *mddev, char *page)
  2460. {
  2461. /* just a number, not meaningful for all levels */
  2462. if (mddev->reshape_position != MaxSector &&
  2463. mddev->layout != mddev->new_layout)
  2464. return sprintf(page, "%d (%d)\n",
  2465. mddev->new_layout, mddev->layout);
  2466. return sprintf(page, "%d\n", mddev->layout);
  2467. }
  2468. static ssize_t
  2469. layout_store(mddev_t *mddev, const char *buf, size_t len)
  2470. {
  2471. char *e;
  2472. unsigned long n = simple_strtoul(buf, &e, 10);
  2473. if (!*buf || (*e && *e != '\n'))
  2474. return -EINVAL;
  2475. if (mddev->pers) {
  2476. int err;
  2477. if (mddev->pers->check_reshape == NULL)
  2478. return -EBUSY;
  2479. mddev->new_layout = n;
  2480. err = mddev->pers->check_reshape(mddev);
  2481. if (err) {
  2482. mddev->new_layout = mddev->layout;
  2483. return err;
  2484. }
  2485. } else {
  2486. mddev->new_layout = n;
  2487. if (mddev->reshape_position == MaxSector)
  2488. mddev->layout = n;
  2489. }
  2490. return len;
  2491. }
  2492. static struct md_sysfs_entry md_layout =
  2493. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  2494. static ssize_t
  2495. raid_disks_show(mddev_t *mddev, char *page)
  2496. {
  2497. if (mddev->raid_disks == 0)
  2498. return 0;
  2499. if (mddev->reshape_position != MaxSector &&
  2500. mddev->delta_disks != 0)
  2501. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2502. mddev->raid_disks - mddev->delta_disks);
  2503. return sprintf(page, "%d\n", mddev->raid_disks);
  2504. }
  2505. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2506. static ssize_t
  2507. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2508. {
  2509. char *e;
  2510. int rv = 0;
  2511. unsigned long n = simple_strtoul(buf, &e, 10);
  2512. if (!*buf || (*e && *e != '\n'))
  2513. return -EINVAL;
  2514. if (mddev->pers)
  2515. rv = update_raid_disks(mddev, n);
  2516. else if (mddev->reshape_position != MaxSector) {
  2517. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2518. mddev->delta_disks = n - olddisks;
  2519. mddev->raid_disks = n;
  2520. } else
  2521. mddev->raid_disks = n;
  2522. return rv ? rv : len;
  2523. }
  2524. static struct md_sysfs_entry md_raid_disks =
  2525. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2526. static ssize_t
  2527. chunk_size_show(mddev_t *mddev, char *page)
  2528. {
  2529. if (mddev->reshape_position != MaxSector &&
  2530. mddev->chunk_sectors != mddev->new_chunk_sectors)
  2531. return sprintf(page, "%d (%d)\n",
  2532. mddev->new_chunk_sectors << 9,
  2533. mddev->chunk_sectors << 9);
  2534. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  2535. }
  2536. static ssize_t
  2537. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2538. {
  2539. char *e;
  2540. unsigned long n = simple_strtoul(buf, &e, 10);
  2541. if (!*buf || (*e && *e != '\n'))
  2542. return -EINVAL;
  2543. if (mddev->pers) {
  2544. int err;
  2545. if (mddev->pers->check_reshape == NULL)
  2546. return -EBUSY;
  2547. mddev->new_chunk_sectors = n >> 9;
  2548. err = mddev->pers->check_reshape(mddev);
  2549. if (err) {
  2550. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2551. return err;
  2552. }
  2553. } else {
  2554. mddev->new_chunk_sectors = n >> 9;
  2555. if (mddev->reshape_position == MaxSector)
  2556. mddev->chunk_sectors = n >> 9;
  2557. }
  2558. return len;
  2559. }
  2560. static struct md_sysfs_entry md_chunk_size =
  2561. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2562. static ssize_t
  2563. resync_start_show(mddev_t *mddev, char *page)
  2564. {
  2565. if (mddev->recovery_cp == MaxSector)
  2566. return sprintf(page, "none\n");
  2567. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2568. }
  2569. static ssize_t
  2570. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2571. {
  2572. char *e;
  2573. unsigned long long n = simple_strtoull(buf, &e, 10);
  2574. if (mddev->pers)
  2575. return -EBUSY;
  2576. if (!*buf || (*e && *e != '\n'))
  2577. return -EINVAL;
  2578. mddev->recovery_cp = n;
  2579. return len;
  2580. }
  2581. static struct md_sysfs_entry md_resync_start =
  2582. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2583. /*
  2584. * The array state can be:
  2585. *
  2586. * clear
  2587. * No devices, no size, no level
  2588. * Equivalent to STOP_ARRAY ioctl
  2589. * inactive
  2590. * May have some settings, but array is not active
  2591. * all IO results in error
  2592. * When written, doesn't tear down array, but just stops it
  2593. * suspended (not supported yet)
  2594. * All IO requests will block. The array can be reconfigured.
  2595. * Writing this, if accepted, will block until array is quiescent
  2596. * readonly
  2597. * no resync can happen. no superblocks get written.
  2598. * write requests fail
  2599. * read-auto
  2600. * like readonly, but behaves like 'clean' on a write request.
  2601. *
  2602. * clean - no pending writes, but otherwise active.
  2603. * When written to inactive array, starts without resync
  2604. * If a write request arrives then
  2605. * if metadata is known, mark 'dirty' and switch to 'active'.
  2606. * if not known, block and switch to write-pending
  2607. * If written to an active array that has pending writes, then fails.
  2608. * active
  2609. * fully active: IO and resync can be happening.
  2610. * When written to inactive array, starts with resync
  2611. *
  2612. * write-pending
  2613. * clean, but writes are blocked waiting for 'active' to be written.
  2614. *
  2615. * active-idle
  2616. * like active, but no writes have been seen for a while (100msec).
  2617. *
  2618. */
  2619. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2620. write_pending, active_idle, bad_word};
  2621. static char *array_states[] = {
  2622. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2623. "write-pending", "active-idle", NULL };
  2624. static int match_word(const char *word, char **list)
  2625. {
  2626. int n;
  2627. for (n=0; list[n]; n++)
  2628. if (cmd_match(word, list[n]))
  2629. break;
  2630. return n;
  2631. }
  2632. static ssize_t
  2633. array_state_show(mddev_t *mddev, char *page)
  2634. {
  2635. enum array_state st = inactive;
  2636. if (mddev->pers)
  2637. switch(mddev->ro) {
  2638. case 1:
  2639. st = readonly;
  2640. break;
  2641. case 2:
  2642. st = read_auto;
  2643. break;
  2644. case 0:
  2645. if (mddev->in_sync)
  2646. st = clean;
  2647. else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2648. st = write_pending;
  2649. else if (mddev->safemode)
  2650. st = active_idle;
  2651. else
  2652. st = active;
  2653. }
  2654. else {
  2655. if (list_empty(&mddev->disks) &&
  2656. mddev->raid_disks == 0 &&
  2657. mddev->dev_sectors == 0)
  2658. st = clear;
  2659. else
  2660. st = inactive;
  2661. }
  2662. return sprintf(page, "%s\n", array_states[st]);
  2663. }
  2664. static int do_md_stop(mddev_t * mddev, int ro, int is_open);
  2665. static int do_md_run(mddev_t * mddev);
  2666. static int restart_array(mddev_t *mddev);
  2667. static ssize_t
  2668. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2669. {
  2670. int err = -EINVAL;
  2671. enum array_state st = match_word(buf, array_states);
  2672. switch(st) {
  2673. case bad_word:
  2674. break;
  2675. case clear:
  2676. /* stopping an active array */
  2677. if (atomic_read(&mddev->openers) > 0)
  2678. return -EBUSY;
  2679. err = do_md_stop(mddev, 0, 0);
  2680. break;
  2681. case inactive:
  2682. /* stopping an active array */
  2683. if (mddev->pers) {
  2684. if (atomic_read(&mddev->openers) > 0)
  2685. return -EBUSY;
  2686. err = do_md_stop(mddev, 2, 0);
  2687. } else
  2688. err = 0; /* already inactive */
  2689. break;
  2690. case suspended:
  2691. break; /* not supported yet */
  2692. case readonly:
  2693. if (mddev->pers)
  2694. err = do_md_stop(mddev, 1, 0);
  2695. else {
  2696. mddev->ro = 1;
  2697. set_disk_ro(mddev->gendisk, 1);
  2698. err = do_md_run(mddev);
  2699. }
  2700. break;
  2701. case read_auto:
  2702. if (mddev->pers) {
  2703. if (mddev->ro == 0)
  2704. err = do_md_stop(mddev, 1, 0);
  2705. else if (mddev->ro == 1)
  2706. err = restart_array(mddev);
  2707. if (err == 0) {
  2708. mddev->ro = 2;
  2709. set_disk_ro(mddev->gendisk, 0);
  2710. }
  2711. } else {
  2712. mddev->ro = 2;
  2713. err = do_md_run(mddev);
  2714. }
  2715. break;
  2716. case clean:
  2717. if (mddev->pers) {
  2718. restart_array(mddev);
  2719. spin_lock_irq(&mddev->write_lock);
  2720. if (atomic_read(&mddev->writes_pending) == 0) {
  2721. if (mddev->in_sync == 0) {
  2722. mddev->in_sync = 1;
  2723. if (mddev->safemode == 1)
  2724. mddev->safemode = 0;
  2725. if (mddev->persistent)
  2726. set_bit(MD_CHANGE_CLEAN,
  2727. &mddev->flags);
  2728. }
  2729. err = 0;
  2730. } else
  2731. err = -EBUSY;
  2732. spin_unlock_irq(&mddev->write_lock);
  2733. } else
  2734. err = -EINVAL;
  2735. break;
  2736. case active:
  2737. if (mddev->pers) {
  2738. restart_array(mddev);
  2739. if (mddev->external)
  2740. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2741. wake_up(&mddev->sb_wait);
  2742. err = 0;
  2743. } else {
  2744. mddev->ro = 0;
  2745. set_disk_ro(mddev->gendisk, 0);
  2746. err = do_md_run(mddev);
  2747. }
  2748. break;
  2749. case write_pending:
  2750. case active_idle:
  2751. /* these cannot be set */
  2752. break;
  2753. }
  2754. if (err)
  2755. return err;
  2756. else {
  2757. sysfs_notify_dirent(mddev->sysfs_state);
  2758. return len;
  2759. }
  2760. }
  2761. static struct md_sysfs_entry md_array_state =
  2762. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2763. static ssize_t
  2764. null_show(mddev_t *mddev, char *page)
  2765. {
  2766. return -EINVAL;
  2767. }
  2768. static ssize_t
  2769. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2770. {
  2771. /* buf must be %d:%d\n? giving major and minor numbers */
  2772. /* The new device is added to the array.
  2773. * If the array has a persistent superblock, we read the
  2774. * superblock to initialise info and check validity.
  2775. * Otherwise, only checking done is that in bind_rdev_to_array,
  2776. * which mainly checks size.
  2777. */
  2778. char *e;
  2779. int major = simple_strtoul(buf, &e, 10);
  2780. int minor;
  2781. dev_t dev;
  2782. mdk_rdev_t *rdev;
  2783. int err;
  2784. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2785. return -EINVAL;
  2786. minor = simple_strtoul(e+1, &e, 10);
  2787. if (*e && *e != '\n')
  2788. return -EINVAL;
  2789. dev = MKDEV(major, minor);
  2790. if (major != MAJOR(dev) ||
  2791. minor != MINOR(dev))
  2792. return -EOVERFLOW;
  2793. if (mddev->persistent) {
  2794. rdev = md_import_device(dev, mddev->major_version,
  2795. mddev->minor_version);
  2796. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2797. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2798. mdk_rdev_t, same_set);
  2799. err = super_types[mddev->major_version]
  2800. .load_super(rdev, rdev0, mddev->minor_version);
  2801. if (err < 0)
  2802. goto out;
  2803. }
  2804. } else if (mddev->external)
  2805. rdev = md_import_device(dev, -2, -1);
  2806. else
  2807. rdev = md_import_device(dev, -1, -1);
  2808. if (IS_ERR(rdev))
  2809. return PTR_ERR(rdev);
  2810. err = bind_rdev_to_array(rdev, mddev);
  2811. out:
  2812. if (err)
  2813. export_rdev(rdev);
  2814. return err ? err : len;
  2815. }
  2816. static struct md_sysfs_entry md_new_device =
  2817. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2818. static ssize_t
  2819. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2820. {
  2821. char *end;
  2822. unsigned long chunk, end_chunk;
  2823. if (!mddev->bitmap)
  2824. goto out;
  2825. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2826. while (*buf) {
  2827. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2828. if (buf == end) break;
  2829. if (*end == '-') { /* range */
  2830. buf = end + 1;
  2831. end_chunk = simple_strtoul(buf, &end, 0);
  2832. if (buf == end) break;
  2833. }
  2834. if (*end && !isspace(*end)) break;
  2835. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2836. buf = end;
  2837. while (isspace(*buf)) buf++;
  2838. }
  2839. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2840. out:
  2841. return len;
  2842. }
  2843. static struct md_sysfs_entry md_bitmap =
  2844. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2845. static ssize_t
  2846. size_show(mddev_t *mddev, char *page)
  2847. {
  2848. return sprintf(page, "%llu\n",
  2849. (unsigned long long)mddev->dev_sectors / 2);
  2850. }
  2851. static int update_size(mddev_t *mddev, sector_t num_sectors);
  2852. static ssize_t
  2853. size_store(mddev_t *mddev, const char *buf, size_t len)
  2854. {
  2855. /* If array is inactive, we can reduce the component size, but
  2856. * not increase it (except from 0).
  2857. * If array is active, we can try an on-line resize
  2858. */
  2859. sector_t sectors;
  2860. int err = strict_blocks_to_sectors(buf, &sectors);
  2861. if (err < 0)
  2862. return err;
  2863. if (mddev->pers) {
  2864. err = update_size(mddev, sectors);
  2865. md_update_sb(mddev, 1);
  2866. } else {
  2867. if (mddev->dev_sectors == 0 ||
  2868. mddev->dev_sectors > sectors)
  2869. mddev->dev_sectors = sectors;
  2870. else
  2871. err = -ENOSPC;
  2872. }
  2873. return err ? err : len;
  2874. }
  2875. static struct md_sysfs_entry md_size =
  2876. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2877. /* Metdata version.
  2878. * This is one of
  2879. * 'none' for arrays with no metadata (good luck...)
  2880. * 'external' for arrays with externally managed metadata,
  2881. * or N.M for internally known formats
  2882. */
  2883. static ssize_t
  2884. metadata_show(mddev_t *mddev, char *page)
  2885. {
  2886. if (mddev->persistent)
  2887. return sprintf(page, "%d.%d\n",
  2888. mddev->major_version, mddev->minor_version);
  2889. else if (mddev->external)
  2890. return sprintf(page, "external:%s\n", mddev->metadata_type);
  2891. else
  2892. return sprintf(page, "none\n");
  2893. }
  2894. static ssize_t
  2895. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2896. {
  2897. int major, minor;
  2898. char *e;
  2899. /* Changing the details of 'external' metadata is
  2900. * always permitted. Otherwise there must be
  2901. * no devices attached to the array.
  2902. */
  2903. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  2904. ;
  2905. else if (!list_empty(&mddev->disks))
  2906. return -EBUSY;
  2907. if (cmd_match(buf, "none")) {
  2908. mddev->persistent = 0;
  2909. mddev->external = 0;
  2910. mddev->major_version = 0;
  2911. mddev->minor_version = 90;
  2912. return len;
  2913. }
  2914. if (strncmp(buf, "external:", 9) == 0) {
  2915. size_t namelen = len-9;
  2916. if (namelen >= sizeof(mddev->metadata_type))
  2917. namelen = sizeof(mddev->metadata_type)-1;
  2918. strncpy(mddev->metadata_type, buf+9, namelen);
  2919. mddev->metadata_type[namelen] = 0;
  2920. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  2921. mddev->metadata_type[--namelen] = 0;
  2922. mddev->persistent = 0;
  2923. mddev->external = 1;
  2924. mddev->major_version = 0;
  2925. mddev->minor_version = 90;
  2926. return len;
  2927. }
  2928. major = simple_strtoul(buf, &e, 10);
  2929. if (e==buf || *e != '.')
  2930. return -EINVAL;
  2931. buf = e+1;
  2932. minor = simple_strtoul(buf, &e, 10);
  2933. if (e==buf || (*e && *e != '\n') )
  2934. return -EINVAL;
  2935. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2936. return -ENOENT;
  2937. mddev->major_version = major;
  2938. mddev->minor_version = minor;
  2939. mddev->persistent = 1;
  2940. mddev->external = 0;
  2941. return len;
  2942. }
  2943. static struct md_sysfs_entry md_metadata =
  2944. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2945. static ssize_t
  2946. action_show(mddev_t *mddev, char *page)
  2947. {
  2948. char *type = "idle";
  2949. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  2950. type = "frozen";
  2951. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2952. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  2953. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2954. type = "reshape";
  2955. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2956. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2957. type = "resync";
  2958. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2959. type = "check";
  2960. else
  2961. type = "repair";
  2962. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  2963. type = "recover";
  2964. }
  2965. return sprintf(page, "%s\n", type);
  2966. }
  2967. static ssize_t
  2968. action_store(mddev_t *mddev, const char *page, size_t len)
  2969. {
  2970. if (!mddev->pers || !mddev->pers->sync_request)
  2971. return -EINVAL;
  2972. if (cmd_match(page, "frozen"))
  2973. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2974. else
  2975. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  2976. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  2977. if (mddev->sync_thread) {
  2978. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2979. md_unregister_thread(mddev->sync_thread);
  2980. mddev->sync_thread = NULL;
  2981. mddev->recovery = 0;
  2982. }
  2983. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2984. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2985. return -EBUSY;
  2986. else if (cmd_match(page, "resync"))
  2987. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2988. else if (cmd_match(page, "recover")) {
  2989. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  2990. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2991. } else if (cmd_match(page, "reshape")) {
  2992. int err;
  2993. if (mddev->pers->start_reshape == NULL)
  2994. return -EINVAL;
  2995. err = mddev->pers->start_reshape(mddev);
  2996. if (err)
  2997. return err;
  2998. sysfs_notify(&mddev->kobj, NULL, "degraded");
  2999. } else {
  3000. if (cmd_match(page, "check"))
  3001. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3002. else if (!cmd_match(page, "repair"))
  3003. return -EINVAL;
  3004. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3005. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3006. }
  3007. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3008. md_wakeup_thread(mddev->thread);
  3009. sysfs_notify_dirent(mddev->sysfs_action);
  3010. return len;
  3011. }
  3012. static ssize_t
  3013. mismatch_cnt_show(mddev_t *mddev, char *page)
  3014. {
  3015. return sprintf(page, "%llu\n",
  3016. (unsigned long long) mddev->resync_mismatches);
  3017. }
  3018. static struct md_sysfs_entry md_scan_mode =
  3019. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3020. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3021. static ssize_t
  3022. sync_min_show(mddev_t *mddev, char *page)
  3023. {
  3024. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3025. mddev->sync_speed_min ? "local": "system");
  3026. }
  3027. static ssize_t
  3028. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  3029. {
  3030. int min;
  3031. char *e;
  3032. if (strncmp(buf, "system", 6)==0) {
  3033. mddev->sync_speed_min = 0;
  3034. return len;
  3035. }
  3036. min = simple_strtoul(buf, &e, 10);
  3037. if (buf == e || (*e && *e != '\n') || min <= 0)
  3038. return -EINVAL;
  3039. mddev->sync_speed_min = min;
  3040. return len;
  3041. }
  3042. static struct md_sysfs_entry md_sync_min =
  3043. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3044. static ssize_t
  3045. sync_max_show(mddev_t *mddev, char *page)
  3046. {
  3047. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3048. mddev->sync_speed_max ? "local": "system");
  3049. }
  3050. static ssize_t
  3051. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  3052. {
  3053. int max;
  3054. char *e;
  3055. if (strncmp(buf, "system", 6)==0) {
  3056. mddev->sync_speed_max = 0;
  3057. return len;
  3058. }
  3059. max = simple_strtoul(buf, &e, 10);
  3060. if (buf == e || (*e && *e != '\n') || max <= 0)
  3061. return -EINVAL;
  3062. mddev->sync_speed_max = max;
  3063. return len;
  3064. }
  3065. static struct md_sysfs_entry md_sync_max =
  3066. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3067. static ssize_t
  3068. degraded_show(mddev_t *mddev, char *page)
  3069. {
  3070. return sprintf(page, "%d\n", mddev->degraded);
  3071. }
  3072. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3073. static ssize_t
  3074. sync_force_parallel_show(mddev_t *mddev, char *page)
  3075. {
  3076. return sprintf(page, "%d\n", mddev->parallel_resync);
  3077. }
  3078. static ssize_t
  3079. sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
  3080. {
  3081. long n;
  3082. if (strict_strtol(buf, 10, &n))
  3083. return -EINVAL;
  3084. if (n != 0 && n != 1)
  3085. return -EINVAL;
  3086. mddev->parallel_resync = n;
  3087. if (mddev->sync_thread)
  3088. wake_up(&resync_wait);
  3089. return len;
  3090. }
  3091. /* force parallel resync, even with shared block devices */
  3092. static struct md_sysfs_entry md_sync_force_parallel =
  3093. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3094. sync_force_parallel_show, sync_force_parallel_store);
  3095. static ssize_t
  3096. sync_speed_show(mddev_t *mddev, char *page)
  3097. {
  3098. unsigned long resync, dt, db;
  3099. if (mddev->curr_resync == 0)
  3100. return sprintf(page, "none\n");
  3101. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3102. dt = (jiffies - mddev->resync_mark) / HZ;
  3103. if (!dt) dt++;
  3104. db = resync - mddev->resync_mark_cnt;
  3105. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3106. }
  3107. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3108. static ssize_t
  3109. sync_completed_show(mddev_t *mddev, char *page)
  3110. {
  3111. unsigned long max_sectors, resync;
  3112. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3113. return sprintf(page, "none\n");
  3114. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3115. max_sectors = mddev->resync_max_sectors;
  3116. else
  3117. max_sectors = mddev->dev_sectors;
  3118. resync = mddev->curr_resync_completed;
  3119. return sprintf(page, "%lu / %lu\n", resync, max_sectors);
  3120. }
  3121. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3122. static ssize_t
  3123. min_sync_show(mddev_t *mddev, char *page)
  3124. {
  3125. return sprintf(page, "%llu\n",
  3126. (unsigned long long)mddev->resync_min);
  3127. }
  3128. static ssize_t
  3129. min_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3130. {
  3131. unsigned long long min;
  3132. if (strict_strtoull(buf, 10, &min))
  3133. return -EINVAL;
  3134. if (min > mddev->resync_max)
  3135. return -EINVAL;
  3136. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3137. return -EBUSY;
  3138. /* Must be a multiple of chunk_size */
  3139. if (mddev->chunk_sectors) {
  3140. sector_t temp = min;
  3141. if (sector_div(temp, mddev->chunk_sectors))
  3142. return -EINVAL;
  3143. }
  3144. mddev->resync_min = min;
  3145. return len;
  3146. }
  3147. static struct md_sysfs_entry md_min_sync =
  3148. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3149. static ssize_t
  3150. max_sync_show(mddev_t *mddev, char *page)
  3151. {
  3152. if (mddev->resync_max == MaxSector)
  3153. return sprintf(page, "max\n");
  3154. else
  3155. return sprintf(page, "%llu\n",
  3156. (unsigned long long)mddev->resync_max);
  3157. }
  3158. static ssize_t
  3159. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3160. {
  3161. if (strncmp(buf, "max", 3) == 0)
  3162. mddev->resync_max = MaxSector;
  3163. else {
  3164. unsigned long long max;
  3165. if (strict_strtoull(buf, 10, &max))
  3166. return -EINVAL;
  3167. if (max < mddev->resync_min)
  3168. return -EINVAL;
  3169. if (max < mddev->resync_max &&
  3170. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3171. return -EBUSY;
  3172. /* Must be a multiple of chunk_size */
  3173. if (mddev->chunk_sectors) {
  3174. sector_t temp = max;
  3175. if (sector_div(temp, mddev->chunk_sectors))
  3176. return -EINVAL;
  3177. }
  3178. mddev->resync_max = max;
  3179. }
  3180. wake_up(&mddev->recovery_wait);
  3181. return len;
  3182. }
  3183. static struct md_sysfs_entry md_max_sync =
  3184. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3185. static ssize_t
  3186. suspend_lo_show(mddev_t *mddev, char *page)
  3187. {
  3188. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3189. }
  3190. static ssize_t
  3191. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  3192. {
  3193. char *e;
  3194. unsigned long long new = simple_strtoull(buf, &e, 10);
  3195. if (mddev->pers->quiesce == NULL)
  3196. return -EINVAL;
  3197. if (buf == e || (*e && *e != '\n'))
  3198. return -EINVAL;
  3199. if (new >= mddev->suspend_hi ||
  3200. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  3201. mddev->suspend_lo = new;
  3202. mddev->pers->quiesce(mddev, 2);
  3203. return len;
  3204. } else
  3205. return -EINVAL;
  3206. }
  3207. static struct md_sysfs_entry md_suspend_lo =
  3208. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3209. static ssize_t
  3210. suspend_hi_show(mddev_t *mddev, char *page)
  3211. {
  3212. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3213. }
  3214. static ssize_t
  3215. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  3216. {
  3217. char *e;
  3218. unsigned long long new = simple_strtoull(buf, &e, 10);
  3219. if (mddev->pers->quiesce == NULL)
  3220. return -EINVAL;
  3221. if (buf == e || (*e && *e != '\n'))
  3222. return -EINVAL;
  3223. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  3224. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  3225. mddev->suspend_hi = new;
  3226. mddev->pers->quiesce(mddev, 1);
  3227. mddev->pers->quiesce(mddev, 0);
  3228. return len;
  3229. } else
  3230. return -EINVAL;
  3231. }
  3232. static struct md_sysfs_entry md_suspend_hi =
  3233. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3234. static ssize_t
  3235. reshape_position_show(mddev_t *mddev, char *page)
  3236. {
  3237. if (mddev->reshape_position != MaxSector)
  3238. return sprintf(page, "%llu\n",
  3239. (unsigned long long)mddev->reshape_position);
  3240. strcpy(page, "none\n");
  3241. return 5;
  3242. }
  3243. static ssize_t
  3244. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  3245. {
  3246. char *e;
  3247. unsigned long long new = simple_strtoull(buf, &e, 10);
  3248. if (mddev->pers)
  3249. return -EBUSY;
  3250. if (buf == e || (*e && *e != '\n'))
  3251. return -EINVAL;
  3252. mddev->reshape_position = new;
  3253. mddev->delta_disks = 0;
  3254. mddev->new_level = mddev->level;
  3255. mddev->new_layout = mddev->layout;
  3256. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3257. return len;
  3258. }
  3259. static struct md_sysfs_entry md_reshape_position =
  3260. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3261. reshape_position_store);
  3262. static ssize_t
  3263. array_size_show(mddev_t *mddev, char *page)
  3264. {
  3265. if (mddev->external_size)
  3266. return sprintf(page, "%llu\n",
  3267. (unsigned long long)mddev->array_sectors/2);
  3268. else
  3269. return sprintf(page, "default\n");
  3270. }
  3271. static ssize_t
  3272. array_size_store(mddev_t *mddev, const char *buf, size_t len)
  3273. {
  3274. sector_t sectors;
  3275. if (strncmp(buf, "default", 7) == 0) {
  3276. if (mddev->pers)
  3277. sectors = mddev->pers->size(mddev, 0, 0);
  3278. else
  3279. sectors = mddev->array_sectors;
  3280. mddev->external_size = 0;
  3281. } else {
  3282. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3283. return -EINVAL;
  3284. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3285. return -E2BIG;
  3286. mddev->external_size = 1;
  3287. }
  3288. mddev->array_sectors = sectors;
  3289. set_capacity(mddev->gendisk, mddev->array_sectors);
  3290. if (mddev->pers) {
  3291. struct block_device *bdev = bdget_disk(mddev->gendisk, 0);
  3292. if (bdev) {
  3293. mutex_lock(&bdev->bd_inode->i_mutex);
  3294. i_size_write(bdev->bd_inode,
  3295. (loff_t)mddev->array_sectors << 9);
  3296. mutex_unlock(&bdev->bd_inode->i_mutex);
  3297. bdput(bdev);
  3298. }
  3299. }
  3300. return len;
  3301. }
  3302. static struct md_sysfs_entry md_array_size =
  3303. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3304. array_size_store);
  3305. static struct attribute *md_default_attrs[] = {
  3306. &md_level.attr,
  3307. &md_layout.attr,
  3308. &md_raid_disks.attr,
  3309. &md_chunk_size.attr,
  3310. &md_size.attr,
  3311. &md_resync_start.attr,
  3312. &md_metadata.attr,
  3313. &md_new_device.attr,
  3314. &md_safe_delay.attr,
  3315. &md_array_state.attr,
  3316. &md_reshape_position.attr,
  3317. &md_array_size.attr,
  3318. NULL,
  3319. };
  3320. static struct attribute *md_redundancy_attrs[] = {
  3321. &md_scan_mode.attr,
  3322. &md_mismatches.attr,
  3323. &md_sync_min.attr,
  3324. &md_sync_max.attr,
  3325. &md_sync_speed.attr,
  3326. &md_sync_force_parallel.attr,
  3327. &md_sync_completed.attr,
  3328. &md_min_sync.attr,
  3329. &md_max_sync.attr,
  3330. &md_suspend_lo.attr,
  3331. &md_suspend_hi.attr,
  3332. &md_bitmap.attr,
  3333. &md_degraded.attr,
  3334. NULL,
  3335. };
  3336. static struct attribute_group md_redundancy_group = {
  3337. .name = NULL,
  3338. .attrs = md_redundancy_attrs,
  3339. };
  3340. static ssize_t
  3341. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3342. {
  3343. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3344. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3345. ssize_t rv;
  3346. if (!entry->show)
  3347. return -EIO;
  3348. rv = mddev_lock(mddev);
  3349. if (!rv) {
  3350. rv = entry->show(mddev, page);
  3351. mddev_unlock(mddev);
  3352. }
  3353. return rv;
  3354. }
  3355. static ssize_t
  3356. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3357. const char *page, size_t length)
  3358. {
  3359. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3360. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3361. ssize_t rv;
  3362. if (!entry->store)
  3363. return -EIO;
  3364. if (!capable(CAP_SYS_ADMIN))
  3365. return -EACCES;
  3366. rv = mddev_lock(mddev);
  3367. if (mddev->hold_active == UNTIL_IOCTL)
  3368. mddev->hold_active = 0;
  3369. if (!rv) {
  3370. rv = entry->store(mddev, page, length);
  3371. mddev_unlock(mddev);
  3372. }
  3373. return rv;
  3374. }
  3375. static void md_free(struct kobject *ko)
  3376. {
  3377. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  3378. if (mddev->sysfs_state)
  3379. sysfs_put(mddev->sysfs_state);
  3380. if (mddev->gendisk) {
  3381. del_gendisk(mddev->gendisk);
  3382. put_disk(mddev->gendisk);
  3383. }
  3384. if (mddev->queue)
  3385. blk_cleanup_queue(mddev->queue);
  3386. kfree(mddev);
  3387. }
  3388. static struct sysfs_ops md_sysfs_ops = {
  3389. .show = md_attr_show,
  3390. .store = md_attr_store,
  3391. };
  3392. static struct kobj_type md_ktype = {
  3393. .release = md_free,
  3394. .sysfs_ops = &md_sysfs_ops,
  3395. .default_attrs = md_default_attrs,
  3396. };
  3397. int mdp_major = 0;
  3398. static void mddev_delayed_delete(struct work_struct *ws)
  3399. {
  3400. mddev_t *mddev = container_of(ws, mddev_t, del_work);
  3401. if (mddev->private == &md_redundancy_group) {
  3402. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  3403. if (mddev->sysfs_action)
  3404. sysfs_put(mddev->sysfs_action);
  3405. mddev->sysfs_action = NULL;
  3406. mddev->private = NULL;
  3407. }
  3408. kobject_del(&mddev->kobj);
  3409. kobject_put(&mddev->kobj);
  3410. }
  3411. static int md_alloc(dev_t dev, char *name)
  3412. {
  3413. static DEFINE_MUTEX(disks_mutex);
  3414. mddev_t *mddev = mddev_find(dev);
  3415. struct gendisk *disk;
  3416. int partitioned;
  3417. int shift;
  3418. int unit;
  3419. int error;
  3420. if (!mddev)
  3421. return -ENODEV;
  3422. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  3423. shift = partitioned ? MdpMinorShift : 0;
  3424. unit = MINOR(mddev->unit) >> shift;
  3425. /* wait for any previous instance if this device
  3426. * to be completed removed (mddev_delayed_delete).
  3427. */
  3428. flush_scheduled_work();
  3429. mutex_lock(&disks_mutex);
  3430. if (mddev->gendisk) {
  3431. mutex_unlock(&disks_mutex);
  3432. mddev_put(mddev);
  3433. return -EEXIST;
  3434. }
  3435. if (name) {
  3436. /* Need to ensure that 'name' is not a duplicate.
  3437. */
  3438. mddev_t *mddev2;
  3439. spin_lock(&all_mddevs_lock);
  3440. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  3441. if (mddev2->gendisk &&
  3442. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  3443. spin_unlock(&all_mddevs_lock);
  3444. return -EEXIST;
  3445. }
  3446. spin_unlock(&all_mddevs_lock);
  3447. }
  3448. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  3449. if (!mddev->queue) {
  3450. mutex_unlock(&disks_mutex);
  3451. mddev_put(mddev);
  3452. return -ENOMEM;
  3453. }
  3454. mddev->queue->queuedata = mddev;
  3455. /* Can be unlocked because the queue is new: no concurrency */
  3456. queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
  3457. blk_queue_make_request(mddev->queue, md_make_request);
  3458. disk = alloc_disk(1 << shift);
  3459. if (!disk) {
  3460. mutex_unlock(&disks_mutex);
  3461. blk_cleanup_queue(mddev->queue);
  3462. mddev->queue = NULL;
  3463. mddev_put(mddev);
  3464. return -ENOMEM;
  3465. }
  3466. disk->major = MAJOR(mddev->unit);
  3467. disk->first_minor = unit << shift;
  3468. if (name)
  3469. strcpy(disk->disk_name, name);
  3470. else if (partitioned)
  3471. sprintf(disk->disk_name, "md_d%d", unit);
  3472. else
  3473. sprintf(disk->disk_name, "md%d", unit);
  3474. disk->fops = &md_fops;
  3475. disk->private_data = mddev;
  3476. disk->queue = mddev->queue;
  3477. /* Allow extended partitions. This makes the
  3478. * 'mdp' device redundant, but we can't really
  3479. * remove it now.
  3480. */
  3481. disk->flags |= GENHD_FL_EXT_DEVT;
  3482. add_disk(disk);
  3483. mddev->gendisk = disk;
  3484. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  3485. &disk_to_dev(disk)->kobj, "%s", "md");
  3486. mutex_unlock(&disks_mutex);
  3487. if (error)
  3488. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  3489. disk->disk_name);
  3490. else {
  3491. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  3492. mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
  3493. }
  3494. mddev_put(mddev);
  3495. return 0;
  3496. }
  3497. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  3498. {
  3499. md_alloc(dev, NULL);
  3500. return NULL;
  3501. }
  3502. static int add_named_array(const char *val, struct kernel_param *kp)
  3503. {
  3504. /* val must be "md_*" where * is not all digits.
  3505. * We allocate an array with a large free minor number, and
  3506. * set the name to val. val must not already be an active name.
  3507. */
  3508. int len = strlen(val);
  3509. char buf[DISK_NAME_LEN];
  3510. while (len && val[len-1] == '\n')
  3511. len--;
  3512. if (len >= DISK_NAME_LEN)
  3513. return -E2BIG;
  3514. strlcpy(buf, val, len+1);
  3515. if (strncmp(buf, "md_", 3) != 0)
  3516. return -EINVAL;
  3517. return md_alloc(0, buf);
  3518. }
  3519. static void md_safemode_timeout(unsigned long data)
  3520. {
  3521. mddev_t *mddev = (mddev_t *) data;
  3522. if (!atomic_read(&mddev->writes_pending)) {
  3523. mddev->safemode = 1;
  3524. if (mddev->external)
  3525. sysfs_notify_dirent(mddev->sysfs_state);
  3526. }
  3527. md_wakeup_thread(mddev->thread);
  3528. }
  3529. static int start_dirty_degraded;
  3530. static int do_md_run(mddev_t * mddev)
  3531. {
  3532. int err;
  3533. int chunk_size;
  3534. mdk_rdev_t *rdev;
  3535. struct gendisk *disk;
  3536. struct mdk_personality *pers;
  3537. char b[BDEVNAME_SIZE];
  3538. if (list_empty(&mddev->disks))
  3539. /* cannot run an array with no devices.. */
  3540. return -EINVAL;
  3541. if (mddev->pers)
  3542. return -EBUSY;
  3543. /*
  3544. * Analyze all RAID superblock(s)
  3545. */
  3546. if (!mddev->raid_disks) {
  3547. if (!mddev->persistent)
  3548. return -EINVAL;
  3549. analyze_sbs(mddev);
  3550. }
  3551. chunk_size = mddev->chunk_sectors << 9;
  3552. if (chunk_size) {
  3553. if (chunk_size > MAX_CHUNK_SIZE) {
  3554. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  3555. chunk_size, MAX_CHUNK_SIZE);
  3556. return -EINVAL;
  3557. }
  3558. /* devices must have minimum size of one chunk */
  3559. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3560. if (test_bit(Faulty, &rdev->flags))
  3561. continue;
  3562. if (rdev->sectors < chunk_size / 512) {
  3563. printk(KERN_WARNING
  3564. "md: Dev %s smaller than chunk_size:"
  3565. " %llu < %d\n",
  3566. bdevname(rdev->bdev,b),
  3567. (unsigned long long)rdev->sectors,
  3568. chunk_size / 512);
  3569. return -EINVAL;
  3570. }
  3571. }
  3572. }
  3573. if (mddev->level != LEVEL_NONE)
  3574. request_module("md-level-%d", mddev->level);
  3575. else if (mddev->clevel[0])
  3576. request_module("md-%s", mddev->clevel);
  3577. /*
  3578. * Drop all container device buffers, from now on
  3579. * the only valid external interface is through the md
  3580. * device.
  3581. */
  3582. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3583. if (test_bit(Faulty, &rdev->flags))
  3584. continue;
  3585. sync_blockdev(rdev->bdev);
  3586. invalidate_bdev(rdev->bdev);
  3587. /* perform some consistency tests on the device.
  3588. * We don't want the data to overlap the metadata,
  3589. * Internal Bitmap issues have been handled elsewhere.
  3590. */
  3591. if (rdev->data_offset < rdev->sb_start) {
  3592. if (mddev->dev_sectors &&
  3593. rdev->data_offset + mddev->dev_sectors
  3594. > rdev->sb_start) {
  3595. printk("md: %s: data overlaps metadata\n",
  3596. mdname(mddev));
  3597. return -EINVAL;
  3598. }
  3599. } else {
  3600. if (rdev->sb_start + rdev->sb_size/512
  3601. > rdev->data_offset) {
  3602. printk("md: %s: metadata overlaps data\n",
  3603. mdname(mddev));
  3604. return -EINVAL;
  3605. }
  3606. }
  3607. sysfs_notify_dirent(rdev->sysfs_state);
  3608. }
  3609. md_probe(mddev->unit, NULL, NULL);
  3610. disk = mddev->gendisk;
  3611. if (!disk)
  3612. return -ENOMEM;
  3613. spin_lock(&pers_lock);
  3614. pers = find_pers(mddev->level, mddev->clevel);
  3615. if (!pers || !try_module_get(pers->owner)) {
  3616. spin_unlock(&pers_lock);
  3617. if (mddev->level != LEVEL_NONE)
  3618. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  3619. mddev->level);
  3620. else
  3621. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  3622. mddev->clevel);
  3623. return -EINVAL;
  3624. }
  3625. mddev->pers = pers;
  3626. spin_unlock(&pers_lock);
  3627. if (mddev->level != pers->level) {
  3628. mddev->level = pers->level;
  3629. mddev->new_level = pers->level;
  3630. }
  3631. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3632. if (pers->level >= 4 && pers->level <= 6)
  3633. /* Cannot support integrity (yet) */
  3634. blk_integrity_unregister(mddev->gendisk);
  3635. if (mddev->reshape_position != MaxSector &&
  3636. pers->start_reshape == NULL) {
  3637. /* This personality cannot handle reshaping... */
  3638. mddev->pers = NULL;
  3639. module_put(pers->owner);
  3640. return -EINVAL;
  3641. }
  3642. if (pers->sync_request) {
  3643. /* Warn if this is a potentially silly
  3644. * configuration.
  3645. */
  3646. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3647. mdk_rdev_t *rdev2;
  3648. int warned = 0;
  3649. list_for_each_entry(rdev, &mddev->disks, same_set)
  3650. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  3651. if (rdev < rdev2 &&
  3652. rdev->bdev->bd_contains ==
  3653. rdev2->bdev->bd_contains) {
  3654. printk(KERN_WARNING
  3655. "%s: WARNING: %s appears to be"
  3656. " on the same physical disk as"
  3657. " %s.\n",
  3658. mdname(mddev),
  3659. bdevname(rdev->bdev,b),
  3660. bdevname(rdev2->bdev,b2));
  3661. warned = 1;
  3662. }
  3663. }
  3664. if (warned)
  3665. printk(KERN_WARNING
  3666. "True protection against single-disk"
  3667. " failure might be compromised.\n");
  3668. }
  3669. mddev->recovery = 0;
  3670. /* may be over-ridden by personality */
  3671. mddev->resync_max_sectors = mddev->dev_sectors;
  3672. mddev->barriers_work = 1;
  3673. mddev->ok_start_degraded = start_dirty_degraded;
  3674. if (start_readonly)
  3675. mddev->ro = 2; /* read-only, but switch on first write */
  3676. err = mddev->pers->run(mddev);
  3677. if (err)
  3678. printk(KERN_ERR "md: pers->run() failed ...\n");
  3679. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  3680. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  3681. " but 'external_size' not in effect?\n", __func__);
  3682. printk(KERN_ERR
  3683. "md: invalid array_size %llu > default size %llu\n",
  3684. (unsigned long long)mddev->array_sectors / 2,
  3685. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  3686. err = -EINVAL;
  3687. mddev->pers->stop(mddev);
  3688. }
  3689. if (err == 0 && mddev->pers->sync_request) {
  3690. err = bitmap_create(mddev);
  3691. if (err) {
  3692. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  3693. mdname(mddev), err);
  3694. mddev->pers->stop(mddev);
  3695. }
  3696. }
  3697. if (err) {
  3698. module_put(mddev->pers->owner);
  3699. mddev->pers = NULL;
  3700. bitmap_destroy(mddev);
  3701. return err;
  3702. }
  3703. if (mddev->pers->sync_request) {
  3704. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3705. printk(KERN_WARNING
  3706. "md: cannot register extra attributes for %s\n",
  3707. mdname(mddev));
  3708. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3709. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  3710. mddev->ro = 0;
  3711. atomic_set(&mddev->writes_pending,0);
  3712. mddev->safemode = 0;
  3713. mddev->safemode_timer.function = md_safemode_timeout;
  3714. mddev->safemode_timer.data = (unsigned long) mddev;
  3715. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  3716. mddev->in_sync = 1;
  3717. list_for_each_entry(rdev, &mddev->disks, same_set)
  3718. if (rdev->raid_disk >= 0) {
  3719. char nm[20];
  3720. sprintf(nm, "rd%d", rdev->raid_disk);
  3721. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  3722. printk("md: cannot register %s for %s\n",
  3723. nm, mdname(mddev));
  3724. }
  3725. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3726. if (mddev->flags)
  3727. md_update_sb(mddev, 0);
  3728. set_capacity(disk, mddev->array_sectors);
  3729. /* If there is a partially-recovered drive we need to
  3730. * start recovery here. If we leave it to md_check_recovery,
  3731. * it will remove the drives and not do the right thing
  3732. */
  3733. if (mddev->degraded && !mddev->sync_thread) {
  3734. int spares = 0;
  3735. list_for_each_entry(rdev, &mddev->disks, same_set)
  3736. if (rdev->raid_disk >= 0 &&
  3737. !test_bit(In_sync, &rdev->flags) &&
  3738. !test_bit(Faulty, &rdev->flags))
  3739. /* complete an interrupted recovery */
  3740. spares++;
  3741. if (spares && mddev->pers->sync_request) {
  3742. mddev->recovery = 0;
  3743. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3744. mddev->sync_thread = md_register_thread(md_do_sync,
  3745. mddev,
  3746. "%s_resync");
  3747. if (!mddev->sync_thread) {
  3748. printk(KERN_ERR "%s: could not start resync"
  3749. " thread...\n",
  3750. mdname(mddev));
  3751. /* leave the spares where they are, it shouldn't hurt */
  3752. mddev->recovery = 0;
  3753. }
  3754. }
  3755. }
  3756. md_wakeup_thread(mddev->thread);
  3757. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  3758. mddev->changed = 1;
  3759. md_new_event(mddev);
  3760. sysfs_notify_dirent(mddev->sysfs_state);
  3761. if (mddev->sysfs_action)
  3762. sysfs_notify_dirent(mddev->sysfs_action);
  3763. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3764. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  3765. return 0;
  3766. }
  3767. static int restart_array(mddev_t *mddev)
  3768. {
  3769. struct gendisk *disk = mddev->gendisk;
  3770. /* Complain if it has no devices */
  3771. if (list_empty(&mddev->disks))
  3772. return -ENXIO;
  3773. if (!mddev->pers)
  3774. return -EINVAL;
  3775. if (!mddev->ro)
  3776. return -EBUSY;
  3777. mddev->safemode = 0;
  3778. mddev->ro = 0;
  3779. set_disk_ro(disk, 0);
  3780. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  3781. mdname(mddev));
  3782. /* Kick recovery or resync if necessary */
  3783. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3784. md_wakeup_thread(mddev->thread);
  3785. md_wakeup_thread(mddev->sync_thread);
  3786. sysfs_notify_dirent(mddev->sysfs_state);
  3787. return 0;
  3788. }
  3789. /* similar to deny_write_access, but accounts for our holding a reference
  3790. * to the file ourselves */
  3791. static int deny_bitmap_write_access(struct file * file)
  3792. {
  3793. struct inode *inode = file->f_mapping->host;
  3794. spin_lock(&inode->i_lock);
  3795. if (atomic_read(&inode->i_writecount) > 1) {
  3796. spin_unlock(&inode->i_lock);
  3797. return -ETXTBSY;
  3798. }
  3799. atomic_set(&inode->i_writecount, -1);
  3800. spin_unlock(&inode->i_lock);
  3801. return 0;
  3802. }
  3803. static void restore_bitmap_write_access(struct file *file)
  3804. {
  3805. struct inode *inode = file->f_mapping->host;
  3806. spin_lock(&inode->i_lock);
  3807. atomic_set(&inode->i_writecount, 1);
  3808. spin_unlock(&inode->i_lock);
  3809. }
  3810. /* mode:
  3811. * 0 - completely stop and dis-assemble array
  3812. * 1 - switch to readonly
  3813. * 2 - stop but do not disassemble array
  3814. */
  3815. static int do_md_stop(mddev_t * mddev, int mode, int is_open)
  3816. {
  3817. int err = 0;
  3818. struct gendisk *disk = mddev->gendisk;
  3819. mdk_rdev_t *rdev;
  3820. if (atomic_read(&mddev->openers) > is_open) {
  3821. printk("md: %s still in use.\n",mdname(mddev));
  3822. return -EBUSY;
  3823. }
  3824. if (mddev->pers) {
  3825. if (mddev->sync_thread) {
  3826. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3827. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3828. md_unregister_thread(mddev->sync_thread);
  3829. mddev->sync_thread = NULL;
  3830. }
  3831. del_timer_sync(&mddev->safemode_timer);
  3832. switch(mode) {
  3833. case 1: /* readonly */
  3834. err = -ENXIO;
  3835. if (mddev->ro==1)
  3836. goto out;
  3837. mddev->ro = 1;
  3838. break;
  3839. case 0: /* disassemble */
  3840. case 2: /* stop */
  3841. bitmap_flush(mddev);
  3842. md_super_wait(mddev);
  3843. if (mddev->ro)
  3844. set_disk_ro(disk, 0);
  3845. mddev->pers->stop(mddev);
  3846. mddev->queue->merge_bvec_fn = NULL;
  3847. mddev->queue->unplug_fn = NULL;
  3848. mddev->queue->backing_dev_info.congested_fn = NULL;
  3849. module_put(mddev->pers->owner);
  3850. if (mddev->pers->sync_request)
  3851. mddev->private = &md_redundancy_group;
  3852. mddev->pers = NULL;
  3853. /* tell userspace to handle 'inactive' */
  3854. sysfs_notify_dirent(mddev->sysfs_state);
  3855. list_for_each_entry(rdev, &mddev->disks, same_set)
  3856. if (rdev->raid_disk >= 0) {
  3857. char nm[20];
  3858. sprintf(nm, "rd%d", rdev->raid_disk);
  3859. sysfs_remove_link(&mddev->kobj, nm);
  3860. }
  3861. set_capacity(disk, 0);
  3862. mddev->changed = 1;
  3863. if (mddev->ro)
  3864. mddev->ro = 0;
  3865. }
  3866. if (!mddev->in_sync || mddev->flags) {
  3867. /* mark array as shutdown cleanly */
  3868. mddev->in_sync = 1;
  3869. md_update_sb(mddev, 1);
  3870. }
  3871. if (mode == 1)
  3872. set_disk_ro(disk, 1);
  3873. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3874. }
  3875. /*
  3876. * Free resources if final stop
  3877. */
  3878. if (mode == 0) {
  3879. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  3880. bitmap_destroy(mddev);
  3881. if (mddev->bitmap_file) {
  3882. restore_bitmap_write_access(mddev->bitmap_file);
  3883. fput(mddev->bitmap_file);
  3884. mddev->bitmap_file = NULL;
  3885. }
  3886. mddev->bitmap_offset = 0;
  3887. /* make sure all md_delayed_delete calls have finished */
  3888. flush_scheduled_work();
  3889. export_array(mddev);
  3890. mddev->array_sectors = 0;
  3891. mddev->external_size = 0;
  3892. mddev->dev_sectors = 0;
  3893. mddev->raid_disks = 0;
  3894. mddev->recovery_cp = 0;
  3895. mddev->resync_min = 0;
  3896. mddev->resync_max = MaxSector;
  3897. mddev->reshape_position = MaxSector;
  3898. mddev->external = 0;
  3899. mddev->persistent = 0;
  3900. mddev->level = LEVEL_NONE;
  3901. mddev->clevel[0] = 0;
  3902. mddev->flags = 0;
  3903. mddev->ro = 0;
  3904. mddev->metadata_type[0] = 0;
  3905. mddev->chunk_sectors = 0;
  3906. mddev->ctime = mddev->utime = 0;
  3907. mddev->layout = 0;
  3908. mddev->max_disks = 0;
  3909. mddev->events = 0;
  3910. mddev->delta_disks = 0;
  3911. mddev->new_level = LEVEL_NONE;
  3912. mddev->new_layout = 0;
  3913. mddev->new_chunk_sectors = 0;
  3914. mddev->curr_resync = 0;
  3915. mddev->resync_mismatches = 0;
  3916. mddev->suspend_lo = mddev->suspend_hi = 0;
  3917. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  3918. mddev->recovery = 0;
  3919. mddev->in_sync = 0;
  3920. mddev->changed = 0;
  3921. mddev->degraded = 0;
  3922. mddev->barriers_work = 0;
  3923. mddev->safemode = 0;
  3924. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  3925. if (mddev->hold_active == UNTIL_STOP)
  3926. mddev->hold_active = 0;
  3927. } else if (mddev->pers)
  3928. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3929. mdname(mddev));
  3930. err = 0;
  3931. blk_integrity_unregister(disk);
  3932. md_new_event(mddev);
  3933. sysfs_notify_dirent(mddev->sysfs_state);
  3934. out:
  3935. return err;
  3936. }
  3937. #ifndef MODULE
  3938. static void autorun_array(mddev_t *mddev)
  3939. {
  3940. mdk_rdev_t *rdev;
  3941. int err;
  3942. if (list_empty(&mddev->disks))
  3943. return;
  3944. printk(KERN_INFO "md: running: ");
  3945. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3946. char b[BDEVNAME_SIZE];
  3947. printk("<%s>", bdevname(rdev->bdev,b));
  3948. }
  3949. printk("\n");
  3950. err = do_md_run(mddev);
  3951. if (err) {
  3952. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3953. do_md_stop(mddev, 0, 0);
  3954. }
  3955. }
  3956. /*
  3957. * lets try to run arrays based on all disks that have arrived
  3958. * until now. (those are in pending_raid_disks)
  3959. *
  3960. * the method: pick the first pending disk, collect all disks with
  3961. * the same UUID, remove all from the pending list and put them into
  3962. * the 'same_array' list. Then order this list based on superblock
  3963. * update time (freshest comes first), kick out 'old' disks and
  3964. * compare superblocks. If everything's fine then run it.
  3965. *
  3966. * If "unit" is allocated, then bump its reference count
  3967. */
  3968. static void autorun_devices(int part)
  3969. {
  3970. mdk_rdev_t *rdev0, *rdev, *tmp;
  3971. mddev_t *mddev;
  3972. char b[BDEVNAME_SIZE];
  3973. printk(KERN_INFO "md: autorun ...\n");
  3974. while (!list_empty(&pending_raid_disks)) {
  3975. int unit;
  3976. dev_t dev;
  3977. LIST_HEAD(candidates);
  3978. rdev0 = list_entry(pending_raid_disks.next,
  3979. mdk_rdev_t, same_set);
  3980. printk(KERN_INFO "md: considering %s ...\n",
  3981. bdevname(rdev0->bdev,b));
  3982. INIT_LIST_HEAD(&candidates);
  3983. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  3984. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3985. printk(KERN_INFO "md: adding %s ...\n",
  3986. bdevname(rdev->bdev,b));
  3987. list_move(&rdev->same_set, &candidates);
  3988. }
  3989. /*
  3990. * now we have a set of devices, with all of them having
  3991. * mostly sane superblocks. It's time to allocate the
  3992. * mddev.
  3993. */
  3994. if (part) {
  3995. dev = MKDEV(mdp_major,
  3996. rdev0->preferred_minor << MdpMinorShift);
  3997. unit = MINOR(dev) >> MdpMinorShift;
  3998. } else {
  3999. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4000. unit = MINOR(dev);
  4001. }
  4002. if (rdev0->preferred_minor != unit) {
  4003. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4004. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4005. break;
  4006. }
  4007. md_probe(dev, NULL, NULL);
  4008. mddev = mddev_find(dev);
  4009. if (!mddev || !mddev->gendisk) {
  4010. if (mddev)
  4011. mddev_put(mddev);
  4012. printk(KERN_ERR
  4013. "md: cannot allocate memory for md drive.\n");
  4014. break;
  4015. }
  4016. if (mddev_lock(mddev))
  4017. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4018. mdname(mddev));
  4019. else if (mddev->raid_disks || mddev->major_version
  4020. || !list_empty(&mddev->disks)) {
  4021. printk(KERN_WARNING
  4022. "md: %s already running, cannot run %s\n",
  4023. mdname(mddev), bdevname(rdev0->bdev,b));
  4024. mddev_unlock(mddev);
  4025. } else {
  4026. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4027. mddev->persistent = 1;
  4028. rdev_for_each_list(rdev, tmp, &candidates) {
  4029. list_del_init(&rdev->same_set);
  4030. if (bind_rdev_to_array(rdev, mddev))
  4031. export_rdev(rdev);
  4032. }
  4033. autorun_array(mddev);
  4034. mddev_unlock(mddev);
  4035. }
  4036. /* on success, candidates will be empty, on error
  4037. * it won't...
  4038. */
  4039. rdev_for_each_list(rdev, tmp, &candidates) {
  4040. list_del_init(&rdev->same_set);
  4041. export_rdev(rdev);
  4042. }
  4043. mddev_put(mddev);
  4044. }
  4045. printk(KERN_INFO "md: ... autorun DONE.\n");
  4046. }
  4047. #endif /* !MODULE */
  4048. static int get_version(void __user * arg)
  4049. {
  4050. mdu_version_t ver;
  4051. ver.major = MD_MAJOR_VERSION;
  4052. ver.minor = MD_MINOR_VERSION;
  4053. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4054. if (copy_to_user(arg, &ver, sizeof(ver)))
  4055. return -EFAULT;
  4056. return 0;
  4057. }
  4058. static int get_array_info(mddev_t * mddev, void __user * arg)
  4059. {
  4060. mdu_array_info_t info;
  4061. int nr,working,active,failed,spare;
  4062. mdk_rdev_t *rdev;
  4063. nr=working=active=failed=spare=0;
  4064. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4065. nr++;
  4066. if (test_bit(Faulty, &rdev->flags))
  4067. failed++;
  4068. else {
  4069. working++;
  4070. if (test_bit(In_sync, &rdev->flags))
  4071. active++;
  4072. else
  4073. spare++;
  4074. }
  4075. }
  4076. info.major_version = mddev->major_version;
  4077. info.minor_version = mddev->minor_version;
  4078. info.patch_version = MD_PATCHLEVEL_VERSION;
  4079. info.ctime = mddev->ctime;
  4080. info.level = mddev->level;
  4081. info.size = mddev->dev_sectors / 2;
  4082. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4083. info.size = -1;
  4084. info.nr_disks = nr;
  4085. info.raid_disks = mddev->raid_disks;
  4086. info.md_minor = mddev->md_minor;
  4087. info.not_persistent= !mddev->persistent;
  4088. info.utime = mddev->utime;
  4089. info.state = 0;
  4090. if (mddev->in_sync)
  4091. info.state = (1<<MD_SB_CLEAN);
  4092. if (mddev->bitmap && mddev->bitmap_offset)
  4093. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4094. info.active_disks = active;
  4095. info.working_disks = working;
  4096. info.failed_disks = failed;
  4097. info.spare_disks = spare;
  4098. info.layout = mddev->layout;
  4099. info.chunk_size = mddev->chunk_sectors << 9;
  4100. if (copy_to_user(arg, &info, sizeof(info)))
  4101. return -EFAULT;
  4102. return 0;
  4103. }
  4104. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  4105. {
  4106. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4107. char *ptr, *buf = NULL;
  4108. int err = -ENOMEM;
  4109. if (md_allow_write(mddev))
  4110. file = kmalloc(sizeof(*file), GFP_NOIO);
  4111. else
  4112. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4113. if (!file)
  4114. goto out;
  4115. /* bitmap disabled, zero the first byte and copy out */
  4116. if (!mddev->bitmap || !mddev->bitmap->file) {
  4117. file->pathname[0] = '\0';
  4118. goto copy_out;
  4119. }
  4120. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4121. if (!buf)
  4122. goto out;
  4123. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4124. if (IS_ERR(ptr))
  4125. goto out;
  4126. strcpy(file->pathname, ptr);
  4127. copy_out:
  4128. err = 0;
  4129. if (copy_to_user(arg, file, sizeof(*file)))
  4130. err = -EFAULT;
  4131. out:
  4132. kfree(buf);
  4133. kfree(file);
  4134. return err;
  4135. }
  4136. static int get_disk_info(mddev_t * mddev, void __user * arg)
  4137. {
  4138. mdu_disk_info_t info;
  4139. mdk_rdev_t *rdev;
  4140. if (copy_from_user(&info, arg, sizeof(info)))
  4141. return -EFAULT;
  4142. rdev = find_rdev_nr(mddev, info.number);
  4143. if (rdev) {
  4144. info.major = MAJOR(rdev->bdev->bd_dev);
  4145. info.minor = MINOR(rdev->bdev->bd_dev);
  4146. info.raid_disk = rdev->raid_disk;
  4147. info.state = 0;
  4148. if (test_bit(Faulty, &rdev->flags))
  4149. info.state |= (1<<MD_DISK_FAULTY);
  4150. else if (test_bit(In_sync, &rdev->flags)) {
  4151. info.state |= (1<<MD_DISK_ACTIVE);
  4152. info.state |= (1<<MD_DISK_SYNC);
  4153. }
  4154. if (test_bit(WriteMostly, &rdev->flags))
  4155. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4156. } else {
  4157. info.major = info.minor = 0;
  4158. info.raid_disk = -1;
  4159. info.state = (1<<MD_DISK_REMOVED);
  4160. }
  4161. if (copy_to_user(arg, &info, sizeof(info)))
  4162. return -EFAULT;
  4163. return 0;
  4164. }
  4165. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  4166. {
  4167. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4168. mdk_rdev_t *rdev;
  4169. dev_t dev = MKDEV(info->major,info->minor);
  4170. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4171. return -EOVERFLOW;
  4172. if (!mddev->raid_disks) {
  4173. int err;
  4174. /* expecting a device which has a superblock */
  4175. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4176. if (IS_ERR(rdev)) {
  4177. printk(KERN_WARNING
  4178. "md: md_import_device returned %ld\n",
  4179. PTR_ERR(rdev));
  4180. return PTR_ERR(rdev);
  4181. }
  4182. if (!list_empty(&mddev->disks)) {
  4183. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  4184. mdk_rdev_t, same_set);
  4185. int err = super_types[mddev->major_version]
  4186. .load_super(rdev, rdev0, mddev->minor_version);
  4187. if (err < 0) {
  4188. printk(KERN_WARNING
  4189. "md: %s has different UUID to %s\n",
  4190. bdevname(rdev->bdev,b),
  4191. bdevname(rdev0->bdev,b2));
  4192. export_rdev(rdev);
  4193. return -EINVAL;
  4194. }
  4195. }
  4196. err = bind_rdev_to_array(rdev, mddev);
  4197. if (err)
  4198. export_rdev(rdev);
  4199. return err;
  4200. }
  4201. /*
  4202. * add_new_disk can be used once the array is assembled
  4203. * to add "hot spares". They must already have a superblock
  4204. * written
  4205. */
  4206. if (mddev->pers) {
  4207. int err;
  4208. if (!mddev->pers->hot_add_disk) {
  4209. printk(KERN_WARNING
  4210. "%s: personality does not support diskops!\n",
  4211. mdname(mddev));
  4212. return -EINVAL;
  4213. }
  4214. if (mddev->persistent)
  4215. rdev = md_import_device(dev, mddev->major_version,
  4216. mddev->minor_version);
  4217. else
  4218. rdev = md_import_device(dev, -1, -1);
  4219. if (IS_ERR(rdev)) {
  4220. printk(KERN_WARNING
  4221. "md: md_import_device returned %ld\n",
  4222. PTR_ERR(rdev));
  4223. return PTR_ERR(rdev);
  4224. }
  4225. /* set save_raid_disk if appropriate */
  4226. if (!mddev->persistent) {
  4227. if (info->state & (1<<MD_DISK_SYNC) &&
  4228. info->raid_disk < mddev->raid_disks)
  4229. rdev->raid_disk = info->raid_disk;
  4230. else
  4231. rdev->raid_disk = -1;
  4232. } else
  4233. super_types[mddev->major_version].
  4234. validate_super(mddev, rdev);
  4235. rdev->saved_raid_disk = rdev->raid_disk;
  4236. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4237. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4238. set_bit(WriteMostly, &rdev->flags);
  4239. else
  4240. clear_bit(WriteMostly, &rdev->flags);
  4241. rdev->raid_disk = -1;
  4242. err = bind_rdev_to_array(rdev, mddev);
  4243. if (!err && !mddev->pers->hot_remove_disk) {
  4244. /* If there is hot_add_disk but no hot_remove_disk
  4245. * then added disks for geometry changes,
  4246. * and should be added immediately.
  4247. */
  4248. super_types[mddev->major_version].
  4249. validate_super(mddev, rdev);
  4250. err = mddev->pers->hot_add_disk(mddev, rdev);
  4251. if (err)
  4252. unbind_rdev_from_array(rdev);
  4253. }
  4254. if (err)
  4255. export_rdev(rdev);
  4256. else
  4257. sysfs_notify_dirent(rdev->sysfs_state);
  4258. md_update_sb(mddev, 1);
  4259. if (mddev->degraded)
  4260. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4261. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4262. md_wakeup_thread(mddev->thread);
  4263. return err;
  4264. }
  4265. /* otherwise, add_new_disk is only allowed
  4266. * for major_version==0 superblocks
  4267. */
  4268. if (mddev->major_version != 0) {
  4269. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4270. mdname(mddev));
  4271. return -EINVAL;
  4272. }
  4273. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4274. int err;
  4275. rdev = md_import_device(dev, -1, 0);
  4276. if (IS_ERR(rdev)) {
  4277. printk(KERN_WARNING
  4278. "md: error, md_import_device() returned %ld\n",
  4279. PTR_ERR(rdev));
  4280. return PTR_ERR(rdev);
  4281. }
  4282. rdev->desc_nr = info->number;
  4283. if (info->raid_disk < mddev->raid_disks)
  4284. rdev->raid_disk = info->raid_disk;
  4285. else
  4286. rdev->raid_disk = -1;
  4287. if (rdev->raid_disk < mddev->raid_disks)
  4288. if (info->state & (1<<MD_DISK_SYNC))
  4289. set_bit(In_sync, &rdev->flags);
  4290. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4291. set_bit(WriteMostly, &rdev->flags);
  4292. if (!mddev->persistent) {
  4293. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4294. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4295. } else
  4296. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4297. rdev->sectors = calc_num_sectors(rdev,
  4298. mddev->chunk_sectors << 9);
  4299. err = bind_rdev_to_array(rdev, mddev);
  4300. if (err) {
  4301. export_rdev(rdev);
  4302. return err;
  4303. }
  4304. }
  4305. return 0;
  4306. }
  4307. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  4308. {
  4309. char b[BDEVNAME_SIZE];
  4310. mdk_rdev_t *rdev;
  4311. rdev = find_rdev(mddev, dev);
  4312. if (!rdev)
  4313. return -ENXIO;
  4314. if (rdev->raid_disk >= 0)
  4315. goto busy;
  4316. kick_rdev_from_array(rdev);
  4317. md_update_sb(mddev, 1);
  4318. md_new_event(mddev);
  4319. return 0;
  4320. busy:
  4321. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4322. bdevname(rdev->bdev,b), mdname(mddev));
  4323. return -EBUSY;
  4324. }
  4325. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  4326. {
  4327. char b[BDEVNAME_SIZE];
  4328. int err;
  4329. mdk_rdev_t *rdev;
  4330. if (!mddev->pers)
  4331. return -ENODEV;
  4332. if (mddev->major_version != 0) {
  4333. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4334. " version-0 superblocks.\n",
  4335. mdname(mddev));
  4336. return -EINVAL;
  4337. }
  4338. if (!mddev->pers->hot_add_disk) {
  4339. printk(KERN_WARNING
  4340. "%s: personality does not support diskops!\n",
  4341. mdname(mddev));
  4342. return -EINVAL;
  4343. }
  4344. rdev = md_import_device(dev, -1, 0);
  4345. if (IS_ERR(rdev)) {
  4346. printk(KERN_WARNING
  4347. "md: error, md_import_device() returned %ld\n",
  4348. PTR_ERR(rdev));
  4349. return -EINVAL;
  4350. }
  4351. if (mddev->persistent)
  4352. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4353. else
  4354. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4355. rdev->sectors = calc_num_sectors(rdev, mddev->chunk_sectors << 9);
  4356. if (test_bit(Faulty, &rdev->flags)) {
  4357. printk(KERN_WARNING
  4358. "md: can not hot-add faulty %s disk to %s!\n",
  4359. bdevname(rdev->bdev,b), mdname(mddev));
  4360. err = -EINVAL;
  4361. goto abort_export;
  4362. }
  4363. clear_bit(In_sync, &rdev->flags);
  4364. rdev->desc_nr = -1;
  4365. rdev->saved_raid_disk = -1;
  4366. err = bind_rdev_to_array(rdev, mddev);
  4367. if (err)
  4368. goto abort_export;
  4369. /*
  4370. * The rest should better be atomic, we can have disk failures
  4371. * noticed in interrupt contexts ...
  4372. */
  4373. rdev->raid_disk = -1;
  4374. md_update_sb(mddev, 1);
  4375. /*
  4376. * Kick recovery, maybe this spare has to be added to the
  4377. * array immediately.
  4378. */
  4379. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4380. md_wakeup_thread(mddev->thread);
  4381. md_new_event(mddev);
  4382. return 0;
  4383. abort_export:
  4384. export_rdev(rdev);
  4385. return err;
  4386. }
  4387. static int set_bitmap_file(mddev_t *mddev, int fd)
  4388. {
  4389. int err;
  4390. if (mddev->pers) {
  4391. if (!mddev->pers->quiesce)
  4392. return -EBUSY;
  4393. if (mddev->recovery || mddev->sync_thread)
  4394. return -EBUSY;
  4395. /* we should be able to change the bitmap.. */
  4396. }
  4397. if (fd >= 0) {
  4398. if (mddev->bitmap)
  4399. return -EEXIST; /* cannot add when bitmap is present */
  4400. mddev->bitmap_file = fget(fd);
  4401. if (mddev->bitmap_file == NULL) {
  4402. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  4403. mdname(mddev));
  4404. return -EBADF;
  4405. }
  4406. err = deny_bitmap_write_access(mddev->bitmap_file);
  4407. if (err) {
  4408. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  4409. mdname(mddev));
  4410. fput(mddev->bitmap_file);
  4411. mddev->bitmap_file = NULL;
  4412. return err;
  4413. }
  4414. mddev->bitmap_offset = 0; /* file overrides offset */
  4415. } else if (mddev->bitmap == NULL)
  4416. return -ENOENT; /* cannot remove what isn't there */
  4417. err = 0;
  4418. if (mddev->pers) {
  4419. mddev->pers->quiesce(mddev, 1);
  4420. if (fd >= 0)
  4421. err = bitmap_create(mddev);
  4422. if (fd < 0 || err) {
  4423. bitmap_destroy(mddev);
  4424. fd = -1; /* make sure to put the file */
  4425. }
  4426. mddev->pers->quiesce(mddev, 0);
  4427. }
  4428. if (fd < 0) {
  4429. if (mddev->bitmap_file) {
  4430. restore_bitmap_write_access(mddev->bitmap_file);
  4431. fput(mddev->bitmap_file);
  4432. }
  4433. mddev->bitmap_file = NULL;
  4434. }
  4435. return err;
  4436. }
  4437. /*
  4438. * set_array_info is used two different ways
  4439. * The original usage is when creating a new array.
  4440. * In this usage, raid_disks is > 0 and it together with
  4441. * level, size, not_persistent,layout,chunksize determine the
  4442. * shape of the array.
  4443. * This will always create an array with a type-0.90.0 superblock.
  4444. * The newer usage is when assembling an array.
  4445. * In this case raid_disks will be 0, and the major_version field is
  4446. * use to determine which style super-blocks are to be found on the devices.
  4447. * The minor and patch _version numbers are also kept incase the
  4448. * super_block handler wishes to interpret them.
  4449. */
  4450. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  4451. {
  4452. if (info->raid_disks == 0) {
  4453. /* just setting version number for superblock loading */
  4454. if (info->major_version < 0 ||
  4455. info->major_version >= ARRAY_SIZE(super_types) ||
  4456. super_types[info->major_version].name == NULL) {
  4457. /* maybe try to auto-load a module? */
  4458. printk(KERN_INFO
  4459. "md: superblock version %d not known\n",
  4460. info->major_version);
  4461. return -EINVAL;
  4462. }
  4463. mddev->major_version = info->major_version;
  4464. mddev->minor_version = info->minor_version;
  4465. mddev->patch_version = info->patch_version;
  4466. mddev->persistent = !info->not_persistent;
  4467. return 0;
  4468. }
  4469. mddev->major_version = MD_MAJOR_VERSION;
  4470. mddev->minor_version = MD_MINOR_VERSION;
  4471. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  4472. mddev->ctime = get_seconds();
  4473. mddev->level = info->level;
  4474. mddev->clevel[0] = 0;
  4475. mddev->dev_sectors = 2 * (sector_t)info->size;
  4476. mddev->raid_disks = info->raid_disks;
  4477. /* don't set md_minor, it is determined by which /dev/md* was
  4478. * openned
  4479. */
  4480. if (info->state & (1<<MD_SB_CLEAN))
  4481. mddev->recovery_cp = MaxSector;
  4482. else
  4483. mddev->recovery_cp = 0;
  4484. mddev->persistent = ! info->not_persistent;
  4485. mddev->external = 0;
  4486. mddev->layout = info->layout;
  4487. mddev->chunk_sectors = info->chunk_size >> 9;
  4488. mddev->max_disks = MD_SB_DISKS;
  4489. if (mddev->persistent)
  4490. mddev->flags = 0;
  4491. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4492. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  4493. mddev->bitmap_offset = 0;
  4494. mddev->reshape_position = MaxSector;
  4495. /*
  4496. * Generate a 128 bit UUID
  4497. */
  4498. get_random_bytes(mddev->uuid, 16);
  4499. mddev->new_level = mddev->level;
  4500. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4501. mddev->new_layout = mddev->layout;
  4502. mddev->delta_disks = 0;
  4503. return 0;
  4504. }
  4505. void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
  4506. {
  4507. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  4508. if (mddev->external_size)
  4509. return;
  4510. mddev->array_sectors = array_sectors;
  4511. }
  4512. EXPORT_SYMBOL(md_set_array_sectors);
  4513. static int update_size(mddev_t *mddev, sector_t num_sectors)
  4514. {
  4515. mdk_rdev_t *rdev;
  4516. int rv;
  4517. int fit = (num_sectors == 0);
  4518. if (mddev->pers->resize == NULL)
  4519. return -EINVAL;
  4520. /* The "num_sectors" is the number of sectors of each device that
  4521. * is used. This can only make sense for arrays with redundancy.
  4522. * linear and raid0 always use whatever space is available. We can only
  4523. * consider changing this number if no resync or reconstruction is
  4524. * happening, and if the new size is acceptable. It must fit before the
  4525. * sb_start or, if that is <data_offset, it must fit before the size
  4526. * of each device. If num_sectors is zero, we find the largest size
  4527. * that fits.
  4528. */
  4529. if (mddev->sync_thread)
  4530. return -EBUSY;
  4531. if (mddev->bitmap)
  4532. /* Sorry, cannot grow a bitmap yet, just remove it,
  4533. * grow, and re-add.
  4534. */
  4535. return -EBUSY;
  4536. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4537. sector_t avail = rdev->sectors;
  4538. if (fit && (num_sectors == 0 || num_sectors > avail))
  4539. num_sectors = avail;
  4540. if (avail < num_sectors)
  4541. return -ENOSPC;
  4542. }
  4543. rv = mddev->pers->resize(mddev, num_sectors);
  4544. if (!rv) {
  4545. struct block_device *bdev;
  4546. bdev = bdget_disk(mddev->gendisk, 0);
  4547. if (bdev) {
  4548. mutex_lock(&bdev->bd_inode->i_mutex);
  4549. i_size_write(bdev->bd_inode,
  4550. (loff_t)mddev->array_sectors << 9);
  4551. mutex_unlock(&bdev->bd_inode->i_mutex);
  4552. bdput(bdev);
  4553. }
  4554. }
  4555. return rv;
  4556. }
  4557. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  4558. {
  4559. int rv;
  4560. /* change the number of raid disks */
  4561. if (mddev->pers->check_reshape == NULL)
  4562. return -EINVAL;
  4563. if (raid_disks <= 0 ||
  4564. raid_disks >= mddev->max_disks)
  4565. return -EINVAL;
  4566. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  4567. return -EBUSY;
  4568. mddev->delta_disks = raid_disks - mddev->raid_disks;
  4569. rv = mddev->pers->check_reshape(mddev);
  4570. return rv;
  4571. }
  4572. /*
  4573. * update_array_info is used to change the configuration of an
  4574. * on-line array.
  4575. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  4576. * fields in the info are checked against the array.
  4577. * Any differences that cannot be handled will cause an error.
  4578. * Normally, only one change can be managed at a time.
  4579. */
  4580. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  4581. {
  4582. int rv = 0;
  4583. int cnt = 0;
  4584. int state = 0;
  4585. /* calculate expected state,ignoring low bits */
  4586. if (mddev->bitmap && mddev->bitmap_offset)
  4587. state |= (1 << MD_SB_BITMAP_PRESENT);
  4588. if (mddev->major_version != info->major_version ||
  4589. mddev->minor_version != info->minor_version ||
  4590. /* mddev->patch_version != info->patch_version || */
  4591. mddev->ctime != info->ctime ||
  4592. mddev->level != info->level ||
  4593. /* mddev->layout != info->layout || */
  4594. !mddev->persistent != info->not_persistent||
  4595. mddev->chunk_sectors != info->chunk_size >> 9 ||
  4596. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  4597. ((state^info->state) & 0xfffffe00)
  4598. )
  4599. return -EINVAL;
  4600. /* Check there is only one change */
  4601. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  4602. cnt++;
  4603. if (mddev->raid_disks != info->raid_disks)
  4604. cnt++;
  4605. if (mddev->layout != info->layout)
  4606. cnt++;
  4607. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  4608. cnt++;
  4609. if (cnt == 0)
  4610. return 0;
  4611. if (cnt > 1)
  4612. return -EINVAL;
  4613. if (mddev->layout != info->layout) {
  4614. /* Change layout
  4615. * we don't need to do anything at the md level, the
  4616. * personality will take care of it all.
  4617. */
  4618. if (mddev->pers->check_reshape == NULL)
  4619. return -EINVAL;
  4620. else {
  4621. mddev->new_layout = info->layout;
  4622. rv = mddev->pers->check_reshape(mddev);
  4623. if (rv)
  4624. mddev->new_layout = mddev->layout;
  4625. return rv;
  4626. }
  4627. }
  4628. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  4629. rv = update_size(mddev, (sector_t)info->size * 2);
  4630. if (mddev->raid_disks != info->raid_disks)
  4631. rv = update_raid_disks(mddev, info->raid_disks);
  4632. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  4633. if (mddev->pers->quiesce == NULL)
  4634. return -EINVAL;
  4635. if (mddev->recovery || mddev->sync_thread)
  4636. return -EBUSY;
  4637. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  4638. /* add the bitmap */
  4639. if (mddev->bitmap)
  4640. return -EEXIST;
  4641. if (mddev->default_bitmap_offset == 0)
  4642. return -EINVAL;
  4643. mddev->bitmap_offset = mddev->default_bitmap_offset;
  4644. mddev->pers->quiesce(mddev, 1);
  4645. rv = bitmap_create(mddev);
  4646. if (rv)
  4647. bitmap_destroy(mddev);
  4648. mddev->pers->quiesce(mddev, 0);
  4649. } else {
  4650. /* remove the bitmap */
  4651. if (!mddev->bitmap)
  4652. return -ENOENT;
  4653. if (mddev->bitmap->file)
  4654. return -EINVAL;
  4655. mddev->pers->quiesce(mddev, 1);
  4656. bitmap_destroy(mddev);
  4657. mddev->pers->quiesce(mddev, 0);
  4658. mddev->bitmap_offset = 0;
  4659. }
  4660. }
  4661. md_update_sb(mddev, 1);
  4662. return rv;
  4663. }
  4664. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  4665. {
  4666. mdk_rdev_t *rdev;
  4667. if (mddev->pers == NULL)
  4668. return -ENODEV;
  4669. rdev = find_rdev(mddev, dev);
  4670. if (!rdev)
  4671. return -ENODEV;
  4672. md_error(mddev, rdev);
  4673. return 0;
  4674. }
  4675. /*
  4676. * We have a problem here : there is no easy way to give a CHS
  4677. * virtual geometry. We currently pretend that we have a 2 heads
  4678. * 4 sectors (with a BIG number of cylinders...). This drives
  4679. * dosfs just mad... ;-)
  4680. */
  4681. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  4682. {
  4683. mddev_t *mddev = bdev->bd_disk->private_data;
  4684. geo->heads = 2;
  4685. geo->sectors = 4;
  4686. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  4687. return 0;
  4688. }
  4689. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  4690. unsigned int cmd, unsigned long arg)
  4691. {
  4692. int err = 0;
  4693. void __user *argp = (void __user *)arg;
  4694. mddev_t *mddev = NULL;
  4695. if (!capable(CAP_SYS_ADMIN))
  4696. return -EACCES;
  4697. /*
  4698. * Commands dealing with the RAID driver but not any
  4699. * particular array:
  4700. */
  4701. switch (cmd)
  4702. {
  4703. case RAID_VERSION:
  4704. err = get_version(argp);
  4705. goto done;
  4706. case PRINT_RAID_DEBUG:
  4707. err = 0;
  4708. md_print_devices();
  4709. goto done;
  4710. #ifndef MODULE
  4711. case RAID_AUTORUN:
  4712. err = 0;
  4713. autostart_arrays(arg);
  4714. goto done;
  4715. #endif
  4716. default:;
  4717. }
  4718. /*
  4719. * Commands creating/starting a new array:
  4720. */
  4721. mddev = bdev->bd_disk->private_data;
  4722. if (!mddev) {
  4723. BUG();
  4724. goto abort;
  4725. }
  4726. err = mddev_lock(mddev);
  4727. if (err) {
  4728. printk(KERN_INFO
  4729. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  4730. err, cmd);
  4731. goto abort;
  4732. }
  4733. switch (cmd)
  4734. {
  4735. case SET_ARRAY_INFO:
  4736. {
  4737. mdu_array_info_t info;
  4738. if (!arg)
  4739. memset(&info, 0, sizeof(info));
  4740. else if (copy_from_user(&info, argp, sizeof(info))) {
  4741. err = -EFAULT;
  4742. goto abort_unlock;
  4743. }
  4744. if (mddev->pers) {
  4745. err = update_array_info(mddev, &info);
  4746. if (err) {
  4747. printk(KERN_WARNING "md: couldn't update"
  4748. " array info. %d\n", err);
  4749. goto abort_unlock;
  4750. }
  4751. goto done_unlock;
  4752. }
  4753. if (!list_empty(&mddev->disks)) {
  4754. printk(KERN_WARNING
  4755. "md: array %s already has disks!\n",
  4756. mdname(mddev));
  4757. err = -EBUSY;
  4758. goto abort_unlock;
  4759. }
  4760. if (mddev->raid_disks) {
  4761. printk(KERN_WARNING
  4762. "md: array %s already initialised!\n",
  4763. mdname(mddev));
  4764. err = -EBUSY;
  4765. goto abort_unlock;
  4766. }
  4767. err = set_array_info(mddev, &info);
  4768. if (err) {
  4769. printk(KERN_WARNING "md: couldn't set"
  4770. " array info. %d\n", err);
  4771. goto abort_unlock;
  4772. }
  4773. }
  4774. goto done_unlock;
  4775. default:;
  4776. }
  4777. /*
  4778. * Commands querying/configuring an existing array:
  4779. */
  4780. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  4781. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  4782. if ((!mddev->raid_disks && !mddev->external)
  4783. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  4784. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  4785. && cmd != GET_BITMAP_FILE) {
  4786. err = -ENODEV;
  4787. goto abort_unlock;
  4788. }
  4789. /*
  4790. * Commands even a read-only array can execute:
  4791. */
  4792. switch (cmd)
  4793. {
  4794. case GET_ARRAY_INFO:
  4795. err = get_array_info(mddev, argp);
  4796. goto done_unlock;
  4797. case GET_BITMAP_FILE:
  4798. err = get_bitmap_file(mddev, argp);
  4799. goto done_unlock;
  4800. case GET_DISK_INFO:
  4801. err = get_disk_info(mddev, argp);
  4802. goto done_unlock;
  4803. case RESTART_ARRAY_RW:
  4804. err = restart_array(mddev);
  4805. goto done_unlock;
  4806. case STOP_ARRAY:
  4807. err = do_md_stop(mddev, 0, 1);
  4808. goto done_unlock;
  4809. case STOP_ARRAY_RO:
  4810. err = do_md_stop(mddev, 1, 1);
  4811. goto done_unlock;
  4812. }
  4813. /*
  4814. * The remaining ioctls are changing the state of the
  4815. * superblock, so we do not allow them on read-only arrays.
  4816. * However non-MD ioctls (e.g. get-size) will still come through
  4817. * here and hit the 'default' below, so only disallow
  4818. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  4819. */
  4820. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  4821. if (mddev->ro == 2) {
  4822. mddev->ro = 0;
  4823. sysfs_notify_dirent(mddev->sysfs_state);
  4824. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4825. md_wakeup_thread(mddev->thread);
  4826. } else {
  4827. err = -EROFS;
  4828. goto abort_unlock;
  4829. }
  4830. }
  4831. switch (cmd)
  4832. {
  4833. case ADD_NEW_DISK:
  4834. {
  4835. mdu_disk_info_t info;
  4836. if (copy_from_user(&info, argp, sizeof(info)))
  4837. err = -EFAULT;
  4838. else
  4839. err = add_new_disk(mddev, &info);
  4840. goto done_unlock;
  4841. }
  4842. case HOT_REMOVE_DISK:
  4843. err = hot_remove_disk(mddev, new_decode_dev(arg));
  4844. goto done_unlock;
  4845. case HOT_ADD_DISK:
  4846. err = hot_add_disk(mddev, new_decode_dev(arg));
  4847. goto done_unlock;
  4848. case SET_DISK_FAULTY:
  4849. err = set_disk_faulty(mddev, new_decode_dev(arg));
  4850. goto done_unlock;
  4851. case RUN_ARRAY:
  4852. err = do_md_run(mddev);
  4853. goto done_unlock;
  4854. case SET_BITMAP_FILE:
  4855. err = set_bitmap_file(mddev, (int)arg);
  4856. goto done_unlock;
  4857. default:
  4858. err = -EINVAL;
  4859. goto abort_unlock;
  4860. }
  4861. done_unlock:
  4862. abort_unlock:
  4863. if (mddev->hold_active == UNTIL_IOCTL &&
  4864. err != -EINVAL)
  4865. mddev->hold_active = 0;
  4866. mddev_unlock(mddev);
  4867. return err;
  4868. done:
  4869. if (err)
  4870. MD_BUG();
  4871. abort:
  4872. return err;
  4873. }
  4874. static int md_open(struct block_device *bdev, fmode_t mode)
  4875. {
  4876. /*
  4877. * Succeed if we can lock the mddev, which confirms that
  4878. * it isn't being stopped right now.
  4879. */
  4880. mddev_t *mddev = mddev_find(bdev->bd_dev);
  4881. int err;
  4882. if (mddev->gendisk != bdev->bd_disk) {
  4883. /* we are racing with mddev_put which is discarding this
  4884. * bd_disk.
  4885. */
  4886. mddev_put(mddev);
  4887. /* Wait until bdev->bd_disk is definitely gone */
  4888. flush_scheduled_work();
  4889. /* Then retry the open from the top */
  4890. return -ERESTARTSYS;
  4891. }
  4892. BUG_ON(mddev != bdev->bd_disk->private_data);
  4893. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  4894. goto out;
  4895. err = 0;
  4896. atomic_inc(&mddev->openers);
  4897. mddev_unlock(mddev);
  4898. check_disk_change(bdev);
  4899. out:
  4900. return err;
  4901. }
  4902. static int md_release(struct gendisk *disk, fmode_t mode)
  4903. {
  4904. mddev_t *mddev = disk->private_data;
  4905. BUG_ON(!mddev);
  4906. atomic_dec(&mddev->openers);
  4907. mddev_put(mddev);
  4908. return 0;
  4909. }
  4910. static int md_media_changed(struct gendisk *disk)
  4911. {
  4912. mddev_t *mddev = disk->private_data;
  4913. return mddev->changed;
  4914. }
  4915. static int md_revalidate(struct gendisk *disk)
  4916. {
  4917. mddev_t *mddev = disk->private_data;
  4918. mddev->changed = 0;
  4919. return 0;
  4920. }
  4921. static struct block_device_operations md_fops =
  4922. {
  4923. .owner = THIS_MODULE,
  4924. .open = md_open,
  4925. .release = md_release,
  4926. .ioctl = md_ioctl,
  4927. .getgeo = md_getgeo,
  4928. .media_changed = md_media_changed,
  4929. .revalidate_disk= md_revalidate,
  4930. };
  4931. static int md_thread(void * arg)
  4932. {
  4933. mdk_thread_t *thread = arg;
  4934. /*
  4935. * md_thread is a 'system-thread', it's priority should be very
  4936. * high. We avoid resource deadlocks individually in each
  4937. * raid personality. (RAID5 does preallocation) We also use RR and
  4938. * the very same RT priority as kswapd, thus we will never get
  4939. * into a priority inversion deadlock.
  4940. *
  4941. * we definitely have to have equal or higher priority than
  4942. * bdflush, otherwise bdflush will deadlock if there are too
  4943. * many dirty RAID5 blocks.
  4944. */
  4945. allow_signal(SIGKILL);
  4946. while (!kthread_should_stop()) {
  4947. /* We need to wait INTERRUPTIBLE so that
  4948. * we don't add to the load-average.
  4949. * That means we need to be sure no signals are
  4950. * pending
  4951. */
  4952. if (signal_pending(current))
  4953. flush_signals(current);
  4954. wait_event_interruptible_timeout
  4955. (thread->wqueue,
  4956. test_bit(THREAD_WAKEUP, &thread->flags)
  4957. || kthread_should_stop(),
  4958. thread->timeout);
  4959. clear_bit(THREAD_WAKEUP, &thread->flags);
  4960. thread->run(thread->mddev);
  4961. }
  4962. return 0;
  4963. }
  4964. void md_wakeup_thread(mdk_thread_t *thread)
  4965. {
  4966. if (thread) {
  4967. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4968. set_bit(THREAD_WAKEUP, &thread->flags);
  4969. wake_up(&thread->wqueue);
  4970. }
  4971. }
  4972. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4973. const char *name)
  4974. {
  4975. mdk_thread_t *thread;
  4976. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4977. if (!thread)
  4978. return NULL;
  4979. init_waitqueue_head(&thread->wqueue);
  4980. thread->run = run;
  4981. thread->mddev = mddev;
  4982. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4983. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4984. if (IS_ERR(thread->tsk)) {
  4985. kfree(thread);
  4986. return NULL;
  4987. }
  4988. return thread;
  4989. }
  4990. void md_unregister_thread(mdk_thread_t *thread)
  4991. {
  4992. if (!thread)
  4993. return;
  4994. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  4995. kthread_stop(thread->tsk);
  4996. kfree(thread);
  4997. }
  4998. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4999. {
  5000. if (!mddev) {
  5001. MD_BUG();
  5002. return;
  5003. }
  5004. if (!rdev || test_bit(Faulty, &rdev->flags))
  5005. return;
  5006. if (mddev->external)
  5007. set_bit(Blocked, &rdev->flags);
  5008. /*
  5009. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  5010. mdname(mddev),
  5011. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  5012. __builtin_return_address(0),__builtin_return_address(1),
  5013. __builtin_return_address(2),__builtin_return_address(3));
  5014. */
  5015. if (!mddev->pers)
  5016. return;
  5017. if (!mddev->pers->error_handler)
  5018. return;
  5019. mddev->pers->error_handler(mddev,rdev);
  5020. if (mddev->degraded)
  5021. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5022. set_bit(StateChanged, &rdev->flags);
  5023. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5024. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5025. md_wakeup_thread(mddev->thread);
  5026. md_new_event_inintr(mddev);
  5027. }
  5028. /* seq_file implementation /proc/mdstat */
  5029. static void status_unused(struct seq_file *seq)
  5030. {
  5031. int i = 0;
  5032. mdk_rdev_t *rdev;
  5033. seq_printf(seq, "unused devices: ");
  5034. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5035. char b[BDEVNAME_SIZE];
  5036. i++;
  5037. seq_printf(seq, "%s ",
  5038. bdevname(rdev->bdev,b));
  5039. }
  5040. if (!i)
  5041. seq_printf(seq, "<none>");
  5042. seq_printf(seq, "\n");
  5043. }
  5044. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  5045. {
  5046. sector_t max_sectors, resync, res;
  5047. unsigned long dt, db;
  5048. sector_t rt;
  5049. int scale;
  5050. unsigned int per_milli;
  5051. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5052. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5053. max_sectors = mddev->resync_max_sectors;
  5054. else
  5055. max_sectors = mddev->dev_sectors;
  5056. /*
  5057. * Should not happen.
  5058. */
  5059. if (!max_sectors) {
  5060. MD_BUG();
  5061. return;
  5062. }
  5063. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5064. * in a sector_t, and (max_sectors>>scale) will fit in a
  5065. * u32, as those are the requirements for sector_div.
  5066. * Thus 'scale' must be at least 10
  5067. */
  5068. scale = 10;
  5069. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5070. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5071. scale++;
  5072. }
  5073. res = (resync>>scale)*1000;
  5074. sector_div(res, (u32)((max_sectors>>scale)+1));
  5075. per_milli = res;
  5076. {
  5077. int i, x = per_milli/50, y = 20-x;
  5078. seq_printf(seq, "[");
  5079. for (i = 0; i < x; i++)
  5080. seq_printf(seq, "=");
  5081. seq_printf(seq, ">");
  5082. for (i = 0; i < y; i++)
  5083. seq_printf(seq, ".");
  5084. seq_printf(seq, "] ");
  5085. }
  5086. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5087. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5088. "reshape" :
  5089. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5090. "check" :
  5091. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5092. "resync" : "recovery"))),
  5093. per_milli/10, per_milli % 10,
  5094. (unsigned long long) resync/2,
  5095. (unsigned long long) max_sectors/2);
  5096. /*
  5097. * dt: time from mark until now
  5098. * db: blocks written from mark until now
  5099. * rt: remaining time
  5100. *
  5101. * rt is a sector_t, so could be 32bit or 64bit.
  5102. * So we divide before multiply in case it is 32bit and close
  5103. * to the limit.
  5104. * We scale the divisor (db) by 32 to avoid loosing precision
  5105. * near the end of resync when the number of remaining sectors
  5106. * is close to 'db'.
  5107. * We then divide rt by 32 after multiplying by db to compensate.
  5108. * The '+1' avoids division by zero if db is very small.
  5109. */
  5110. dt = ((jiffies - mddev->resync_mark) / HZ);
  5111. if (!dt) dt++;
  5112. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5113. - mddev->resync_mark_cnt;
  5114. rt = max_sectors - resync; /* number of remaining sectors */
  5115. sector_div(rt, db/32+1);
  5116. rt *= dt;
  5117. rt >>= 5;
  5118. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5119. ((unsigned long)rt % 60)/6);
  5120. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5121. }
  5122. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5123. {
  5124. struct list_head *tmp;
  5125. loff_t l = *pos;
  5126. mddev_t *mddev;
  5127. if (l >= 0x10000)
  5128. return NULL;
  5129. if (!l--)
  5130. /* header */
  5131. return (void*)1;
  5132. spin_lock(&all_mddevs_lock);
  5133. list_for_each(tmp,&all_mddevs)
  5134. if (!l--) {
  5135. mddev = list_entry(tmp, mddev_t, all_mddevs);
  5136. mddev_get(mddev);
  5137. spin_unlock(&all_mddevs_lock);
  5138. return mddev;
  5139. }
  5140. spin_unlock(&all_mddevs_lock);
  5141. if (!l--)
  5142. return (void*)2;/* tail */
  5143. return NULL;
  5144. }
  5145. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5146. {
  5147. struct list_head *tmp;
  5148. mddev_t *next_mddev, *mddev = v;
  5149. ++*pos;
  5150. if (v == (void*)2)
  5151. return NULL;
  5152. spin_lock(&all_mddevs_lock);
  5153. if (v == (void*)1)
  5154. tmp = all_mddevs.next;
  5155. else
  5156. tmp = mddev->all_mddevs.next;
  5157. if (tmp != &all_mddevs)
  5158. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  5159. else {
  5160. next_mddev = (void*)2;
  5161. *pos = 0x10000;
  5162. }
  5163. spin_unlock(&all_mddevs_lock);
  5164. if (v != (void*)1)
  5165. mddev_put(mddev);
  5166. return next_mddev;
  5167. }
  5168. static void md_seq_stop(struct seq_file *seq, void *v)
  5169. {
  5170. mddev_t *mddev = v;
  5171. if (mddev && v != (void*)1 && v != (void*)2)
  5172. mddev_put(mddev);
  5173. }
  5174. struct mdstat_info {
  5175. int event;
  5176. };
  5177. static int md_seq_show(struct seq_file *seq, void *v)
  5178. {
  5179. mddev_t *mddev = v;
  5180. sector_t sectors;
  5181. mdk_rdev_t *rdev;
  5182. struct mdstat_info *mi = seq->private;
  5183. struct bitmap *bitmap;
  5184. if (v == (void*)1) {
  5185. struct mdk_personality *pers;
  5186. seq_printf(seq, "Personalities : ");
  5187. spin_lock(&pers_lock);
  5188. list_for_each_entry(pers, &pers_list, list)
  5189. seq_printf(seq, "[%s] ", pers->name);
  5190. spin_unlock(&pers_lock);
  5191. seq_printf(seq, "\n");
  5192. mi->event = atomic_read(&md_event_count);
  5193. return 0;
  5194. }
  5195. if (v == (void*)2) {
  5196. status_unused(seq);
  5197. return 0;
  5198. }
  5199. if (mddev_lock(mddev) < 0)
  5200. return -EINTR;
  5201. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5202. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5203. mddev->pers ? "" : "in");
  5204. if (mddev->pers) {
  5205. if (mddev->ro==1)
  5206. seq_printf(seq, " (read-only)");
  5207. if (mddev->ro==2)
  5208. seq_printf(seq, " (auto-read-only)");
  5209. seq_printf(seq, " %s", mddev->pers->name);
  5210. }
  5211. sectors = 0;
  5212. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5213. char b[BDEVNAME_SIZE];
  5214. seq_printf(seq, " %s[%d]",
  5215. bdevname(rdev->bdev,b), rdev->desc_nr);
  5216. if (test_bit(WriteMostly, &rdev->flags))
  5217. seq_printf(seq, "(W)");
  5218. if (test_bit(Faulty, &rdev->flags)) {
  5219. seq_printf(seq, "(F)");
  5220. continue;
  5221. } else if (rdev->raid_disk < 0)
  5222. seq_printf(seq, "(S)"); /* spare */
  5223. sectors += rdev->sectors;
  5224. }
  5225. if (!list_empty(&mddev->disks)) {
  5226. if (mddev->pers)
  5227. seq_printf(seq, "\n %llu blocks",
  5228. (unsigned long long)
  5229. mddev->array_sectors / 2);
  5230. else
  5231. seq_printf(seq, "\n %llu blocks",
  5232. (unsigned long long)sectors / 2);
  5233. }
  5234. if (mddev->persistent) {
  5235. if (mddev->major_version != 0 ||
  5236. mddev->minor_version != 90) {
  5237. seq_printf(seq," super %d.%d",
  5238. mddev->major_version,
  5239. mddev->minor_version);
  5240. }
  5241. } else if (mddev->external)
  5242. seq_printf(seq, " super external:%s",
  5243. mddev->metadata_type);
  5244. else
  5245. seq_printf(seq, " super non-persistent");
  5246. if (mddev->pers) {
  5247. mddev->pers->status(seq, mddev);
  5248. seq_printf(seq, "\n ");
  5249. if (mddev->pers->sync_request) {
  5250. if (mddev->curr_resync > 2) {
  5251. status_resync(seq, mddev);
  5252. seq_printf(seq, "\n ");
  5253. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5254. seq_printf(seq, "\tresync=DELAYED\n ");
  5255. else if (mddev->recovery_cp < MaxSector)
  5256. seq_printf(seq, "\tresync=PENDING\n ");
  5257. }
  5258. } else
  5259. seq_printf(seq, "\n ");
  5260. if ((bitmap = mddev->bitmap)) {
  5261. unsigned long chunk_kb;
  5262. unsigned long flags;
  5263. spin_lock_irqsave(&bitmap->lock, flags);
  5264. chunk_kb = bitmap->chunksize >> 10;
  5265. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5266. "%lu%s chunk",
  5267. bitmap->pages - bitmap->missing_pages,
  5268. bitmap->pages,
  5269. (bitmap->pages - bitmap->missing_pages)
  5270. << (PAGE_SHIFT - 10),
  5271. chunk_kb ? chunk_kb : bitmap->chunksize,
  5272. chunk_kb ? "KB" : "B");
  5273. if (bitmap->file) {
  5274. seq_printf(seq, ", file: ");
  5275. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5276. }
  5277. seq_printf(seq, "\n");
  5278. spin_unlock_irqrestore(&bitmap->lock, flags);
  5279. }
  5280. seq_printf(seq, "\n");
  5281. }
  5282. mddev_unlock(mddev);
  5283. return 0;
  5284. }
  5285. static const struct seq_operations md_seq_ops = {
  5286. .start = md_seq_start,
  5287. .next = md_seq_next,
  5288. .stop = md_seq_stop,
  5289. .show = md_seq_show,
  5290. };
  5291. static int md_seq_open(struct inode *inode, struct file *file)
  5292. {
  5293. int error;
  5294. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  5295. if (mi == NULL)
  5296. return -ENOMEM;
  5297. error = seq_open(file, &md_seq_ops);
  5298. if (error)
  5299. kfree(mi);
  5300. else {
  5301. struct seq_file *p = file->private_data;
  5302. p->private = mi;
  5303. mi->event = atomic_read(&md_event_count);
  5304. }
  5305. return error;
  5306. }
  5307. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  5308. {
  5309. struct seq_file *m = filp->private_data;
  5310. struct mdstat_info *mi = m->private;
  5311. int mask;
  5312. poll_wait(filp, &md_event_waiters, wait);
  5313. /* always allow read */
  5314. mask = POLLIN | POLLRDNORM;
  5315. if (mi->event != atomic_read(&md_event_count))
  5316. mask |= POLLERR | POLLPRI;
  5317. return mask;
  5318. }
  5319. static const struct file_operations md_seq_fops = {
  5320. .owner = THIS_MODULE,
  5321. .open = md_seq_open,
  5322. .read = seq_read,
  5323. .llseek = seq_lseek,
  5324. .release = seq_release_private,
  5325. .poll = mdstat_poll,
  5326. };
  5327. int register_md_personality(struct mdk_personality *p)
  5328. {
  5329. spin_lock(&pers_lock);
  5330. list_add_tail(&p->list, &pers_list);
  5331. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  5332. spin_unlock(&pers_lock);
  5333. return 0;
  5334. }
  5335. int unregister_md_personality(struct mdk_personality *p)
  5336. {
  5337. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  5338. spin_lock(&pers_lock);
  5339. list_del_init(&p->list);
  5340. spin_unlock(&pers_lock);
  5341. return 0;
  5342. }
  5343. static int is_mddev_idle(mddev_t *mddev, int init)
  5344. {
  5345. mdk_rdev_t * rdev;
  5346. int idle;
  5347. int curr_events;
  5348. idle = 1;
  5349. rcu_read_lock();
  5350. rdev_for_each_rcu(rdev, mddev) {
  5351. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  5352. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  5353. (int)part_stat_read(&disk->part0, sectors[1]) -
  5354. atomic_read(&disk->sync_io);
  5355. /* sync IO will cause sync_io to increase before the disk_stats
  5356. * as sync_io is counted when a request starts, and
  5357. * disk_stats is counted when it completes.
  5358. * So resync activity will cause curr_events to be smaller than
  5359. * when there was no such activity.
  5360. * non-sync IO will cause disk_stat to increase without
  5361. * increasing sync_io so curr_events will (eventually)
  5362. * be larger than it was before. Once it becomes
  5363. * substantially larger, the test below will cause
  5364. * the array to appear non-idle, and resync will slow
  5365. * down.
  5366. * If there is a lot of outstanding resync activity when
  5367. * we set last_event to curr_events, then all that activity
  5368. * completing might cause the array to appear non-idle
  5369. * and resync will be slowed down even though there might
  5370. * not have been non-resync activity. This will only
  5371. * happen once though. 'last_events' will soon reflect
  5372. * the state where there is little or no outstanding
  5373. * resync requests, and further resync activity will
  5374. * always make curr_events less than last_events.
  5375. *
  5376. */
  5377. if (init || curr_events - rdev->last_events > 64) {
  5378. rdev->last_events = curr_events;
  5379. idle = 0;
  5380. }
  5381. }
  5382. rcu_read_unlock();
  5383. return idle;
  5384. }
  5385. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  5386. {
  5387. /* another "blocks" (512byte) blocks have been synced */
  5388. atomic_sub(blocks, &mddev->recovery_active);
  5389. wake_up(&mddev->recovery_wait);
  5390. if (!ok) {
  5391. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5392. md_wakeup_thread(mddev->thread);
  5393. // stop recovery, signal do_sync ....
  5394. }
  5395. }
  5396. /* md_write_start(mddev, bi)
  5397. * If we need to update some array metadata (e.g. 'active' flag
  5398. * in superblock) before writing, schedule a superblock update
  5399. * and wait for it to complete.
  5400. */
  5401. void md_write_start(mddev_t *mddev, struct bio *bi)
  5402. {
  5403. int did_change = 0;
  5404. if (bio_data_dir(bi) != WRITE)
  5405. return;
  5406. BUG_ON(mddev->ro == 1);
  5407. if (mddev->ro == 2) {
  5408. /* need to switch to read/write */
  5409. mddev->ro = 0;
  5410. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5411. md_wakeup_thread(mddev->thread);
  5412. md_wakeup_thread(mddev->sync_thread);
  5413. did_change = 1;
  5414. }
  5415. atomic_inc(&mddev->writes_pending);
  5416. if (mddev->safemode == 1)
  5417. mddev->safemode = 0;
  5418. if (mddev->in_sync) {
  5419. spin_lock_irq(&mddev->write_lock);
  5420. if (mddev->in_sync) {
  5421. mddev->in_sync = 0;
  5422. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5423. md_wakeup_thread(mddev->thread);
  5424. did_change = 1;
  5425. }
  5426. spin_unlock_irq(&mddev->write_lock);
  5427. }
  5428. if (did_change)
  5429. sysfs_notify_dirent(mddev->sysfs_state);
  5430. wait_event(mddev->sb_wait,
  5431. !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
  5432. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5433. }
  5434. void md_write_end(mddev_t *mddev)
  5435. {
  5436. if (atomic_dec_and_test(&mddev->writes_pending)) {
  5437. if (mddev->safemode == 2)
  5438. md_wakeup_thread(mddev->thread);
  5439. else if (mddev->safemode_delay)
  5440. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  5441. }
  5442. }
  5443. /* md_allow_write(mddev)
  5444. * Calling this ensures that the array is marked 'active' so that writes
  5445. * may proceed without blocking. It is important to call this before
  5446. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  5447. * Must be called with mddev_lock held.
  5448. *
  5449. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  5450. * is dropped, so return -EAGAIN after notifying userspace.
  5451. */
  5452. int md_allow_write(mddev_t *mddev)
  5453. {
  5454. if (!mddev->pers)
  5455. return 0;
  5456. if (mddev->ro)
  5457. return 0;
  5458. if (!mddev->pers->sync_request)
  5459. return 0;
  5460. spin_lock_irq(&mddev->write_lock);
  5461. if (mddev->in_sync) {
  5462. mddev->in_sync = 0;
  5463. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5464. if (mddev->safemode_delay &&
  5465. mddev->safemode == 0)
  5466. mddev->safemode = 1;
  5467. spin_unlock_irq(&mddev->write_lock);
  5468. md_update_sb(mddev, 0);
  5469. sysfs_notify_dirent(mddev->sysfs_state);
  5470. } else
  5471. spin_unlock_irq(&mddev->write_lock);
  5472. if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  5473. return -EAGAIN;
  5474. else
  5475. return 0;
  5476. }
  5477. EXPORT_SYMBOL_GPL(md_allow_write);
  5478. #define SYNC_MARKS 10
  5479. #define SYNC_MARK_STEP (3*HZ)
  5480. void md_do_sync(mddev_t *mddev)
  5481. {
  5482. mddev_t *mddev2;
  5483. unsigned int currspeed = 0,
  5484. window;
  5485. sector_t max_sectors,j, io_sectors;
  5486. unsigned long mark[SYNC_MARKS];
  5487. sector_t mark_cnt[SYNC_MARKS];
  5488. int last_mark,m;
  5489. struct list_head *tmp;
  5490. sector_t last_check;
  5491. int skipped = 0;
  5492. mdk_rdev_t *rdev;
  5493. char *desc;
  5494. /* just incase thread restarts... */
  5495. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  5496. return;
  5497. if (mddev->ro) /* never try to sync a read-only array */
  5498. return;
  5499. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5500. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  5501. desc = "data-check";
  5502. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5503. desc = "requested-resync";
  5504. else
  5505. desc = "resync";
  5506. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5507. desc = "reshape";
  5508. else
  5509. desc = "recovery";
  5510. /* we overload curr_resync somewhat here.
  5511. * 0 == not engaged in resync at all
  5512. * 2 == checking that there is no conflict with another sync
  5513. * 1 == like 2, but have yielded to allow conflicting resync to
  5514. * commense
  5515. * other == active in resync - this many blocks
  5516. *
  5517. * Before starting a resync we must have set curr_resync to
  5518. * 2, and then checked that every "conflicting" array has curr_resync
  5519. * less than ours. When we find one that is the same or higher
  5520. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  5521. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  5522. * This will mean we have to start checking from the beginning again.
  5523. *
  5524. */
  5525. do {
  5526. mddev->curr_resync = 2;
  5527. try_again:
  5528. if (kthread_should_stop()) {
  5529. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5530. goto skip;
  5531. }
  5532. for_each_mddev(mddev2, tmp) {
  5533. if (mddev2 == mddev)
  5534. continue;
  5535. if (!mddev->parallel_resync
  5536. && mddev2->curr_resync
  5537. && match_mddev_units(mddev, mddev2)) {
  5538. DEFINE_WAIT(wq);
  5539. if (mddev < mddev2 && mddev->curr_resync == 2) {
  5540. /* arbitrarily yield */
  5541. mddev->curr_resync = 1;
  5542. wake_up(&resync_wait);
  5543. }
  5544. if (mddev > mddev2 && mddev->curr_resync == 1)
  5545. /* no need to wait here, we can wait the next
  5546. * time 'round when curr_resync == 2
  5547. */
  5548. continue;
  5549. /* We need to wait 'interruptible' so as not to
  5550. * contribute to the load average, and not to
  5551. * be caught by 'softlockup'
  5552. */
  5553. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  5554. if (!kthread_should_stop() &&
  5555. mddev2->curr_resync >= mddev->curr_resync) {
  5556. printk(KERN_INFO "md: delaying %s of %s"
  5557. " until %s has finished (they"
  5558. " share one or more physical units)\n",
  5559. desc, mdname(mddev), mdname(mddev2));
  5560. mddev_put(mddev2);
  5561. if (signal_pending(current))
  5562. flush_signals(current);
  5563. schedule();
  5564. finish_wait(&resync_wait, &wq);
  5565. goto try_again;
  5566. }
  5567. finish_wait(&resync_wait, &wq);
  5568. }
  5569. }
  5570. } while (mddev->curr_resync < 2);
  5571. j = 0;
  5572. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5573. /* resync follows the size requested by the personality,
  5574. * which defaults to physical size, but can be virtual size
  5575. */
  5576. max_sectors = mddev->resync_max_sectors;
  5577. mddev->resync_mismatches = 0;
  5578. /* we don't use the checkpoint if there's a bitmap */
  5579. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5580. j = mddev->resync_min;
  5581. else if (!mddev->bitmap)
  5582. j = mddev->recovery_cp;
  5583. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5584. max_sectors = mddev->dev_sectors;
  5585. else {
  5586. /* recovery follows the physical size of devices */
  5587. max_sectors = mddev->dev_sectors;
  5588. j = MaxSector;
  5589. list_for_each_entry(rdev, &mddev->disks, same_set)
  5590. if (rdev->raid_disk >= 0 &&
  5591. !test_bit(Faulty, &rdev->flags) &&
  5592. !test_bit(In_sync, &rdev->flags) &&
  5593. rdev->recovery_offset < j)
  5594. j = rdev->recovery_offset;
  5595. }
  5596. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  5597. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  5598. " %d KB/sec/disk.\n", speed_min(mddev));
  5599. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  5600. "(but not more than %d KB/sec) for %s.\n",
  5601. speed_max(mddev), desc);
  5602. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  5603. io_sectors = 0;
  5604. for (m = 0; m < SYNC_MARKS; m++) {
  5605. mark[m] = jiffies;
  5606. mark_cnt[m] = io_sectors;
  5607. }
  5608. last_mark = 0;
  5609. mddev->resync_mark = mark[last_mark];
  5610. mddev->resync_mark_cnt = mark_cnt[last_mark];
  5611. /*
  5612. * Tune reconstruction:
  5613. */
  5614. window = 32*(PAGE_SIZE/512);
  5615. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  5616. window/2,(unsigned long long) max_sectors/2);
  5617. atomic_set(&mddev->recovery_active, 0);
  5618. last_check = 0;
  5619. if (j>2) {
  5620. printk(KERN_INFO
  5621. "md: resuming %s of %s from checkpoint.\n",
  5622. desc, mdname(mddev));
  5623. mddev->curr_resync = j;
  5624. }
  5625. while (j < max_sectors) {
  5626. sector_t sectors;
  5627. skipped = 0;
  5628. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  5629. ((mddev->curr_resync > mddev->curr_resync_completed &&
  5630. (mddev->curr_resync - mddev->curr_resync_completed)
  5631. > (max_sectors >> 4)) ||
  5632. (j - mddev->curr_resync_completed)*2
  5633. >= mddev->resync_max - mddev->curr_resync_completed
  5634. )) {
  5635. /* time to update curr_resync_completed */
  5636. blk_unplug(mddev->queue);
  5637. wait_event(mddev->recovery_wait,
  5638. atomic_read(&mddev->recovery_active) == 0);
  5639. mddev->curr_resync_completed =
  5640. mddev->curr_resync;
  5641. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5642. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  5643. }
  5644. if (j >= mddev->resync_max)
  5645. wait_event(mddev->recovery_wait,
  5646. mddev->resync_max > j
  5647. || kthread_should_stop());
  5648. if (kthread_should_stop())
  5649. goto interrupted;
  5650. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  5651. currspeed < speed_min(mddev));
  5652. if (sectors == 0) {
  5653. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5654. goto out;
  5655. }
  5656. if (!skipped) { /* actual IO requested */
  5657. io_sectors += sectors;
  5658. atomic_add(sectors, &mddev->recovery_active);
  5659. }
  5660. j += sectors;
  5661. if (j>1) mddev->curr_resync = j;
  5662. mddev->curr_mark_cnt = io_sectors;
  5663. if (last_check == 0)
  5664. /* this is the earliers that rebuilt will be
  5665. * visible in /proc/mdstat
  5666. */
  5667. md_new_event(mddev);
  5668. if (last_check + window > io_sectors || j == max_sectors)
  5669. continue;
  5670. last_check = io_sectors;
  5671. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5672. break;
  5673. repeat:
  5674. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  5675. /* step marks */
  5676. int next = (last_mark+1) % SYNC_MARKS;
  5677. mddev->resync_mark = mark[next];
  5678. mddev->resync_mark_cnt = mark_cnt[next];
  5679. mark[next] = jiffies;
  5680. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  5681. last_mark = next;
  5682. }
  5683. if (kthread_should_stop())
  5684. goto interrupted;
  5685. /*
  5686. * this loop exits only if either when we are slower than
  5687. * the 'hard' speed limit, or the system was IO-idle for
  5688. * a jiffy.
  5689. * the system might be non-idle CPU-wise, but we only care
  5690. * about not overloading the IO subsystem. (things like an
  5691. * e2fsck being done on the RAID array should execute fast)
  5692. */
  5693. blk_unplug(mddev->queue);
  5694. cond_resched();
  5695. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  5696. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  5697. if (currspeed > speed_min(mddev)) {
  5698. if ((currspeed > speed_max(mddev)) ||
  5699. !is_mddev_idle(mddev, 0)) {
  5700. msleep(500);
  5701. goto repeat;
  5702. }
  5703. }
  5704. }
  5705. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  5706. /*
  5707. * this also signals 'finished resyncing' to md_stop
  5708. */
  5709. out:
  5710. blk_unplug(mddev->queue);
  5711. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  5712. /* tell personality that we are finished */
  5713. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  5714. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  5715. mddev->curr_resync > 2) {
  5716. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5717. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  5718. if (mddev->curr_resync >= mddev->recovery_cp) {
  5719. printk(KERN_INFO
  5720. "md: checkpointing %s of %s.\n",
  5721. desc, mdname(mddev));
  5722. mddev->recovery_cp = mddev->curr_resync;
  5723. }
  5724. } else
  5725. mddev->recovery_cp = MaxSector;
  5726. } else {
  5727. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5728. mddev->curr_resync = MaxSector;
  5729. list_for_each_entry(rdev, &mddev->disks, same_set)
  5730. if (rdev->raid_disk >= 0 &&
  5731. !test_bit(Faulty, &rdev->flags) &&
  5732. !test_bit(In_sync, &rdev->flags) &&
  5733. rdev->recovery_offset < mddev->curr_resync)
  5734. rdev->recovery_offset = mddev->curr_resync;
  5735. }
  5736. }
  5737. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5738. skip:
  5739. mddev->curr_resync = 0;
  5740. mddev->curr_resync_completed = 0;
  5741. mddev->resync_min = 0;
  5742. mddev->resync_max = MaxSector;
  5743. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  5744. wake_up(&resync_wait);
  5745. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5746. md_wakeup_thread(mddev->thread);
  5747. return;
  5748. interrupted:
  5749. /*
  5750. * got a signal, exit.
  5751. */
  5752. printk(KERN_INFO
  5753. "md: md_do_sync() got signal ... exiting\n");
  5754. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5755. goto out;
  5756. }
  5757. EXPORT_SYMBOL_GPL(md_do_sync);
  5758. static int remove_and_add_spares(mddev_t *mddev)
  5759. {
  5760. mdk_rdev_t *rdev;
  5761. int spares = 0;
  5762. mddev->curr_resync_completed = 0;
  5763. list_for_each_entry(rdev, &mddev->disks, same_set)
  5764. if (rdev->raid_disk >= 0 &&
  5765. !test_bit(Blocked, &rdev->flags) &&
  5766. (test_bit(Faulty, &rdev->flags) ||
  5767. ! test_bit(In_sync, &rdev->flags)) &&
  5768. atomic_read(&rdev->nr_pending)==0) {
  5769. if (mddev->pers->hot_remove_disk(
  5770. mddev, rdev->raid_disk)==0) {
  5771. char nm[20];
  5772. sprintf(nm,"rd%d", rdev->raid_disk);
  5773. sysfs_remove_link(&mddev->kobj, nm);
  5774. rdev->raid_disk = -1;
  5775. }
  5776. }
  5777. if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
  5778. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5779. if (rdev->raid_disk >= 0 &&
  5780. !test_bit(In_sync, &rdev->flags) &&
  5781. !test_bit(Blocked, &rdev->flags))
  5782. spares++;
  5783. if (rdev->raid_disk < 0
  5784. && !test_bit(Faulty, &rdev->flags)) {
  5785. rdev->recovery_offset = 0;
  5786. if (mddev->pers->
  5787. hot_add_disk(mddev, rdev) == 0) {
  5788. char nm[20];
  5789. sprintf(nm, "rd%d", rdev->raid_disk);
  5790. if (sysfs_create_link(&mddev->kobj,
  5791. &rdev->kobj, nm))
  5792. printk(KERN_WARNING
  5793. "md: cannot register "
  5794. "%s for %s\n",
  5795. nm, mdname(mddev));
  5796. spares++;
  5797. md_new_event(mddev);
  5798. } else
  5799. break;
  5800. }
  5801. }
  5802. }
  5803. return spares;
  5804. }
  5805. /*
  5806. * This routine is regularly called by all per-raid-array threads to
  5807. * deal with generic issues like resync and super-block update.
  5808. * Raid personalities that don't have a thread (linear/raid0) do not
  5809. * need this as they never do any recovery or update the superblock.
  5810. *
  5811. * It does not do any resync itself, but rather "forks" off other threads
  5812. * to do that as needed.
  5813. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  5814. * "->recovery" and create a thread at ->sync_thread.
  5815. * When the thread finishes it sets MD_RECOVERY_DONE
  5816. * and wakeups up this thread which will reap the thread and finish up.
  5817. * This thread also removes any faulty devices (with nr_pending == 0).
  5818. *
  5819. * The overall approach is:
  5820. * 1/ if the superblock needs updating, update it.
  5821. * 2/ If a recovery thread is running, don't do anything else.
  5822. * 3/ If recovery has finished, clean up, possibly marking spares active.
  5823. * 4/ If there are any faulty devices, remove them.
  5824. * 5/ If array is degraded, try to add spares devices
  5825. * 6/ If array has spares or is not in-sync, start a resync thread.
  5826. */
  5827. void md_check_recovery(mddev_t *mddev)
  5828. {
  5829. mdk_rdev_t *rdev;
  5830. if (mddev->bitmap)
  5831. bitmap_daemon_work(mddev->bitmap);
  5832. if (mddev->ro)
  5833. return;
  5834. if (signal_pending(current)) {
  5835. if (mddev->pers->sync_request && !mddev->external) {
  5836. printk(KERN_INFO "md: %s in immediate safe mode\n",
  5837. mdname(mddev));
  5838. mddev->safemode = 2;
  5839. }
  5840. flush_signals(current);
  5841. }
  5842. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  5843. return;
  5844. if ( ! (
  5845. (mddev->flags && !mddev->external) ||
  5846. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  5847. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  5848. (mddev->external == 0 && mddev->safemode == 1) ||
  5849. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  5850. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  5851. ))
  5852. return;
  5853. if (mddev_trylock(mddev)) {
  5854. int spares = 0;
  5855. if (mddev->ro) {
  5856. /* Only thing we do on a ro array is remove
  5857. * failed devices.
  5858. */
  5859. remove_and_add_spares(mddev);
  5860. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5861. goto unlock;
  5862. }
  5863. if (!mddev->external) {
  5864. int did_change = 0;
  5865. spin_lock_irq(&mddev->write_lock);
  5866. if (mddev->safemode &&
  5867. !atomic_read(&mddev->writes_pending) &&
  5868. !mddev->in_sync &&
  5869. mddev->recovery_cp == MaxSector) {
  5870. mddev->in_sync = 1;
  5871. did_change = 1;
  5872. if (mddev->persistent)
  5873. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5874. }
  5875. if (mddev->safemode == 1)
  5876. mddev->safemode = 0;
  5877. spin_unlock_irq(&mddev->write_lock);
  5878. if (did_change)
  5879. sysfs_notify_dirent(mddev->sysfs_state);
  5880. }
  5881. if (mddev->flags)
  5882. md_update_sb(mddev, 0);
  5883. list_for_each_entry(rdev, &mddev->disks, same_set)
  5884. if (test_and_clear_bit(StateChanged, &rdev->flags))
  5885. sysfs_notify_dirent(rdev->sysfs_state);
  5886. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  5887. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  5888. /* resync/recovery still happening */
  5889. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5890. goto unlock;
  5891. }
  5892. if (mddev->sync_thread) {
  5893. /* resync has finished, collect result */
  5894. md_unregister_thread(mddev->sync_thread);
  5895. mddev->sync_thread = NULL;
  5896. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  5897. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  5898. /* success...*/
  5899. /* activate any spares */
  5900. if (mddev->pers->spare_active(mddev))
  5901. sysfs_notify(&mddev->kobj, NULL,
  5902. "degraded");
  5903. }
  5904. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  5905. mddev->pers->finish_reshape)
  5906. mddev->pers->finish_reshape(mddev);
  5907. md_update_sb(mddev, 1);
  5908. /* if array is no-longer degraded, then any saved_raid_disk
  5909. * information must be scrapped
  5910. */
  5911. if (!mddev->degraded)
  5912. list_for_each_entry(rdev, &mddev->disks, same_set)
  5913. rdev->saved_raid_disk = -1;
  5914. mddev->recovery = 0;
  5915. /* flag recovery needed just to double check */
  5916. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5917. sysfs_notify_dirent(mddev->sysfs_action);
  5918. md_new_event(mddev);
  5919. goto unlock;
  5920. }
  5921. /* Set RUNNING before clearing NEEDED to avoid
  5922. * any transients in the value of "sync_action".
  5923. */
  5924. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  5925. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5926. /* Clear some bits that don't mean anything, but
  5927. * might be left set
  5928. */
  5929. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5930. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5931. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  5932. goto unlock;
  5933. /* no recovery is running.
  5934. * remove any failed drives, then
  5935. * add spares if possible.
  5936. * Spare are also removed and re-added, to allow
  5937. * the personality to fail the re-add.
  5938. */
  5939. if (mddev->reshape_position != MaxSector) {
  5940. if (mddev->pers->check_reshape == NULL ||
  5941. mddev->pers->check_reshape(mddev) != 0)
  5942. /* Cannot proceed */
  5943. goto unlock;
  5944. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  5945. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5946. } else if ((spares = remove_and_add_spares(mddev))) {
  5947. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5948. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  5949. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  5950. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5951. } else if (mddev->recovery_cp < MaxSector) {
  5952. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5953. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5954. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5955. /* nothing to be done ... */
  5956. goto unlock;
  5957. if (mddev->pers->sync_request) {
  5958. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  5959. /* We are adding a device or devices to an array
  5960. * which has the bitmap stored on all devices.
  5961. * So make sure all bitmap pages get written
  5962. */
  5963. bitmap_write_all(mddev->bitmap);
  5964. }
  5965. mddev->sync_thread = md_register_thread(md_do_sync,
  5966. mddev,
  5967. "%s_resync");
  5968. if (!mddev->sync_thread) {
  5969. printk(KERN_ERR "%s: could not start resync"
  5970. " thread...\n",
  5971. mdname(mddev));
  5972. /* leave the spares where they are, it shouldn't hurt */
  5973. mddev->recovery = 0;
  5974. } else
  5975. md_wakeup_thread(mddev->sync_thread);
  5976. sysfs_notify_dirent(mddev->sysfs_action);
  5977. md_new_event(mddev);
  5978. }
  5979. unlock:
  5980. if (!mddev->sync_thread) {
  5981. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  5982. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  5983. &mddev->recovery))
  5984. if (mddev->sysfs_action)
  5985. sysfs_notify_dirent(mddev->sysfs_action);
  5986. }
  5987. mddev_unlock(mddev);
  5988. }
  5989. }
  5990. void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  5991. {
  5992. sysfs_notify_dirent(rdev->sysfs_state);
  5993. wait_event_timeout(rdev->blocked_wait,
  5994. !test_bit(Blocked, &rdev->flags),
  5995. msecs_to_jiffies(5000));
  5996. rdev_dec_pending(rdev, mddev);
  5997. }
  5998. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  5999. static int md_notify_reboot(struct notifier_block *this,
  6000. unsigned long code, void *x)
  6001. {
  6002. struct list_head *tmp;
  6003. mddev_t *mddev;
  6004. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  6005. printk(KERN_INFO "md: stopping all md devices.\n");
  6006. for_each_mddev(mddev, tmp)
  6007. if (mddev_trylock(mddev)) {
  6008. /* Force a switch to readonly even array
  6009. * appears to still be in use. Hence
  6010. * the '100'.
  6011. */
  6012. do_md_stop(mddev, 1, 100);
  6013. mddev_unlock(mddev);
  6014. }
  6015. /*
  6016. * certain more exotic SCSI devices are known to be
  6017. * volatile wrt too early system reboots. While the
  6018. * right place to handle this issue is the given
  6019. * driver, we do want to have a safe RAID driver ...
  6020. */
  6021. mdelay(1000*1);
  6022. }
  6023. return NOTIFY_DONE;
  6024. }
  6025. static struct notifier_block md_notifier = {
  6026. .notifier_call = md_notify_reboot,
  6027. .next = NULL,
  6028. .priority = INT_MAX, /* before any real devices */
  6029. };
  6030. static void md_geninit(void)
  6031. {
  6032. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  6033. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  6034. }
  6035. static int __init md_init(void)
  6036. {
  6037. if (register_blkdev(MD_MAJOR, "md"))
  6038. return -1;
  6039. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  6040. unregister_blkdev(MD_MAJOR, "md");
  6041. return -1;
  6042. }
  6043. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  6044. md_probe, NULL, NULL);
  6045. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  6046. md_probe, NULL, NULL);
  6047. register_reboot_notifier(&md_notifier);
  6048. raid_table_header = register_sysctl_table(raid_root_table);
  6049. md_geninit();
  6050. return 0;
  6051. }
  6052. #ifndef MODULE
  6053. /*
  6054. * Searches all registered partitions for autorun RAID arrays
  6055. * at boot time.
  6056. */
  6057. static LIST_HEAD(all_detected_devices);
  6058. struct detected_devices_node {
  6059. struct list_head list;
  6060. dev_t dev;
  6061. };
  6062. void md_autodetect_dev(dev_t dev)
  6063. {
  6064. struct detected_devices_node *node_detected_dev;
  6065. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  6066. if (node_detected_dev) {
  6067. node_detected_dev->dev = dev;
  6068. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  6069. } else {
  6070. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  6071. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  6072. }
  6073. }
  6074. static void autostart_arrays(int part)
  6075. {
  6076. mdk_rdev_t *rdev;
  6077. struct detected_devices_node *node_detected_dev;
  6078. dev_t dev;
  6079. int i_scanned, i_passed;
  6080. i_scanned = 0;
  6081. i_passed = 0;
  6082. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  6083. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  6084. i_scanned++;
  6085. node_detected_dev = list_entry(all_detected_devices.next,
  6086. struct detected_devices_node, list);
  6087. list_del(&node_detected_dev->list);
  6088. dev = node_detected_dev->dev;
  6089. kfree(node_detected_dev);
  6090. rdev = md_import_device(dev,0, 90);
  6091. if (IS_ERR(rdev))
  6092. continue;
  6093. if (test_bit(Faulty, &rdev->flags)) {
  6094. MD_BUG();
  6095. continue;
  6096. }
  6097. set_bit(AutoDetected, &rdev->flags);
  6098. list_add(&rdev->same_set, &pending_raid_disks);
  6099. i_passed++;
  6100. }
  6101. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  6102. i_scanned, i_passed);
  6103. autorun_devices(part);
  6104. }
  6105. #endif /* !MODULE */
  6106. static __exit void md_exit(void)
  6107. {
  6108. mddev_t *mddev;
  6109. struct list_head *tmp;
  6110. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  6111. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  6112. unregister_blkdev(MD_MAJOR,"md");
  6113. unregister_blkdev(mdp_major, "mdp");
  6114. unregister_reboot_notifier(&md_notifier);
  6115. unregister_sysctl_table(raid_table_header);
  6116. remove_proc_entry("mdstat", NULL);
  6117. for_each_mddev(mddev, tmp) {
  6118. export_array(mddev);
  6119. mddev->hold_active = 0;
  6120. }
  6121. }
  6122. subsys_initcall(md_init);
  6123. module_exit(md_exit)
  6124. static int get_ro(char *buffer, struct kernel_param *kp)
  6125. {
  6126. return sprintf(buffer, "%d", start_readonly);
  6127. }
  6128. static int set_ro(const char *val, struct kernel_param *kp)
  6129. {
  6130. char *e;
  6131. int num = simple_strtoul(val, &e, 10);
  6132. if (*val && (*e == '\0' || *e == '\n')) {
  6133. start_readonly = num;
  6134. return 0;
  6135. }
  6136. return -EINVAL;
  6137. }
  6138. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  6139. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  6140. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  6141. EXPORT_SYMBOL(register_md_personality);
  6142. EXPORT_SYMBOL(unregister_md_personality);
  6143. EXPORT_SYMBOL(md_error);
  6144. EXPORT_SYMBOL(md_done_sync);
  6145. EXPORT_SYMBOL(md_write_start);
  6146. EXPORT_SYMBOL(md_write_end);
  6147. EXPORT_SYMBOL(md_register_thread);
  6148. EXPORT_SYMBOL(md_unregister_thread);
  6149. EXPORT_SYMBOL(md_wakeup_thread);
  6150. EXPORT_SYMBOL(md_check_recovery);
  6151. MODULE_LICENSE("GPL");
  6152. MODULE_ALIAS("md");
  6153. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);