rmap.c 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_mutex
  27. * anon_vma->mutex
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  34. * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
  35. * sb_lock (within inode_lock in fs/fs-writeback.c)
  36. * mapping->tree_lock (widely used, in set_page_dirty,
  37. * in arch-dependent flush_dcache_mmap_lock,
  38. * within inode_wb_list_lock in __sync_single_inode)
  39. *
  40. * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
  41. * ->tasklist_lock
  42. * pte map lock
  43. */
  44. #include <linux/mm.h>
  45. #include <linux/pagemap.h>
  46. #include <linux/swap.h>
  47. #include <linux/swapops.h>
  48. #include <linux/slab.h>
  49. #include <linux/init.h>
  50. #include <linux/ksm.h>
  51. #include <linux/rmap.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/module.h>
  54. #include <linux/memcontrol.h>
  55. #include <linux/mmu_notifier.h>
  56. #include <linux/migrate.h>
  57. #include <linux/hugetlb.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. struct anon_vma *anon_vma;
  65. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  66. if (anon_vma) {
  67. atomic_set(&anon_vma->refcount, 1);
  68. /*
  69. * Initialise the anon_vma root to point to itself. If called
  70. * from fork, the root will be reset to the parents anon_vma.
  71. */
  72. anon_vma->root = anon_vma;
  73. }
  74. return anon_vma;
  75. }
  76. static inline void anon_vma_free(struct anon_vma *anon_vma)
  77. {
  78. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  79. /*
  80. * Synchronize against page_lock_anon_vma() such that
  81. * we can safely hold the lock without the anon_vma getting
  82. * freed.
  83. *
  84. * Relies on the full mb implied by the atomic_dec_and_test() from
  85. * put_anon_vma() against the acquire barrier implied by
  86. * mutex_trylock() from page_lock_anon_vma(). This orders:
  87. *
  88. * page_lock_anon_vma() VS put_anon_vma()
  89. * mutex_trylock() atomic_dec_and_test()
  90. * LOCK MB
  91. * atomic_read() mutex_is_locked()
  92. *
  93. * LOCK should suffice since the actual taking of the lock must
  94. * happen _before_ what follows.
  95. */
  96. if (mutex_is_locked(&anon_vma->root->mutex)) {
  97. anon_vma_lock(anon_vma);
  98. anon_vma_unlock(anon_vma);
  99. }
  100. kmem_cache_free(anon_vma_cachep, anon_vma);
  101. }
  102. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  103. {
  104. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  105. }
  106. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  107. {
  108. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  109. }
  110. /**
  111. * anon_vma_prepare - attach an anon_vma to a memory region
  112. * @vma: the memory region in question
  113. *
  114. * This makes sure the memory mapping described by 'vma' has
  115. * an 'anon_vma' attached to it, so that we can associate the
  116. * anonymous pages mapped into it with that anon_vma.
  117. *
  118. * The common case will be that we already have one, but if
  119. * not we either need to find an adjacent mapping that we
  120. * can re-use the anon_vma from (very common when the only
  121. * reason for splitting a vma has been mprotect()), or we
  122. * allocate a new one.
  123. *
  124. * Anon-vma allocations are very subtle, because we may have
  125. * optimistically looked up an anon_vma in page_lock_anon_vma()
  126. * and that may actually touch the spinlock even in the newly
  127. * allocated vma (it depends on RCU to make sure that the
  128. * anon_vma isn't actually destroyed).
  129. *
  130. * As a result, we need to do proper anon_vma locking even
  131. * for the new allocation. At the same time, we do not want
  132. * to do any locking for the common case of already having
  133. * an anon_vma.
  134. *
  135. * This must be called with the mmap_sem held for reading.
  136. */
  137. int anon_vma_prepare(struct vm_area_struct *vma)
  138. {
  139. struct anon_vma *anon_vma = vma->anon_vma;
  140. struct anon_vma_chain *avc;
  141. might_sleep();
  142. if (unlikely(!anon_vma)) {
  143. struct mm_struct *mm = vma->vm_mm;
  144. struct anon_vma *allocated;
  145. avc = anon_vma_chain_alloc(GFP_KERNEL);
  146. if (!avc)
  147. goto out_enomem;
  148. anon_vma = find_mergeable_anon_vma(vma);
  149. allocated = NULL;
  150. if (!anon_vma) {
  151. anon_vma = anon_vma_alloc();
  152. if (unlikely(!anon_vma))
  153. goto out_enomem_free_avc;
  154. allocated = anon_vma;
  155. }
  156. anon_vma_lock(anon_vma);
  157. /* page_table_lock to protect against threads */
  158. spin_lock(&mm->page_table_lock);
  159. if (likely(!vma->anon_vma)) {
  160. vma->anon_vma = anon_vma;
  161. avc->anon_vma = anon_vma;
  162. avc->vma = vma;
  163. list_add(&avc->same_vma, &vma->anon_vma_chain);
  164. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  165. allocated = NULL;
  166. avc = NULL;
  167. }
  168. spin_unlock(&mm->page_table_lock);
  169. anon_vma_unlock(anon_vma);
  170. if (unlikely(allocated))
  171. put_anon_vma(allocated);
  172. if (unlikely(avc))
  173. anon_vma_chain_free(avc);
  174. }
  175. return 0;
  176. out_enomem_free_avc:
  177. anon_vma_chain_free(avc);
  178. out_enomem:
  179. return -ENOMEM;
  180. }
  181. /*
  182. * This is a useful helper function for locking the anon_vma root as
  183. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  184. * have the same vma.
  185. *
  186. * Such anon_vma's should have the same root, so you'd expect to see
  187. * just a single mutex_lock for the whole traversal.
  188. */
  189. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  190. {
  191. struct anon_vma *new_root = anon_vma->root;
  192. if (new_root != root) {
  193. if (WARN_ON_ONCE(root))
  194. mutex_unlock(&root->mutex);
  195. root = new_root;
  196. mutex_lock(&root->mutex);
  197. }
  198. return root;
  199. }
  200. static inline void unlock_anon_vma_root(struct anon_vma *root)
  201. {
  202. if (root)
  203. mutex_unlock(&root->mutex);
  204. }
  205. static void anon_vma_chain_link(struct vm_area_struct *vma,
  206. struct anon_vma_chain *avc,
  207. struct anon_vma *anon_vma)
  208. {
  209. avc->vma = vma;
  210. avc->anon_vma = anon_vma;
  211. list_add(&avc->same_vma, &vma->anon_vma_chain);
  212. /*
  213. * It's critical to add new vmas to the tail of the anon_vma,
  214. * see comment in huge_memory.c:__split_huge_page().
  215. */
  216. list_add_tail(&avc->same_anon_vma, &anon_vma->head);
  217. }
  218. /*
  219. * Attach the anon_vmas from src to dst.
  220. * Returns 0 on success, -ENOMEM on failure.
  221. */
  222. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  223. {
  224. struct anon_vma_chain *avc, *pavc;
  225. struct anon_vma *root = NULL;
  226. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  227. struct anon_vma *anon_vma;
  228. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  229. if (unlikely(!avc)) {
  230. unlock_anon_vma_root(root);
  231. root = NULL;
  232. avc = anon_vma_chain_alloc(GFP_KERNEL);
  233. if (!avc)
  234. goto enomem_failure;
  235. }
  236. anon_vma = pavc->anon_vma;
  237. root = lock_anon_vma_root(root, anon_vma);
  238. anon_vma_chain_link(dst, avc, anon_vma);
  239. }
  240. unlock_anon_vma_root(root);
  241. return 0;
  242. enomem_failure:
  243. unlink_anon_vmas(dst);
  244. return -ENOMEM;
  245. }
  246. /*
  247. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  248. * the corresponding VMA in the parent process is attached to.
  249. * Returns 0 on success, non-zero on failure.
  250. */
  251. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  252. {
  253. struct anon_vma_chain *avc;
  254. struct anon_vma *anon_vma;
  255. /* Don't bother if the parent process has no anon_vma here. */
  256. if (!pvma->anon_vma)
  257. return 0;
  258. /*
  259. * First, attach the new VMA to the parent VMA's anon_vmas,
  260. * so rmap can find non-COWed pages in child processes.
  261. */
  262. if (anon_vma_clone(vma, pvma))
  263. return -ENOMEM;
  264. /* Then add our own anon_vma. */
  265. anon_vma = anon_vma_alloc();
  266. if (!anon_vma)
  267. goto out_error;
  268. avc = anon_vma_chain_alloc(GFP_KERNEL);
  269. if (!avc)
  270. goto out_error_free_anon_vma;
  271. /*
  272. * The root anon_vma's spinlock is the lock actually used when we
  273. * lock any of the anon_vmas in this anon_vma tree.
  274. */
  275. anon_vma->root = pvma->anon_vma->root;
  276. /*
  277. * With refcounts, an anon_vma can stay around longer than the
  278. * process it belongs to. The root anon_vma needs to be pinned until
  279. * this anon_vma is freed, because the lock lives in the root.
  280. */
  281. get_anon_vma(anon_vma->root);
  282. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  283. vma->anon_vma = anon_vma;
  284. anon_vma_lock(anon_vma);
  285. anon_vma_chain_link(vma, avc, anon_vma);
  286. anon_vma_unlock(anon_vma);
  287. return 0;
  288. out_error_free_anon_vma:
  289. put_anon_vma(anon_vma);
  290. out_error:
  291. unlink_anon_vmas(vma);
  292. return -ENOMEM;
  293. }
  294. void unlink_anon_vmas(struct vm_area_struct *vma)
  295. {
  296. struct anon_vma_chain *avc, *next;
  297. struct anon_vma *root = NULL;
  298. /*
  299. * Unlink each anon_vma chained to the VMA. This list is ordered
  300. * from newest to oldest, ensuring the root anon_vma gets freed last.
  301. */
  302. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  303. struct anon_vma *anon_vma = avc->anon_vma;
  304. root = lock_anon_vma_root(root, anon_vma);
  305. list_del(&avc->same_anon_vma);
  306. /*
  307. * Leave empty anon_vmas on the list - we'll need
  308. * to free them outside the lock.
  309. */
  310. if (list_empty(&anon_vma->head))
  311. continue;
  312. list_del(&avc->same_vma);
  313. anon_vma_chain_free(avc);
  314. }
  315. unlock_anon_vma_root(root);
  316. /*
  317. * Iterate the list once more, it now only contains empty and unlinked
  318. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  319. * needing to acquire the anon_vma->root->mutex.
  320. */
  321. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  322. struct anon_vma *anon_vma = avc->anon_vma;
  323. put_anon_vma(anon_vma);
  324. list_del(&avc->same_vma);
  325. anon_vma_chain_free(avc);
  326. }
  327. }
  328. static void anon_vma_ctor(void *data)
  329. {
  330. struct anon_vma *anon_vma = data;
  331. mutex_init(&anon_vma->mutex);
  332. atomic_set(&anon_vma->refcount, 0);
  333. INIT_LIST_HEAD(&anon_vma->head);
  334. }
  335. void __init anon_vma_init(void)
  336. {
  337. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  338. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  339. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  340. }
  341. /*
  342. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  343. *
  344. * Since there is no serialization what so ever against page_remove_rmap()
  345. * the best this function can do is return a locked anon_vma that might
  346. * have been relevant to this page.
  347. *
  348. * The page might have been remapped to a different anon_vma or the anon_vma
  349. * returned may already be freed (and even reused).
  350. *
  351. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  352. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  353. * ensure that any anon_vma obtained from the page will still be valid for as
  354. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  355. *
  356. * All users of this function must be very careful when walking the anon_vma
  357. * chain and verify that the page in question is indeed mapped in it
  358. * [ something equivalent to page_mapped_in_vma() ].
  359. *
  360. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  361. * that the anon_vma pointer from page->mapping is valid if there is a
  362. * mapcount, we can dereference the anon_vma after observing those.
  363. */
  364. struct anon_vma *page_get_anon_vma(struct page *page)
  365. {
  366. struct anon_vma *anon_vma = NULL;
  367. unsigned long anon_mapping;
  368. rcu_read_lock();
  369. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  370. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  371. goto out;
  372. if (!page_mapped(page))
  373. goto out;
  374. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  375. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  376. anon_vma = NULL;
  377. goto out;
  378. }
  379. /*
  380. * If this page is still mapped, then its anon_vma cannot have been
  381. * freed. But if it has been unmapped, we have no security against the
  382. * anon_vma structure being freed and reused (for another anon_vma:
  383. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  384. * above cannot corrupt).
  385. */
  386. if (!page_mapped(page)) {
  387. put_anon_vma(anon_vma);
  388. anon_vma = NULL;
  389. }
  390. out:
  391. rcu_read_unlock();
  392. return anon_vma;
  393. }
  394. /*
  395. * Similar to page_get_anon_vma() except it locks the anon_vma.
  396. *
  397. * Its a little more complex as it tries to keep the fast path to a single
  398. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  399. * reference like with page_get_anon_vma() and then block on the mutex.
  400. */
  401. struct anon_vma *page_lock_anon_vma(struct page *page)
  402. {
  403. struct anon_vma *anon_vma = NULL;
  404. struct anon_vma *root_anon_vma;
  405. unsigned long anon_mapping;
  406. rcu_read_lock();
  407. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  408. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  409. goto out;
  410. if (!page_mapped(page))
  411. goto out;
  412. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  413. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  414. if (mutex_trylock(&root_anon_vma->mutex)) {
  415. /*
  416. * If the page is still mapped, then this anon_vma is still
  417. * its anon_vma, and holding the mutex ensures that it will
  418. * not go away, see anon_vma_free().
  419. */
  420. if (!page_mapped(page)) {
  421. mutex_unlock(&root_anon_vma->mutex);
  422. anon_vma = NULL;
  423. }
  424. goto out;
  425. }
  426. /* trylock failed, we got to sleep */
  427. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  428. anon_vma = NULL;
  429. goto out;
  430. }
  431. if (!page_mapped(page)) {
  432. put_anon_vma(anon_vma);
  433. anon_vma = NULL;
  434. goto out;
  435. }
  436. /* we pinned the anon_vma, its safe to sleep */
  437. rcu_read_unlock();
  438. anon_vma_lock(anon_vma);
  439. if (atomic_dec_and_test(&anon_vma->refcount)) {
  440. /*
  441. * Oops, we held the last refcount, release the lock
  442. * and bail -- can't simply use put_anon_vma() because
  443. * we'll deadlock on the anon_vma_lock() recursion.
  444. */
  445. anon_vma_unlock(anon_vma);
  446. __put_anon_vma(anon_vma);
  447. anon_vma = NULL;
  448. }
  449. return anon_vma;
  450. out:
  451. rcu_read_unlock();
  452. return anon_vma;
  453. }
  454. void page_unlock_anon_vma(struct anon_vma *anon_vma)
  455. {
  456. anon_vma_unlock(anon_vma);
  457. }
  458. /*
  459. * At what user virtual address is page expected in @vma?
  460. * Returns virtual address or -EFAULT if page's index/offset is not
  461. * within the range mapped the @vma.
  462. */
  463. inline unsigned long
  464. vma_address(struct page *page, struct vm_area_struct *vma)
  465. {
  466. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  467. unsigned long address;
  468. if (unlikely(is_vm_hugetlb_page(vma)))
  469. pgoff = page->index << huge_page_order(page_hstate(page));
  470. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  471. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  472. /* page should be within @vma mapping range */
  473. return -EFAULT;
  474. }
  475. return address;
  476. }
  477. /*
  478. * At what user virtual address is page expected in vma?
  479. * Caller should check the page is actually part of the vma.
  480. */
  481. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  482. {
  483. if (PageAnon(page)) {
  484. struct anon_vma *page__anon_vma = page_anon_vma(page);
  485. /*
  486. * Note: swapoff's unuse_vma() is more efficient with this
  487. * check, and needs it to match anon_vma when KSM is active.
  488. */
  489. if (!vma->anon_vma || !page__anon_vma ||
  490. vma->anon_vma->root != page__anon_vma->root)
  491. return -EFAULT;
  492. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  493. if (!vma->vm_file ||
  494. vma->vm_file->f_mapping != page->mapping)
  495. return -EFAULT;
  496. } else
  497. return -EFAULT;
  498. return vma_address(page, vma);
  499. }
  500. /*
  501. * Check that @page is mapped at @address into @mm.
  502. *
  503. * If @sync is false, page_check_address may perform a racy check to avoid
  504. * the page table lock when the pte is not present (helpful when reclaiming
  505. * highly shared pages).
  506. *
  507. * On success returns with pte mapped and locked.
  508. */
  509. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  510. unsigned long address, spinlock_t **ptlp, int sync)
  511. {
  512. pgd_t *pgd;
  513. pud_t *pud;
  514. pmd_t *pmd;
  515. pte_t *pte;
  516. spinlock_t *ptl;
  517. if (unlikely(PageHuge(page))) {
  518. pte = huge_pte_offset(mm, address);
  519. ptl = &mm->page_table_lock;
  520. goto check;
  521. }
  522. pgd = pgd_offset(mm, address);
  523. if (!pgd_present(*pgd))
  524. return NULL;
  525. pud = pud_offset(pgd, address);
  526. if (!pud_present(*pud))
  527. return NULL;
  528. pmd = pmd_offset(pud, address);
  529. if (!pmd_present(*pmd))
  530. return NULL;
  531. if (pmd_trans_huge(*pmd))
  532. return NULL;
  533. pte = pte_offset_map(pmd, address);
  534. /* Make a quick check before getting the lock */
  535. if (!sync && !pte_present(*pte)) {
  536. pte_unmap(pte);
  537. return NULL;
  538. }
  539. ptl = pte_lockptr(mm, pmd);
  540. check:
  541. spin_lock(ptl);
  542. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  543. *ptlp = ptl;
  544. return pte;
  545. }
  546. pte_unmap_unlock(pte, ptl);
  547. return NULL;
  548. }
  549. /**
  550. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  551. * @page: the page to test
  552. * @vma: the VMA to test
  553. *
  554. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  555. * if the page is not mapped into the page tables of this VMA. Only
  556. * valid for normal file or anonymous VMAs.
  557. */
  558. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  559. {
  560. unsigned long address;
  561. pte_t *pte;
  562. spinlock_t *ptl;
  563. address = vma_address(page, vma);
  564. if (address == -EFAULT) /* out of vma range */
  565. return 0;
  566. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  567. if (!pte) /* the page is not in this mm */
  568. return 0;
  569. pte_unmap_unlock(pte, ptl);
  570. return 1;
  571. }
  572. /*
  573. * Subfunctions of page_referenced: page_referenced_one called
  574. * repeatedly from either page_referenced_anon or page_referenced_file.
  575. */
  576. int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  577. unsigned long address, unsigned int *mapcount,
  578. unsigned long *vm_flags)
  579. {
  580. struct mm_struct *mm = vma->vm_mm;
  581. int referenced = 0;
  582. if (unlikely(PageTransHuge(page))) {
  583. pmd_t *pmd;
  584. spin_lock(&mm->page_table_lock);
  585. /*
  586. * rmap might return false positives; we must filter
  587. * these out using page_check_address_pmd().
  588. */
  589. pmd = page_check_address_pmd(page, mm, address,
  590. PAGE_CHECK_ADDRESS_PMD_FLAG);
  591. if (!pmd) {
  592. spin_unlock(&mm->page_table_lock);
  593. goto out;
  594. }
  595. if (vma->vm_flags & VM_LOCKED) {
  596. spin_unlock(&mm->page_table_lock);
  597. *mapcount = 0; /* break early from loop */
  598. *vm_flags |= VM_LOCKED;
  599. goto out;
  600. }
  601. /* go ahead even if the pmd is pmd_trans_splitting() */
  602. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  603. referenced++;
  604. spin_unlock(&mm->page_table_lock);
  605. } else {
  606. pte_t *pte;
  607. spinlock_t *ptl;
  608. /*
  609. * rmap might return false positives; we must filter
  610. * these out using page_check_address().
  611. */
  612. pte = page_check_address(page, mm, address, &ptl, 0);
  613. if (!pte)
  614. goto out;
  615. if (vma->vm_flags & VM_LOCKED) {
  616. pte_unmap_unlock(pte, ptl);
  617. *mapcount = 0; /* break early from loop */
  618. *vm_flags |= VM_LOCKED;
  619. goto out;
  620. }
  621. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  622. /*
  623. * Don't treat a reference through a sequentially read
  624. * mapping as such. If the page has been used in
  625. * another mapping, we will catch it; if this other
  626. * mapping is already gone, the unmap path will have
  627. * set PG_referenced or activated the page.
  628. */
  629. if (likely(!VM_SequentialReadHint(vma)))
  630. referenced++;
  631. }
  632. pte_unmap_unlock(pte, ptl);
  633. }
  634. /* Pretend the page is referenced if the task has the
  635. swap token and is in the middle of a page fault. */
  636. if (mm != current->mm && has_swap_token(mm) &&
  637. rwsem_is_locked(&mm->mmap_sem))
  638. referenced++;
  639. (*mapcount)--;
  640. if (referenced)
  641. *vm_flags |= vma->vm_flags;
  642. out:
  643. return referenced;
  644. }
  645. static int page_referenced_anon(struct page *page,
  646. struct mem_cgroup *mem_cont,
  647. unsigned long *vm_flags)
  648. {
  649. unsigned int mapcount;
  650. struct anon_vma *anon_vma;
  651. struct anon_vma_chain *avc;
  652. int referenced = 0;
  653. anon_vma = page_lock_anon_vma(page);
  654. if (!anon_vma)
  655. return referenced;
  656. mapcount = page_mapcount(page);
  657. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  658. struct vm_area_struct *vma = avc->vma;
  659. unsigned long address = vma_address(page, vma);
  660. if (address == -EFAULT)
  661. continue;
  662. /*
  663. * If we are reclaiming on behalf of a cgroup, skip
  664. * counting on behalf of references from different
  665. * cgroups
  666. */
  667. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  668. continue;
  669. referenced += page_referenced_one(page, vma, address,
  670. &mapcount, vm_flags);
  671. if (!mapcount)
  672. break;
  673. }
  674. page_unlock_anon_vma(anon_vma);
  675. return referenced;
  676. }
  677. /**
  678. * page_referenced_file - referenced check for object-based rmap
  679. * @page: the page we're checking references on.
  680. * @mem_cont: target memory controller
  681. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  682. *
  683. * For an object-based mapped page, find all the places it is mapped and
  684. * check/clear the referenced flag. This is done by following the page->mapping
  685. * pointer, then walking the chain of vmas it holds. It returns the number
  686. * of references it found.
  687. *
  688. * This function is only called from page_referenced for object-based pages.
  689. */
  690. static int page_referenced_file(struct page *page,
  691. struct mem_cgroup *mem_cont,
  692. unsigned long *vm_flags)
  693. {
  694. unsigned int mapcount;
  695. struct address_space *mapping = page->mapping;
  696. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  697. struct vm_area_struct *vma;
  698. struct prio_tree_iter iter;
  699. int referenced = 0;
  700. /*
  701. * The caller's checks on page->mapping and !PageAnon have made
  702. * sure that this is a file page: the check for page->mapping
  703. * excludes the case just before it gets set on an anon page.
  704. */
  705. BUG_ON(PageAnon(page));
  706. /*
  707. * The page lock not only makes sure that page->mapping cannot
  708. * suddenly be NULLified by truncation, it makes sure that the
  709. * structure at mapping cannot be freed and reused yet,
  710. * so we can safely take mapping->i_mmap_mutex.
  711. */
  712. BUG_ON(!PageLocked(page));
  713. mutex_lock(&mapping->i_mmap_mutex);
  714. /*
  715. * i_mmap_mutex does not stabilize mapcount at all, but mapcount
  716. * is more likely to be accurate if we note it after spinning.
  717. */
  718. mapcount = page_mapcount(page);
  719. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  720. unsigned long address = vma_address(page, vma);
  721. if (address == -EFAULT)
  722. continue;
  723. /*
  724. * If we are reclaiming on behalf of a cgroup, skip
  725. * counting on behalf of references from different
  726. * cgroups
  727. */
  728. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  729. continue;
  730. referenced += page_referenced_one(page, vma, address,
  731. &mapcount, vm_flags);
  732. if (!mapcount)
  733. break;
  734. }
  735. mutex_unlock(&mapping->i_mmap_mutex);
  736. return referenced;
  737. }
  738. /**
  739. * page_referenced - test if the page was referenced
  740. * @page: the page to test
  741. * @is_locked: caller holds lock on the page
  742. * @mem_cont: target memory controller
  743. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  744. *
  745. * Quick test_and_clear_referenced for all mappings to a page,
  746. * returns the number of ptes which referenced the page.
  747. */
  748. int page_referenced(struct page *page,
  749. int is_locked,
  750. struct mem_cgroup *mem_cont,
  751. unsigned long *vm_flags)
  752. {
  753. int referenced = 0;
  754. int we_locked = 0;
  755. *vm_flags = 0;
  756. if (page_mapped(page) && page_rmapping(page)) {
  757. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  758. we_locked = trylock_page(page);
  759. if (!we_locked) {
  760. referenced++;
  761. goto out;
  762. }
  763. }
  764. if (unlikely(PageKsm(page)))
  765. referenced += page_referenced_ksm(page, mem_cont,
  766. vm_flags);
  767. else if (PageAnon(page))
  768. referenced += page_referenced_anon(page, mem_cont,
  769. vm_flags);
  770. else if (page->mapping)
  771. referenced += page_referenced_file(page, mem_cont,
  772. vm_flags);
  773. if (we_locked)
  774. unlock_page(page);
  775. }
  776. out:
  777. if (page_test_and_clear_young(page_to_pfn(page)))
  778. referenced++;
  779. return referenced;
  780. }
  781. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  782. unsigned long address)
  783. {
  784. struct mm_struct *mm = vma->vm_mm;
  785. pte_t *pte;
  786. spinlock_t *ptl;
  787. int ret = 0;
  788. pte = page_check_address(page, mm, address, &ptl, 1);
  789. if (!pte)
  790. goto out;
  791. if (pte_dirty(*pte) || pte_write(*pte)) {
  792. pte_t entry;
  793. flush_cache_page(vma, address, pte_pfn(*pte));
  794. entry = ptep_clear_flush_notify(vma, address, pte);
  795. entry = pte_wrprotect(entry);
  796. entry = pte_mkclean(entry);
  797. set_pte_at(mm, address, pte, entry);
  798. ret = 1;
  799. }
  800. pte_unmap_unlock(pte, ptl);
  801. out:
  802. return ret;
  803. }
  804. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  805. {
  806. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  807. struct vm_area_struct *vma;
  808. struct prio_tree_iter iter;
  809. int ret = 0;
  810. BUG_ON(PageAnon(page));
  811. mutex_lock(&mapping->i_mmap_mutex);
  812. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  813. if (vma->vm_flags & VM_SHARED) {
  814. unsigned long address = vma_address(page, vma);
  815. if (address == -EFAULT)
  816. continue;
  817. ret += page_mkclean_one(page, vma, address);
  818. }
  819. }
  820. mutex_unlock(&mapping->i_mmap_mutex);
  821. return ret;
  822. }
  823. int page_mkclean(struct page *page)
  824. {
  825. int ret = 0;
  826. BUG_ON(!PageLocked(page));
  827. if (page_mapped(page)) {
  828. struct address_space *mapping = page_mapping(page);
  829. if (mapping) {
  830. ret = page_mkclean_file(mapping, page);
  831. if (page_test_and_clear_dirty(page_to_pfn(page), 1))
  832. ret = 1;
  833. }
  834. }
  835. return ret;
  836. }
  837. EXPORT_SYMBOL_GPL(page_mkclean);
  838. /**
  839. * page_move_anon_rmap - move a page to our anon_vma
  840. * @page: the page to move to our anon_vma
  841. * @vma: the vma the page belongs to
  842. * @address: the user virtual address mapped
  843. *
  844. * When a page belongs exclusively to one process after a COW event,
  845. * that page can be moved into the anon_vma that belongs to just that
  846. * process, so the rmap code will not search the parent or sibling
  847. * processes.
  848. */
  849. void page_move_anon_rmap(struct page *page,
  850. struct vm_area_struct *vma, unsigned long address)
  851. {
  852. struct anon_vma *anon_vma = vma->anon_vma;
  853. VM_BUG_ON(!PageLocked(page));
  854. VM_BUG_ON(!anon_vma);
  855. VM_BUG_ON(page->index != linear_page_index(vma, address));
  856. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  857. page->mapping = (struct address_space *) anon_vma;
  858. }
  859. /**
  860. * __page_set_anon_rmap - set up new anonymous rmap
  861. * @page: Page to add to rmap
  862. * @vma: VM area to add page to.
  863. * @address: User virtual address of the mapping
  864. * @exclusive: the page is exclusively owned by the current process
  865. */
  866. static void __page_set_anon_rmap(struct page *page,
  867. struct vm_area_struct *vma, unsigned long address, int exclusive)
  868. {
  869. struct anon_vma *anon_vma = vma->anon_vma;
  870. BUG_ON(!anon_vma);
  871. if (PageAnon(page))
  872. return;
  873. /*
  874. * If the page isn't exclusively mapped into this vma,
  875. * we must use the _oldest_ possible anon_vma for the
  876. * page mapping!
  877. */
  878. if (!exclusive)
  879. anon_vma = anon_vma->root;
  880. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  881. page->mapping = (struct address_space *) anon_vma;
  882. page->index = linear_page_index(vma, address);
  883. }
  884. /**
  885. * __page_check_anon_rmap - sanity check anonymous rmap addition
  886. * @page: the page to add the mapping to
  887. * @vma: the vm area in which the mapping is added
  888. * @address: the user virtual address mapped
  889. */
  890. static void __page_check_anon_rmap(struct page *page,
  891. struct vm_area_struct *vma, unsigned long address)
  892. {
  893. #ifdef CONFIG_DEBUG_VM
  894. /*
  895. * The page's anon-rmap details (mapping and index) are guaranteed to
  896. * be set up correctly at this point.
  897. *
  898. * We have exclusion against page_add_anon_rmap because the caller
  899. * always holds the page locked, except if called from page_dup_rmap,
  900. * in which case the page is already known to be setup.
  901. *
  902. * We have exclusion against page_add_new_anon_rmap because those pages
  903. * are initially only visible via the pagetables, and the pte is locked
  904. * over the call to page_add_new_anon_rmap.
  905. */
  906. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  907. BUG_ON(page->index != linear_page_index(vma, address));
  908. #endif
  909. }
  910. /**
  911. * page_add_anon_rmap - add pte mapping to an anonymous page
  912. * @page: the page to add the mapping to
  913. * @vma: the vm area in which the mapping is added
  914. * @address: the user virtual address mapped
  915. *
  916. * The caller needs to hold the pte lock, and the page must be locked in
  917. * the anon_vma case: to serialize mapping,index checking after setting,
  918. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  919. * (but PageKsm is never downgraded to PageAnon).
  920. */
  921. void page_add_anon_rmap(struct page *page,
  922. struct vm_area_struct *vma, unsigned long address)
  923. {
  924. do_page_add_anon_rmap(page, vma, address, 0);
  925. }
  926. /*
  927. * Special version of the above for do_swap_page, which often runs
  928. * into pages that are exclusively owned by the current process.
  929. * Everybody else should continue to use page_add_anon_rmap above.
  930. */
  931. void do_page_add_anon_rmap(struct page *page,
  932. struct vm_area_struct *vma, unsigned long address, int exclusive)
  933. {
  934. int first = atomic_inc_and_test(&page->_mapcount);
  935. if (first) {
  936. if (!PageTransHuge(page))
  937. __inc_zone_page_state(page, NR_ANON_PAGES);
  938. else
  939. __inc_zone_page_state(page,
  940. NR_ANON_TRANSPARENT_HUGEPAGES);
  941. }
  942. if (unlikely(PageKsm(page)))
  943. return;
  944. VM_BUG_ON(!PageLocked(page));
  945. /* address might be in next vma when migration races vma_adjust */
  946. if (first)
  947. __page_set_anon_rmap(page, vma, address, exclusive);
  948. else
  949. __page_check_anon_rmap(page, vma, address);
  950. }
  951. /**
  952. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  953. * @page: the page to add the mapping to
  954. * @vma: the vm area in which the mapping is added
  955. * @address: the user virtual address mapped
  956. *
  957. * Same as page_add_anon_rmap but must only be called on *new* pages.
  958. * This means the inc-and-test can be bypassed.
  959. * Page does not have to be locked.
  960. */
  961. void page_add_new_anon_rmap(struct page *page,
  962. struct vm_area_struct *vma, unsigned long address)
  963. {
  964. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  965. SetPageSwapBacked(page);
  966. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  967. if (!PageTransHuge(page))
  968. __inc_zone_page_state(page, NR_ANON_PAGES);
  969. else
  970. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  971. __page_set_anon_rmap(page, vma, address, 1);
  972. if (page_evictable(page, vma))
  973. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  974. else
  975. add_page_to_unevictable_list(page);
  976. }
  977. /**
  978. * page_add_file_rmap - add pte mapping to a file page
  979. * @page: the page to add the mapping to
  980. *
  981. * The caller needs to hold the pte lock.
  982. */
  983. void page_add_file_rmap(struct page *page)
  984. {
  985. if (atomic_inc_and_test(&page->_mapcount)) {
  986. __inc_zone_page_state(page, NR_FILE_MAPPED);
  987. mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
  988. }
  989. }
  990. /**
  991. * page_remove_rmap - take down pte mapping from a page
  992. * @page: page to remove mapping from
  993. *
  994. * The caller needs to hold the pte lock.
  995. */
  996. void page_remove_rmap(struct page *page)
  997. {
  998. /* page still mapped by someone else? */
  999. if (!atomic_add_negative(-1, &page->_mapcount))
  1000. return;
  1001. /*
  1002. * Now that the last pte has gone, s390 must transfer dirty
  1003. * flag from storage key to struct page. We can usually skip
  1004. * this if the page is anon, so about to be freed; but perhaps
  1005. * not if it's in swapcache - there might be another pte slot
  1006. * containing the swap entry, but page not yet written to swap.
  1007. */
  1008. if ((!PageAnon(page) || PageSwapCache(page)) &&
  1009. page_test_and_clear_dirty(page_to_pfn(page), 1))
  1010. set_page_dirty(page);
  1011. /*
  1012. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  1013. * and not charged by memcg for now.
  1014. */
  1015. if (unlikely(PageHuge(page)))
  1016. return;
  1017. if (PageAnon(page)) {
  1018. mem_cgroup_uncharge_page(page);
  1019. if (!PageTransHuge(page))
  1020. __dec_zone_page_state(page, NR_ANON_PAGES);
  1021. else
  1022. __dec_zone_page_state(page,
  1023. NR_ANON_TRANSPARENT_HUGEPAGES);
  1024. } else {
  1025. __dec_zone_page_state(page, NR_FILE_MAPPED);
  1026. mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
  1027. }
  1028. /*
  1029. * It would be tidy to reset the PageAnon mapping here,
  1030. * but that might overwrite a racing page_add_anon_rmap
  1031. * which increments mapcount after us but sets mapping
  1032. * before us: so leave the reset to free_hot_cold_page,
  1033. * and remember that it's only reliable while mapped.
  1034. * Leaving it set also helps swapoff to reinstate ptes
  1035. * faster for those pages still in swapcache.
  1036. */
  1037. }
  1038. /*
  1039. * Subfunctions of try_to_unmap: try_to_unmap_one called
  1040. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  1041. */
  1042. int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1043. unsigned long address, enum ttu_flags flags)
  1044. {
  1045. struct mm_struct *mm = vma->vm_mm;
  1046. pte_t *pte;
  1047. pte_t pteval;
  1048. spinlock_t *ptl;
  1049. int ret = SWAP_AGAIN;
  1050. pte = page_check_address(page, mm, address, &ptl, 0);
  1051. if (!pte)
  1052. goto out;
  1053. /*
  1054. * If the page is mlock()d, we cannot swap it out.
  1055. * If it's recently referenced (perhaps page_referenced
  1056. * skipped over this mm) then we should reactivate it.
  1057. */
  1058. if (!(flags & TTU_IGNORE_MLOCK)) {
  1059. if (vma->vm_flags & VM_LOCKED)
  1060. goto out_mlock;
  1061. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1062. goto out_unmap;
  1063. }
  1064. if (!(flags & TTU_IGNORE_ACCESS)) {
  1065. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1066. ret = SWAP_FAIL;
  1067. goto out_unmap;
  1068. }
  1069. }
  1070. /* Nuke the page table entry. */
  1071. flush_cache_page(vma, address, page_to_pfn(page));
  1072. pteval = ptep_clear_flush_notify(vma, address, pte);
  1073. /* Move the dirty bit to the physical page now the pte is gone. */
  1074. if (pte_dirty(pteval))
  1075. set_page_dirty(page);
  1076. /* Update high watermark before we lower rss */
  1077. update_hiwater_rss(mm);
  1078. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1079. if (PageAnon(page))
  1080. dec_mm_counter(mm, MM_ANONPAGES);
  1081. else
  1082. dec_mm_counter(mm, MM_FILEPAGES);
  1083. set_pte_at(mm, address, pte,
  1084. swp_entry_to_pte(make_hwpoison_entry(page)));
  1085. } else if (PageAnon(page)) {
  1086. swp_entry_t entry = { .val = page_private(page) };
  1087. if (PageSwapCache(page)) {
  1088. /*
  1089. * Store the swap location in the pte.
  1090. * See handle_pte_fault() ...
  1091. */
  1092. if (swap_duplicate(entry) < 0) {
  1093. set_pte_at(mm, address, pte, pteval);
  1094. ret = SWAP_FAIL;
  1095. goto out_unmap;
  1096. }
  1097. if (list_empty(&mm->mmlist)) {
  1098. spin_lock(&mmlist_lock);
  1099. if (list_empty(&mm->mmlist))
  1100. list_add(&mm->mmlist, &init_mm.mmlist);
  1101. spin_unlock(&mmlist_lock);
  1102. }
  1103. dec_mm_counter(mm, MM_ANONPAGES);
  1104. inc_mm_counter(mm, MM_SWAPENTS);
  1105. } else if (PAGE_MIGRATION) {
  1106. /*
  1107. * Store the pfn of the page in a special migration
  1108. * pte. do_swap_page() will wait until the migration
  1109. * pte is removed and then restart fault handling.
  1110. */
  1111. BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
  1112. entry = make_migration_entry(page, pte_write(pteval));
  1113. }
  1114. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1115. BUG_ON(pte_file(*pte));
  1116. } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
  1117. /* Establish migration entry for a file page */
  1118. swp_entry_t entry;
  1119. entry = make_migration_entry(page, pte_write(pteval));
  1120. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1121. } else
  1122. dec_mm_counter(mm, MM_FILEPAGES);
  1123. page_remove_rmap(page);
  1124. page_cache_release(page);
  1125. out_unmap:
  1126. pte_unmap_unlock(pte, ptl);
  1127. out:
  1128. return ret;
  1129. out_mlock:
  1130. pte_unmap_unlock(pte, ptl);
  1131. /*
  1132. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1133. * unstable result and race. Plus, We can't wait here because
  1134. * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
  1135. * if trylock failed, the page remain in evictable lru and later
  1136. * vmscan could retry to move the page to unevictable lru if the
  1137. * page is actually mlocked.
  1138. */
  1139. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1140. if (vma->vm_flags & VM_LOCKED) {
  1141. mlock_vma_page(page);
  1142. ret = SWAP_MLOCK;
  1143. }
  1144. up_read(&vma->vm_mm->mmap_sem);
  1145. }
  1146. return ret;
  1147. }
  1148. /*
  1149. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1150. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1151. * Consequently, given a particular page and its ->index, we cannot locate the
  1152. * ptes which are mapping that page without an exhaustive linear search.
  1153. *
  1154. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1155. * maps the file to which the target page belongs. The ->vm_private_data field
  1156. * holds the current cursor into that scan. Successive searches will circulate
  1157. * around the vma's virtual address space.
  1158. *
  1159. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1160. * more scanning pressure is placed against them as well. Eventually pages
  1161. * will become fully unmapped and are eligible for eviction.
  1162. *
  1163. * For very sparsely populated VMAs this is a little inefficient - chances are
  1164. * there there won't be many ptes located within the scan cluster. In this case
  1165. * maybe we could scan further - to the end of the pte page, perhaps.
  1166. *
  1167. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1168. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1169. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1170. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1171. */
  1172. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1173. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1174. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1175. struct vm_area_struct *vma, struct page *check_page)
  1176. {
  1177. struct mm_struct *mm = vma->vm_mm;
  1178. pgd_t *pgd;
  1179. pud_t *pud;
  1180. pmd_t *pmd;
  1181. pte_t *pte;
  1182. pte_t pteval;
  1183. spinlock_t *ptl;
  1184. struct page *page;
  1185. unsigned long address;
  1186. unsigned long end;
  1187. int ret = SWAP_AGAIN;
  1188. int locked_vma = 0;
  1189. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1190. end = address + CLUSTER_SIZE;
  1191. if (address < vma->vm_start)
  1192. address = vma->vm_start;
  1193. if (end > vma->vm_end)
  1194. end = vma->vm_end;
  1195. pgd = pgd_offset(mm, address);
  1196. if (!pgd_present(*pgd))
  1197. return ret;
  1198. pud = pud_offset(pgd, address);
  1199. if (!pud_present(*pud))
  1200. return ret;
  1201. pmd = pmd_offset(pud, address);
  1202. if (!pmd_present(*pmd))
  1203. return ret;
  1204. /*
  1205. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1206. * keep the sem while scanning the cluster for mlocking pages.
  1207. */
  1208. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1209. locked_vma = (vma->vm_flags & VM_LOCKED);
  1210. if (!locked_vma)
  1211. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1212. }
  1213. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1214. /* Update high watermark before we lower rss */
  1215. update_hiwater_rss(mm);
  1216. for (; address < end; pte++, address += PAGE_SIZE) {
  1217. if (!pte_present(*pte))
  1218. continue;
  1219. page = vm_normal_page(vma, address, *pte);
  1220. BUG_ON(!page || PageAnon(page));
  1221. if (locked_vma) {
  1222. mlock_vma_page(page); /* no-op if already mlocked */
  1223. if (page == check_page)
  1224. ret = SWAP_MLOCK;
  1225. continue; /* don't unmap */
  1226. }
  1227. if (ptep_clear_flush_young_notify(vma, address, pte))
  1228. continue;
  1229. /* Nuke the page table entry. */
  1230. flush_cache_page(vma, address, pte_pfn(*pte));
  1231. pteval = ptep_clear_flush_notify(vma, address, pte);
  1232. /* If nonlinear, store the file page offset in the pte. */
  1233. if (page->index != linear_page_index(vma, address))
  1234. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  1235. /* Move the dirty bit to the physical page now the pte is gone. */
  1236. if (pte_dirty(pteval))
  1237. set_page_dirty(page);
  1238. page_remove_rmap(page);
  1239. page_cache_release(page);
  1240. dec_mm_counter(mm, MM_FILEPAGES);
  1241. (*mapcount)--;
  1242. }
  1243. pte_unmap_unlock(pte - 1, ptl);
  1244. if (locked_vma)
  1245. up_read(&vma->vm_mm->mmap_sem);
  1246. return ret;
  1247. }
  1248. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1249. {
  1250. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1251. if (!maybe_stack)
  1252. return false;
  1253. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1254. VM_STACK_INCOMPLETE_SETUP)
  1255. return true;
  1256. return false;
  1257. }
  1258. /**
  1259. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  1260. * rmap method
  1261. * @page: the page to unmap/unlock
  1262. * @flags: action and flags
  1263. *
  1264. * Find all the mappings of a page using the mapping pointer and the vma chains
  1265. * contained in the anon_vma struct it points to.
  1266. *
  1267. * This function is only called from try_to_unmap/try_to_munlock for
  1268. * anonymous pages.
  1269. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1270. * where the page was found will be held for write. So, we won't recheck
  1271. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1272. * 'LOCKED.
  1273. */
  1274. static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
  1275. {
  1276. struct anon_vma *anon_vma;
  1277. struct anon_vma_chain *avc;
  1278. int ret = SWAP_AGAIN;
  1279. anon_vma = page_lock_anon_vma(page);
  1280. if (!anon_vma)
  1281. return ret;
  1282. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1283. struct vm_area_struct *vma = avc->vma;
  1284. unsigned long address;
  1285. /*
  1286. * During exec, a temporary VMA is setup and later moved.
  1287. * The VMA is moved under the anon_vma lock but not the
  1288. * page tables leading to a race where migration cannot
  1289. * find the migration ptes. Rather than increasing the
  1290. * locking requirements of exec(), migration skips
  1291. * temporary VMAs until after exec() completes.
  1292. */
  1293. if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
  1294. is_vma_temporary_stack(vma))
  1295. continue;
  1296. address = vma_address(page, vma);
  1297. if (address == -EFAULT)
  1298. continue;
  1299. ret = try_to_unmap_one(page, vma, address, flags);
  1300. if (ret != SWAP_AGAIN || !page_mapped(page))
  1301. break;
  1302. }
  1303. page_unlock_anon_vma(anon_vma);
  1304. return ret;
  1305. }
  1306. /**
  1307. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  1308. * @page: the page to unmap/unlock
  1309. * @flags: action and flags
  1310. *
  1311. * Find all the mappings of a page using the mapping pointer and the vma chains
  1312. * contained in the address_space struct it points to.
  1313. *
  1314. * This function is only called from try_to_unmap/try_to_munlock for
  1315. * object-based pages.
  1316. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1317. * where the page was found will be held for write. So, we won't recheck
  1318. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1319. * 'LOCKED.
  1320. */
  1321. static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
  1322. {
  1323. struct address_space *mapping = page->mapping;
  1324. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1325. struct vm_area_struct *vma;
  1326. struct prio_tree_iter iter;
  1327. int ret = SWAP_AGAIN;
  1328. unsigned long cursor;
  1329. unsigned long max_nl_cursor = 0;
  1330. unsigned long max_nl_size = 0;
  1331. unsigned int mapcount;
  1332. mutex_lock(&mapping->i_mmap_mutex);
  1333. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1334. unsigned long address = vma_address(page, vma);
  1335. if (address == -EFAULT)
  1336. continue;
  1337. ret = try_to_unmap_one(page, vma, address, flags);
  1338. if (ret != SWAP_AGAIN || !page_mapped(page))
  1339. goto out;
  1340. }
  1341. if (list_empty(&mapping->i_mmap_nonlinear))
  1342. goto out;
  1343. /*
  1344. * We don't bother to try to find the munlocked page in nonlinears.
  1345. * It's costly. Instead, later, page reclaim logic may call
  1346. * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
  1347. */
  1348. if (TTU_ACTION(flags) == TTU_MUNLOCK)
  1349. goto out;
  1350. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1351. shared.vm_set.list) {
  1352. cursor = (unsigned long) vma->vm_private_data;
  1353. if (cursor > max_nl_cursor)
  1354. max_nl_cursor = cursor;
  1355. cursor = vma->vm_end - vma->vm_start;
  1356. if (cursor > max_nl_size)
  1357. max_nl_size = cursor;
  1358. }
  1359. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1360. ret = SWAP_FAIL;
  1361. goto out;
  1362. }
  1363. /*
  1364. * We don't try to search for this page in the nonlinear vmas,
  1365. * and page_referenced wouldn't have found it anyway. Instead
  1366. * just walk the nonlinear vmas trying to age and unmap some.
  1367. * The mapcount of the page we came in with is irrelevant,
  1368. * but even so use it as a guide to how hard we should try?
  1369. */
  1370. mapcount = page_mapcount(page);
  1371. if (!mapcount)
  1372. goto out;
  1373. cond_resched();
  1374. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1375. if (max_nl_cursor == 0)
  1376. max_nl_cursor = CLUSTER_SIZE;
  1377. do {
  1378. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1379. shared.vm_set.list) {
  1380. cursor = (unsigned long) vma->vm_private_data;
  1381. while ( cursor < max_nl_cursor &&
  1382. cursor < vma->vm_end - vma->vm_start) {
  1383. if (try_to_unmap_cluster(cursor, &mapcount,
  1384. vma, page) == SWAP_MLOCK)
  1385. ret = SWAP_MLOCK;
  1386. cursor += CLUSTER_SIZE;
  1387. vma->vm_private_data = (void *) cursor;
  1388. if ((int)mapcount <= 0)
  1389. goto out;
  1390. }
  1391. vma->vm_private_data = (void *) max_nl_cursor;
  1392. }
  1393. cond_resched();
  1394. max_nl_cursor += CLUSTER_SIZE;
  1395. } while (max_nl_cursor <= max_nl_size);
  1396. /*
  1397. * Don't loop forever (perhaps all the remaining pages are
  1398. * in locked vmas). Reset cursor on all unreserved nonlinear
  1399. * vmas, now forgetting on which ones it had fallen behind.
  1400. */
  1401. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1402. vma->vm_private_data = NULL;
  1403. out:
  1404. mutex_unlock(&mapping->i_mmap_mutex);
  1405. return ret;
  1406. }
  1407. /**
  1408. * try_to_unmap - try to remove all page table mappings to a page
  1409. * @page: the page to get unmapped
  1410. * @flags: action and flags
  1411. *
  1412. * Tries to remove all the page table entries which are mapping this
  1413. * page, used in the pageout path. Caller must hold the page lock.
  1414. * Return values are:
  1415. *
  1416. * SWAP_SUCCESS - we succeeded in removing all mappings
  1417. * SWAP_AGAIN - we missed a mapping, try again later
  1418. * SWAP_FAIL - the page is unswappable
  1419. * SWAP_MLOCK - page is mlocked.
  1420. */
  1421. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1422. {
  1423. int ret;
  1424. BUG_ON(!PageLocked(page));
  1425. VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
  1426. if (unlikely(PageKsm(page)))
  1427. ret = try_to_unmap_ksm(page, flags);
  1428. else if (PageAnon(page))
  1429. ret = try_to_unmap_anon(page, flags);
  1430. else
  1431. ret = try_to_unmap_file(page, flags);
  1432. if (ret != SWAP_MLOCK && !page_mapped(page))
  1433. ret = SWAP_SUCCESS;
  1434. return ret;
  1435. }
  1436. /**
  1437. * try_to_munlock - try to munlock a page
  1438. * @page: the page to be munlocked
  1439. *
  1440. * Called from munlock code. Checks all of the VMAs mapping the page
  1441. * to make sure nobody else has this page mlocked. The page will be
  1442. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1443. *
  1444. * Return values are:
  1445. *
  1446. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1447. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1448. * SWAP_FAIL - page cannot be located at present
  1449. * SWAP_MLOCK - page is now mlocked.
  1450. */
  1451. int try_to_munlock(struct page *page)
  1452. {
  1453. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1454. if (unlikely(PageKsm(page)))
  1455. return try_to_unmap_ksm(page, TTU_MUNLOCK);
  1456. else if (PageAnon(page))
  1457. return try_to_unmap_anon(page, TTU_MUNLOCK);
  1458. else
  1459. return try_to_unmap_file(page, TTU_MUNLOCK);
  1460. }
  1461. void __put_anon_vma(struct anon_vma *anon_vma)
  1462. {
  1463. struct anon_vma *root = anon_vma->root;
  1464. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1465. anon_vma_free(root);
  1466. anon_vma_free(anon_vma);
  1467. }
  1468. #ifdef CONFIG_MIGRATION
  1469. /*
  1470. * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
  1471. * Called by migrate.c to remove migration ptes, but might be used more later.
  1472. */
  1473. static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
  1474. struct vm_area_struct *, unsigned long, void *), void *arg)
  1475. {
  1476. struct anon_vma *anon_vma;
  1477. struct anon_vma_chain *avc;
  1478. int ret = SWAP_AGAIN;
  1479. /*
  1480. * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
  1481. * because that depends on page_mapped(); but not all its usages
  1482. * are holding mmap_sem. Users without mmap_sem are required to
  1483. * take a reference count to prevent the anon_vma disappearing
  1484. */
  1485. anon_vma = page_anon_vma(page);
  1486. if (!anon_vma)
  1487. return ret;
  1488. anon_vma_lock(anon_vma);
  1489. list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
  1490. struct vm_area_struct *vma = avc->vma;
  1491. unsigned long address = vma_address(page, vma);
  1492. if (address == -EFAULT)
  1493. continue;
  1494. ret = rmap_one(page, vma, address, arg);
  1495. if (ret != SWAP_AGAIN)
  1496. break;
  1497. }
  1498. anon_vma_unlock(anon_vma);
  1499. return ret;
  1500. }
  1501. static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
  1502. struct vm_area_struct *, unsigned long, void *), void *arg)
  1503. {
  1504. struct address_space *mapping = page->mapping;
  1505. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  1506. struct vm_area_struct *vma;
  1507. struct prio_tree_iter iter;
  1508. int ret = SWAP_AGAIN;
  1509. if (!mapping)
  1510. return ret;
  1511. mutex_lock(&mapping->i_mmap_mutex);
  1512. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  1513. unsigned long address = vma_address(page, vma);
  1514. if (address == -EFAULT)
  1515. continue;
  1516. ret = rmap_one(page, vma, address, arg);
  1517. if (ret != SWAP_AGAIN)
  1518. break;
  1519. }
  1520. /*
  1521. * No nonlinear handling: being always shared, nonlinear vmas
  1522. * never contain migration ptes. Decide what to do about this
  1523. * limitation to linear when we need rmap_walk() on nonlinear.
  1524. */
  1525. mutex_unlock(&mapping->i_mmap_mutex);
  1526. return ret;
  1527. }
  1528. int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
  1529. struct vm_area_struct *, unsigned long, void *), void *arg)
  1530. {
  1531. VM_BUG_ON(!PageLocked(page));
  1532. if (unlikely(PageKsm(page)))
  1533. return rmap_walk_ksm(page, rmap_one, arg);
  1534. else if (PageAnon(page))
  1535. return rmap_walk_anon(page, rmap_one, arg);
  1536. else
  1537. return rmap_walk_file(page, rmap_one, arg);
  1538. }
  1539. #endif /* CONFIG_MIGRATION */
  1540. #ifdef CONFIG_HUGETLB_PAGE
  1541. /*
  1542. * The following three functions are for anonymous (private mapped) hugepages.
  1543. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1544. * and no lru code, because we handle hugepages differently from common pages.
  1545. */
  1546. static void __hugepage_set_anon_rmap(struct page *page,
  1547. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1548. {
  1549. struct anon_vma *anon_vma = vma->anon_vma;
  1550. BUG_ON(!anon_vma);
  1551. if (PageAnon(page))
  1552. return;
  1553. if (!exclusive)
  1554. anon_vma = anon_vma->root;
  1555. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1556. page->mapping = (struct address_space *) anon_vma;
  1557. page->index = linear_page_index(vma, address);
  1558. }
  1559. void hugepage_add_anon_rmap(struct page *page,
  1560. struct vm_area_struct *vma, unsigned long address)
  1561. {
  1562. struct anon_vma *anon_vma = vma->anon_vma;
  1563. int first;
  1564. BUG_ON(!PageLocked(page));
  1565. BUG_ON(!anon_vma);
  1566. /* address might be in next vma when migration races vma_adjust */
  1567. first = atomic_inc_and_test(&page->_mapcount);
  1568. if (first)
  1569. __hugepage_set_anon_rmap(page, vma, address, 0);
  1570. }
  1571. void hugepage_add_new_anon_rmap(struct page *page,
  1572. struct vm_area_struct *vma, unsigned long address)
  1573. {
  1574. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1575. atomic_set(&page->_mapcount, 0);
  1576. __hugepage_set_anon_rmap(page, vma, address, 1);
  1577. }
  1578. #endif /* CONFIG_HUGETLB_PAGE */