init.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989
  1. /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/module.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/string.h>
  11. #include <linux/init.h>
  12. #include <linux/bootmem.h>
  13. #include <linux/mm.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/slab.h>
  16. #include <linux/initrd.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/poison.h>
  20. #include <linux/fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/cache.h>
  24. #include <linux/sort.h>
  25. #include <asm/head.h>
  26. #include <asm/system.h>
  27. #include <asm/page.h>
  28. #include <asm/pgalloc.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/oplib.h>
  31. #include <asm/iommu.h>
  32. #include <asm/io.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/mmu_context.h>
  35. #include <asm/tlbflush.h>
  36. #include <asm/dma.h>
  37. #include <asm/starfire.h>
  38. #include <asm/tlb.h>
  39. #include <asm/spitfire.h>
  40. #include <asm/sections.h>
  41. #include <asm/tsb.h>
  42. #include <asm/hypervisor.h>
  43. #include <asm/prom.h>
  44. extern void device_scan(void);
  45. #define MAX_PHYS_ADDRESS (1UL << 42UL)
  46. #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
  47. #define KPTE_BITMAP_BYTES \
  48. ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
  49. unsigned long kern_linear_pte_xor[2] __read_mostly;
  50. /* A bitmap, one bit for every 256MB of physical memory. If the bit
  51. * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  52. * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  53. */
  54. unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  55. /* A special kernel TSB for 4MB and 256MB linear mappings. */
  56. struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  57. #define MAX_BANKS 32
  58. static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  59. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  60. static int pavail_ents __initdata;
  61. static int pavail_rescan_ents __initdata;
  62. static int cmp_p64(const void *a, const void *b)
  63. {
  64. const struct linux_prom64_registers *x = a, *y = b;
  65. if (x->phys_addr > y->phys_addr)
  66. return 1;
  67. if (x->phys_addr < y->phys_addr)
  68. return -1;
  69. return 0;
  70. }
  71. static void __init read_obp_memory(const char *property,
  72. struct linux_prom64_registers *regs,
  73. int *num_ents)
  74. {
  75. int node = prom_finddevice("/memory");
  76. int prop_size = prom_getproplen(node, property);
  77. int ents, ret, i;
  78. ents = prop_size / sizeof(struct linux_prom64_registers);
  79. if (ents > MAX_BANKS) {
  80. prom_printf("The machine has more %s property entries than "
  81. "this kernel can support (%d).\n",
  82. property, MAX_BANKS);
  83. prom_halt();
  84. }
  85. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  86. if (ret == -1) {
  87. prom_printf("Couldn't get %s property from /memory.\n");
  88. prom_halt();
  89. }
  90. /* Sanitize what we got from the firmware, by page aligning
  91. * everything.
  92. */
  93. for (i = 0; i < ents; i++) {
  94. unsigned long base, size;
  95. base = regs[i].phys_addr;
  96. size = regs[i].reg_size;
  97. size &= PAGE_MASK;
  98. if (base & ~PAGE_MASK) {
  99. unsigned long new_base = PAGE_ALIGN(base);
  100. size -= new_base - base;
  101. if ((long) size < 0L)
  102. size = 0UL;
  103. base = new_base;
  104. }
  105. regs[i].phys_addr = base;
  106. regs[i].reg_size = size;
  107. }
  108. for (i = 0; i < ents; i++) {
  109. if (regs[i].reg_size == 0UL) {
  110. int j;
  111. for (j = i; j < ents - 1; j++) {
  112. regs[j].phys_addr =
  113. regs[j+1].phys_addr;
  114. regs[j].reg_size =
  115. regs[j+1].reg_size;
  116. }
  117. ents--;
  118. i--;
  119. }
  120. }
  121. *num_ents = ents;
  122. sort(regs, ents, sizeof(struct linux_prom64_registers),
  123. cmp_p64, NULL);
  124. }
  125. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  126. /* Kernel physical address base and size in bytes. */
  127. unsigned long kern_base __read_mostly;
  128. unsigned long kern_size __read_mostly;
  129. /* get_new_mmu_context() uses "cache + 1". */
  130. DEFINE_SPINLOCK(ctx_alloc_lock);
  131. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  132. #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
  133. unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
  134. /* References to special section boundaries */
  135. extern char _start[], _end[];
  136. /* Initial ramdisk setup */
  137. extern unsigned long sparc_ramdisk_image64;
  138. extern unsigned int sparc_ramdisk_image;
  139. extern unsigned int sparc_ramdisk_size;
  140. struct page *mem_map_zero __read_mostly;
  141. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  142. unsigned long sparc64_kern_pri_context __read_mostly;
  143. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  144. unsigned long sparc64_kern_sec_context __read_mostly;
  145. int bigkernel = 0;
  146. struct kmem_cache *pgtable_cache __read_mostly;
  147. static void zero_ctor(void *addr, struct kmem_cache *cache, unsigned long flags)
  148. {
  149. clear_page(addr);
  150. }
  151. extern void tsb_cache_init(void);
  152. void pgtable_cache_init(void)
  153. {
  154. pgtable_cache = kmem_cache_create("pgtable_cache",
  155. PAGE_SIZE, PAGE_SIZE,
  156. SLAB_HWCACHE_ALIGN |
  157. SLAB_MUST_HWCACHE_ALIGN,
  158. zero_ctor,
  159. NULL);
  160. if (!pgtable_cache) {
  161. prom_printf("Could not create pgtable_cache\n");
  162. prom_halt();
  163. }
  164. tsb_cache_init();
  165. }
  166. #ifdef CONFIG_DEBUG_DCFLUSH
  167. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  168. #ifdef CONFIG_SMP
  169. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  170. #endif
  171. #endif
  172. inline void flush_dcache_page_impl(struct page *page)
  173. {
  174. BUG_ON(tlb_type == hypervisor);
  175. #ifdef CONFIG_DEBUG_DCFLUSH
  176. atomic_inc(&dcpage_flushes);
  177. #endif
  178. #ifdef DCACHE_ALIASING_POSSIBLE
  179. __flush_dcache_page(page_address(page),
  180. ((tlb_type == spitfire) &&
  181. page_mapping(page) != NULL));
  182. #else
  183. if (page_mapping(page) != NULL &&
  184. tlb_type == spitfire)
  185. __flush_icache_page(__pa(page_address(page)));
  186. #endif
  187. }
  188. #define PG_dcache_dirty PG_arch_1
  189. #define PG_dcache_cpu_shift 24UL
  190. #define PG_dcache_cpu_mask (256UL - 1UL)
  191. #if NR_CPUS > 256
  192. #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
  193. #endif
  194. #define dcache_dirty_cpu(page) \
  195. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  196. static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
  197. {
  198. unsigned long mask = this_cpu;
  199. unsigned long non_cpu_bits;
  200. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  201. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  202. __asm__ __volatile__("1:\n\t"
  203. "ldx [%2], %%g7\n\t"
  204. "and %%g7, %1, %%g1\n\t"
  205. "or %%g1, %0, %%g1\n\t"
  206. "casx [%2], %%g7, %%g1\n\t"
  207. "cmp %%g7, %%g1\n\t"
  208. "membar #StoreLoad | #StoreStore\n\t"
  209. "bne,pn %%xcc, 1b\n\t"
  210. " nop"
  211. : /* no outputs */
  212. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  213. : "g1", "g7");
  214. }
  215. static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  216. {
  217. unsigned long mask = (1UL << PG_dcache_dirty);
  218. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  219. "1:\n\t"
  220. "ldx [%2], %%g7\n\t"
  221. "srlx %%g7, %4, %%g1\n\t"
  222. "and %%g1, %3, %%g1\n\t"
  223. "cmp %%g1, %0\n\t"
  224. "bne,pn %%icc, 2f\n\t"
  225. " andn %%g7, %1, %%g1\n\t"
  226. "casx [%2], %%g7, %%g1\n\t"
  227. "cmp %%g7, %%g1\n\t"
  228. "membar #StoreLoad | #StoreStore\n\t"
  229. "bne,pn %%xcc, 1b\n\t"
  230. " nop\n"
  231. "2:"
  232. : /* no outputs */
  233. : "r" (cpu), "r" (mask), "r" (&page->flags),
  234. "i" (PG_dcache_cpu_mask),
  235. "i" (PG_dcache_cpu_shift)
  236. : "g1", "g7");
  237. }
  238. static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
  239. {
  240. unsigned long tsb_addr = (unsigned long) ent;
  241. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  242. tsb_addr = __pa(tsb_addr);
  243. __tsb_insert(tsb_addr, tag, pte);
  244. }
  245. unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
  246. unsigned long _PAGE_SZBITS __read_mostly;
  247. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  248. {
  249. struct mm_struct *mm;
  250. struct tsb *tsb;
  251. unsigned long tag, flags;
  252. unsigned long tsb_index, tsb_hash_shift;
  253. if (tlb_type != hypervisor) {
  254. unsigned long pfn = pte_pfn(pte);
  255. unsigned long pg_flags;
  256. struct page *page;
  257. if (pfn_valid(pfn) &&
  258. (page = pfn_to_page(pfn), page_mapping(page)) &&
  259. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  260. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  261. PG_dcache_cpu_mask);
  262. int this_cpu = get_cpu();
  263. /* This is just to optimize away some function calls
  264. * in the SMP case.
  265. */
  266. if (cpu == this_cpu)
  267. flush_dcache_page_impl(page);
  268. else
  269. smp_flush_dcache_page_impl(page, cpu);
  270. clear_dcache_dirty_cpu(page, cpu);
  271. put_cpu();
  272. }
  273. }
  274. mm = vma->vm_mm;
  275. tsb_index = MM_TSB_BASE;
  276. tsb_hash_shift = PAGE_SHIFT;
  277. spin_lock_irqsave(&mm->context.lock, flags);
  278. #ifdef CONFIG_HUGETLB_PAGE
  279. if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
  280. if ((tlb_type == hypervisor &&
  281. (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
  282. (tlb_type != hypervisor &&
  283. (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
  284. tsb_index = MM_TSB_HUGE;
  285. tsb_hash_shift = HPAGE_SHIFT;
  286. }
  287. }
  288. #endif
  289. tsb = mm->context.tsb_block[tsb_index].tsb;
  290. tsb += ((address >> tsb_hash_shift) &
  291. (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
  292. tag = (address >> 22UL);
  293. tsb_insert(tsb, tag, pte_val(pte));
  294. spin_unlock_irqrestore(&mm->context.lock, flags);
  295. }
  296. void flush_dcache_page(struct page *page)
  297. {
  298. struct address_space *mapping;
  299. int this_cpu;
  300. if (tlb_type == hypervisor)
  301. return;
  302. /* Do not bother with the expensive D-cache flush if it
  303. * is merely the zero page. The 'bigcore' testcase in GDB
  304. * causes this case to run millions of times.
  305. */
  306. if (page == ZERO_PAGE(0))
  307. return;
  308. this_cpu = get_cpu();
  309. mapping = page_mapping(page);
  310. if (mapping && !mapping_mapped(mapping)) {
  311. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  312. if (dirty) {
  313. int dirty_cpu = dcache_dirty_cpu(page);
  314. if (dirty_cpu == this_cpu)
  315. goto out;
  316. smp_flush_dcache_page_impl(page, dirty_cpu);
  317. }
  318. set_dcache_dirty(page, this_cpu);
  319. } else {
  320. /* We could delay the flush for the !page_mapping
  321. * case too. But that case is for exec env/arg
  322. * pages and those are %99 certainly going to get
  323. * faulted into the tlb (and thus flushed) anyways.
  324. */
  325. flush_dcache_page_impl(page);
  326. }
  327. out:
  328. put_cpu();
  329. }
  330. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  331. {
  332. /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
  333. if (tlb_type == spitfire) {
  334. unsigned long kaddr;
  335. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
  336. __flush_icache_page(__get_phys(kaddr));
  337. }
  338. }
  339. void show_mem(void)
  340. {
  341. printk("Mem-info:\n");
  342. show_free_areas();
  343. printk("Free swap: %6ldkB\n",
  344. nr_swap_pages << (PAGE_SHIFT-10));
  345. printk("%ld pages of RAM\n", num_physpages);
  346. printk("%lu free pages\n", nr_free_pages());
  347. }
  348. void mmu_info(struct seq_file *m)
  349. {
  350. if (tlb_type == cheetah)
  351. seq_printf(m, "MMU Type\t: Cheetah\n");
  352. else if (tlb_type == cheetah_plus)
  353. seq_printf(m, "MMU Type\t: Cheetah+\n");
  354. else if (tlb_type == spitfire)
  355. seq_printf(m, "MMU Type\t: Spitfire\n");
  356. else if (tlb_type == hypervisor)
  357. seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
  358. else
  359. seq_printf(m, "MMU Type\t: ???\n");
  360. #ifdef CONFIG_DEBUG_DCFLUSH
  361. seq_printf(m, "DCPageFlushes\t: %d\n",
  362. atomic_read(&dcpage_flushes));
  363. #ifdef CONFIG_SMP
  364. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  365. atomic_read(&dcpage_flushes_xcall));
  366. #endif /* CONFIG_SMP */
  367. #endif /* CONFIG_DEBUG_DCFLUSH */
  368. }
  369. struct linux_prom_translation {
  370. unsigned long virt;
  371. unsigned long size;
  372. unsigned long data;
  373. };
  374. /* Exported for kernel TLB miss handling in ktlb.S */
  375. struct linux_prom_translation prom_trans[512] __read_mostly;
  376. unsigned int prom_trans_ents __read_mostly;
  377. /* Exported for SMP bootup purposes. */
  378. unsigned long kern_locked_tte_data;
  379. /* The obp translations are saved based on 8k pagesize, since obp can
  380. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  381. * HI_OBP_ADDRESS range are handled in ktlb.S.
  382. */
  383. static inline int in_obp_range(unsigned long vaddr)
  384. {
  385. return (vaddr >= LOW_OBP_ADDRESS &&
  386. vaddr < HI_OBP_ADDRESS);
  387. }
  388. static int cmp_ptrans(const void *a, const void *b)
  389. {
  390. const struct linux_prom_translation *x = a, *y = b;
  391. if (x->virt > y->virt)
  392. return 1;
  393. if (x->virt < y->virt)
  394. return -1;
  395. return 0;
  396. }
  397. /* Read OBP translations property into 'prom_trans[]'. */
  398. static void __init read_obp_translations(void)
  399. {
  400. int n, node, ents, first, last, i;
  401. node = prom_finddevice("/virtual-memory");
  402. n = prom_getproplen(node, "translations");
  403. if (unlikely(n == 0 || n == -1)) {
  404. prom_printf("prom_mappings: Couldn't get size.\n");
  405. prom_halt();
  406. }
  407. if (unlikely(n > sizeof(prom_trans))) {
  408. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  409. prom_halt();
  410. }
  411. if ((n = prom_getproperty(node, "translations",
  412. (char *)&prom_trans[0],
  413. sizeof(prom_trans))) == -1) {
  414. prom_printf("prom_mappings: Couldn't get property.\n");
  415. prom_halt();
  416. }
  417. n = n / sizeof(struct linux_prom_translation);
  418. ents = n;
  419. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  420. cmp_ptrans, NULL);
  421. /* Now kick out all the non-OBP entries. */
  422. for (i = 0; i < ents; i++) {
  423. if (in_obp_range(prom_trans[i].virt))
  424. break;
  425. }
  426. first = i;
  427. for (; i < ents; i++) {
  428. if (!in_obp_range(prom_trans[i].virt))
  429. break;
  430. }
  431. last = i;
  432. for (i = 0; i < (last - first); i++) {
  433. struct linux_prom_translation *src = &prom_trans[i + first];
  434. struct linux_prom_translation *dest = &prom_trans[i];
  435. *dest = *src;
  436. }
  437. for (; i < ents; i++) {
  438. struct linux_prom_translation *dest = &prom_trans[i];
  439. dest->virt = dest->size = dest->data = 0x0UL;
  440. }
  441. prom_trans_ents = last - first;
  442. if (tlb_type == spitfire) {
  443. /* Clear diag TTE bits. */
  444. for (i = 0; i < prom_trans_ents; i++)
  445. prom_trans[i].data &= ~0x0003fe0000000000UL;
  446. }
  447. }
  448. static void __init hypervisor_tlb_lock(unsigned long vaddr,
  449. unsigned long pte,
  450. unsigned long mmu)
  451. {
  452. register unsigned long func asm("%o5");
  453. register unsigned long arg0 asm("%o0");
  454. register unsigned long arg1 asm("%o1");
  455. register unsigned long arg2 asm("%o2");
  456. register unsigned long arg3 asm("%o3");
  457. func = HV_FAST_MMU_MAP_PERM_ADDR;
  458. arg0 = vaddr;
  459. arg1 = 0;
  460. arg2 = pte;
  461. arg3 = mmu;
  462. __asm__ __volatile__("ta 0x80"
  463. : "=&r" (func), "=&r" (arg0),
  464. "=&r" (arg1), "=&r" (arg2),
  465. "=&r" (arg3)
  466. : "0" (func), "1" (arg0), "2" (arg1),
  467. "3" (arg2), "4" (arg3));
  468. if (arg0 != 0) {
  469. prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
  470. "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
  471. prom_halt();
  472. }
  473. }
  474. static unsigned long kern_large_tte(unsigned long paddr);
  475. static void __init remap_kernel(void)
  476. {
  477. unsigned long phys_page, tte_vaddr, tte_data;
  478. int tlb_ent = sparc64_highest_locked_tlbent();
  479. tte_vaddr = (unsigned long) KERNBASE;
  480. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  481. tte_data = kern_large_tte(phys_page);
  482. kern_locked_tte_data = tte_data;
  483. /* Now lock us into the TLBs via Hypervisor or OBP. */
  484. if (tlb_type == hypervisor) {
  485. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  486. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  487. if (bigkernel) {
  488. tte_vaddr += 0x400000;
  489. tte_data += 0x400000;
  490. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  491. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  492. }
  493. } else {
  494. prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
  495. prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
  496. if (bigkernel) {
  497. tlb_ent -= 1;
  498. prom_dtlb_load(tlb_ent,
  499. tte_data + 0x400000,
  500. tte_vaddr + 0x400000);
  501. prom_itlb_load(tlb_ent,
  502. tte_data + 0x400000,
  503. tte_vaddr + 0x400000);
  504. }
  505. sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
  506. }
  507. if (tlb_type == cheetah_plus) {
  508. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  509. CTX_CHEETAH_PLUS_NUC);
  510. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  511. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  512. }
  513. }
  514. static void __init inherit_prom_mappings(void)
  515. {
  516. read_obp_translations();
  517. /* Now fixup OBP's idea about where we really are mapped. */
  518. prom_printf("Remapping the kernel... ");
  519. remap_kernel();
  520. prom_printf("done.\n");
  521. }
  522. void prom_world(int enter)
  523. {
  524. if (!enter)
  525. set_fs((mm_segment_t) { get_thread_current_ds() });
  526. __asm__ __volatile__("flushw");
  527. }
  528. #ifdef DCACHE_ALIASING_POSSIBLE
  529. void __flush_dcache_range(unsigned long start, unsigned long end)
  530. {
  531. unsigned long va;
  532. if (tlb_type == spitfire) {
  533. int n = 0;
  534. for (va = start; va < end; va += 32) {
  535. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  536. if (++n >= 512)
  537. break;
  538. }
  539. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  540. start = __pa(start);
  541. end = __pa(end);
  542. for (va = start; va < end; va += 32)
  543. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  544. "membar #Sync"
  545. : /* no outputs */
  546. : "r" (va),
  547. "i" (ASI_DCACHE_INVALIDATE));
  548. }
  549. }
  550. #endif /* DCACHE_ALIASING_POSSIBLE */
  551. /* Caller does TLB context flushing on local CPU if necessary.
  552. * The caller also ensures that CTX_VALID(mm->context) is false.
  553. *
  554. * We must be careful about boundary cases so that we never
  555. * let the user have CTX 0 (nucleus) or we ever use a CTX
  556. * version of zero (and thus NO_CONTEXT would not be caught
  557. * by version mis-match tests in mmu_context.h).
  558. *
  559. * Always invoked with interrupts disabled.
  560. */
  561. void get_new_mmu_context(struct mm_struct *mm)
  562. {
  563. unsigned long ctx, new_ctx;
  564. unsigned long orig_pgsz_bits;
  565. unsigned long flags;
  566. int new_version;
  567. spin_lock_irqsave(&ctx_alloc_lock, flags);
  568. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  569. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  570. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  571. new_version = 0;
  572. if (new_ctx >= (1 << CTX_NR_BITS)) {
  573. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  574. if (new_ctx >= ctx) {
  575. int i;
  576. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  577. CTX_FIRST_VERSION;
  578. if (new_ctx == 1)
  579. new_ctx = CTX_FIRST_VERSION;
  580. /* Don't call memset, for 16 entries that's just
  581. * plain silly...
  582. */
  583. mmu_context_bmap[0] = 3;
  584. mmu_context_bmap[1] = 0;
  585. mmu_context_bmap[2] = 0;
  586. mmu_context_bmap[3] = 0;
  587. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  588. mmu_context_bmap[i + 0] = 0;
  589. mmu_context_bmap[i + 1] = 0;
  590. mmu_context_bmap[i + 2] = 0;
  591. mmu_context_bmap[i + 3] = 0;
  592. }
  593. new_version = 1;
  594. goto out;
  595. }
  596. }
  597. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  598. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  599. out:
  600. tlb_context_cache = new_ctx;
  601. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  602. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  603. if (unlikely(new_version))
  604. smp_new_mmu_context_version();
  605. }
  606. void sparc_ultra_dump_itlb(void)
  607. {
  608. int slot;
  609. if (tlb_type == spitfire) {
  610. printk ("Contents of itlb: ");
  611. for (slot = 0; slot < 14; slot++) printk (" ");
  612. printk ("%2x:%016lx,%016lx\n",
  613. 0,
  614. spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
  615. for (slot = 1; slot < 64; slot+=3) {
  616. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  617. slot,
  618. spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
  619. slot+1,
  620. spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
  621. slot+2,
  622. spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
  623. }
  624. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  625. printk ("Contents of itlb0:\n");
  626. for (slot = 0; slot < 16; slot+=2) {
  627. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  628. slot,
  629. cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
  630. slot+1,
  631. cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
  632. }
  633. printk ("Contents of itlb2:\n");
  634. for (slot = 0; slot < 128; slot+=2) {
  635. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  636. slot,
  637. cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
  638. slot+1,
  639. cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
  640. }
  641. }
  642. }
  643. void sparc_ultra_dump_dtlb(void)
  644. {
  645. int slot;
  646. if (tlb_type == spitfire) {
  647. printk ("Contents of dtlb: ");
  648. for (slot = 0; slot < 14; slot++) printk (" ");
  649. printk ("%2x:%016lx,%016lx\n", 0,
  650. spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
  651. for (slot = 1; slot < 64; slot+=3) {
  652. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  653. slot,
  654. spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
  655. slot+1,
  656. spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
  657. slot+2,
  658. spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
  659. }
  660. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  661. printk ("Contents of dtlb0:\n");
  662. for (slot = 0; slot < 16; slot+=2) {
  663. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  664. slot,
  665. cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
  666. slot+1,
  667. cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
  668. }
  669. printk ("Contents of dtlb2:\n");
  670. for (slot = 0; slot < 512; slot+=2) {
  671. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  672. slot,
  673. cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
  674. slot+1,
  675. cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
  676. }
  677. if (tlb_type == cheetah_plus) {
  678. printk ("Contents of dtlb3:\n");
  679. for (slot = 0; slot < 512; slot+=2) {
  680. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  681. slot,
  682. cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
  683. slot+1,
  684. cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
  685. }
  686. }
  687. }
  688. }
  689. extern unsigned long cmdline_memory_size;
  690. /* Find a free area for the bootmem map, avoiding the kernel image
  691. * and the initial ramdisk.
  692. */
  693. static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
  694. unsigned long end_pfn)
  695. {
  696. unsigned long avoid_start, avoid_end, bootmap_size;
  697. int i;
  698. bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
  699. bootmap_size = ALIGN(bootmap_size, sizeof(long));
  700. avoid_start = avoid_end = 0;
  701. #ifdef CONFIG_BLK_DEV_INITRD
  702. avoid_start = initrd_start;
  703. avoid_end = PAGE_ALIGN(initrd_end);
  704. #endif
  705. #ifdef CONFIG_DEBUG_BOOTMEM
  706. prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
  707. kern_base, PAGE_ALIGN(kern_base + kern_size),
  708. avoid_start, avoid_end);
  709. #endif
  710. for (i = 0; i < pavail_ents; i++) {
  711. unsigned long start, end;
  712. start = pavail[i].phys_addr;
  713. end = start + pavail[i].reg_size;
  714. while (start < end) {
  715. if (start >= kern_base &&
  716. start < PAGE_ALIGN(kern_base + kern_size)) {
  717. start = PAGE_ALIGN(kern_base + kern_size);
  718. continue;
  719. }
  720. if (start >= avoid_start && start < avoid_end) {
  721. start = avoid_end;
  722. continue;
  723. }
  724. if ((end - start) < bootmap_size)
  725. break;
  726. if (start < kern_base &&
  727. (start + bootmap_size) > kern_base) {
  728. start = PAGE_ALIGN(kern_base + kern_size);
  729. continue;
  730. }
  731. if (start < avoid_start &&
  732. (start + bootmap_size) > avoid_start) {
  733. start = avoid_end;
  734. continue;
  735. }
  736. /* OK, it doesn't overlap anything, use it. */
  737. #ifdef CONFIG_DEBUG_BOOTMEM
  738. prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
  739. start >> PAGE_SHIFT, start);
  740. #endif
  741. return start >> PAGE_SHIFT;
  742. }
  743. }
  744. prom_printf("Cannot find free area for bootmap, aborting.\n");
  745. prom_halt();
  746. }
  747. static void __init trim_pavail(unsigned long *cur_size_p,
  748. unsigned long *end_of_phys_p)
  749. {
  750. unsigned long to_trim = *cur_size_p - cmdline_memory_size;
  751. unsigned long avoid_start, avoid_end;
  752. int i;
  753. to_trim = PAGE_ALIGN(to_trim);
  754. avoid_start = avoid_end = 0;
  755. #ifdef CONFIG_BLK_DEV_INITRD
  756. avoid_start = initrd_start;
  757. avoid_end = PAGE_ALIGN(initrd_end);
  758. #endif
  759. /* Trim some pavail[] entries in order to satisfy the
  760. * requested "mem=xxx" kernel command line specification.
  761. *
  762. * We must not trim off the kernel image area nor the
  763. * initial ramdisk range (if any). Also, we must not trim
  764. * any pavail[] entry down to zero in order to preserve
  765. * the invariant that all pavail[] entries have a non-zero
  766. * size which is assumed by all of the code in here.
  767. */
  768. for (i = 0; i < pavail_ents; i++) {
  769. unsigned long start, end, kern_end;
  770. unsigned long trim_low, trim_high, n;
  771. kern_end = PAGE_ALIGN(kern_base + kern_size);
  772. trim_low = start = pavail[i].phys_addr;
  773. trim_high = end = start + pavail[i].reg_size;
  774. if (kern_base >= start &&
  775. kern_base < end) {
  776. trim_low = kern_base;
  777. if (kern_end >= end)
  778. continue;
  779. }
  780. if (kern_end >= start &&
  781. kern_end < end) {
  782. trim_high = kern_end;
  783. }
  784. if (avoid_start &&
  785. avoid_start >= start &&
  786. avoid_start < end) {
  787. if (trim_low > avoid_start)
  788. trim_low = avoid_start;
  789. if (avoid_end >= end)
  790. continue;
  791. }
  792. if (avoid_end &&
  793. avoid_end >= start &&
  794. avoid_end < end) {
  795. if (trim_high < avoid_end)
  796. trim_high = avoid_end;
  797. }
  798. if (trim_high <= trim_low)
  799. continue;
  800. if (trim_low == start && trim_high == end) {
  801. /* Whole chunk is available for trimming.
  802. * Trim all except one page, in order to keep
  803. * entry non-empty.
  804. */
  805. n = (end - start) - PAGE_SIZE;
  806. if (n > to_trim)
  807. n = to_trim;
  808. if (n) {
  809. pavail[i].phys_addr += n;
  810. pavail[i].reg_size -= n;
  811. to_trim -= n;
  812. }
  813. } else {
  814. n = (trim_low - start);
  815. if (n > to_trim)
  816. n = to_trim;
  817. if (n) {
  818. pavail[i].phys_addr += n;
  819. pavail[i].reg_size -= n;
  820. to_trim -= n;
  821. }
  822. if (to_trim) {
  823. n = end - trim_high;
  824. if (n > to_trim)
  825. n = to_trim;
  826. if (n) {
  827. pavail[i].reg_size -= n;
  828. to_trim -= n;
  829. }
  830. }
  831. }
  832. if (!to_trim)
  833. break;
  834. }
  835. /* Recalculate. */
  836. *cur_size_p = 0UL;
  837. for (i = 0; i < pavail_ents; i++) {
  838. *end_of_phys_p = pavail[i].phys_addr +
  839. pavail[i].reg_size;
  840. *cur_size_p += pavail[i].reg_size;
  841. }
  842. }
  843. static unsigned long __init bootmem_init(unsigned long *pages_avail,
  844. unsigned long phys_base)
  845. {
  846. unsigned long bootmap_size, end_pfn;
  847. unsigned long end_of_phys_memory = 0UL;
  848. unsigned long bootmap_pfn, bytes_avail, size;
  849. int i;
  850. #ifdef CONFIG_DEBUG_BOOTMEM
  851. prom_printf("bootmem_init: Scan pavail, ");
  852. #endif
  853. bytes_avail = 0UL;
  854. for (i = 0; i < pavail_ents; i++) {
  855. end_of_phys_memory = pavail[i].phys_addr +
  856. pavail[i].reg_size;
  857. bytes_avail += pavail[i].reg_size;
  858. }
  859. /* Determine the location of the initial ramdisk before trying
  860. * to honor the "mem=xxx" command line argument. We must know
  861. * where the kernel image and the ramdisk image are so that we
  862. * do not trim those two areas from the physical memory map.
  863. */
  864. #ifdef CONFIG_BLK_DEV_INITRD
  865. /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
  866. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  867. unsigned long ramdisk_image = sparc_ramdisk_image ?
  868. sparc_ramdisk_image : sparc_ramdisk_image64;
  869. ramdisk_image -= KERNBASE;
  870. initrd_start = ramdisk_image + phys_base;
  871. initrd_end = initrd_start + sparc_ramdisk_size;
  872. if (initrd_end > end_of_phys_memory) {
  873. printk(KERN_CRIT "initrd extends beyond end of memory "
  874. "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
  875. initrd_end, end_of_phys_memory);
  876. initrd_start = 0;
  877. initrd_end = 0;
  878. }
  879. }
  880. #endif
  881. if (cmdline_memory_size &&
  882. bytes_avail > cmdline_memory_size)
  883. trim_pavail(&bytes_avail,
  884. &end_of_phys_memory);
  885. *pages_avail = bytes_avail >> PAGE_SHIFT;
  886. end_pfn = end_of_phys_memory >> PAGE_SHIFT;
  887. /* Initialize the boot-time allocator. */
  888. max_pfn = max_low_pfn = end_pfn;
  889. min_low_pfn = (phys_base >> PAGE_SHIFT);
  890. bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
  891. #ifdef CONFIG_DEBUG_BOOTMEM
  892. prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
  893. min_low_pfn, bootmap_pfn, max_low_pfn);
  894. #endif
  895. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
  896. min_low_pfn, end_pfn);
  897. /* Now register the available physical memory with the
  898. * allocator.
  899. */
  900. for (i = 0; i < pavail_ents; i++) {
  901. #ifdef CONFIG_DEBUG_BOOTMEM
  902. prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
  903. i, pavail[i].phys_addr, pavail[i].reg_size);
  904. #endif
  905. free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
  906. }
  907. #ifdef CONFIG_BLK_DEV_INITRD
  908. if (initrd_start) {
  909. size = initrd_end - initrd_start;
  910. /* Resert the initrd image area. */
  911. #ifdef CONFIG_DEBUG_BOOTMEM
  912. prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
  913. initrd_start, initrd_end);
  914. #endif
  915. reserve_bootmem(initrd_start, size);
  916. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  917. initrd_start += PAGE_OFFSET;
  918. initrd_end += PAGE_OFFSET;
  919. }
  920. #endif
  921. /* Reserve the kernel text/data/bss. */
  922. #ifdef CONFIG_DEBUG_BOOTMEM
  923. prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
  924. #endif
  925. reserve_bootmem(kern_base, kern_size);
  926. *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
  927. /* Reserve the bootmem map. We do not account for it
  928. * in pages_avail because we will release that memory
  929. * in free_all_bootmem.
  930. */
  931. size = bootmap_size;
  932. #ifdef CONFIG_DEBUG_BOOTMEM
  933. prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
  934. (bootmap_pfn << PAGE_SHIFT), size);
  935. #endif
  936. reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
  937. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  938. for (i = 0; i < pavail_ents; i++) {
  939. unsigned long start_pfn, end_pfn;
  940. start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
  941. end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
  942. #ifdef CONFIG_DEBUG_BOOTMEM
  943. prom_printf("memory_present(0, %lx, %lx)\n",
  944. start_pfn, end_pfn);
  945. #endif
  946. memory_present(0, start_pfn, end_pfn);
  947. }
  948. sparse_init();
  949. return end_pfn;
  950. }
  951. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  952. static int pall_ents __initdata;
  953. #ifdef CONFIG_DEBUG_PAGEALLOC
  954. static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
  955. {
  956. unsigned long vstart = PAGE_OFFSET + pstart;
  957. unsigned long vend = PAGE_OFFSET + pend;
  958. unsigned long alloc_bytes = 0UL;
  959. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  960. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  961. vstart, vend);
  962. prom_halt();
  963. }
  964. while (vstart < vend) {
  965. unsigned long this_end, paddr = __pa(vstart);
  966. pgd_t *pgd = pgd_offset_k(vstart);
  967. pud_t *pud;
  968. pmd_t *pmd;
  969. pte_t *pte;
  970. pud = pud_offset(pgd, vstart);
  971. if (pud_none(*pud)) {
  972. pmd_t *new;
  973. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  974. alloc_bytes += PAGE_SIZE;
  975. pud_populate(&init_mm, pud, new);
  976. }
  977. pmd = pmd_offset(pud, vstart);
  978. if (!pmd_present(*pmd)) {
  979. pte_t *new;
  980. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  981. alloc_bytes += PAGE_SIZE;
  982. pmd_populate_kernel(&init_mm, pmd, new);
  983. }
  984. pte = pte_offset_kernel(pmd, vstart);
  985. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  986. if (this_end > vend)
  987. this_end = vend;
  988. while (vstart < this_end) {
  989. pte_val(*pte) = (paddr | pgprot_val(prot));
  990. vstart += PAGE_SIZE;
  991. paddr += PAGE_SIZE;
  992. pte++;
  993. }
  994. }
  995. return alloc_bytes;
  996. }
  997. extern unsigned int kvmap_linear_patch[1];
  998. #endif /* CONFIG_DEBUG_PAGEALLOC */
  999. static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
  1000. {
  1001. const unsigned long shift_256MB = 28;
  1002. const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
  1003. const unsigned long size_256MB = (1UL << shift_256MB);
  1004. while (start < end) {
  1005. long remains;
  1006. remains = end - start;
  1007. if (remains < size_256MB)
  1008. break;
  1009. if (start & mask_256MB) {
  1010. start = (start + size_256MB) & ~mask_256MB;
  1011. continue;
  1012. }
  1013. while (remains >= size_256MB) {
  1014. unsigned long index = start >> shift_256MB;
  1015. __set_bit(index, kpte_linear_bitmap);
  1016. start += size_256MB;
  1017. remains -= size_256MB;
  1018. }
  1019. }
  1020. }
  1021. static void __init kernel_physical_mapping_init(void)
  1022. {
  1023. unsigned long i;
  1024. #ifdef CONFIG_DEBUG_PAGEALLOC
  1025. unsigned long mem_alloced = 0UL;
  1026. #endif
  1027. read_obp_memory("reg", &pall[0], &pall_ents);
  1028. for (i = 0; i < pall_ents; i++) {
  1029. unsigned long phys_start, phys_end;
  1030. phys_start = pall[i].phys_addr;
  1031. phys_end = phys_start + pall[i].reg_size;
  1032. mark_kpte_bitmap(phys_start, phys_end);
  1033. #ifdef CONFIG_DEBUG_PAGEALLOC
  1034. mem_alloced += kernel_map_range(phys_start, phys_end,
  1035. PAGE_KERNEL);
  1036. #endif
  1037. }
  1038. #ifdef CONFIG_DEBUG_PAGEALLOC
  1039. printk("Allocated %ld bytes for kernel page tables.\n",
  1040. mem_alloced);
  1041. kvmap_linear_patch[0] = 0x01000000; /* nop */
  1042. flushi(&kvmap_linear_patch[0]);
  1043. __flush_tlb_all();
  1044. #endif
  1045. }
  1046. #ifdef CONFIG_DEBUG_PAGEALLOC
  1047. void kernel_map_pages(struct page *page, int numpages, int enable)
  1048. {
  1049. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  1050. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  1051. kernel_map_range(phys_start, phys_end,
  1052. (enable ? PAGE_KERNEL : __pgprot(0)));
  1053. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  1054. PAGE_OFFSET + phys_end);
  1055. /* we should perform an IPI and flush all tlbs,
  1056. * but that can deadlock->flush only current cpu.
  1057. */
  1058. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  1059. PAGE_OFFSET + phys_end);
  1060. }
  1061. #endif
  1062. unsigned long __init find_ecache_flush_span(unsigned long size)
  1063. {
  1064. int i;
  1065. for (i = 0; i < pavail_ents; i++) {
  1066. if (pavail[i].reg_size >= size)
  1067. return pavail[i].phys_addr;
  1068. }
  1069. return ~0UL;
  1070. }
  1071. static void __init tsb_phys_patch(void)
  1072. {
  1073. struct tsb_ldquad_phys_patch_entry *pquad;
  1074. struct tsb_phys_patch_entry *p;
  1075. pquad = &__tsb_ldquad_phys_patch;
  1076. while (pquad < &__tsb_ldquad_phys_patch_end) {
  1077. unsigned long addr = pquad->addr;
  1078. if (tlb_type == hypervisor)
  1079. *(unsigned int *) addr = pquad->sun4v_insn;
  1080. else
  1081. *(unsigned int *) addr = pquad->sun4u_insn;
  1082. wmb();
  1083. __asm__ __volatile__("flush %0"
  1084. : /* no outputs */
  1085. : "r" (addr));
  1086. pquad++;
  1087. }
  1088. p = &__tsb_phys_patch;
  1089. while (p < &__tsb_phys_patch_end) {
  1090. unsigned long addr = p->addr;
  1091. *(unsigned int *) addr = p->insn;
  1092. wmb();
  1093. __asm__ __volatile__("flush %0"
  1094. : /* no outputs */
  1095. : "r" (addr));
  1096. p++;
  1097. }
  1098. }
  1099. /* Don't mark as init, we give this to the Hypervisor. */
  1100. static struct hv_tsb_descr ktsb_descr[2];
  1101. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  1102. static void __init sun4v_ktsb_init(void)
  1103. {
  1104. unsigned long ktsb_pa;
  1105. /* First KTSB for PAGE_SIZE mappings. */
  1106. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  1107. switch (PAGE_SIZE) {
  1108. case 8 * 1024:
  1109. default:
  1110. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
  1111. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
  1112. break;
  1113. case 64 * 1024:
  1114. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
  1115. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
  1116. break;
  1117. case 512 * 1024:
  1118. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
  1119. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
  1120. break;
  1121. case 4 * 1024 * 1024:
  1122. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
  1123. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
  1124. break;
  1125. };
  1126. ktsb_descr[0].assoc = 1;
  1127. ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
  1128. ktsb_descr[0].ctx_idx = 0;
  1129. ktsb_descr[0].tsb_base = ktsb_pa;
  1130. ktsb_descr[0].resv = 0;
  1131. /* Second KTSB for 4MB/256MB mappings. */
  1132. ktsb_pa = (kern_base +
  1133. ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
  1134. ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
  1135. ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
  1136. HV_PGSZ_MASK_256MB);
  1137. ktsb_descr[1].assoc = 1;
  1138. ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
  1139. ktsb_descr[1].ctx_idx = 0;
  1140. ktsb_descr[1].tsb_base = ktsb_pa;
  1141. ktsb_descr[1].resv = 0;
  1142. }
  1143. void __cpuinit sun4v_ktsb_register(void)
  1144. {
  1145. register unsigned long func asm("%o5");
  1146. register unsigned long arg0 asm("%o0");
  1147. register unsigned long arg1 asm("%o1");
  1148. unsigned long pa;
  1149. pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
  1150. func = HV_FAST_MMU_TSB_CTX0;
  1151. arg0 = 2;
  1152. arg1 = pa;
  1153. __asm__ __volatile__("ta %6"
  1154. : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
  1155. : "0" (func), "1" (arg0), "2" (arg1),
  1156. "i" (HV_FAST_TRAP));
  1157. }
  1158. /* paging_init() sets up the page tables */
  1159. extern void cheetah_ecache_flush_init(void);
  1160. extern void sun4v_patch_tlb_handlers(void);
  1161. static unsigned long last_valid_pfn;
  1162. pgd_t swapper_pg_dir[2048];
  1163. static void sun4u_pgprot_init(void);
  1164. static void sun4v_pgprot_init(void);
  1165. void __init paging_init(void)
  1166. {
  1167. unsigned long end_pfn, pages_avail, shift, phys_base;
  1168. unsigned long real_end, i;
  1169. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  1170. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  1171. /* Invalidate both kernel TSBs. */
  1172. memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
  1173. memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
  1174. if (tlb_type == hypervisor)
  1175. sun4v_pgprot_init();
  1176. else
  1177. sun4u_pgprot_init();
  1178. if (tlb_type == cheetah_plus ||
  1179. tlb_type == hypervisor)
  1180. tsb_phys_patch();
  1181. if (tlb_type == hypervisor) {
  1182. sun4v_patch_tlb_handlers();
  1183. sun4v_ktsb_init();
  1184. }
  1185. /* Find available physical memory... */
  1186. read_obp_memory("available", &pavail[0], &pavail_ents);
  1187. phys_base = 0xffffffffffffffffUL;
  1188. for (i = 0; i < pavail_ents; i++)
  1189. phys_base = min(phys_base, pavail[i].phys_addr);
  1190. set_bit(0, mmu_context_bmap);
  1191. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1192. real_end = (unsigned long)_end;
  1193. if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
  1194. bigkernel = 1;
  1195. if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
  1196. prom_printf("paging_init: Kernel > 8MB, too large.\n");
  1197. prom_halt();
  1198. }
  1199. /* Set kernel pgd to upper alias so physical page computations
  1200. * work.
  1201. */
  1202. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1203. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1204. /* Now can init the kernel/bad page tables. */
  1205. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1206. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1207. inherit_prom_mappings();
  1208. /* Ok, we can use our TLB miss and window trap handlers safely. */
  1209. setup_tba();
  1210. __flush_tlb_all();
  1211. if (tlb_type == hypervisor)
  1212. sun4v_ktsb_register();
  1213. /* Setup bootmem... */
  1214. pages_avail = 0;
  1215. last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
  1216. max_mapnr = last_valid_pfn;
  1217. kernel_physical_mapping_init();
  1218. prom_build_devicetree();
  1219. {
  1220. unsigned long zones_size[MAX_NR_ZONES];
  1221. unsigned long zholes_size[MAX_NR_ZONES];
  1222. int znum;
  1223. for (znum = 0; znum < MAX_NR_ZONES; znum++)
  1224. zones_size[znum] = zholes_size[znum] = 0;
  1225. zones_size[ZONE_NORMAL] = end_pfn;
  1226. zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
  1227. free_area_init_node(0, &contig_page_data, zones_size,
  1228. __pa(PAGE_OFFSET) >> PAGE_SHIFT,
  1229. zholes_size);
  1230. }
  1231. device_scan();
  1232. }
  1233. static void __init taint_real_pages(void)
  1234. {
  1235. int i;
  1236. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1237. /* Find changes discovered in the physmem available rescan and
  1238. * reserve the lost portions in the bootmem maps.
  1239. */
  1240. for (i = 0; i < pavail_ents; i++) {
  1241. unsigned long old_start, old_end;
  1242. old_start = pavail[i].phys_addr;
  1243. old_end = old_start +
  1244. pavail[i].reg_size;
  1245. while (old_start < old_end) {
  1246. int n;
  1247. for (n = 0; n < pavail_rescan_ents; n++) {
  1248. unsigned long new_start, new_end;
  1249. new_start = pavail_rescan[n].phys_addr;
  1250. new_end = new_start +
  1251. pavail_rescan[n].reg_size;
  1252. if (new_start <= old_start &&
  1253. new_end >= (old_start + PAGE_SIZE)) {
  1254. set_bit(old_start >> 22,
  1255. sparc64_valid_addr_bitmap);
  1256. goto do_next_page;
  1257. }
  1258. }
  1259. reserve_bootmem(old_start, PAGE_SIZE);
  1260. do_next_page:
  1261. old_start += PAGE_SIZE;
  1262. }
  1263. }
  1264. }
  1265. int __init page_in_phys_avail(unsigned long paddr)
  1266. {
  1267. int i;
  1268. paddr &= PAGE_MASK;
  1269. for (i = 0; i < pavail_rescan_ents; i++) {
  1270. unsigned long start, end;
  1271. start = pavail_rescan[i].phys_addr;
  1272. end = start + pavail_rescan[i].reg_size;
  1273. if (paddr >= start && paddr < end)
  1274. return 1;
  1275. }
  1276. if (paddr >= kern_base && paddr < (kern_base + kern_size))
  1277. return 1;
  1278. #ifdef CONFIG_BLK_DEV_INITRD
  1279. if (paddr >= __pa(initrd_start) &&
  1280. paddr < __pa(PAGE_ALIGN(initrd_end)))
  1281. return 1;
  1282. #endif
  1283. return 0;
  1284. }
  1285. void __init mem_init(void)
  1286. {
  1287. unsigned long codepages, datapages, initpages;
  1288. unsigned long addr, last;
  1289. int i;
  1290. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1291. i += 1;
  1292. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1293. if (sparc64_valid_addr_bitmap == NULL) {
  1294. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1295. prom_halt();
  1296. }
  1297. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1298. addr = PAGE_OFFSET + kern_base;
  1299. last = PAGE_ALIGN(kern_size) + addr;
  1300. while (addr < last) {
  1301. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1302. addr += PAGE_SIZE;
  1303. }
  1304. taint_real_pages();
  1305. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1306. #ifdef CONFIG_DEBUG_BOOTMEM
  1307. prom_printf("mem_init: Calling free_all_bootmem().\n");
  1308. #endif
  1309. totalram_pages = num_physpages = free_all_bootmem() - 1;
  1310. /*
  1311. * Set up the zero page, mark it reserved, so that page count
  1312. * is not manipulated when freeing the page from user ptes.
  1313. */
  1314. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1315. if (mem_map_zero == NULL) {
  1316. prom_printf("paging_init: Cannot alloc zero page.\n");
  1317. prom_halt();
  1318. }
  1319. SetPageReserved(mem_map_zero);
  1320. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1321. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1322. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1323. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1324. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1325. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1326. printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1327. nr_free_pages() << (PAGE_SHIFT-10),
  1328. codepages << (PAGE_SHIFT-10),
  1329. datapages << (PAGE_SHIFT-10),
  1330. initpages << (PAGE_SHIFT-10),
  1331. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1332. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1333. cheetah_ecache_flush_init();
  1334. }
  1335. void free_initmem(void)
  1336. {
  1337. unsigned long addr, initend;
  1338. /*
  1339. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1340. */
  1341. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1342. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1343. for (; addr < initend; addr += PAGE_SIZE) {
  1344. unsigned long page;
  1345. struct page *p;
  1346. page = (addr +
  1347. ((unsigned long) __va(kern_base)) -
  1348. ((unsigned long) KERNBASE));
  1349. memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
  1350. p = virt_to_page(page);
  1351. ClearPageReserved(p);
  1352. init_page_count(p);
  1353. __free_page(p);
  1354. num_physpages++;
  1355. totalram_pages++;
  1356. }
  1357. }
  1358. #ifdef CONFIG_BLK_DEV_INITRD
  1359. void free_initrd_mem(unsigned long start, unsigned long end)
  1360. {
  1361. if (start < end)
  1362. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1363. for (; start < end; start += PAGE_SIZE) {
  1364. struct page *p = virt_to_page(start);
  1365. ClearPageReserved(p);
  1366. init_page_count(p);
  1367. __free_page(p);
  1368. num_physpages++;
  1369. totalram_pages++;
  1370. }
  1371. }
  1372. #endif
  1373. #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
  1374. #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
  1375. #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
  1376. #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
  1377. #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
  1378. #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
  1379. pgprot_t PAGE_KERNEL __read_mostly;
  1380. EXPORT_SYMBOL(PAGE_KERNEL);
  1381. pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
  1382. pgprot_t PAGE_COPY __read_mostly;
  1383. pgprot_t PAGE_SHARED __read_mostly;
  1384. EXPORT_SYMBOL(PAGE_SHARED);
  1385. pgprot_t PAGE_EXEC __read_mostly;
  1386. unsigned long pg_iobits __read_mostly;
  1387. unsigned long _PAGE_IE __read_mostly;
  1388. EXPORT_SYMBOL(_PAGE_IE);
  1389. unsigned long _PAGE_E __read_mostly;
  1390. EXPORT_SYMBOL(_PAGE_E);
  1391. unsigned long _PAGE_CACHE __read_mostly;
  1392. EXPORT_SYMBOL(_PAGE_CACHE);
  1393. static void prot_init_common(unsigned long page_none,
  1394. unsigned long page_shared,
  1395. unsigned long page_copy,
  1396. unsigned long page_readonly,
  1397. unsigned long page_exec_bit)
  1398. {
  1399. PAGE_COPY = __pgprot(page_copy);
  1400. PAGE_SHARED = __pgprot(page_shared);
  1401. protection_map[0x0] = __pgprot(page_none);
  1402. protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
  1403. protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
  1404. protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
  1405. protection_map[0x4] = __pgprot(page_readonly);
  1406. protection_map[0x5] = __pgprot(page_readonly);
  1407. protection_map[0x6] = __pgprot(page_copy);
  1408. protection_map[0x7] = __pgprot(page_copy);
  1409. protection_map[0x8] = __pgprot(page_none);
  1410. protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
  1411. protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
  1412. protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
  1413. protection_map[0xc] = __pgprot(page_readonly);
  1414. protection_map[0xd] = __pgprot(page_readonly);
  1415. protection_map[0xe] = __pgprot(page_shared);
  1416. protection_map[0xf] = __pgprot(page_shared);
  1417. }
  1418. static void __init sun4u_pgprot_init(void)
  1419. {
  1420. unsigned long page_none, page_shared, page_copy, page_readonly;
  1421. unsigned long page_exec_bit;
  1422. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1423. _PAGE_CACHE_4U | _PAGE_P_4U |
  1424. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1425. _PAGE_EXEC_4U);
  1426. PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1427. _PAGE_CACHE_4U | _PAGE_P_4U |
  1428. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1429. _PAGE_EXEC_4U | _PAGE_L_4U);
  1430. PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
  1431. _PAGE_IE = _PAGE_IE_4U;
  1432. _PAGE_E = _PAGE_E_4U;
  1433. _PAGE_CACHE = _PAGE_CACHE_4U;
  1434. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
  1435. __ACCESS_BITS_4U | _PAGE_E_4U);
  1436. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
  1437. 0xfffff80000000000;
  1438. kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
  1439. _PAGE_P_4U | _PAGE_W_4U);
  1440. /* XXX Should use 256MB on Panther. XXX */
  1441. kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
  1442. _PAGE_SZBITS = _PAGE_SZBITS_4U;
  1443. _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
  1444. _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
  1445. _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
  1446. page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
  1447. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1448. __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
  1449. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1450. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1451. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1452. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1453. page_exec_bit = _PAGE_EXEC_4U;
  1454. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1455. page_exec_bit);
  1456. }
  1457. static void __init sun4v_pgprot_init(void)
  1458. {
  1459. unsigned long page_none, page_shared, page_copy, page_readonly;
  1460. unsigned long page_exec_bit;
  1461. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
  1462. _PAGE_CACHE_4V | _PAGE_P_4V |
  1463. __ACCESS_BITS_4V | __DIRTY_BITS_4V |
  1464. _PAGE_EXEC_4V);
  1465. PAGE_KERNEL_LOCKED = PAGE_KERNEL;
  1466. PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
  1467. _PAGE_IE = _PAGE_IE_4V;
  1468. _PAGE_E = _PAGE_E_4V;
  1469. _PAGE_CACHE = _PAGE_CACHE_4V;
  1470. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
  1471. 0xfffff80000000000;
  1472. kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1473. _PAGE_P_4V | _PAGE_W_4V);
  1474. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
  1475. 0xfffff80000000000;
  1476. kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1477. _PAGE_P_4V | _PAGE_W_4V);
  1478. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
  1479. __ACCESS_BITS_4V | _PAGE_E_4V);
  1480. _PAGE_SZBITS = _PAGE_SZBITS_4V;
  1481. _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
  1482. _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
  1483. _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
  1484. _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
  1485. page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
  1486. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1487. __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
  1488. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1489. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1490. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1491. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1492. page_exec_bit = _PAGE_EXEC_4V;
  1493. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1494. page_exec_bit);
  1495. }
  1496. unsigned long pte_sz_bits(unsigned long sz)
  1497. {
  1498. if (tlb_type == hypervisor) {
  1499. switch (sz) {
  1500. case 8 * 1024:
  1501. default:
  1502. return _PAGE_SZ8K_4V;
  1503. case 64 * 1024:
  1504. return _PAGE_SZ64K_4V;
  1505. case 512 * 1024:
  1506. return _PAGE_SZ512K_4V;
  1507. case 4 * 1024 * 1024:
  1508. return _PAGE_SZ4MB_4V;
  1509. };
  1510. } else {
  1511. switch (sz) {
  1512. case 8 * 1024:
  1513. default:
  1514. return _PAGE_SZ8K_4U;
  1515. case 64 * 1024:
  1516. return _PAGE_SZ64K_4U;
  1517. case 512 * 1024:
  1518. return _PAGE_SZ512K_4U;
  1519. case 4 * 1024 * 1024:
  1520. return _PAGE_SZ4MB_4U;
  1521. };
  1522. }
  1523. }
  1524. pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
  1525. {
  1526. pte_t pte;
  1527. pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
  1528. pte_val(pte) |= (((unsigned long)space) << 32);
  1529. pte_val(pte) |= pte_sz_bits(page_size);
  1530. return pte;
  1531. }
  1532. static unsigned long kern_large_tte(unsigned long paddr)
  1533. {
  1534. unsigned long val;
  1535. val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1536. _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
  1537. _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
  1538. if (tlb_type == hypervisor)
  1539. val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1540. _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
  1541. _PAGE_EXEC_4V | _PAGE_W_4V);
  1542. return val | paddr;
  1543. }
  1544. /*
  1545. * Translate PROM's mapping we capture at boot time into physical address.
  1546. * The second parameter is only set from prom_callback() invocations.
  1547. */
  1548. unsigned long prom_virt_to_phys(unsigned long promva, int *error)
  1549. {
  1550. unsigned long mask;
  1551. int i;
  1552. mask = _PAGE_PADDR_4U;
  1553. if (tlb_type == hypervisor)
  1554. mask = _PAGE_PADDR_4V;
  1555. for (i = 0; i < prom_trans_ents; i++) {
  1556. struct linux_prom_translation *p = &prom_trans[i];
  1557. if (promva >= p->virt &&
  1558. promva < (p->virt + p->size)) {
  1559. unsigned long base = p->data & mask;
  1560. if (error)
  1561. *error = 0;
  1562. return base + (promva & (8192 - 1));
  1563. }
  1564. }
  1565. if (error)
  1566. *error = 1;
  1567. return 0UL;
  1568. }
  1569. /* XXX We should kill off this ugly thing at so me point. XXX */
  1570. unsigned long sun4u_get_pte(unsigned long addr)
  1571. {
  1572. pgd_t *pgdp;
  1573. pud_t *pudp;
  1574. pmd_t *pmdp;
  1575. pte_t *ptep;
  1576. unsigned long mask = _PAGE_PADDR_4U;
  1577. if (tlb_type == hypervisor)
  1578. mask = _PAGE_PADDR_4V;
  1579. if (addr >= PAGE_OFFSET)
  1580. return addr & mask;
  1581. if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
  1582. return prom_virt_to_phys(addr, NULL);
  1583. pgdp = pgd_offset_k(addr);
  1584. pudp = pud_offset(pgdp, addr);
  1585. pmdp = pmd_offset(pudp, addr);
  1586. ptep = pte_offset_kernel(pmdp, addr);
  1587. return pte_val(*ptep) & mask;
  1588. }
  1589. /* If not locked, zap it. */
  1590. void __flush_tlb_all(void)
  1591. {
  1592. unsigned long pstate;
  1593. int i;
  1594. __asm__ __volatile__("flushw\n\t"
  1595. "rdpr %%pstate, %0\n\t"
  1596. "wrpr %0, %1, %%pstate"
  1597. : "=r" (pstate)
  1598. : "i" (PSTATE_IE));
  1599. if (tlb_type == spitfire) {
  1600. for (i = 0; i < 64; i++) {
  1601. /* Spitfire Errata #32 workaround */
  1602. /* NOTE: Always runs on spitfire, so no
  1603. * cheetah+ page size encodings.
  1604. */
  1605. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1606. "flush %%g6"
  1607. : /* No outputs */
  1608. : "r" (0),
  1609. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1610. if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
  1611. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1612. "membar #Sync"
  1613. : /* no outputs */
  1614. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  1615. spitfire_put_dtlb_data(i, 0x0UL);
  1616. }
  1617. /* Spitfire Errata #32 workaround */
  1618. /* NOTE: Always runs on spitfire, so no
  1619. * cheetah+ page size encodings.
  1620. */
  1621. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1622. "flush %%g6"
  1623. : /* No outputs */
  1624. : "r" (0),
  1625. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1626. if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
  1627. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1628. "membar #Sync"
  1629. : /* no outputs */
  1630. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  1631. spitfire_put_itlb_data(i, 0x0UL);
  1632. }
  1633. }
  1634. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1635. cheetah_flush_dtlb_all();
  1636. cheetah_flush_itlb_all();
  1637. }
  1638. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  1639. : : "r" (pstate));
  1640. }
  1641. #ifdef CONFIG_MEMORY_HOTPLUG
  1642. void online_page(struct page *page)
  1643. {
  1644. ClearPageReserved(page);
  1645. init_page_count(page);
  1646. __free_page(page);
  1647. totalram_pages++;
  1648. num_physpages++;
  1649. }
  1650. int remove_memory(u64 start, u64 size)
  1651. {
  1652. return -EINVAL;
  1653. }
  1654. #endif /* CONFIG_MEMORY_HOTPLUG */