intel_display.c 132 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/module.h>
  27. #include <linux/input.h>
  28. #include <linux/i2c.h>
  29. #include <linux/kernel.h>
  30. #include "drmP.h"
  31. #include "intel_drv.h"
  32. #include "i915_drm.h"
  33. #include "i915_drv.h"
  34. #include "intel_dp.h"
  35. #include "drm_crtc_helper.h"
  36. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  37. bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
  38. static void intel_update_watermarks(struct drm_device *dev);
  39. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
  40. typedef struct {
  41. /* given values */
  42. int n;
  43. int m1, m2;
  44. int p1, p2;
  45. /* derived values */
  46. int dot;
  47. int vco;
  48. int m;
  49. int p;
  50. } intel_clock_t;
  51. typedef struct {
  52. int min, max;
  53. } intel_range_t;
  54. typedef struct {
  55. int dot_limit;
  56. int p2_slow, p2_fast;
  57. } intel_p2_t;
  58. #define INTEL_P2_NUM 2
  59. typedef struct intel_limit intel_limit_t;
  60. struct intel_limit {
  61. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  62. intel_p2_t p2;
  63. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  64. int, int, intel_clock_t *);
  65. bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
  66. int, int, intel_clock_t *);
  67. };
  68. #define I8XX_DOT_MIN 25000
  69. #define I8XX_DOT_MAX 350000
  70. #define I8XX_VCO_MIN 930000
  71. #define I8XX_VCO_MAX 1400000
  72. #define I8XX_N_MIN 3
  73. #define I8XX_N_MAX 16
  74. #define I8XX_M_MIN 96
  75. #define I8XX_M_MAX 140
  76. #define I8XX_M1_MIN 18
  77. #define I8XX_M1_MAX 26
  78. #define I8XX_M2_MIN 6
  79. #define I8XX_M2_MAX 16
  80. #define I8XX_P_MIN 4
  81. #define I8XX_P_MAX 128
  82. #define I8XX_P1_MIN 2
  83. #define I8XX_P1_MAX 33
  84. #define I8XX_P1_LVDS_MIN 1
  85. #define I8XX_P1_LVDS_MAX 6
  86. #define I8XX_P2_SLOW 4
  87. #define I8XX_P2_FAST 2
  88. #define I8XX_P2_LVDS_SLOW 14
  89. #define I8XX_P2_LVDS_FAST 7
  90. #define I8XX_P2_SLOW_LIMIT 165000
  91. #define I9XX_DOT_MIN 20000
  92. #define I9XX_DOT_MAX 400000
  93. #define I9XX_VCO_MIN 1400000
  94. #define I9XX_VCO_MAX 2800000
  95. #define IGD_VCO_MIN 1700000
  96. #define IGD_VCO_MAX 3500000
  97. #define I9XX_N_MIN 1
  98. #define I9XX_N_MAX 6
  99. /* IGD's Ncounter is a ring counter */
  100. #define IGD_N_MIN 3
  101. #define IGD_N_MAX 6
  102. #define I9XX_M_MIN 70
  103. #define I9XX_M_MAX 120
  104. #define IGD_M_MIN 2
  105. #define IGD_M_MAX 256
  106. #define I9XX_M1_MIN 10
  107. #define I9XX_M1_MAX 22
  108. #define I9XX_M2_MIN 5
  109. #define I9XX_M2_MAX 9
  110. /* IGD M1 is reserved, and must be 0 */
  111. #define IGD_M1_MIN 0
  112. #define IGD_M1_MAX 0
  113. #define IGD_M2_MIN 0
  114. #define IGD_M2_MAX 254
  115. #define I9XX_P_SDVO_DAC_MIN 5
  116. #define I9XX_P_SDVO_DAC_MAX 80
  117. #define I9XX_P_LVDS_MIN 7
  118. #define I9XX_P_LVDS_MAX 98
  119. #define IGD_P_LVDS_MIN 7
  120. #define IGD_P_LVDS_MAX 112
  121. #define I9XX_P1_MIN 1
  122. #define I9XX_P1_MAX 8
  123. #define I9XX_P2_SDVO_DAC_SLOW 10
  124. #define I9XX_P2_SDVO_DAC_FAST 5
  125. #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
  126. #define I9XX_P2_LVDS_SLOW 14
  127. #define I9XX_P2_LVDS_FAST 7
  128. #define I9XX_P2_LVDS_SLOW_LIMIT 112000
  129. /*The parameter is for SDVO on G4x platform*/
  130. #define G4X_DOT_SDVO_MIN 25000
  131. #define G4X_DOT_SDVO_MAX 270000
  132. #define G4X_VCO_MIN 1750000
  133. #define G4X_VCO_MAX 3500000
  134. #define G4X_N_SDVO_MIN 1
  135. #define G4X_N_SDVO_MAX 4
  136. #define G4X_M_SDVO_MIN 104
  137. #define G4X_M_SDVO_MAX 138
  138. #define G4X_M1_SDVO_MIN 17
  139. #define G4X_M1_SDVO_MAX 23
  140. #define G4X_M2_SDVO_MIN 5
  141. #define G4X_M2_SDVO_MAX 11
  142. #define G4X_P_SDVO_MIN 10
  143. #define G4X_P_SDVO_MAX 30
  144. #define G4X_P1_SDVO_MIN 1
  145. #define G4X_P1_SDVO_MAX 3
  146. #define G4X_P2_SDVO_SLOW 10
  147. #define G4X_P2_SDVO_FAST 10
  148. #define G4X_P2_SDVO_LIMIT 270000
  149. /*The parameter is for HDMI_DAC on G4x platform*/
  150. #define G4X_DOT_HDMI_DAC_MIN 22000
  151. #define G4X_DOT_HDMI_DAC_MAX 400000
  152. #define G4X_N_HDMI_DAC_MIN 1
  153. #define G4X_N_HDMI_DAC_MAX 4
  154. #define G4X_M_HDMI_DAC_MIN 104
  155. #define G4X_M_HDMI_DAC_MAX 138
  156. #define G4X_M1_HDMI_DAC_MIN 16
  157. #define G4X_M1_HDMI_DAC_MAX 23
  158. #define G4X_M2_HDMI_DAC_MIN 5
  159. #define G4X_M2_HDMI_DAC_MAX 11
  160. #define G4X_P_HDMI_DAC_MIN 5
  161. #define G4X_P_HDMI_DAC_MAX 80
  162. #define G4X_P1_HDMI_DAC_MIN 1
  163. #define G4X_P1_HDMI_DAC_MAX 8
  164. #define G4X_P2_HDMI_DAC_SLOW 10
  165. #define G4X_P2_HDMI_DAC_FAST 5
  166. #define G4X_P2_HDMI_DAC_LIMIT 165000
  167. /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
  168. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
  169. #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
  170. #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
  171. #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
  172. #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
  173. #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
  174. #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
  175. #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
  176. #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
  177. #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
  178. #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
  179. #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
  180. #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
  181. #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
  182. #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
  183. #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
  184. #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
  185. /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
  186. #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
  187. #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
  188. #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
  189. #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
  190. #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
  191. #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
  192. #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
  193. #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
  194. #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
  195. #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
  196. #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
  197. #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
  198. #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
  199. #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
  200. #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
  201. #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
  202. #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
  203. /*The parameter is for DISPLAY PORT on G4x platform*/
  204. #define G4X_DOT_DISPLAY_PORT_MIN 161670
  205. #define G4X_DOT_DISPLAY_PORT_MAX 227000
  206. #define G4X_N_DISPLAY_PORT_MIN 1
  207. #define G4X_N_DISPLAY_PORT_MAX 2
  208. #define G4X_M_DISPLAY_PORT_MIN 97
  209. #define G4X_M_DISPLAY_PORT_MAX 108
  210. #define G4X_M1_DISPLAY_PORT_MIN 0x10
  211. #define G4X_M1_DISPLAY_PORT_MAX 0x12
  212. #define G4X_M2_DISPLAY_PORT_MIN 0x05
  213. #define G4X_M2_DISPLAY_PORT_MAX 0x06
  214. #define G4X_P_DISPLAY_PORT_MIN 10
  215. #define G4X_P_DISPLAY_PORT_MAX 20
  216. #define G4X_P1_DISPLAY_PORT_MIN 1
  217. #define G4X_P1_DISPLAY_PORT_MAX 2
  218. #define G4X_P2_DISPLAY_PORT_SLOW 10
  219. #define G4X_P2_DISPLAY_PORT_FAST 10
  220. #define G4X_P2_DISPLAY_PORT_LIMIT 0
  221. /* IGDNG */
  222. /* as we calculate clock using (register_value + 2) for
  223. N/M1/M2, so here the range value for them is (actual_value-2).
  224. */
  225. #define IGDNG_DOT_MIN 25000
  226. #define IGDNG_DOT_MAX 350000
  227. #define IGDNG_VCO_MIN 1760000
  228. #define IGDNG_VCO_MAX 3510000
  229. #define IGDNG_N_MIN 1
  230. #define IGDNG_N_MAX 5
  231. #define IGDNG_M_MIN 79
  232. #define IGDNG_M_MAX 118
  233. #define IGDNG_M1_MIN 12
  234. #define IGDNG_M1_MAX 23
  235. #define IGDNG_M2_MIN 5
  236. #define IGDNG_M2_MAX 9
  237. #define IGDNG_P_SDVO_DAC_MIN 5
  238. #define IGDNG_P_SDVO_DAC_MAX 80
  239. #define IGDNG_P_LVDS_MIN 28
  240. #define IGDNG_P_LVDS_MAX 112
  241. #define IGDNG_P1_MIN 1
  242. #define IGDNG_P1_MAX 8
  243. #define IGDNG_P2_SDVO_DAC_SLOW 10
  244. #define IGDNG_P2_SDVO_DAC_FAST 5
  245. #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
  246. #define IGDNG_P2_LVDS_FAST 7 /* double channel */
  247. #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
  248. static bool
  249. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  250. int target, int refclk, intel_clock_t *best_clock);
  251. static bool
  252. intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  253. int target, int refclk, intel_clock_t *best_clock);
  254. static bool
  255. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  256. int target, int refclk, intel_clock_t *best_clock);
  257. static bool
  258. intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  259. int target, int refclk, intel_clock_t *best_clock);
  260. static bool
  261. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  262. int target, int refclk, intel_clock_t *best_clock);
  263. static bool
  264. intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
  265. int target, int refclk, intel_clock_t *best_clock);
  266. static const intel_limit_t intel_limits_i8xx_dvo = {
  267. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  268. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  269. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  270. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  271. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  272. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  273. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  274. .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
  275. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  276. .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
  277. .find_pll = intel_find_best_PLL,
  278. .find_reduced_pll = intel_find_best_reduced_PLL,
  279. };
  280. static const intel_limit_t intel_limits_i8xx_lvds = {
  281. .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
  282. .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
  283. .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
  284. .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
  285. .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
  286. .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
  287. .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
  288. .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
  289. .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
  290. .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
  291. .find_pll = intel_find_best_PLL,
  292. .find_reduced_pll = intel_find_best_reduced_PLL,
  293. };
  294. static const intel_limit_t intel_limits_i9xx_sdvo = {
  295. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  296. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  297. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  298. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  299. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  300. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  301. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  302. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  303. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  304. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  305. .find_pll = intel_find_best_PLL,
  306. .find_reduced_pll = intel_find_best_reduced_PLL,
  307. };
  308. static const intel_limit_t intel_limits_i9xx_lvds = {
  309. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  310. .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
  311. .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
  312. .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
  313. .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
  314. .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
  315. .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
  316. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  317. /* The single-channel range is 25-112Mhz, and dual-channel
  318. * is 80-224Mhz. Prefer single channel as much as possible.
  319. */
  320. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  321. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
  322. .find_pll = intel_find_best_PLL,
  323. .find_reduced_pll = intel_find_best_reduced_PLL,
  324. };
  325. /* below parameter and function is for G4X Chipset Family*/
  326. static const intel_limit_t intel_limits_g4x_sdvo = {
  327. .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
  328. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  329. .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
  330. .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
  331. .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
  332. .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
  333. .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
  334. .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
  335. .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
  336. .p2_slow = G4X_P2_SDVO_SLOW,
  337. .p2_fast = G4X_P2_SDVO_FAST
  338. },
  339. .find_pll = intel_g4x_find_best_PLL,
  340. .find_reduced_pll = intel_g4x_find_best_PLL,
  341. };
  342. static const intel_limit_t intel_limits_g4x_hdmi = {
  343. .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
  344. .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
  345. .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
  346. .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
  347. .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
  348. .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
  349. .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
  350. .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
  351. .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
  352. .p2_slow = G4X_P2_HDMI_DAC_SLOW,
  353. .p2_fast = G4X_P2_HDMI_DAC_FAST
  354. },
  355. .find_pll = intel_g4x_find_best_PLL,
  356. .find_reduced_pll = intel_g4x_find_best_PLL,
  357. };
  358. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  359. .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
  360. .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
  361. .vco = { .min = G4X_VCO_MIN,
  362. .max = G4X_VCO_MAX },
  363. .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
  364. .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
  365. .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
  366. .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
  367. .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
  368. .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
  369. .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
  370. .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
  371. .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
  372. .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
  373. .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
  374. .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
  375. .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
  376. .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
  377. .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
  378. },
  379. .find_pll = intel_g4x_find_best_PLL,
  380. .find_reduced_pll = intel_g4x_find_best_PLL,
  381. };
  382. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  383. .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
  384. .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
  385. .vco = { .min = G4X_VCO_MIN,
  386. .max = G4X_VCO_MAX },
  387. .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
  388. .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
  389. .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
  390. .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
  391. .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
  392. .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
  393. .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
  394. .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
  395. .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
  396. .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
  397. .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
  398. .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
  399. .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
  400. .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
  401. .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
  402. },
  403. .find_pll = intel_g4x_find_best_PLL,
  404. .find_reduced_pll = intel_g4x_find_best_PLL,
  405. };
  406. static const intel_limit_t intel_limits_g4x_display_port = {
  407. .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
  408. .max = G4X_DOT_DISPLAY_PORT_MAX },
  409. .vco = { .min = G4X_VCO_MIN,
  410. .max = G4X_VCO_MAX},
  411. .n = { .min = G4X_N_DISPLAY_PORT_MIN,
  412. .max = G4X_N_DISPLAY_PORT_MAX },
  413. .m = { .min = G4X_M_DISPLAY_PORT_MIN,
  414. .max = G4X_M_DISPLAY_PORT_MAX },
  415. .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
  416. .max = G4X_M1_DISPLAY_PORT_MAX },
  417. .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
  418. .max = G4X_M2_DISPLAY_PORT_MAX },
  419. .p = { .min = G4X_P_DISPLAY_PORT_MIN,
  420. .max = G4X_P_DISPLAY_PORT_MAX },
  421. .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
  422. .max = G4X_P1_DISPLAY_PORT_MAX},
  423. .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
  424. .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
  425. .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
  426. .find_pll = intel_find_pll_g4x_dp,
  427. };
  428. static const intel_limit_t intel_limits_igd_sdvo = {
  429. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
  430. .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
  431. .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
  432. .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
  433. .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
  434. .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
  435. .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
  436. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  437. .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
  438. .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
  439. .find_pll = intel_find_best_PLL,
  440. .find_reduced_pll = intel_find_best_reduced_PLL,
  441. };
  442. static const intel_limit_t intel_limits_igd_lvds = {
  443. .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
  444. .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
  445. .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
  446. .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
  447. .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
  448. .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
  449. .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
  450. .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
  451. /* IGD only supports single-channel mode. */
  452. .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
  453. .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
  454. .find_pll = intel_find_best_PLL,
  455. .find_reduced_pll = intel_find_best_reduced_PLL,
  456. };
  457. static const intel_limit_t intel_limits_igdng_sdvo = {
  458. .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
  459. .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
  460. .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
  461. .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
  462. .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
  463. .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
  464. .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
  465. .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
  466. .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
  467. .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
  468. .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
  469. .find_pll = intel_igdng_find_best_PLL,
  470. };
  471. static const intel_limit_t intel_limits_igdng_lvds = {
  472. .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
  473. .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
  474. .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
  475. .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
  476. .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
  477. .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
  478. .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
  479. .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
  480. .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
  481. .p2_slow = IGDNG_P2_LVDS_SLOW,
  482. .p2_fast = IGDNG_P2_LVDS_FAST },
  483. .find_pll = intel_igdng_find_best_PLL,
  484. };
  485. static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
  486. {
  487. const intel_limit_t *limit;
  488. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  489. limit = &intel_limits_igdng_lvds;
  490. else
  491. limit = &intel_limits_igdng_sdvo;
  492. return limit;
  493. }
  494. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  495. {
  496. struct drm_device *dev = crtc->dev;
  497. struct drm_i915_private *dev_priv = dev->dev_private;
  498. const intel_limit_t *limit;
  499. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  500. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  501. LVDS_CLKB_POWER_UP)
  502. /* LVDS with dual channel */
  503. limit = &intel_limits_g4x_dual_channel_lvds;
  504. else
  505. /* LVDS with dual channel */
  506. limit = &intel_limits_g4x_single_channel_lvds;
  507. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  508. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  509. limit = &intel_limits_g4x_hdmi;
  510. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  511. limit = &intel_limits_g4x_sdvo;
  512. } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  513. limit = &intel_limits_g4x_display_port;
  514. } else /* The option is for other outputs */
  515. limit = &intel_limits_i9xx_sdvo;
  516. return limit;
  517. }
  518. static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
  519. {
  520. struct drm_device *dev = crtc->dev;
  521. const intel_limit_t *limit;
  522. if (IS_IGDNG(dev))
  523. limit = intel_igdng_limit(crtc);
  524. else if (IS_G4X(dev)) {
  525. limit = intel_g4x_limit(crtc);
  526. } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
  527. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  528. limit = &intel_limits_i9xx_lvds;
  529. else
  530. limit = &intel_limits_i9xx_sdvo;
  531. } else if (IS_IGD(dev)) {
  532. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  533. limit = &intel_limits_igd_lvds;
  534. else
  535. limit = &intel_limits_igd_sdvo;
  536. } else {
  537. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  538. limit = &intel_limits_i8xx_lvds;
  539. else
  540. limit = &intel_limits_i8xx_dvo;
  541. }
  542. return limit;
  543. }
  544. /* m1 is reserved as 0 in IGD, n is a ring counter */
  545. static void igd_clock(int refclk, intel_clock_t *clock)
  546. {
  547. clock->m = clock->m2 + 2;
  548. clock->p = clock->p1 * clock->p2;
  549. clock->vco = refclk * clock->m / clock->n;
  550. clock->dot = clock->vco / clock->p;
  551. }
  552. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  553. {
  554. if (IS_IGD(dev)) {
  555. igd_clock(refclk, clock);
  556. return;
  557. }
  558. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  559. clock->p = clock->p1 * clock->p2;
  560. clock->vco = refclk * clock->m / (clock->n + 2);
  561. clock->dot = clock->vco / clock->p;
  562. }
  563. /**
  564. * Returns whether any output on the specified pipe is of the specified type
  565. */
  566. bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
  567. {
  568. struct drm_device *dev = crtc->dev;
  569. struct drm_mode_config *mode_config = &dev->mode_config;
  570. struct drm_connector *l_entry;
  571. list_for_each_entry(l_entry, &mode_config->connector_list, head) {
  572. if (l_entry->encoder &&
  573. l_entry->encoder->crtc == crtc) {
  574. struct intel_output *intel_output = to_intel_output(l_entry);
  575. if (intel_output->type == type)
  576. return true;
  577. }
  578. }
  579. return false;
  580. }
  581. struct drm_connector *
  582. intel_pipe_get_output (struct drm_crtc *crtc)
  583. {
  584. struct drm_device *dev = crtc->dev;
  585. struct drm_mode_config *mode_config = &dev->mode_config;
  586. struct drm_connector *l_entry, *ret = NULL;
  587. list_for_each_entry(l_entry, &mode_config->connector_list, head) {
  588. if (l_entry->encoder &&
  589. l_entry->encoder->crtc == crtc) {
  590. ret = l_entry;
  591. break;
  592. }
  593. }
  594. return ret;
  595. }
  596. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  597. /**
  598. * Returns whether the given set of divisors are valid for a given refclk with
  599. * the given connectors.
  600. */
  601. static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
  602. {
  603. const intel_limit_t *limit = intel_limit (crtc);
  604. struct drm_device *dev = crtc->dev;
  605. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  606. INTELPllInvalid ("p1 out of range\n");
  607. if (clock->p < limit->p.min || limit->p.max < clock->p)
  608. INTELPllInvalid ("p out of range\n");
  609. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  610. INTELPllInvalid ("m2 out of range\n");
  611. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  612. INTELPllInvalid ("m1 out of range\n");
  613. if (clock->m1 <= clock->m2 && !IS_IGD(dev))
  614. INTELPllInvalid ("m1 <= m2\n");
  615. if (clock->m < limit->m.min || limit->m.max < clock->m)
  616. INTELPllInvalid ("m out of range\n");
  617. if (clock->n < limit->n.min || limit->n.max < clock->n)
  618. INTELPllInvalid ("n out of range\n");
  619. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  620. INTELPllInvalid ("vco out of range\n");
  621. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  622. * connector, etc., rather than just a single range.
  623. */
  624. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  625. INTELPllInvalid ("dot out of range\n");
  626. return true;
  627. }
  628. static bool
  629. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  630. int target, int refclk, intel_clock_t *best_clock)
  631. {
  632. struct drm_device *dev = crtc->dev;
  633. struct drm_i915_private *dev_priv = dev->dev_private;
  634. intel_clock_t clock;
  635. int err = target;
  636. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  637. (I915_READ(LVDS)) != 0) {
  638. /*
  639. * For LVDS, if the panel is on, just rely on its current
  640. * settings for dual-channel. We haven't figured out how to
  641. * reliably set up different single/dual channel state, if we
  642. * even can.
  643. */
  644. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  645. LVDS_CLKB_POWER_UP)
  646. clock.p2 = limit->p2.p2_fast;
  647. else
  648. clock.p2 = limit->p2.p2_slow;
  649. } else {
  650. if (target < limit->p2.dot_limit)
  651. clock.p2 = limit->p2.p2_slow;
  652. else
  653. clock.p2 = limit->p2.p2_fast;
  654. }
  655. memset (best_clock, 0, sizeof (*best_clock));
  656. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  657. clock.m1++) {
  658. for (clock.m2 = limit->m2.min;
  659. clock.m2 <= limit->m2.max; clock.m2++) {
  660. /* m1 is always 0 in IGD */
  661. if (clock.m2 >= clock.m1 && !IS_IGD(dev))
  662. break;
  663. for (clock.n = limit->n.min;
  664. clock.n <= limit->n.max; clock.n++) {
  665. for (clock.p1 = limit->p1.min;
  666. clock.p1 <= limit->p1.max; clock.p1++) {
  667. int this_err;
  668. intel_clock(dev, refclk, &clock);
  669. if (!intel_PLL_is_valid(crtc, &clock))
  670. continue;
  671. this_err = abs(clock.dot - target);
  672. if (this_err < err) {
  673. *best_clock = clock;
  674. err = this_err;
  675. }
  676. }
  677. }
  678. }
  679. }
  680. return (err != target);
  681. }
  682. static bool
  683. intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  684. int target, int refclk, intel_clock_t *best_clock)
  685. {
  686. struct drm_device *dev = crtc->dev;
  687. intel_clock_t clock;
  688. int err = target;
  689. bool found = false;
  690. memcpy(&clock, best_clock, sizeof(intel_clock_t));
  691. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  692. for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
  693. /* m1 is always 0 in IGD */
  694. if (clock.m2 >= clock.m1 && !IS_IGD(dev))
  695. break;
  696. for (clock.n = limit->n.min; clock.n <= limit->n.max;
  697. clock.n++) {
  698. int this_err;
  699. intel_clock(dev, refclk, &clock);
  700. if (!intel_PLL_is_valid(crtc, &clock))
  701. continue;
  702. this_err = abs(clock.dot - target);
  703. if (this_err < err) {
  704. *best_clock = clock;
  705. err = this_err;
  706. found = true;
  707. }
  708. }
  709. }
  710. }
  711. return found;
  712. }
  713. static bool
  714. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  715. int target, int refclk, intel_clock_t *best_clock)
  716. {
  717. struct drm_device *dev = crtc->dev;
  718. struct drm_i915_private *dev_priv = dev->dev_private;
  719. intel_clock_t clock;
  720. int max_n;
  721. bool found;
  722. /* approximately equals target * 0.00488 */
  723. int err_most = (target >> 8) + (target >> 10);
  724. found = false;
  725. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  726. if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
  727. LVDS_CLKB_POWER_UP)
  728. clock.p2 = limit->p2.p2_fast;
  729. else
  730. clock.p2 = limit->p2.p2_slow;
  731. } else {
  732. if (target < limit->p2.dot_limit)
  733. clock.p2 = limit->p2.p2_slow;
  734. else
  735. clock.p2 = limit->p2.p2_fast;
  736. }
  737. memset(best_clock, 0, sizeof(*best_clock));
  738. max_n = limit->n.max;
  739. /* based on hardware requriment prefer smaller n to precision */
  740. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  741. /* based on hardware requirment prefere larger m1,m2 */
  742. for (clock.m1 = limit->m1.max;
  743. clock.m1 >= limit->m1.min; clock.m1--) {
  744. for (clock.m2 = limit->m2.max;
  745. clock.m2 >= limit->m2.min; clock.m2--) {
  746. for (clock.p1 = limit->p1.max;
  747. clock.p1 >= limit->p1.min; clock.p1--) {
  748. int this_err;
  749. intel_clock(dev, refclk, &clock);
  750. if (!intel_PLL_is_valid(crtc, &clock))
  751. continue;
  752. this_err = abs(clock.dot - target) ;
  753. if (this_err < err_most) {
  754. *best_clock = clock;
  755. err_most = this_err;
  756. max_n = clock.n;
  757. found = true;
  758. }
  759. }
  760. }
  761. }
  762. }
  763. return found;
  764. }
  765. static bool
  766. intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  767. int target, int refclk, intel_clock_t *best_clock)
  768. {
  769. struct drm_device *dev = crtc->dev;
  770. intel_clock_t clock;
  771. if (target < 200000) {
  772. clock.n = 1;
  773. clock.p1 = 2;
  774. clock.p2 = 10;
  775. clock.m1 = 12;
  776. clock.m2 = 9;
  777. } else {
  778. clock.n = 2;
  779. clock.p1 = 1;
  780. clock.p2 = 10;
  781. clock.m1 = 14;
  782. clock.m2 = 8;
  783. }
  784. intel_clock(dev, refclk, &clock);
  785. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  786. return true;
  787. }
  788. static bool
  789. intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  790. int target, int refclk, intel_clock_t *best_clock)
  791. {
  792. struct drm_device *dev = crtc->dev;
  793. struct drm_i915_private *dev_priv = dev->dev_private;
  794. intel_clock_t clock;
  795. int err_most = 47;
  796. int err_min = 10000;
  797. /* eDP has only 2 clock choice, no n/m/p setting */
  798. if (HAS_eDP)
  799. return true;
  800. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  801. return intel_find_pll_igdng_dp(limit, crtc, target,
  802. refclk, best_clock);
  803. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  804. if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
  805. LVDS_CLKB_POWER_UP)
  806. clock.p2 = limit->p2.p2_fast;
  807. else
  808. clock.p2 = limit->p2.p2_slow;
  809. } else {
  810. if (target < limit->p2.dot_limit)
  811. clock.p2 = limit->p2.p2_slow;
  812. else
  813. clock.p2 = limit->p2.p2_fast;
  814. }
  815. memset(best_clock, 0, sizeof(*best_clock));
  816. for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  817. /* based on hardware requriment prefer smaller n to precision */
  818. for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
  819. /* based on hardware requirment prefere larger m1,m2 */
  820. for (clock.m1 = limit->m1.max;
  821. clock.m1 >= limit->m1.min; clock.m1--) {
  822. for (clock.m2 = limit->m2.max;
  823. clock.m2 >= limit->m2.min; clock.m2--) {
  824. int this_err;
  825. intel_clock(dev, refclk, &clock);
  826. if (!intel_PLL_is_valid(crtc, &clock))
  827. continue;
  828. this_err = abs((10000 - (target*10000/clock.dot)));
  829. if (this_err < err_most) {
  830. *best_clock = clock;
  831. /* found on first matching */
  832. goto out;
  833. } else if (this_err < err_min) {
  834. *best_clock = clock;
  835. err_min = this_err;
  836. }
  837. }
  838. }
  839. }
  840. }
  841. out:
  842. return true;
  843. }
  844. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  845. static bool
  846. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  847. int target, int refclk, intel_clock_t *best_clock)
  848. {
  849. intel_clock_t clock;
  850. if (target < 200000) {
  851. clock.p1 = 2;
  852. clock.p2 = 10;
  853. clock.n = 2;
  854. clock.m1 = 23;
  855. clock.m2 = 8;
  856. } else {
  857. clock.p1 = 1;
  858. clock.p2 = 10;
  859. clock.n = 1;
  860. clock.m1 = 14;
  861. clock.m2 = 2;
  862. }
  863. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  864. clock.p = (clock.p1 * clock.p2);
  865. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  866. clock.vco = 0;
  867. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  868. return true;
  869. }
  870. void
  871. intel_wait_for_vblank(struct drm_device *dev)
  872. {
  873. /* Wait for 20ms, i.e. one cycle at 50hz. */
  874. mdelay(20);
  875. }
  876. /* Parameters have changed, update FBC info */
  877. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  878. {
  879. struct drm_device *dev = crtc->dev;
  880. struct drm_i915_private *dev_priv = dev->dev_private;
  881. struct drm_framebuffer *fb = crtc->fb;
  882. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  883. struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
  884. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  885. int plane, i;
  886. u32 fbc_ctl, fbc_ctl2;
  887. dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  888. if (fb->pitch < dev_priv->cfb_pitch)
  889. dev_priv->cfb_pitch = fb->pitch;
  890. /* FBC_CTL wants 64B units */
  891. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  892. dev_priv->cfb_fence = obj_priv->fence_reg;
  893. dev_priv->cfb_plane = intel_crtc->plane;
  894. plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  895. /* Clear old tags */
  896. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  897. I915_WRITE(FBC_TAG + (i * 4), 0);
  898. /* Set it up... */
  899. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
  900. if (obj_priv->tiling_mode != I915_TILING_NONE)
  901. fbc_ctl2 |= FBC_CTL_CPU_FENCE;
  902. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  903. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  904. /* enable it... */
  905. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  906. fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  907. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  908. if (obj_priv->tiling_mode != I915_TILING_NONE)
  909. fbc_ctl |= dev_priv->cfb_fence;
  910. I915_WRITE(FBC_CONTROL, fbc_ctl);
  911. DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
  912. dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
  913. }
  914. void i8xx_disable_fbc(struct drm_device *dev)
  915. {
  916. struct drm_i915_private *dev_priv = dev->dev_private;
  917. u32 fbc_ctl;
  918. if (!I915_HAS_FBC(dev))
  919. return;
  920. /* Disable compression */
  921. fbc_ctl = I915_READ(FBC_CONTROL);
  922. fbc_ctl &= ~FBC_CTL_EN;
  923. I915_WRITE(FBC_CONTROL, fbc_ctl);
  924. /* Wait for compressing bit to clear */
  925. while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
  926. ; /* nothing */
  927. intel_wait_for_vblank(dev);
  928. DRM_DEBUG_KMS("disabled FBC\n");
  929. }
  930. static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
  931. {
  932. struct drm_device *dev = crtc->dev;
  933. struct drm_i915_private *dev_priv = dev->dev_private;
  934. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  935. }
  936. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  937. {
  938. struct drm_device *dev = crtc->dev;
  939. struct drm_i915_private *dev_priv = dev->dev_private;
  940. struct drm_framebuffer *fb = crtc->fb;
  941. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  942. struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
  943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  944. int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
  945. DPFC_CTL_PLANEB);
  946. unsigned long stall_watermark = 200;
  947. u32 dpfc_ctl;
  948. dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
  949. dev_priv->cfb_fence = obj_priv->fence_reg;
  950. dev_priv->cfb_plane = intel_crtc->plane;
  951. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  952. if (obj_priv->tiling_mode != I915_TILING_NONE) {
  953. dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
  954. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  955. } else {
  956. I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
  957. }
  958. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  959. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  960. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  961. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  962. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  963. /* enable it... */
  964. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  965. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  966. }
  967. void g4x_disable_fbc(struct drm_device *dev)
  968. {
  969. struct drm_i915_private *dev_priv = dev->dev_private;
  970. u32 dpfc_ctl;
  971. /* Disable compression */
  972. dpfc_ctl = I915_READ(DPFC_CONTROL);
  973. dpfc_ctl &= ~DPFC_CTL_EN;
  974. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  975. intel_wait_for_vblank(dev);
  976. DRM_DEBUG_KMS("disabled FBC\n");
  977. }
  978. static bool g4x_fbc_enabled(struct drm_crtc *crtc)
  979. {
  980. struct drm_device *dev = crtc->dev;
  981. struct drm_i915_private *dev_priv = dev->dev_private;
  982. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  983. }
  984. /**
  985. * intel_update_fbc - enable/disable FBC as needed
  986. * @crtc: CRTC to point the compressor at
  987. * @mode: mode in use
  988. *
  989. * Set up the framebuffer compression hardware at mode set time. We
  990. * enable it if possible:
  991. * - plane A only (on pre-965)
  992. * - no pixel mulitply/line duplication
  993. * - no alpha buffer discard
  994. * - no dual wide
  995. * - framebuffer <= 2048 in width, 1536 in height
  996. *
  997. * We can't assume that any compression will take place (worst case),
  998. * so the compressed buffer has to be the same size as the uncompressed
  999. * one. It also must reside (along with the line length buffer) in
  1000. * stolen memory.
  1001. *
  1002. * We need to enable/disable FBC on a global basis.
  1003. */
  1004. static void intel_update_fbc(struct drm_crtc *crtc,
  1005. struct drm_display_mode *mode)
  1006. {
  1007. struct drm_device *dev = crtc->dev;
  1008. struct drm_i915_private *dev_priv = dev->dev_private;
  1009. struct drm_framebuffer *fb = crtc->fb;
  1010. struct intel_framebuffer *intel_fb;
  1011. struct drm_i915_gem_object *obj_priv;
  1012. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1013. int plane = intel_crtc->plane;
  1014. if (!i915_powersave)
  1015. return;
  1016. if (!dev_priv->display.fbc_enabled ||
  1017. !dev_priv->display.enable_fbc ||
  1018. !dev_priv->display.disable_fbc)
  1019. return;
  1020. if (!crtc->fb)
  1021. return;
  1022. intel_fb = to_intel_framebuffer(fb);
  1023. obj_priv = intel_fb->obj->driver_private;
  1024. /*
  1025. * If FBC is already on, we just have to verify that we can
  1026. * keep it that way...
  1027. * Need to disable if:
  1028. * - changing FBC params (stride, fence, mode)
  1029. * - new fb is too large to fit in compressed buffer
  1030. * - going to an unsupported config (interlace, pixel multiply, etc.)
  1031. */
  1032. if (intel_fb->obj->size > dev_priv->cfb_size) {
  1033. DRM_DEBUG_KMS("framebuffer too large, disabling "
  1034. "compression\n");
  1035. goto out_disable;
  1036. }
  1037. if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
  1038. (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
  1039. DRM_DEBUG_KMS("mode incompatible with compression, "
  1040. "disabling\n");
  1041. goto out_disable;
  1042. }
  1043. if ((mode->hdisplay > 2048) ||
  1044. (mode->vdisplay > 1536)) {
  1045. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  1046. goto out_disable;
  1047. }
  1048. if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
  1049. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  1050. goto out_disable;
  1051. }
  1052. if (obj_priv->tiling_mode != I915_TILING_X) {
  1053. DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
  1054. goto out_disable;
  1055. }
  1056. if (dev_priv->display.fbc_enabled(crtc)) {
  1057. /* We can re-enable it in this case, but need to update pitch */
  1058. if (fb->pitch > dev_priv->cfb_pitch)
  1059. dev_priv->display.disable_fbc(dev);
  1060. if (obj_priv->fence_reg != dev_priv->cfb_fence)
  1061. dev_priv->display.disable_fbc(dev);
  1062. if (plane != dev_priv->cfb_plane)
  1063. dev_priv->display.disable_fbc(dev);
  1064. }
  1065. if (!dev_priv->display.fbc_enabled(crtc)) {
  1066. /* Now try to turn it back on if possible */
  1067. dev_priv->display.enable_fbc(crtc, 500);
  1068. }
  1069. return;
  1070. out_disable:
  1071. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  1072. /* Multiple disables should be harmless */
  1073. if (dev_priv->display.fbc_enabled(crtc))
  1074. dev_priv->display.disable_fbc(dev);
  1075. }
  1076. static int
  1077. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1078. struct drm_framebuffer *old_fb)
  1079. {
  1080. struct drm_device *dev = crtc->dev;
  1081. struct drm_i915_private *dev_priv = dev->dev_private;
  1082. struct drm_i915_master_private *master_priv;
  1083. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1084. struct intel_framebuffer *intel_fb;
  1085. struct drm_i915_gem_object *obj_priv;
  1086. struct drm_gem_object *obj;
  1087. int pipe = intel_crtc->pipe;
  1088. int plane = intel_crtc->plane;
  1089. unsigned long Start, Offset;
  1090. int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
  1091. int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
  1092. int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
  1093. int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
  1094. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1095. u32 dspcntr, alignment;
  1096. int ret;
  1097. /* no fb bound */
  1098. if (!crtc->fb) {
  1099. DRM_DEBUG_KMS("No FB bound\n");
  1100. return 0;
  1101. }
  1102. switch (plane) {
  1103. case 0:
  1104. case 1:
  1105. break;
  1106. default:
  1107. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1108. return -EINVAL;
  1109. }
  1110. intel_fb = to_intel_framebuffer(crtc->fb);
  1111. obj = intel_fb->obj;
  1112. obj_priv = obj->driver_private;
  1113. switch (obj_priv->tiling_mode) {
  1114. case I915_TILING_NONE:
  1115. alignment = 64 * 1024;
  1116. break;
  1117. case I915_TILING_X:
  1118. /* pin() will align the object as required by fence */
  1119. alignment = 0;
  1120. break;
  1121. case I915_TILING_Y:
  1122. /* FIXME: Is this true? */
  1123. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1124. return -EINVAL;
  1125. default:
  1126. BUG();
  1127. }
  1128. mutex_lock(&dev->struct_mutex);
  1129. ret = i915_gem_object_pin(obj, alignment);
  1130. if (ret != 0) {
  1131. mutex_unlock(&dev->struct_mutex);
  1132. return ret;
  1133. }
  1134. ret = i915_gem_object_set_to_gtt_domain(obj, 1);
  1135. if (ret != 0) {
  1136. i915_gem_object_unpin(obj);
  1137. mutex_unlock(&dev->struct_mutex);
  1138. return ret;
  1139. }
  1140. /* Install a fence for tiled scan-out. Pre-i965 always needs a fence,
  1141. * whereas 965+ only requires a fence if using framebuffer compression.
  1142. * For simplicity, we always install a fence as the cost is not that onerous.
  1143. */
  1144. if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
  1145. obj_priv->tiling_mode != I915_TILING_NONE) {
  1146. ret = i915_gem_object_get_fence_reg(obj);
  1147. if (ret != 0) {
  1148. i915_gem_object_unpin(obj);
  1149. mutex_unlock(&dev->struct_mutex);
  1150. return ret;
  1151. }
  1152. }
  1153. dspcntr = I915_READ(dspcntr_reg);
  1154. /* Mask out pixel format bits in case we change it */
  1155. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1156. switch (crtc->fb->bits_per_pixel) {
  1157. case 8:
  1158. dspcntr |= DISPPLANE_8BPP;
  1159. break;
  1160. case 16:
  1161. if (crtc->fb->depth == 15)
  1162. dspcntr |= DISPPLANE_15_16BPP;
  1163. else
  1164. dspcntr |= DISPPLANE_16BPP;
  1165. break;
  1166. case 24:
  1167. case 32:
  1168. if (crtc->fb->depth == 30)
  1169. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1170. else
  1171. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1172. break;
  1173. default:
  1174. DRM_ERROR("Unknown color depth\n");
  1175. i915_gem_object_unpin(obj);
  1176. mutex_unlock(&dev->struct_mutex);
  1177. return -EINVAL;
  1178. }
  1179. if (IS_I965G(dev)) {
  1180. if (obj_priv->tiling_mode != I915_TILING_NONE)
  1181. dspcntr |= DISPPLANE_TILED;
  1182. else
  1183. dspcntr &= ~DISPPLANE_TILED;
  1184. }
  1185. if (IS_IGDNG(dev))
  1186. /* must disable */
  1187. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1188. I915_WRITE(dspcntr_reg, dspcntr);
  1189. Start = obj_priv->gtt_offset;
  1190. Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
  1191. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
  1192. I915_WRITE(dspstride, crtc->fb->pitch);
  1193. if (IS_I965G(dev)) {
  1194. I915_WRITE(dspbase, Offset);
  1195. I915_READ(dspbase);
  1196. I915_WRITE(dspsurf, Start);
  1197. I915_READ(dspsurf);
  1198. I915_WRITE(dsptileoff, (y << 16) | x);
  1199. } else {
  1200. I915_WRITE(dspbase, Start + Offset);
  1201. I915_READ(dspbase);
  1202. }
  1203. if ((IS_I965G(dev) || plane == 0))
  1204. intel_update_fbc(crtc, &crtc->mode);
  1205. intel_wait_for_vblank(dev);
  1206. if (old_fb) {
  1207. intel_fb = to_intel_framebuffer(old_fb);
  1208. obj_priv = intel_fb->obj->driver_private;
  1209. i915_gem_object_unpin(intel_fb->obj);
  1210. }
  1211. intel_increase_pllclock(crtc, true);
  1212. mutex_unlock(&dev->struct_mutex);
  1213. if (!dev->primary->master)
  1214. return 0;
  1215. master_priv = dev->primary->master->driver_priv;
  1216. if (!master_priv->sarea_priv)
  1217. return 0;
  1218. if (pipe) {
  1219. master_priv->sarea_priv->pipeB_x = x;
  1220. master_priv->sarea_priv->pipeB_y = y;
  1221. } else {
  1222. master_priv->sarea_priv->pipeA_x = x;
  1223. master_priv->sarea_priv->pipeA_y = y;
  1224. }
  1225. return 0;
  1226. }
  1227. /* Disable the VGA plane that we never use */
  1228. static void i915_disable_vga (struct drm_device *dev)
  1229. {
  1230. struct drm_i915_private *dev_priv = dev->dev_private;
  1231. u8 sr1;
  1232. u32 vga_reg;
  1233. if (IS_IGDNG(dev))
  1234. vga_reg = CPU_VGACNTRL;
  1235. else
  1236. vga_reg = VGACNTRL;
  1237. if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
  1238. return;
  1239. I915_WRITE8(VGA_SR_INDEX, 1);
  1240. sr1 = I915_READ8(VGA_SR_DATA);
  1241. I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
  1242. udelay(100);
  1243. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  1244. }
  1245. static void igdng_disable_pll_edp (struct drm_crtc *crtc)
  1246. {
  1247. struct drm_device *dev = crtc->dev;
  1248. struct drm_i915_private *dev_priv = dev->dev_private;
  1249. u32 dpa_ctl;
  1250. DRM_DEBUG_KMS("\n");
  1251. dpa_ctl = I915_READ(DP_A);
  1252. dpa_ctl &= ~DP_PLL_ENABLE;
  1253. I915_WRITE(DP_A, dpa_ctl);
  1254. }
  1255. static void igdng_enable_pll_edp (struct drm_crtc *crtc)
  1256. {
  1257. struct drm_device *dev = crtc->dev;
  1258. struct drm_i915_private *dev_priv = dev->dev_private;
  1259. u32 dpa_ctl;
  1260. dpa_ctl = I915_READ(DP_A);
  1261. dpa_ctl |= DP_PLL_ENABLE;
  1262. I915_WRITE(DP_A, dpa_ctl);
  1263. udelay(200);
  1264. }
  1265. static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
  1266. {
  1267. struct drm_device *dev = crtc->dev;
  1268. struct drm_i915_private *dev_priv = dev->dev_private;
  1269. u32 dpa_ctl;
  1270. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  1271. dpa_ctl = I915_READ(DP_A);
  1272. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  1273. if (clock < 200000) {
  1274. u32 temp;
  1275. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  1276. /* workaround for 160Mhz:
  1277. 1) program 0x4600c bits 15:0 = 0x8124
  1278. 2) program 0x46010 bit 0 = 1
  1279. 3) program 0x46034 bit 24 = 1
  1280. 4) program 0x64000 bit 14 = 1
  1281. */
  1282. temp = I915_READ(0x4600c);
  1283. temp &= 0xffff0000;
  1284. I915_WRITE(0x4600c, temp | 0x8124);
  1285. temp = I915_READ(0x46010);
  1286. I915_WRITE(0x46010, temp | 1);
  1287. temp = I915_READ(0x46034);
  1288. I915_WRITE(0x46034, temp | (1 << 24));
  1289. } else {
  1290. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  1291. }
  1292. I915_WRITE(DP_A, dpa_ctl);
  1293. udelay(500);
  1294. }
  1295. static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
  1296. {
  1297. struct drm_device *dev = crtc->dev;
  1298. struct drm_i915_private *dev_priv = dev->dev_private;
  1299. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1300. int pipe = intel_crtc->pipe;
  1301. int plane = intel_crtc->plane;
  1302. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  1303. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1304. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1305. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1306. int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
  1307. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  1308. int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
  1309. int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
  1310. int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
  1311. int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
  1312. int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
  1313. int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
  1314. int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  1315. int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  1316. int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  1317. int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  1318. int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  1319. int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  1320. int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
  1321. int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
  1322. int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
  1323. int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
  1324. int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
  1325. int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
  1326. u32 temp;
  1327. int tries = 5, j, n;
  1328. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1329. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1330. */
  1331. switch (mode) {
  1332. case DRM_MODE_DPMS_ON:
  1333. case DRM_MODE_DPMS_STANDBY:
  1334. case DRM_MODE_DPMS_SUSPEND:
  1335. DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
  1336. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1337. temp = I915_READ(PCH_LVDS);
  1338. if ((temp & LVDS_PORT_EN) == 0) {
  1339. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  1340. POSTING_READ(PCH_LVDS);
  1341. }
  1342. }
  1343. if (HAS_eDP) {
  1344. /* enable eDP PLL */
  1345. igdng_enable_pll_edp(crtc);
  1346. } else {
  1347. /* enable PCH DPLL */
  1348. temp = I915_READ(pch_dpll_reg);
  1349. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1350. I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
  1351. I915_READ(pch_dpll_reg);
  1352. }
  1353. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  1354. temp = I915_READ(fdi_rx_reg);
  1355. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
  1356. FDI_SEL_PCDCLK |
  1357. FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
  1358. I915_READ(fdi_rx_reg);
  1359. udelay(200);
  1360. /* Enable CPU FDI TX PLL, always on for IGDNG */
  1361. temp = I915_READ(fdi_tx_reg);
  1362. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  1363. I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
  1364. I915_READ(fdi_tx_reg);
  1365. udelay(100);
  1366. }
  1367. }
  1368. /* Enable panel fitting for LVDS */
  1369. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1370. temp = I915_READ(pf_ctl_reg);
  1371. I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
  1372. /* currently full aspect */
  1373. I915_WRITE(pf_win_pos, 0);
  1374. I915_WRITE(pf_win_size,
  1375. (dev_priv->panel_fixed_mode->hdisplay << 16) |
  1376. (dev_priv->panel_fixed_mode->vdisplay));
  1377. }
  1378. /* Enable CPU pipe */
  1379. temp = I915_READ(pipeconf_reg);
  1380. if ((temp & PIPEACONF_ENABLE) == 0) {
  1381. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1382. I915_READ(pipeconf_reg);
  1383. udelay(100);
  1384. }
  1385. /* configure and enable CPU plane */
  1386. temp = I915_READ(dspcntr_reg);
  1387. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1388. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1389. /* Flush the plane changes */
  1390. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1391. }
  1392. if (!HAS_eDP) {
  1393. /* enable CPU FDI TX and PCH FDI RX */
  1394. temp = I915_READ(fdi_tx_reg);
  1395. temp |= FDI_TX_ENABLE;
  1396. temp |= FDI_DP_PORT_WIDTH_X4; /* default */
  1397. temp &= ~FDI_LINK_TRAIN_NONE;
  1398. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1399. I915_WRITE(fdi_tx_reg, temp);
  1400. I915_READ(fdi_tx_reg);
  1401. temp = I915_READ(fdi_rx_reg);
  1402. temp &= ~FDI_LINK_TRAIN_NONE;
  1403. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1404. I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
  1405. I915_READ(fdi_rx_reg);
  1406. udelay(150);
  1407. /* Train FDI. */
  1408. /* umask FDI RX Interrupt symbol_lock and bit_lock bit
  1409. for train result */
  1410. temp = I915_READ(fdi_rx_imr_reg);
  1411. temp &= ~FDI_RX_SYMBOL_LOCK;
  1412. temp &= ~FDI_RX_BIT_LOCK;
  1413. I915_WRITE(fdi_rx_imr_reg, temp);
  1414. I915_READ(fdi_rx_imr_reg);
  1415. udelay(150);
  1416. temp = I915_READ(fdi_rx_iir_reg);
  1417. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1418. if ((temp & FDI_RX_BIT_LOCK) == 0) {
  1419. for (j = 0; j < tries; j++) {
  1420. temp = I915_READ(fdi_rx_iir_reg);
  1421. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
  1422. temp);
  1423. if (temp & FDI_RX_BIT_LOCK)
  1424. break;
  1425. udelay(200);
  1426. }
  1427. if (j != tries)
  1428. I915_WRITE(fdi_rx_iir_reg,
  1429. temp | FDI_RX_BIT_LOCK);
  1430. else
  1431. DRM_DEBUG_KMS("train 1 fail\n");
  1432. } else {
  1433. I915_WRITE(fdi_rx_iir_reg,
  1434. temp | FDI_RX_BIT_LOCK);
  1435. DRM_DEBUG_KMS("train 1 ok 2!\n");
  1436. }
  1437. temp = I915_READ(fdi_tx_reg);
  1438. temp &= ~FDI_LINK_TRAIN_NONE;
  1439. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1440. I915_WRITE(fdi_tx_reg, temp);
  1441. temp = I915_READ(fdi_rx_reg);
  1442. temp &= ~FDI_LINK_TRAIN_NONE;
  1443. temp |= FDI_LINK_TRAIN_PATTERN_2;
  1444. I915_WRITE(fdi_rx_reg, temp);
  1445. udelay(150);
  1446. temp = I915_READ(fdi_rx_iir_reg);
  1447. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  1448. if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
  1449. for (j = 0; j < tries; j++) {
  1450. temp = I915_READ(fdi_rx_iir_reg);
  1451. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
  1452. temp);
  1453. if (temp & FDI_RX_SYMBOL_LOCK)
  1454. break;
  1455. udelay(200);
  1456. }
  1457. if (j != tries) {
  1458. I915_WRITE(fdi_rx_iir_reg,
  1459. temp | FDI_RX_SYMBOL_LOCK);
  1460. DRM_DEBUG_KMS("train 2 ok 1!\n");
  1461. } else
  1462. DRM_DEBUG_KMS("train 2 fail\n");
  1463. } else {
  1464. I915_WRITE(fdi_rx_iir_reg,
  1465. temp | FDI_RX_SYMBOL_LOCK);
  1466. DRM_DEBUG_KMS("train 2 ok 2!\n");
  1467. }
  1468. DRM_DEBUG_KMS("train done\n");
  1469. /* set transcoder timing */
  1470. I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
  1471. I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
  1472. I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
  1473. I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
  1474. I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
  1475. I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
  1476. /* enable PCH transcoder */
  1477. temp = I915_READ(transconf_reg);
  1478. I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
  1479. I915_READ(transconf_reg);
  1480. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
  1481. ;
  1482. /* enable normal */
  1483. temp = I915_READ(fdi_tx_reg);
  1484. temp &= ~FDI_LINK_TRAIN_NONE;
  1485. I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
  1486. FDI_TX_ENHANCE_FRAME_ENABLE);
  1487. I915_READ(fdi_tx_reg);
  1488. temp = I915_READ(fdi_rx_reg);
  1489. temp &= ~FDI_LINK_TRAIN_NONE;
  1490. I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
  1491. FDI_RX_ENHANCE_FRAME_ENABLE);
  1492. I915_READ(fdi_rx_reg);
  1493. /* wait one idle pattern time */
  1494. udelay(100);
  1495. }
  1496. intel_crtc_load_lut(crtc);
  1497. break;
  1498. case DRM_MODE_DPMS_OFF:
  1499. DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
  1500. /* Disable display plane */
  1501. temp = I915_READ(dspcntr_reg);
  1502. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1503. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1504. /* Flush the plane changes */
  1505. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1506. I915_READ(dspbase_reg);
  1507. }
  1508. i915_disable_vga(dev);
  1509. /* disable cpu pipe, disable after all planes disabled */
  1510. temp = I915_READ(pipeconf_reg);
  1511. if ((temp & PIPEACONF_ENABLE) != 0) {
  1512. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1513. I915_READ(pipeconf_reg);
  1514. n = 0;
  1515. /* wait for cpu pipe off, pipe state */
  1516. while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
  1517. n++;
  1518. if (n < 60) {
  1519. udelay(500);
  1520. continue;
  1521. } else {
  1522. DRM_DEBUG_KMS("pipe %d off delay\n",
  1523. pipe);
  1524. break;
  1525. }
  1526. }
  1527. } else
  1528. DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
  1529. udelay(100);
  1530. /* Disable PF */
  1531. temp = I915_READ(pf_ctl_reg);
  1532. if ((temp & PF_ENABLE) != 0) {
  1533. I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
  1534. I915_READ(pf_ctl_reg);
  1535. }
  1536. I915_WRITE(pf_win_size, 0);
  1537. /* disable CPU FDI tx and PCH FDI rx */
  1538. temp = I915_READ(fdi_tx_reg);
  1539. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
  1540. I915_READ(fdi_tx_reg);
  1541. temp = I915_READ(fdi_rx_reg);
  1542. I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
  1543. I915_READ(fdi_rx_reg);
  1544. udelay(100);
  1545. /* still set train pattern 1 */
  1546. temp = I915_READ(fdi_tx_reg);
  1547. temp &= ~FDI_LINK_TRAIN_NONE;
  1548. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1549. I915_WRITE(fdi_tx_reg, temp);
  1550. temp = I915_READ(fdi_rx_reg);
  1551. temp &= ~FDI_LINK_TRAIN_NONE;
  1552. temp |= FDI_LINK_TRAIN_PATTERN_1;
  1553. I915_WRITE(fdi_rx_reg, temp);
  1554. udelay(100);
  1555. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  1556. temp = I915_READ(PCH_LVDS);
  1557. I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
  1558. I915_READ(PCH_LVDS);
  1559. udelay(100);
  1560. }
  1561. /* disable PCH transcoder */
  1562. temp = I915_READ(transconf_reg);
  1563. if ((temp & TRANS_ENABLE) != 0) {
  1564. I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
  1565. I915_READ(transconf_reg);
  1566. n = 0;
  1567. /* wait for PCH transcoder off, transcoder state */
  1568. while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
  1569. n++;
  1570. if (n < 60) {
  1571. udelay(500);
  1572. continue;
  1573. } else {
  1574. DRM_DEBUG_KMS("transcoder %d off "
  1575. "delay\n", pipe);
  1576. break;
  1577. }
  1578. }
  1579. }
  1580. udelay(100);
  1581. /* disable PCH DPLL */
  1582. temp = I915_READ(pch_dpll_reg);
  1583. if ((temp & DPLL_VCO_ENABLE) != 0) {
  1584. I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1585. I915_READ(pch_dpll_reg);
  1586. }
  1587. if (HAS_eDP) {
  1588. igdng_disable_pll_edp(crtc);
  1589. }
  1590. temp = I915_READ(fdi_rx_reg);
  1591. temp &= ~FDI_SEL_PCDCLK;
  1592. I915_WRITE(fdi_rx_reg, temp);
  1593. I915_READ(fdi_rx_reg);
  1594. temp = I915_READ(fdi_rx_reg);
  1595. temp &= ~FDI_RX_PLL_ENABLE;
  1596. I915_WRITE(fdi_rx_reg, temp);
  1597. I915_READ(fdi_rx_reg);
  1598. /* Disable CPU FDI TX PLL */
  1599. temp = I915_READ(fdi_tx_reg);
  1600. if ((temp & FDI_TX_PLL_ENABLE) != 0) {
  1601. I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
  1602. I915_READ(fdi_tx_reg);
  1603. udelay(100);
  1604. }
  1605. /* Wait for the clocks to turn off. */
  1606. udelay(100);
  1607. break;
  1608. }
  1609. }
  1610. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  1611. {
  1612. struct intel_overlay *overlay;
  1613. int ret;
  1614. if (!enable && intel_crtc->overlay) {
  1615. overlay = intel_crtc->overlay;
  1616. mutex_lock(&overlay->dev->struct_mutex);
  1617. for (;;) {
  1618. ret = intel_overlay_switch_off(overlay);
  1619. if (ret == 0)
  1620. break;
  1621. ret = intel_overlay_recover_from_interrupt(overlay, 0);
  1622. if (ret != 0) {
  1623. /* overlay doesn't react anymore. Usually
  1624. * results in a black screen and an unkillable
  1625. * X server. */
  1626. BUG();
  1627. overlay->hw_wedged = HW_WEDGED;
  1628. break;
  1629. }
  1630. }
  1631. mutex_unlock(&overlay->dev->struct_mutex);
  1632. }
  1633. /* Let userspace switch the overlay on again. In most cases userspace
  1634. * has to recompute where to put it anyway. */
  1635. return;
  1636. }
  1637. static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
  1638. {
  1639. struct drm_device *dev = crtc->dev;
  1640. struct drm_i915_private *dev_priv = dev->dev_private;
  1641. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1642. int pipe = intel_crtc->pipe;
  1643. int plane = intel_crtc->plane;
  1644. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  1645. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  1646. int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
  1647. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  1648. u32 temp;
  1649. /* XXX: When our outputs are all unaware of DPMS modes other than off
  1650. * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
  1651. */
  1652. switch (mode) {
  1653. case DRM_MODE_DPMS_ON:
  1654. case DRM_MODE_DPMS_STANDBY:
  1655. case DRM_MODE_DPMS_SUSPEND:
  1656. intel_update_watermarks(dev);
  1657. /* Enable the DPLL */
  1658. temp = I915_READ(dpll_reg);
  1659. if ((temp & DPLL_VCO_ENABLE) == 0) {
  1660. I915_WRITE(dpll_reg, temp);
  1661. I915_READ(dpll_reg);
  1662. /* Wait for the clocks to stabilize. */
  1663. udelay(150);
  1664. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1665. I915_READ(dpll_reg);
  1666. /* Wait for the clocks to stabilize. */
  1667. udelay(150);
  1668. I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
  1669. I915_READ(dpll_reg);
  1670. /* Wait for the clocks to stabilize. */
  1671. udelay(150);
  1672. }
  1673. /* Enable the pipe */
  1674. temp = I915_READ(pipeconf_reg);
  1675. if ((temp & PIPEACONF_ENABLE) == 0)
  1676. I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
  1677. /* Enable the plane */
  1678. temp = I915_READ(dspcntr_reg);
  1679. if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
  1680. I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
  1681. /* Flush the plane changes */
  1682. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1683. }
  1684. intel_crtc_load_lut(crtc);
  1685. if ((IS_I965G(dev) || plane == 0))
  1686. intel_update_fbc(crtc, &crtc->mode);
  1687. /* Give the overlay scaler a chance to enable if it's on this pipe */
  1688. intel_crtc_dpms_overlay(intel_crtc, true);
  1689. break;
  1690. case DRM_MODE_DPMS_OFF:
  1691. intel_update_watermarks(dev);
  1692. /* Give the overlay scaler a chance to disable if it's on this pipe */
  1693. intel_crtc_dpms_overlay(intel_crtc, false);
  1694. if (dev_priv->cfb_plane == plane &&
  1695. dev_priv->display.disable_fbc)
  1696. dev_priv->display.disable_fbc(dev);
  1697. /* Disable the VGA plane that we never use */
  1698. i915_disable_vga(dev);
  1699. /* Disable display plane */
  1700. temp = I915_READ(dspcntr_reg);
  1701. if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
  1702. I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
  1703. /* Flush the plane changes */
  1704. I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
  1705. I915_READ(dspbase_reg);
  1706. }
  1707. if (!IS_I9XX(dev)) {
  1708. /* Wait for vblank for the disable to take effect */
  1709. intel_wait_for_vblank(dev);
  1710. }
  1711. /* Next, disable display pipes */
  1712. temp = I915_READ(pipeconf_reg);
  1713. if ((temp & PIPEACONF_ENABLE) != 0) {
  1714. I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
  1715. I915_READ(pipeconf_reg);
  1716. }
  1717. /* Wait for vblank for the disable to take effect. */
  1718. intel_wait_for_vblank(dev);
  1719. temp = I915_READ(dpll_reg);
  1720. if ((temp & DPLL_VCO_ENABLE) != 0) {
  1721. I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
  1722. I915_READ(dpll_reg);
  1723. }
  1724. /* Wait for the clocks to turn off. */
  1725. udelay(150);
  1726. break;
  1727. }
  1728. }
  1729. /**
  1730. * Sets the power management mode of the pipe and plane.
  1731. *
  1732. * This code should probably grow support for turning the cursor off and back
  1733. * on appropriately at the same time as we're turning the pipe off/on.
  1734. */
  1735. static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
  1736. {
  1737. struct drm_device *dev = crtc->dev;
  1738. struct drm_i915_private *dev_priv = dev->dev_private;
  1739. struct drm_i915_master_private *master_priv;
  1740. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1741. int pipe = intel_crtc->pipe;
  1742. bool enabled;
  1743. dev_priv->display.dpms(crtc, mode);
  1744. intel_crtc->dpms_mode = mode;
  1745. if (!dev->primary->master)
  1746. return;
  1747. master_priv = dev->primary->master->driver_priv;
  1748. if (!master_priv->sarea_priv)
  1749. return;
  1750. enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
  1751. switch (pipe) {
  1752. case 0:
  1753. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  1754. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  1755. break;
  1756. case 1:
  1757. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  1758. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  1759. break;
  1760. default:
  1761. DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
  1762. break;
  1763. }
  1764. }
  1765. static void intel_crtc_prepare (struct drm_crtc *crtc)
  1766. {
  1767. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  1768. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
  1769. }
  1770. static void intel_crtc_commit (struct drm_crtc *crtc)
  1771. {
  1772. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  1773. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  1774. }
  1775. void intel_encoder_prepare (struct drm_encoder *encoder)
  1776. {
  1777. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  1778. /* lvds has its own version of prepare see intel_lvds_prepare */
  1779. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
  1780. }
  1781. void intel_encoder_commit (struct drm_encoder *encoder)
  1782. {
  1783. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  1784. /* lvds has its own version of commit see intel_lvds_commit */
  1785. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  1786. }
  1787. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  1788. struct drm_display_mode *mode,
  1789. struct drm_display_mode *adjusted_mode)
  1790. {
  1791. struct drm_device *dev = crtc->dev;
  1792. if (IS_IGDNG(dev)) {
  1793. /* FDI link clock is fixed at 2.7G */
  1794. if (mode->clock * 3 > 27000 * 4)
  1795. return MODE_CLOCK_HIGH;
  1796. }
  1797. return true;
  1798. }
  1799. static int i945_get_display_clock_speed(struct drm_device *dev)
  1800. {
  1801. return 400000;
  1802. }
  1803. static int i915_get_display_clock_speed(struct drm_device *dev)
  1804. {
  1805. return 333000;
  1806. }
  1807. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  1808. {
  1809. return 200000;
  1810. }
  1811. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  1812. {
  1813. u16 gcfgc = 0;
  1814. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  1815. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  1816. return 133000;
  1817. else {
  1818. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  1819. case GC_DISPLAY_CLOCK_333_MHZ:
  1820. return 333000;
  1821. default:
  1822. case GC_DISPLAY_CLOCK_190_200_MHZ:
  1823. return 190000;
  1824. }
  1825. }
  1826. }
  1827. static int i865_get_display_clock_speed(struct drm_device *dev)
  1828. {
  1829. return 266000;
  1830. }
  1831. static int i855_get_display_clock_speed(struct drm_device *dev)
  1832. {
  1833. u16 hpllcc = 0;
  1834. /* Assume that the hardware is in the high speed state. This
  1835. * should be the default.
  1836. */
  1837. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  1838. case GC_CLOCK_133_200:
  1839. case GC_CLOCK_100_200:
  1840. return 200000;
  1841. case GC_CLOCK_166_250:
  1842. return 250000;
  1843. case GC_CLOCK_100_133:
  1844. return 133000;
  1845. }
  1846. /* Shouldn't happen */
  1847. return 0;
  1848. }
  1849. static int i830_get_display_clock_speed(struct drm_device *dev)
  1850. {
  1851. return 133000;
  1852. }
  1853. /**
  1854. * Return the pipe currently connected to the panel fitter,
  1855. * or -1 if the panel fitter is not present or not in use
  1856. */
  1857. int intel_panel_fitter_pipe (struct drm_device *dev)
  1858. {
  1859. struct drm_i915_private *dev_priv = dev->dev_private;
  1860. u32 pfit_control;
  1861. /* i830 doesn't have a panel fitter */
  1862. if (IS_I830(dev))
  1863. return -1;
  1864. pfit_control = I915_READ(PFIT_CONTROL);
  1865. /* See if the panel fitter is in use */
  1866. if ((pfit_control & PFIT_ENABLE) == 0)
  1867. return -1;
  1868. /* 965 can place panel fitter on either pipe */
  1869. if (IS_I965G(dev))
  1870. return (pfit_control >> 29) & 0x3;
  1871. /* older chips can only use pipe 1 */
  1872. return 1;
  1873. }
  1874. struct fdi_m_n {
  1875. u32 tu;
  1876. u32 gmch_m;
  1877. u32 gmch_n;
  1878. u32 link_m;
  1879. u32 link_n;
  1880. };
  1881. static void
  1882. fdi_reduce_ratio(u32 *num, u32 *den)
  1883. {
  1884. while (*num > 0xffffff || *den > 0xffffff) {
  1885. *num >>= 1;
  1886. *den >>= 1;
  1887. }
  1888. }
  1889. #define DATA_N 0x800000
  1890. #define LINK_N 0x80000
  1891. static void
  1892. igdng_compute_m_n(int bits_per_pixel, int nlanes,
  1893. int pixel_clock, int link_clock,
  1894. struct fdi_m_n *m_n)
  1895. {
  1896. u64 temp;
  1897. m_n->tu = 64; /* default size */
  1898. temp = (u64) DATA_N * pixel_clock;
  1899. temp = div_u64(temp, link_clock);
  1900. m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
  1901. m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
  1902. m_n->gmch_n = DATA_N;
  1903. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  1904. temp = (u64) LINK_N * pixel_clock;
  1905. m_n->link_m = div_u64(temp, link_clock);
  1906. m_n->link_n = LINK_N;
  1907. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  1908. }
  1909. struct intel_watermark_params {
  1910. unsigned long fifo_size;
  1911. unsigned long max_wm;
  1912. unsigned long default_wm;
  1913. unsigned long guard_size;
  1914. unsigned long cacheline_size;
  1915. };
  1916. /* IGD has different values for various configs */
  1917. static struct intel_watermark_params igd_display_wm = {
  1918. IGD_DISPLAY_FIFO,
  1919. IGD_MAX_WM,
  1920. IGD_DFT_WM,
  1921. IGD_GUARD_WM,
  1922. IGD_FIFO_LINE_SIZE
  1923. };
  1924. static struct intel_watermark_params igd_display_hplloff_wm = {
  1925. IGD_DISPLAY_FIFO,
  1926. IGD_MAX_WM,
  1927. IGD_DFT_HPLLOFF_WM,
  1928. IGD_GUARD_WM,
  1929. IGD_FIFO_LINE_SIZE
  1930. };
  1931. static struct intel_watermark_params igd_cursor_wm = {
  1932. IGD_CURSOR_FIFO,
  1933. IGD_CURSOR_MAX_WM,
  1934. IGD_CURSOR_DFT_WM,
  1935. IGD_CURSOR_GUARD_WM,
  1936. IGD_FIFO_LINE_SIZE,
  1937. };
  1938. static struct intel_watermark_params igd_cursor_hplloff_wm = {
  1939. IGD_CURSOR_FIFO,
  1940. IGD_CURSOR_MAX_WM,
  1941. IGD_CURSOR_DFT_WM,
  1942. IGD_CURSOR_GUARD_WM,
  1943. IGD_FIFO_LINE_SIZE
  1944. };
  1945. static struct intel_watermark_params g4x_wm_info = {
  1946. G4X_FIFO_SIZE,
  1947. G4X_MAX_WM,
  1948. G4X_MAX_WM,
  1949. 2,
  1950. G4X_FIFO_LINE_SIZE,
  1951. };
  1952. static struct intel_watermark_params i945_wm_info = {
  1953. I945_FIFO_SIZE,
  1954. I915_MAX_WM,
  1955. 1,
  1956. 2,
  1957. I915_FIFO_LINE_SIZE
  1958. };
  1959. static struct intel_watermark_params i915_wm_info = {
  1960. I915_FIFO_SIZE,
  1961. I915_MAX_WM,
  1962. 1,
  1963. 2,
  1964. I915_FIFO_LINE_SIZE
  1965. };
  1966. static struct intel_watermark_params i855_wm_info = {
  1967. I855GM_FIFO_SIZE,
  1968. I915_MAX_WM,
  1969. 1,
  1970. 2,
  1971. I830_FIFO_LINE_SIZE
  1972. };
  1973. static struct intel_watermark_params i830_wm_info = {
  1974. I830_FIFO_SIZE,
  1975. I915_MAX_WM,
  1976. 1,
  1977. 2,
  1978. I830_FIFO_LINE_SIZE
  1979. };
  1980. /**
  1981. * intel_calculate_wm - calculate watermark level
  1982. * @clock_in_khz: pixel clock
  1983. * @wm: chip FIFO params
  1984. * @pixel_size: display pixel size
  1985. * @latency_ns: memory latency for the platform
  1986. *
  1987. * Calculate the watermark level (the level at which the display plane will
  1988. * start fetching from memory again). Each chip has a different display
  1989. * FIFO size and allocation, so the caller needs to figure that out and pass
  1990. * in the correct intel_watermark_params structure.
  1991. *
  1992. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  1993. * on the pixel size. When it reaches the watermark level, it'll start
  1994. * fetching FIFO line sized based chunks from memory until the FIFO fills
  1995. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  1996. * will occur, and a display engine hang could result.
  1997. */
  1998. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  1999. struct intel_watermark_params *wm,
  2000. int pixel_size,
  2001. unsigned long latency_ns)
  2002. {
  2003. long entries_required, wm_size;
  2004. /*
  2005. * Note: we need to make sure we don't overflow for various clock &
  2006. * latency values.
  2007. * clocks go from a few thousand to several hundred thousand.
  2008. * latency is usually a few thousand
  2009. */
  2010. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  2011. 1000;
  2012. entries_required /= wm->cacheline_size;
  2013. DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
  2014. wm_size = wm->fifo_size - (entries_required + wm->guard_size);
  2015. DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
  2016. /* Don't promote wm_size to unsigned... */
  2017. if (wm_size > (long)wm->max_wm)
  2018. wm_size = wm->max_wm;
  2019. if (wm_size <= 0)
  2020. wm_size = wm->default_wm;
  2021. return wm_size;
  2022. }
  2023. struct cxsr_latency {
  2024. int is_desktop;
  2025. unsigned long fsb_freq;
  2026. unsigned long mem_freq;
  2027. unsigned long display_sr;
  2028. unsigned long display_hpll_disable;
  2029. unsigned long cursor_sr;
  2030. unsigned long cursor_hpll_disable;
  2031. };
  2032. static struct cxsr_latency cxsr_latency_table[] = {
  2033. {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  2034. {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  2035. {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  2036. {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  2037. {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  2038. {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  2039. {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  2040. {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  2041. {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  2042. {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  2043. {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  2044. {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  2045. {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  2046. {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  2047. {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  2048. {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  2049. {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  2050. {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  2051. };
  2052. static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
  2053. int mem)
  2054. {
  2055. int i;
  2056. struct cxsr_latency *latency;
  2057. if (fsb == 0 || mem == 0)
  2058. return NULL;
  2059. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  2060. latency = &cxsr_latency_table[i];
  2061. if (is_desktop == latency->is_desktop &&
  2062. fsb == latency->fsb_freq && mem == latency->mem_freq)
  2063. return latency;
  2064. }
  2065. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2066. return NULL;
  2067. }
  2068. static void igd_disable_cxsr(struct drm_device *dev)
  2069. {
  2070. struct drm_i915_private *dev_priv = dev->dev_private;
  2071. u32 reg;
  2072. /* deactivate cxsr */
  2073. reg = I915_READ(DSPFW3);
  2074. reg &= ~(IGD_SELF_REFRESH_EN);
  2075. I915_WRITE(DSPFW3, reg);
  2076. DRM_INFO("Big FIFO is disabled\n");
  2077. }
  2078. static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
  2079. int pixel_size)
  2080. {
  2081. struct drm_i915_private *dev_priv = dev->dev_private;
  2082. u32 reg;
  2083. unsigned long wm;
  2084. struct cxsr_latency *latency;
  2085. latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
  2086. dev_priv->mem_freq);
  2087. if (!latency) {
  2088. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  2089. igd_disable_cxsr(dev);
  2090. return;
  2091. }
  2092. /* Display SR */
  2093. wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
  2094. latency->display_sr);
  2095. reg = I915_READ(DSPFW1);
  2096. reg &= 0x7fffff;
  2097. reg |= wm << 23;
  2098. I915_WRITE(DSPFW1, reg);
  2099. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  2100. /* cursor SR */
  2101. wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
  2102. latency->cursor_sr);
  2103. reg = I915_READ(DSPFW3);
  2104. reg &= ~(0x3f << 24);
  2105. reg |= (wm & 0x3f) << 24;
  2106. I915_WRITE(DSPFW3, reg);
  2107. /* Display HPLL off SR */
  2108. wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
  2109. latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
  2110. reg = I915_READ(DSPFW3);
  2111. reg &= 0xfffffe00;
  2112. reg |= wm & 0x1ff;
  2113. I915_WRITE(DSPFW3, reg);
  2114. /* cursor HPLL off SR */
  2115. wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
  2116. latency->cursor_hpll_disable);
  2117. reg = I915_READ(DSPFW3);
  2118. reg &= ~(0x3f << 16);
  2119. reg |= (wm & 0x3f) << 16;
  2120. I915_WRITE(DSPFW3, reg);
  2121. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  2122. /* activate cxsr */
  2123. reg = I915_READ(DSPFW3);
  2124. reg |= IGD_SELF_REFRESH_EN;
  2125. I915_WRITE(DSPFW3, reg);
  2126. DRM_INFO("Big FIFO is enabled\n");
  2127. return;
  2128. }
  2129. /*
  2130. * Latency for FIFO fetches is dependent on several factors:
  2131. * - memory configuration (speed, channels)
  2132. * - chipset
  2133. * - current MCH state
  2134. * It can be fairly high in some situations, so here we assume a fairly
  2135. * pessimal value. It's a tradeoff between extra memory fetches (if we
  2136. * set this value too high, the FIFO will fetch frequently to stay full)
  2137. * and power consumption (set it too low to save power and we might see
  2138. * FIFO underruns and display "flicker").
  2139. *
  2140. * A value of 5us seems to be a good balance; safe for very low end
  2141. * platforms but not overly aggressive on lower latency configs.
  2142. */
  2143. const static int latency_ns = 5000;
  2144. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  2145. {
  2146. struct drm_i915_private *dev_priv = dev->dev_private;
  2147. uint32_t dsparb = I915_READ(DSPARB);
  2148. int size;
  2149. if (plane == 0)
  2150. size = dsparb & 0x7f;
  2151. else
  2152. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
  2153. (dsparb & 0x7f);
  2154. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2155. plane ? "B" : "A", size);
  2156. return size;
  2157. }
  2158. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  2159. {
  2160. struct drm_i915_private *dev_priv = dev->dev_private;
  2161. uint32_t dsparb = I915_READ(DSPARB);
  2162. int size;
  2163. if (plane == 0)
  2164. size = dsparb & 0x1ff;
  2165. else
  2166. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
  2167. (dsparb & 0x1ff);
  2168. size >>= 1; /* Convert to cachelines */
  2169. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2170. plane ? "B" : "A", size);
  2171. return size;
  2172. }
  2173. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  2174. {
  2175. struct drm_i915_private *dev_priv = dev->dev_private;
  2176. uint32_t dsparb = I915_READ(DSPARB);
  2177. int size;
  2178. size = dsparb & 0x7f;
  2179. size >>= 2; /* Convert to cachelines */
  2180. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2181. plane ? "B" : "A",
  2182. size);
  2183. return size;
  2184. }
  2185. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  2186. {
  2187. struct drm_i915_private *dev_priv = dev->dev_private;
  2188. uint32_t dsparb = I915_READ(DSPARB);
  2189. int size;
  2190. size = dsparb & 0x7f;
  2191. size >>= 1; /* Convert to cachelines */
  2192. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  2193. plane ? "B" : "A", size);
  2194. return size;
  2195. }
  2196. static void g4x_update_wm(struct drm_device *dev, int planea_clock,
  2197. int planeb_clock, int sr_hdisplay, int pixel_size)
  2198. {
  2199. struct drm_i915_private *dev_priv = dev->dev_private;
  2200. int total_size, cacheline_size;
  2201. int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
  2202. struct intel_watermark_params planea_params, planeb_params;
  2203. unsigned long line_time_us;
  2204. int sr_clock, sr_entries = 0, entries_required;
  2205. /* Create copies of the base settings for each pipe */
  2206. planea_params = planeb_params = g4x_wm_info;
  2207. /* Grab a couple of global values before we overwrite them */
  2208. total_size = planea_params.fifo_size;
  2209. cacheline_size = planea_params.cacheline_size;
  2210. /*
  2211. * Note: we need to make sure we don't overflow for various clock &
  2212. * latency values.
  2213. * clocks go from a few thousand to several hundred thousand.
  2214. * latency is usually a few thousand
  2215. */
  2216. entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
  2217. 1000;
  2218. entries_required /= G4X_FIFO_LINE_SIZE;
  2219. planea_wm = entries_required + planea_params.guard_size;
  2220. entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
  2221. 1000;
  2222. entries_required /= G4X_FIFO_LINE_SIZE;
  2223. planeb_wm = entries_required + planeb_params.guard_size;
  2224. cursora_wm = cursorb_wm = 16;
  2225. cursor_sr = 32;
  2226. DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2227. /* Calc sr entries for one plane configs */
  2228. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2229. /* self-refresh has much higher latency */
  2230. const static int sr_latency_ns = 12000;
  2231. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2232. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2233. /* Use ns/us then divide to preserve precision */
  2234. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2235. pixel_size * sr_hdisplay) / 1000;
  2236. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2237. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2238. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2239. }
  2240. DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
  2241. planea_wm, planeb_wm, sr_entries);
  2242. planea_wm &= 0x3f;
  2243. planeb_wm &= 0x3f;
  2244. I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
  2245. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  2246. (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
  2247. I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
  2248. (cursora_wm << DSPFW_CURSORA_SHIFT));
  2249. /* HPLL off in SR has some issues on G4x... disable it */
  2250. I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
  2251. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  2252. }
  2253. static void i965_update_wm(struct drm_device *dev, int planea_clock,
  2254. int planeb_clock, int sr_hdisplay, int pixel_size)
  2255. {
  2256. struct drm_i915_private *dev_priv = dev->dev_private;
  2257. unsigned long line_time_us;
  2258. int sr_clock, sr_entries, srwm = 1;
  2259. /* Calc sr entries for one plane configs */
  2260. if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
  2261. /* self-refresh has much higher latency */
  2262. const static int sr_latency_ns = 12000;
  2263. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2264. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2265. /* Use ns/us then divide to preserve precision */
  2266. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2267. pixel_size * sr_hdisplay) / 1000;
  2268. sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
  2269. DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
  2270. srwm = I945_FIFO_SIZE - sr_entries;
  2271. if (srwm < 0)
  2272. srwm = 1;
  2273. srwm &= 0x3f;
  2274. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  2275. }
  2276. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  2277. srwm);
  2278. /* 965 has limitations... */
  2279. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
  2280. (8 << 0));
  2281. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  2282. }
  2283. static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
  2284. int planeb_clock, int sr_hdisplay, int pixel_size)
  2285. {
  2286. struct drm_i915_private *dev_priv = dev->dev_private;
  2287. uint32_t fwater_lo;
  2288. uint32_t fwater_hi;
  2289. int total_size, cacheline_size, cwm, srwm = 1;
  2290. int planea_wm, planeb_wm;
  2291. struct intel_watermark_params planea_params, planeb_params;
  2292. unsigned long line_time_us;
  2293. int sr_clock, sr_entries = 0;
  2294. /* Create copies of the base settings for each pipe */
  2295. if (IS_I965GM(dev) || IS_I945GM(dev))
  2296. planea_params = planeb_params = i945_wm_info;
  2297. else if (IS_I9XX(dev))
  2298. planea_params = planeb_params = i915_wm_info;
  2299. else
  2300. planea_params = planeb_params = i855_wm_info;
  2301. /* Grab a couple of global values before we overwrite them */
  2302. total_size = planea_params.fifo_size;
  2303. cacheline_size = planea_params.cacheline_size;
  2304. /* Update per-plane FIFO sizes */
  2305. planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2306. planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  2307. planea_wm = intel_calculate_wm(planea_clock, &planea_params,
  2308. pixel_size, latency_ns);
  2309. planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
  2310. pixel_size, latency_ns);
  2311. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  2312. /*
  2313. * Overlay gets an aggressive default since video jitter is bad.
  2314. */
  2315. cwm = 2;
  2316. /* Calc sr entries for one plane configs */
  2317. if (HAS_FW_BLC(dev) && sr_hdisplay &&
  2318. (!planea_clock || !planeb_clock)) {
  2319. /* self-refresh has much higher latency */
  2320. const static int sr_latency_ns = 6000;
  2321. sr_clock = planea_clock ? planea_clock : planeb_clock;
  2322. line_time_us = ((sr_hdisplay * 1000) / sr_clock);
  2323. /* Use ns/us then divide to preserve precision */
  2324. sr_entries = (((sr_latency_ns / line_time_us) + 1) *
  2325. pixel_size * sr_hdisplay) / 1000;
  2326. sr_entries = roundup(sr_entries / cacheline_size, 1);
  2327. DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
  2328. srwm = total_size - sr_entries;
  2329. if (srwm < 0)
  2330. srwm = 1;
  2331. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
  2332. }
  2333. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  2334. planea_wm, planeb_wm, cwm, srwm);
  2335. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  2336. fwater_hi = (cwm & 0x1f);
  2337. /* Set request length to 8 cachelines per fetch */
  2338. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  2339. fwater_hi = fwater_hi | (1 << 8);
  2340. I915_WRITE(FW_BLC, fwater_lo);
  2341. I915_WRITE(FW_BLC2, fwater_hi);
  2342. }
  2343. static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
  2344. int unused2, int pixel_size)
  2345. {
  2346. struct drm_i915_private *dev_priv = dev->dev_private;
  2347. uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  2348. int planea_wm;
  2349. i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  2350. planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
  2351. pixel_size, latency_ns);
  2352. fwater_lo |= (3<<8) | planea_wm;
  2353. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  2354. I915_WRITE(FW_BLC, fwater_lo);
  2355. }
  2356. /**
  2357. * intel_update_watermarks - update FIFO watermark values based on current modes
  2358. *
  2359. * Calculate watermark values for the various WM regs based on current mode
  2360. * and plane configuration.
  2361. *
  2362. * There are several cases to deal with here:
  2363. * - normal (i.e. non-self-refresh)
  2364. * - self-refresh (SR) mode
  2365. * - lines are large relative to FIFO size (buffer can hold up to 2)
  2366. * - lines are small relative to FIFO size (buffer can hold more than 2
  2367. * lines), so need to account for TLB latency
  2368. *
  2369. * The normal calculation is:
  2370. * watermark = dotclock * bytes per pixel * latency
  2371. * where latency is platform & configuration dependent (we assume pessimal
  2372. * values here).
  2373. *
  2374. * The SR calculation is:
  2375. * watermark = (trunc(latency/line time)+1) * surface width *
  2376. * bytes per pixel
  2377. * where
  2378. * line time = htotal / dotclock
  2379. * and latency is assumed to be high, as above.
  2380. *
  2381. * The final value programmed to the register should always be rounded up,
  2382. * and include an extra 2 entries to account for clock crossings.
  2383. *
  2384. * We don't use the sprite, so we can ignore that. And on Crestline we have
  2385. * to set the non-SR watermarks to 8.
  2386. */
  2387. static void intel_update_watermarks(struct drm_device *dev)
  2388. {
  2389. struct drm_i915_private *dev_priv = dev->dev_private;
  2390. struct drm_crtc *crtc;
  2391. struct intel_crtc *intel_crtc;
  2392. int sr_hdisplay = 0;
  2393. unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
  2394. int enabled = 0, pixel_size = 0;
  2395. if (!dev_priv->display.update_wm)
  2396. return;
  2397. /* Get the clock config from both planes */
  2398. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  2399. intel_crtc = to_intel_crtc(crtc);
  2400. if (crtc->enabled) {
  2401. enabled++;
  2402. if (intel_crtc->plane == 0) {
  2403. DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
  2404. intel_crtc->pipe, crtc->mode.clock);
  2405. planea_clock = crtc->mode.clock;
  2406. } else {
  2407. DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
  2408. intel_crtc->pipe, crtc->mode.clock);
  2409. planeb_clock = crtc->mode.clock;
  2410. }
  2411. sr_hdisplay = crtc->mode.hdisplay;
  2412. sr_clock = crtc->mode.clock;
  2413. if (crtc->fb)
  2414. pixel_size = crtc->fb->bits_per_pixel / 8;
  2415. else
  2416. pixel_size = 4; /* by default */
  2417. }
  2418. }
  2419. if (enabled <= 0)
  2420. return;
  2421. /* Single plane configs can enable self refresh */
  2422. if (enabled == 1 && IS_IGD(dev))
  2423. igd_enable_cxsr(dev, sr_clock, pixel_size);
  2424. else if (IS_IGD(dev))
  2425. igd_disable_cxsr(dev);
  2426. dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
  2427. sr_hdisplay, pixel_size);
  2428. }
  2429. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  2430. struct drm_display_mode *mode,
  2431. struct drm_display_mode *adjusted_mode,
  2432. int x, int y,
  2433. struct drm_framebuffer *old_fb)
  2434. {
  2435. struct drm_device *dev = crtc->dev;
  2436. struct drm_i915_private *dev_priv = dev->dev_private;
  2437. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2438. int pipe = intel_crtc->pipe;
  2439. int plane = intel_crtc->plane;
  2440. int fp_reg = (pipe == 0) ? FPA0 : FPB0;
  2441. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  2442. int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
  2443. int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
  2444. int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
  2445. int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
  2446. int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
  2447. int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
  2448. int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
  2449. int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
  2450. int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
  2451. int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
  2452. int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
  2453. int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
  2454. int refclk, num_outputs = 0;
  2455. intel_clock_t clock, reduced_clock;
  2456. u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
  2457. bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
  2458. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  2459. bool is_edp = false;
  2460. struct drm_mode_config *mode_config = &dev->mode_config;
  2461. struct drm_connector *connector;
  2462. const intel_limit_t *limit;
  2463. int ret;
  2464. struct fdi_m_n m_n = {0};
  2465. int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
  2466. int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
  2467. int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
  2468. int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
  2469. int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
  2470. int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
  2471. int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
  2472. int lvds_reg = LVDS;
  2473. u32 temp;
  2474. int sdvo_pixel_multiply;
  2475. int target_clock;
  2476. drm_vblank_pre_modeset(dev, pipe);
  2477. list_for_each_entry(connector, &mode_config->connector_list, head) {
  2478. struct intel_output *intel_output = to_intel_output(connector);
  2479. if (!connector->encoder || connector->encoder->crtc != crtc)
  2480. continue;
  2481. switch (intel_output->type) {
  2482. case INTEL_OUTPUT_LVDS:
  2483. is_lvds = true;
  2484. break;
  2485. case INTEL_OUTPUT_SDVO:
  2486. case INTEL_OUTPUT_HDMI:
  2487. is_sdvo = true;
  2488. if (intel_output->needs_tv_clock)
  2489. is_tv = true;
  2490. break;
  2491. case INTEL_OUTPUT_DVO:
  2492. is_dvo = true;
  2493. break;
  2494. case INTEL_OUTPUT_TVOUT:
  2495. is_tv = true;
  2496. break;
  2497. case INTEL_OUTPUT_ANALOG:
  2498. is_crt = true;
  2499. break;
  2500. case INTEL_OUTPUT_DISPLAYPORT:
  2501. is_dp = true;
  2502. break;
  2503. case INTEL_OUTPUT_EDP:
  2504. is_edp = true;
  2505. break;
  2506. }
  2507. num_outputs++;
  2508. }
  2509. if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
  2510. refclk = dev_priv->lvds_ssc_freq * 1000;
  2511. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  2512. refclk / 1000);
  2513. } else if (IS_I9XX(dev)) {
  2514. refclk = 96000;
  2515. if (IS_IGDNG(dev))
  2516. refclk = 120000; /* 120Mhz refclk */
  2517. } else {
  2518. refclk = 48000;
  2519. }
  2520. /*
  2521. * Returns a set of divisors for the desired target clock with the given
  2522. * refclk, or FALSE. The returned values represent the clock equation:
  2523. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  2524. */
  2525. limit = intel_limit(crtc);
  2526. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
  2527. if (!ok) {
  2528. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  2529. drm_vblank_post_modeset(dev, pipe);
  2530. return -EINVAL;
  2531. }
  2532. if (is_lvds && limit->find_reduced_pll &&
  2533. dev_priv->lvds_downclock_avail) {
  2534. memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
  2535. has_reduced_clock = limit->find_reduced_pll(limit, crtc,
  2536. dev_priv->lvds_downclock,
  2537. refclk,
  2538. &reduced_clock);
  2539. if (has_reduced_clock && (clock.p != reduced_clock.p)) {
  2540. /*
  2541. * If the different P is found, it means that we can't
  2542. * switch the display clock by using the FP0/FP1.
  2543. * In such case we will disable the LVDS downclock
  2544. * feature.
  2545. */
  2546. DRM_DEBUG_KMS("Different P is found for "
  2547. "LVDS clock/downclock\n");
  2548. has_reduced_clock = 0;
  2549. }
  2550. }
  2551. /* SDVO TV has fixed PLL values depend on its clock range,
  2552. this mirrors vbios setting. */
  2553. if (is_sdvo && is_tv) {
  2554. if (adjusted_mode->clock >= 100000
  2555. && adjusted_mode->clock < 140500) {
  2556. clock.p1 = 2;
  2557. clock.p2 = 10;
  2558. clock.n = 3;
  2559. clock.m1 = 16;
  2560. clock.m2 = 8;
  2561. } else if (adjusted_mode->clock >= 140500
  2562. && adjusted_mode->clock <= 200000) {
  2563. clock.p1 = 1;
  2564. clock.p2 = 10;
  2565. clock.n = 6;
  2566. clock.m1 = 12;
  2567. clock.m2 = 8;
  2568. }
  2569. }
  2570. /* FDI link */
  2571. if (IS_IGDNG(dev)) {
  2572. int lane, link_bw, bpp;
  2573. /* eDP doesn't require FDI link, so just set DP M/N
  2574. according to current link config */
  2575. if (is_edp) {
  2576. struct drm_connector *edp;
  2577. target_clock = mode->clock;
  2578. edp = intel_pipe_get_output(crtc);
  2579. intel_edp_link_config(to_intel_output(edp),
  2580. &lane, &link_bw);
  2581. } else {
  2582. /* DP over FDI requires target mode clock
  2583. instead of link clock */
  2584. if (is_dp)
  2585. target_clock = mode->clock;
  2586. else
  2587. target_clock = adjusted_mode->clock;
  2588. lane = 4;
  2589. link_bw = 270000;
  2590. }
  2591. /* determine panel color depth */
  2592. temp = I915_READ(pipeconf_reg);
  2593. switch (temp & PIPE_BPC_MASK) {
  2594. case PIPE_8BPC:
  2595. bpp = 24;
  2596. break;
  2597. case PIPE_10BPC:
  2598. bpp = 30;
  2599. break;
  2600. case PIPE_6BPC:
  2601. bpp = 18;
  2602. break;
  2603. case PIPE_12BPC:
  2604. bpp = 36;
  2605. break;
  2606. default:
  2607. DRM_ERROR("unknown pipe bpc value\n");
  2608. bpp = 24;
  2609. }
  2610. igdng_compute_m_n(bpp, lane, target_clock,
  2611. link_bw, &m_n);
  2612. }
  2613. /* Ironlake: try to setup display ref clock before DPLL
  2614. * enabling. This is only under driver's control after
  2615. * PCH B stepping, previous chipset stepping should be
  2616. * ignoring this setting.
  2617. */
  2618. if (IS_IGDNG(dev)) {
  2619. temp = I915_READ(PCH_DREF_CONTROL);
  2620. /* Always enable nonspread source */
  2621. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  2622. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  2623. I915_WRITE(PCH_DREF_CONTROL, temp);
  2624. POSTING_READ(PCH_DREF_CONTROL);
  2625. temp &= ~DREF_SSC_SOURCE_MASK;
  2626. temp |= DREF_SSC_SOURCE_ENABLE;
  2627. I915_WRITE(PCH_DREF_CONTROL, temp);
  2628. POSTING_READ(PCH_DREF_CONTROL);
  2629. udelay(200);
  2630. if (is_edp) {
  2631. if (dev_priv->lvds_use_ssc) {
  2632. temp |= DREF_SSC1_ENABLE;
  2633. I915_WRITE(PCH_DREF_CONTROL, temp);
  2634. POSTING_READ(PCH_DREF_CONTROL);
  2635. udelay(200);
  2636. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  2637. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  2638. I915_WRITE(PCH_DREF_CONTROL, temp);
  2639. POSTING_READ(PCH_DREF_CONTROL);
  2640. } else {
  2641. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  2642. I915_WRITE(PCH_DREF_CONTROL, temp);
  2643. POSTING_READ(PCH_DREF_CONTROL);
  2644. }
  2645. }
  2646. }
  2647. if (IS_IGD(dev)) {
  2648. fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
  2649. if (has_reduced_clock)
  2650. fp2 = (1 << reduced_clock.n) << 16 |
  2651. reduced_clock.m1 << 8 | reduced_clock.m2;
  2652. } else {
  2653. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  2654. if (has_reduced_clock)
  2655. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  2656. reduced_clock.m2;
  2657. }
  2658. if (!IS_IGDNG(dev))
  2659. dpll = DPLL_VGA_MODE_DIS;
  2660. if (IS_I9XX(dev)) {
  2661. if (is_lvds)
  2662. dpll |= DPLLB_MODE_LVDS;
  2663. else
  2664. dpll |= DPLLB_MODE_DAC_SERIAL;
  2665. if (is_sdvo) {
  2666. dpll |= DPLL_DVO_HIGH_SPEED;
  2667. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  2668. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  2669. dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  2670. else if (IS_IGDNG(dev))
  2671. dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  2672. }
  2673. if (is_dp)
  2674. dpll |= DPLL_DVO_HIGH_SPEED;
  2675. /* compute bitmask from p1 value */
  2676. if (IS_IGD(dev))
  2677. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
  2678. else {
  2679. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  2680. /* also FPA1 */
  2681. if (IS_IGDNG(dev))
  2682. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  2683. if (IS_G4X(dev) && has_reduced_clock)
  2684. dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  2685. }
  2686. switch (clock.p2) {
  2687. case 5:
  2688. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  2689. break;
  2690. case 7:
  2691. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  2692. break;
  2693. case 10:
  2694. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  2695. break;
  2696. case 14:
  2697. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  2698. break;
  2699. }
  2700. if (IS_I965G(dev) && !IS_IGDNG(dev))
  2701. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  2702. } else {
  2703. if (is_lvds) {
  2704. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  2705. } else {
  2706. if (clock.p1 == 2)
  2707. dpll |= PLL_P1_DIVIDE_BY_TWO;
  2708. else
  2709. dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  2710. if (clock.p2 == 4)
  2711. dpll |= PLL_P2_DIVIDE_BY_4;
  2712. }
  2713. }
  2714. if (is_sdvo && is_tv)
  2715. dpll |= PLL_REF_INPUT_TVCLKINBC;
  2716. else if (is_tv)
  2717. /* XXX: just matching BIOS for now */
  2718. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  2719. dpll |= 3;
  2720. else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
  2721. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  2722. else
  2723. dpll |= PLL_REF_INPUT_DREFCLK;
  2724. /* setup pipeconf */
  2725. pipeconf = I915_READ(pipeconf_reg);
  2726. /* Set up the display plane register */
  2727. dspcntr = DISPPLANE_GAMMA_ENABLE;
  2728. /* IGDNG's plane is forced to pipe, bit 24 is to
  2729. enable color space conversion */
  2730. if (!IS_IGDNG(dev)) {
  2731. if (pipe == 0)
  2732. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  2733. else
  2734. dspcntr |= DISPPLANE_SEL_PIPE_B;
  2735. }
  2736. if (pipe == 0 && !IS_I965G(dev)) {
  2737. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  2738. * core speed.
  2739. *
  2740. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  2741. * pipe == 0 check?
  2742. */
  2743. if (mode->clock >
  2744. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  2745. pipeconf |= PIPEACONF_DOUBLE_WIDE;
  2746. else
  2747. pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
  2748. }
  2749. dspcntr |= DISPLAY_PLANE_ENABLE;
  2750. pipeconf |= PIPEACONF_ENABLE;
  2751. dpll |= DPLL_VCO_ENABLE;
  2752. /* Disable the panel fitter if it was on our pipe */
  2753. if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
  2754. I915_WRITE(PFIT_CONTROL, 0);
  2755. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  2756. drm_mode_debug_printmodeline(mode);
  2757. /* assign to IGDNG registers */
  2758. if (IS_IGDNG(dev)) {
  2759. fp_reg = pch_fp_reg;
  2760. dpll_reg = pch_dpll_reg;
  2761. }
  2762. if (is_edp) {
  2763. igdng_disable_pll_edp(crtc);
  2764. } else if ((dpll & DPLL_VCO_ENABLE)) {
  2765. I915_WRITE(fp_reg, fp);
  2766. I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
  2767. I915_READ(dpll_reg);
  2768. udelay(150);
  2769. }
  2770. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  2771. * This is an exception to the general rule that mode_set doesn't turn
  2772. * things on.
  2773. */
  2774. if (is_lvds) {
  2775. u32 lvds;
  2776. if (IS_IGDNG(dev))
  2777. lvds_reg = PCH_LVDS;
  2778. lvds = I915_READ(lvds_reg);
  2779. lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
  2780. /* set the corresponsding LVDS_BORDER bit */
  2781. lvds |= dev_priv->lvds_border_bits;
  2782. /* Set the B0-B3 data pairs corresponding to whether we're going to
  2783. * set the DPLLs for dual-channel mode or not.
  2784. */
  2785. if (clock.p2 == 7)
  2786. lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  2787. else
  2788. lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  2789. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  2790. * appropriately here, but we need to look more thoroughly into how
  2791. * panels behave in the two modes.
  2792. */
  2793. I915_WRITE(lvds_reg, lvds);
  2794. I915_READ(lvds_reg);
  2795. }
  2796. if (is_dp)
  2797. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  2798. if (!is_edp) {
  2799. I915_WRITE(fp_reg, fp);
  2800. I915_WRITE(dpll_reg, dpll);
  2801. I915_READ(dpll_reg);
  2802. /* Wait for the clocks to stabilize. */
  2803. udelay(150);
  2804. if (IS_I965G(dev) && !IS_IGDNG(dev)) {
  2805. if (is_sdvo) {
  2806. sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
  2807. I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
  2808. ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
  2809. } else
  2810. I915_WRITE(dpll_md_reg, 0);
  2811. } else {
  2812. /* write it again -- the BIOS does, after all */
  2813. I915_WRITE(dpll_reg, dpll);
  2814. }
  2815. I915_READ(dpll_reg);
  2816. /* Wait for the clocks to stabilize. */
  2817. udelay(150);
  2818. }
  2819. if (is_lvds && has_reduced_clock && i915_powersave) {
  2820. I915_WRITE(fp_reg + 4, fp2);
  2821. intel_crtc->lowfreq_avail = true;
  2822. if (HAS_PIPE_CXSR(dev)) {
  2823. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  2824. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  2825. }
  2826. } else {
  2827. I915_WRITE(fp_reg + 4, fp);
  2828. intel_crtc->lowfreq_avail = false;
  2829. if (HAS_PIPE_CXSR(dev)) {
  2830. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  2831. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  2832. }
  2833. }
  2834. I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
  2835. ((adjusted_mode->crtc_htotal - 1) << 16));
  2836. I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
  2837. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  2838. I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
  2839. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  2840. I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
  2841. ((adjusted_mode->crtc_vtotal - 1) << 16));
  2842. I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
  2843. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  2844. I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
  2845. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  2846. /* pipesrc and dspsize control the size that is scaled from, which should
  2847. * always be the user's requested size.
  2848. */
  2849. if (!IS_IGDNG(dev)) {
  2850. I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
  2851. (mode->hdisplay - 1));
  2852. I915_WRITE(dsppos_reg, 0);
  2853. }
  2854. I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  2855. if (IS_IGDNG(dev)) {
  2856. I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
  2857. I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
  2858. I915_WRITE(link_m1_reg, m_n.link_m);
  2859. I915_WRITE(link_n1_reg, m_n.link_n);
  2860. if (is_edp) {
  2861. igdng_set_pll_edp(crtc, adjusted_mode->clock);
  2862. } else {
  2863. /* enable FDI RX PLL too */
  2864. temp = I915_READ(fdi_rx_reg);
  2865. I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
  2866. udelay(200);
  2867. }
  2868. }
  2869. I915_WRITE(pipeconf_reg, pipeconf);
  2870. I915_READ(pipeconf_reg);
  2871. intel_wait_for_vblank(dev);
  2872. if (IS_IGDNG(dev)) {
  2873. /* enable address swizzle for tiling buffer */
  2874. temp = I915_READ(DISP_ARB_CTL);
  2875. I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
  2876. }
  2877. I915_WRITE(dspcntr_reg, dspcntr);
  2878. /* Flush the plane changes */
  2879. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  2880. if ((IS_I965G(dev) || plane == 0))
  2881. intel_update_fbc(crtc, &crtc->mode);
  2882. intel_update_watermarks(dev);
  2883. drm_vblank_post_modeset(dev, pipe);
  2884. return ret;
  2885. }
  2886. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  2887. void intel_crtc_load_lut(struct drm_crtc *crtc)
  2888. {
  2889. struct drm_device *dev = crtc->dev;
  2890. struct drm_i915_private *dev_priv = dev->dev_private;
  2891. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2892. int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
  2893. int i;
  2894. /* The clocks have to be on to load the palette. */
  2895. if (!crtc->enabled)
  2896. return;
  2897. /* use legacy palette for IGDNG */
  2898. if (IS_IGDNG(dev))
  2899. palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
  2900. LGC_PALETTE_B;
  2901. for (i = 0; i < 256; i++) {
  2902. I915_WRITE(palreg + 4 * i,
  2903. (intel_crtc->lut_r[i] << 16) |
  2904. (intel_crtc->lut_g[i] << 8) |
  2905. intel_crtc->lut_b[i]);
  2906. }
  2907. }
  2908. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  2909. struct drm_file *file_priv,
  2910. uint32_t handle,
  2911. uint32_t width, uint32_t height)
  2912. {
  2913. struct drm_device *dev = crtc->dev;
  2914. struct drm_i915_private *dev_priv = dev->dev_private;
  2915. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2916. struct drm_gem_object *bo;
  2917. struct drm_i915_gem_object *obj_priv;
  2918. int pipe = intel_crtc->pipe;
  2919. uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
  2920. uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
  2921. uint32_t temp = I915_READ(control);
  2922. size_t addr;
  2923. int ret;
  2924. DRM_DEBUG_KMS("\n");
  2925. /* if we want to turn off the cursor ignore width and height */
  2926. if (!handle) {
  2927. DRM_DEBUG_KMS("cursor off\n");
  2928. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  2929. temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  2930. temp |= CURSOR_MODE_DISABLE;
  2931. } else {
  2932. temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  2933. }
  2934. addr = 0;
  2935. bo = NULL;
  2936. mutex_lock(&dev->struct_mutex);
  2937. goto finish;
  2938. }
  2939. /* Currently we only support 64x64 cursors */
  2940. if (width != 64 || height != 64) {
  2941. DRM_ERROR("we currently only support 64x64 cursors\n");
  2942. return -EINVAL;
  2943. }
  2944. bo = drm_gem_object_lookup(dev, file_priv, handle);
  2945. if (!bo)
  2946. return -ENOENT;
  2947. obj_priv = bo->driver_private;
  2948. if (bo->size < width * height * 4) {
  2949. DRM_ERROR("buffer is to small\n");
  2950. ret = -ENOMEM;
  2951. goto fail;
  2952. }
  2953. /* we only need to pin inside GTT if cursor is non-phy */
  2954. mutex_lock(&dev->struct_mutex);
  2955. if (!dev_priv->cursor_needs_physical) {
  2956. ret = i915_gem_object_pin(bo, PAGE_SIZE);
  2957. if (ret) {
  2958. DRM_ERROR("failed to pin cursor bo\n");
  2959. goto fail_locked;
  2960. }
  2961. addr = obj_priv->gtt_offset;
  2962. } else {
  2963. ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
  2964. if (ret) {
  2965. DRM_ERROR("failed to attach phys object\n");
  2966. goto fail_locked;
  2967. }
  2968. addr = obj_priv->phys_obj->handle->busaddr;
  2969. }
  2970. if (!IS_I9XX(dev))
  2971. I915_WRITE(CURSIZE, (height << 12) | width);
  2972. /* Hooray for CUR*CNTR differences */
  2973. if (IS_MOBILE(dev) || IS_I9XX(dev)) {
  2974. temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  2975. temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  2976. temp |= (pipe << 28); /* Connect to correct pipe */
  2977. } else {
  2978. temp &= ~(CURSOR_FORMAT_MASK);
  2979. temp |= CURSOR_ENABLE;
  2980. temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
  2981. }
  2982. finish:
  2983. I915_WRITE(control, temp);
  2984. I915_WRITE(base, addr);
  2985. if (intel_crtc->cursor_bo) {
  2986. if (dev_priv->cursor_needs_physical) {
  2987. if (intel_crtc->cursor_bo != bo)
  2988. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  2989. } else
  2990. i915_gem_object_unpin(intel_crtc->cursor_bo);
  2991. drm_gem_object_unreference(intel_crtc->cursor_bo);
  2992. }
  2993. mutex_unlock(&dev->struct_mutex);
  2994. intel_crtc->cursor_addr = addr;
  2995. intel_crtc->cursor_bo = bo;
  2996. return 0;
  2997. fail:
  2998. mutex_lock(&dev->struct_mutex);
  2999. fail_locked:
  3000. drm_gem_object_unreference(bo);
  3001. mutex_unlock(&dev->struct_mutex);
  3002. return ret;
  3003. }
  3004. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  3005. {
  3006. struct drm_device *dev = crtc->dev;
  3007. struct drm_i915_private *dev_priv = dev->dev_private;
  3008. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3009. struct intel_framebuffer *intel_fb;
  3010. int pipe = intel_crtc->pipe;
  3011. uint32_t temp = 0;
  3012. uint32_t adder;
  3013. if (crtc->fb) {
  3014. intel_fb = to_intel_framebuffer(crtc->fb);
  3015. intel_mark_busy(dev, intel_fb->obj);
  3016. }
  3017. if (x < 0) {
  3018. temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  3019. x = -x;
  3020. }
  3021. if (y < 0) {
  3022. temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  3023. y = -y;
  3024. }
  3025. temp |= x << CURSOR_X_SHIFT;
  3026. temp |= y << CURSOR_Y_SHIFT;
  3027. adder = intel_crtc->cursor_addr;
  3028. I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
  3029. I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
  3030. return 0;
  3031. }
  3032. /** Sets the color ramps on behalf of RandR */
  3033. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  3034. u16 blue, int regno)
  3035. {
  3036. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3037. intel_crtc->lut_r[regno] = red >> 8;
  3038. intel_crtc->lut_g[regno] = green >> 8;
  3039. intel_crtc->lut_b[regno] = blue >> 8;
  3040. }
  3041. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  3042. u16 *blue, int regno)
  3043. {
  3044. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3045. *red = intel_crtc->lut_r[regno] << 8;
  3046. *green = intel_crtc->lut_g[regno] << 8;
  3047. *blue = intel_crtc->lut_b[regno] << 8;
  3048. }
  3049. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  3050. u16 *blue, uint32_t size)
  3051. {
  3052. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3053. int i;
  3054. if (size != 256)
  3055. return;
  3056. for (i = 0; i < 256; i++) {
  3057. intel_crtc->lut_r[i] = red[i] >> 8;
  3058. intel_crtc->lut_g[i] = green[i] >> 8;
  3059. intel_crtc->lut_b[i] = blue[i] >> 8;
  3060. }
  3061. intel_crtc_load_lut(crtc);
  3062. }
  3063. /**
  3064. * Get a pipe with a simple mode set on it for doing load-based monitor
  3065. * detection.
  3066. *
  3067. * It will be up to the load-detect code to adjust the pipe as appropriate for
  3068. * its requirements. The pipe will be connected to no other outputs.
  3069. *
  3070. * Currently this code will only succeed if there is a pipe with no outputs
  3071. * configured for it. In the future, it could choose to temporarily disable
  3072. * some outputs to free up a pipe for its use.
  3073. *
  3074. * \return crtc, or NULL if no pipes are available.
  3075. */
  3076. /* VESA 640x480x72Hz mode to set on the pipe */
  3077. static struct drm_display_mode load_detect_mode = {
  3078. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  3079. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  3080. };
  3081. struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
  3082. struct drm_display_mode *mode,
  3083. int *dpms_mode)
  3084. {
  3085. struct intel_crtc *intel_crtc;
  3086. struct drm_crtc *possible_crtc;
  3087. struct drm_crtc *supported_crtc =NULL;
  3088. struct drm_encoder *encoder = &intel_output->enc;
  3089. struct drm_crtc *crtc = NULL;
  3090. struct drm_device *dev = encoder->dev;
  3091. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3092. struct drm_crtc_helper_funcs *crtc_funcs;
  3093. int i = -1;
  3094. /*
  3095. * Algorithm gets a little messy:
  3096. * - if the connector already has an assigned crtc, use it (but make
  3097. * sure it's on first)
  3098. * - try to find the first unused crtc that can drive this connector,
  3099. * and use that if we find one
  3100. * - if there are no unused crtcs available, try to use the first
  3101. * one we found that supports the connector
  3102. */
  3103. /* See if we already have a CRTC for this connector */
  3104. if (encoder->crtc) {
  3105. crtc = encoder->crtc;
  3106. /* Make sure the crtc and connector are running */
  3107. intel_crtc = to_intel_crtc(crtc);
  3108. *dpms_mode = intel_crtc->dpms_mode;
  3109. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3110. crtc_funcs = crtc->helper_private;
  3111. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3112. encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
  3113. }
  3114. return crtc;
  3115. }
  3116. /* Find an unused one (if possible) */
  3117. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  3118. i++;
  3119. if (!(encoder->possible_crtcs & (1 << i)))
  3120. continue;
  3121. if (!possible_crtc->enabled) {
  3122. crtc = possible_crtc;
  3123. break;
  3124. }
  3125. if (!supported_crtc)
  3126. supported_crtc = possible_crtc;
  3127. }
  3128. /*
  3129. * If we didn't find an unused CRTC, don't use any.
  3130. */
  3131. if (!crtc) {
  3132. return NULL;
  3133. }
  3134. encoder->crtc = crtc;
  3135. intel_output->base.encoder = encoder;
  3136. intel_output->load_detect_temp = true;
  3137. intel_crtc = to_intel_crtc(crtc);
  3138. *dpms_mode = intel_crtc->dpms_mode;
  3139. if (!crtc->enabled) {
  3140. if (!mode)
  3141. mode = &load_detect_mode;
  3142. drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
  3143. } else {
  3144. if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
  3145. crtc_funcs = crtc->helper_private;
  3146. crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
  3147. }
  3148. /* Add this connector to the crtc */
  3149. encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
  3150. encoder_funcs->commit(encoder);
  3151. }
  3152. /* let the connector get through one full cycle before testing */
  3153. intel_wait_for_vblank(dev);
  3154. return crtc;
  3155. }
  3156. void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
  3157. {
  3158. struct drm_encoder *encoder = &intel_output->enc;
  3159. struct drm_device *dev = encoder->dev;
  3160. struct drm_crtc *crtc = encoder->crtc;
  3161. struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
  3162. struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
  3163. if (intel_output->load_detect_temp) {
  3164. encoder->crtc = NULL;
  3165. intel_output->base.encoder = NULL;
  3166. intel_output->load_detect_temp = false;
  3167. crtc->enabled = drm_helper_crtc_in_use(crtc);
  3168. drm_helper_disable_unused_functions(dev);
  3169. }
  3170. /* Switch crtc and output back off if necessary */
  3171. if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
  3172. if (encoder->crtc == crtc)
  3173. encoder_funcs->dpms(encoder, dpms_mode);
  3174. crtc_funcs->dpms(crtc, dpms_mode);
  3175. }
  3176. }
  3177. /* Returns the clock of the currently programmed mode of the given pipe. */
  3178. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  3179. {
  3180. struct drm_i915_private *dev_priv = dev->dev_private;
  3181. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3182. int pipe = intel_crtc->pipe;
  3183. u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
  3184. u32 fp;
  3185. intel_clock_t clock;
  3186. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  3187. fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
  3188. else
  3189. fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
  3190. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  3191. if (IS_IGD(dev)) {
  3192. clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  3193. clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3194. } else {
  3195. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  3196. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  3197. }
  3198. if (IS_I9XX(dev)) {
  3199. if (IS_IGD(dev))
  3200. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
  3201. DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
  3202. else
  3203. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  3204. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3205. switch (dpll & DPLL_MODE_MASK) {
  3206. case DPLLB_MODE_DAC_SERIAL:
  3207. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  3208. 5 : 10;
  3209. break;
  3210. case DPLLB_MODE_LVDS:
  3211. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  3212. 7 : 14;
  3213. break;
  3214. default:
  3215. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  3216. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  3217. return 0;
  3218. }
  3219. /* XXX: Handle the 100Mhz refclk */
  3220. intel_clock(dev, 96000, &clock);
  3221. } else {
  3222. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  3223. if (is_lvds) {
  3224. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  3225. DPLL_FPA01_P1_POST_DIV_SHIFT);
  3226. clock.p2 = 14;
  3227. if ((dpll & PLL_REF_INPUT_MASK) ==
  3228. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  3229. /* XXX: might not be 66MHz */
  3230. intel_clock(dev, 66000, &clock);
  3231. } else
  3232. intel_clock(dev, 48000, &clock);
  3233. } else {
  3234. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  3235. clock.p1 = 2;
  3236. else {
  3237. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  3238. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  3239. }
  3240. if (dpll & PLL_P2_DIVIDE_BY_4)
  3241. clock.p2 = 4;
  3242. else
  3243. clock.p2 = 2;
  3244. intel_clock(dev, 48000, &clock);
  3245. }
  3246. }
  3247. /* XXX: It would be nice to validate the clocks, but we can't reuse
  3248. * i830PllIsValid() because it relies on the xf86_config connector
  3249. * configuration being accurate, which it isn't necessarily.
  3250. */
  3251. return clock.dot;
  3252. }
  3253. /** Returns the currently programmed mode of the given pipe. */
  3254. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  3255. struct drm_crtc *crtc)
  3256. {
  3257. struct drm_i915_private *dev_priv = dev->dev_private;
  3258. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3259. int pipe = intel_crtc->pipe;
  3260. struct drm_display_mode *mode;
  3261. int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
  3262. int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
  3263. int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
  3264. int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
  3265. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  3266. if (!mode)
  3267. return NULL;
  3268. mode->clock = intel_crtc_clock_get(dev, crtc);
  3269. mode->hdisplay = (htot & 0xffff) + 1;
  3270. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  3271. mode->hsync_start = (hsync & 0xffff) + 1;
  3272. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  3273. mode->vdisplay = (vtot & 0xffff) + 1;
  3274. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  3275. mode->vsync_start = (vsync & 0xffff) + 1;
  3276. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  3277. drm_mode_set_name(mode);
  3278. drm_mode_set_crtcinfo(mode, 0);
  3279. return mode;
  3280. }
  3281. #define GPU_IDLE_TIMEOUT 500 /* ms */
  3282. /* When this timer fires, we've been idle for awhile */
  3283. static void intel_gpu_idle_timer(unsigned long arg)
  3284. {
  3285. struct drm_device *dev = (struct drm_device *)arg;
  3286. drm_i915_private_t *dev_priv = dev->dev_private;
  3287. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  3288. dev_priv->busy = false;
  3289. queue_work(dev_priv->wq, &dev_priv->idle_work);
  3290. }
  3291. void intel_increase_renderclock(struct drm_device *dev, bool schedule)
  3292. {
  3293. drm_i915_private_t *dev_priv = dev->dev_private;
  3294. if (IS_IGDNG(dev))
  3295. return;
  3296. if (!dev_priv->render_reclock_avail) {
  3297. DRM_DEBUG_DRIVER("not reclocking render clock\n");
  3298. return;
  3299. }
  3300. /* Restore render clock frequency to original value */
  3301. if (IS_G4X(dev) || IS_I9XX(dev))
  3302. pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
  3303. else if (IS_I85X(dev))
  3304. pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
  3305. DRM_DEBUG_DRIVER("increasing render clock frequency\n");
  3306. /* Schedule downclock */
  3307. if (schedule)
  3308. mod_timer(&dev_priv->idle_timer, jiffies +
  3309. msecs_to_jiffies(GPU_IDLE_TIMEOUT));
  3310. }
  3311. void intel_decrease_renderclock(struct drm_device *dev)
  3312. {
  3313. drm_i915_private_t *dev_priv = dev->dev_private;
  3314. if (IS_IGDNG(dev))
  3315. return;
  3316. if (!dev_priv->render_reclock_avail) {
  3317. DRM_DEBUG_DRIVER("not reclocking render clock\n");
  3318. return;
  3319. }
  3320. if (IS_G4X(dev)) {
  3321. u16 gcfgc;
  3322. /* Adjust render clock... */
  3323. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3324. /* Down to minimum... */
  3325. gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
  3326. gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
  3327. pci_write_config_word(dev->pdev, GCFGC, gcfgc);
  3328. } else if (IS_I965G(dev)) {
  3329. u16 gcfgc;
  3330. /* Adjust render clock... */
  3331. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3332. /* Down to minimum... */
  3333. gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
  3334. gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
  3335. pci_write_config_word(dev->pdev, GCFGC, gcfgc);
  3336. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  3337. u16 gcfgc;
  3338. /* Adjust render clock... */
  3339. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3340. /* Down to minimum... */
  3341. gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
  3342. gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
  3343. pci_write_config_word(dev->pdev, GCFGC, gcfgc);
  3344. } else if (IS_I915G(dev)) {
  3345. u16 gcfgc;
  3346. /* Adjust render clock... */
  3347. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3348. /* Down to minimum... */
  3349. gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
  3350. gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
  3351. pci_write_config_word(dev->pdev, GCFGC, gcfgc);
  3352. } else if (IS_I85X(dev)) {
  3353. u16 hpllcc;
  3354. /* Adjust render clock... */
  3355. pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
  3356. /* Up to maximum... */
  3357. hpllcc &= ~GC_CLOCK_CONTROL_MASK;
  3358. hpllcc |= GC_CLOCK_133_200;
  3359. pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
  3360. }
  3361. DRM_DEBUG_DRIVER("decreasing render clock frequency\n");
  3362. }
  3363. /* Note that no increase function is needed for this - increase_renderclock()
  3364. * will also rewrite these bits
  3365. */
  3366. void intel_decrease_displayclock(struct drm_device *dev)
  3367. {
  3368. if (IS_IGDNG(dev))
  3369. return;
  3370. if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
  3371. IS_I915GM(dev)) {
  3372. u16 gcfgc;
  3373. /* Adjust render clock... */
  3374. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3375. /* Down to minimum... */
  3376. gcfgc &= ~0xf0;
  3377. gcfgc |= 0x80;
  3378. pci_write_config_word(dev->pdev, GCFGC, gcfgc);
  3379. }
  3380. }
  3381. #define CRTC_IDLE_TIMEOUT 1000 /* ms */
  3382. static void intel_crtc_idle_timer(unsigned long arg)
  3383. {
  3384. struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
  3385. struct drm_crtc *crtc = &intel_crtc->base;
  3386. drm_i915_private_t *dev_priv = crtc->dev->dev_private;
  3387. DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
  3388. intel_crtc->busy = false;
  3389. queue_work(dev_priv->wq, &dev_priv->idle_work);
  3390. }
  3391. static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
  3392. {
  3393. struct drm_device *dev = crtc->dev;
  3394. drm_i915_private_t *dev_priv = dev->dev_private;
  3395. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3396. int pipe = intel_crtc->pipe;
  3397. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3398. int dpll = I915_READ(dpll_reg);
  3399. if (IS_IGDNG(dev))
  3400. return;
  3401. if (!dev_priv->lvds_downclock_avail)
  3402. return;
  3403. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  3404. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  3405. /* Unlock panel regs */
  3406. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
  3407. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  3408. I915_WRITE(dpll_reg, dpll);
  3409. dpll = I915_READ(dpll_reg);
  3410. intel_wait_for_vblank(dev);
  3411. dpll = I915_READ(dpll_reg);
  3412. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  3413. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  3414. /* ...and lock them again */
  3415. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  3416. }
  3417. /* Schedule downclock */
  3418. if (schedule)
  3419. mod_timer(&intel_crtc->idle_timer, jiffies +
  3420. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  3421. }
  3422. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  3423. {
  3424. struct drm_device *dev = crtc->dev;
  3425. drm_i915_private_t *dev_priv = dev->dev_private;
  3426. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3427. int pipe = intel_crtc->pipe;
  3428. int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
  3429. int dpll = I915_READ(dpll_reg);
  3430. if (IS_IGDNG(dev))
  3431. return;
  3432. if (!dev_priv->lvds_downclock_avail)
  3433. return;
  3434. /*
  3435. * Since this is called by a timer, we should never get here in
  3436. * the manual case.
  3437. */
  3438. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  3439. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  3440. /* Unlock panel regs */
  3441. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
  3442. dpll |= DISPLAY_RATE_SELECT_FPA1;
  3443. I915_WRITE(dpll_reg, dpll);
  3444. dpll = I915_READ(dpll_reg);
  3445. intel_wait_for_vblank(dev);
  3446. dpll = I915_READ(dpll_reg);
  3447. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  3448. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  3449. /* ...and lock them again */
  3450. I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
  3451. }
  3452. }
  3453. /**
  3454. * intel_idle_update - adjust clocks for idleness
  3455. * @work: work struct
  3456. *
  3457. * Either the GPU or display (or both) went idle. Check the busy status
  3458. * here and adjust the CRTC and GPU clocks as necessary.
  3459. */
  3460. static void intel_idle_update(struct work_struct *work)
  3461. {
  3462. drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
  3463. idle_work);
  3464. struct drm_device *dev = dev_priv->dev;
  3465. struct drm_crtc *crtc;
  3466. struct intel_crtc *intel_crtc;
  3467. if (!i915_powersave)
  3468. return;
  3469. mutex_lock(&dev->struct_mutex);
  3470. /* GPU isn't processing, downclock it. */
  3471. if (!dev_priv->busy) {
  3472. intel_decrease_renderclock(dev);
  3473. intel_decrease_displayclock(dev);
  3474. }
  3475. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3476. /* Skip inactive CRTCs */
  3477. if (!crtc->fb)
  3478. continue;
  3479. intel_crtc = to_intel_crtc(crtc);
  3480. if (!intel_crtc->busy)
  3481. intel_decrease_pllclock(crtc);
  3482. }
  3483. mutex_unlock(&dev->struct_mutex);
  3484. }
  3485. /**
  3486. * intel_mark_busy - mark the GPU and possibly the display busy
  3487. * @dev: drm device
  3488. * @obj: object we're operating on
  3489. *
  3490. * Callers can use this function to indicate that the GPU is busy processing
  3491. * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
  3492. * buffer), we'll also mark the display as busy, so we know to increase its
  3493. * clock frequency.
  3494. */
  3495. void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
  3496. {
  3497. drm_i915_private_t *dev_priv = dev->dev_private;
  3498. struct drm_crtc *crtc = NULL;
  3499. struct intel_framebuffer *intel_fb;
  3500. struct intel_crtc *intel_crtc;
  3501. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3502. return;
  3503. dev_priv->busy = true;
  3504. intel_increase_renderclock(dev, true);
  3505. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3506. if (!crtc->fb)
  3507. continue;
  3508. intel_crtc = to_intel_crtc(crtc);
  3509. intel_fb = to_intel_framebuffer(crtc->fb);
  3510. if (intel_fb->obj == obj) {
  3511. if (!intel_crtc->busy) {
  3512. /* Non-busy -> busy, upclock */
  3513. intel_increase_pllclock(crtc, true);
  3514. intel_crtc->busy = true;
  3515. } else {
  3516. /* Busy -> busy, put off timer */
  3517. mod_timer(&intel_crtc->idle_timer, jiffies +
  3518. msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
  3519. }
  3520. }
  3521. }
  3522. }
  3523. static void intel_crtc_destroy(struct drm_crtc *crtc)
  3524. {
  3525. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3526. drm_crtc_cleanup(crtc);
  3527. kfree(intel_crtc);
  3528. }
  3529. static const struct drm_crtc_helper_funcs intel_helper_funcs = {
  3530. .dpms = intel_crtc_dpms,
  3531. .mode_fixup = intel_crtc_mode_fixup,
  3532. .mode_set = intel_crtc_mode_set,
  3533. .mode_set_base = intel_pipe_set_base,
  3534. .prepare = intel_crtc_prepare,
  3535. .commit = intel_crtc_commit,
  3536. .load_lut = intel_crtc_load_lut,
  3537. };
  3538. static const struct drm_crtc_funcs intel_crtc_funcs = {
  3539. .cursor_set = intel_crtc_cursor_set,
  3540. .cursor_move = intel_crtc_cursor_move,
  3541. .gamma_set = intel_crtc_gamma_set,
  3542. .set_config = drm_crtc_helper_set_config,
  3543. .destroy = intel_crtc_destroy,
  3544. };
  3545. static void intel_crtc_init(struct drm_device *dev, int pipe)
  3546. {
  3547. struct intel_crtc *intel_crtc;
  3548. int i;
  3549. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  3550. if (intel_crtc == NULL)
  3551. return;
  3552. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  3553. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  3554. intel_crtc->pipe = pipe;
  3555. intel_crtc->plane = pipe;
  3556. for (i = 0; i < 256; i++) {
  3557. intel_crtc->lut_r[i] = i;
  3558. intel_crtc->lut_g[i] = i;
  3559. intel_crtc->lut_b[i] = i;
  3560. }
  3561. /* Swap pipes & planes for FBC on pre-965 */
  3562. intel_crtc->pipe = pipe;
  3563. intel_crtc->plane = pipe;
  3564. if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
  3565. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  3566. intel_crtc->plane = ((pipe == 0) ? 1 : 0);
  3567. }
  3568. intel_crtc->cursor_addr = 0;
  3569. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  3570. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  3571. intel_crtc->busy = false;
  3572. setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
  3573. (unsigned long)intel_crtc);
  3574. }
  3575. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  3576. struct drm_file *file_priv)
  3577. {
  3578. drm_i915_private_t *dev_priv = dev->dev_private;
  3579. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  3580. struct drm_mode_object *drmmode_obj;
  3581. struct intel_crtc *crtc;
  3582. if (!dev_priv) {
  3583. DRM_ERROR("called with no initialization\n");
  3584. return -EINVAL;
  3585. }
  3586. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  3587. DRM_MODE_OBJECT_CRTC);
  3588. if (!drmmode_obj) {
  3589. DRM_ERROR("no such CRTC id\n");
  3590. return -EINVAL;
  3591. }
  3592. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  3593. pipe_from_crtc_id->pipe = crtc->pipe;
  3594. return 0;
  3595. }
  3596. struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
  3597. {
  3598. struct drm_crtc *crtc = NULL;
  3599. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3600. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3601. if (intel_crtc->pipe == pipe)
  3602. break;
  3603. }
  3604. return crtc;
  3605. }
  3606. static int intel_connector_clones(struct drm_device *dev, int type_mask)
  3607. {
  3608. int index_mask = 0;
  3609. struct drm_connector *connector;
  3610. int entry = 0;
  3611. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3612. struct intel_output *intel_output = to_intel_output(connector);
  3613. if (type_mask & intel_output->clone_mask)
  3614. index_mask |= (1 << entry);
  3615. entry++;
  3616. }
  3617. return index_mask;
  3618. }
  3619. static void intel_setup_outputs(struct drm_device *dev)
  3620. {
  3621. struct drm_i915_private *dev_priv = dev->dev_private;
  3622. struct drm_connector *connector;
  3623. intel_crt_init(dev);
  3624. /* Set up integrated LVDS */
  3625. if (IS_MOBILE(dev) && !IS_I830(dev))
  3626. intel_lvds_init(dev);
  3627. if (IS_IGDNG(dev)) {
  3628. int found;
  3629. if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
  3630. intel_dp_init(dev, DP_A);
  3631. if (I915_READ(HDMIB) & PORT_DETECTED) {
  3632. /* check SDVOB */
  3633. /* found = intel_sdvo_init(dev, HDMIB); */
  3634. found = 0;
  3635. if (!found)
  3636. intel_hdmi_init(dev, HDMIB);
  3637. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  3638. intel_dp_init(dev, PCH_DP_B);
  3639. }
  3640. if (I915_READ(HDMIC) & PORT_DETECTED)
  3641. intel_hdmi_init(dev, HDMIC);
  3642. if (I915_READ(HDMID) & PORT_DETECTED)
  3643. intel_hdmi_init(dev, HDMID);
  3644. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  3645. intel_dp_init(dev, PCH_DP_C);
  3646. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  3647. intel_dp_init(dev, PCH_DP_D);
  3648. } else if (IS_I9XX(dev)) {
  3649. bool found = false;
  3650. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  3651. found = intel_sdvo_init(dev, SDVOB);
  3652. if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
  3653. intel_hdmi_init(dev, SDVOB);
  3654. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  3655. intel_dp_init(dev, DP_B);
  3656. }
  3657. /* Before G4X SDVOC doesn't have its own detect register */
  3658. if (I915_READ(SDVOB) & SDVO_DETECTED)
  3659. found = intel_sdvo_init(dev, SDVOC);
  3660. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  3661. if (SUPPORTS_INTEGRATED_HDMI(dev))
  3662. intel_hdmi_init(dev, SDVOC);
  3663. if (SUPPORTS_INTEGRATED_DP(dev))
  3664. intel_dp_init(dev, DP_C);
  3665. }
  3666. if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
  3667. intel_dp_init(dev, DP_D);
  3668. } else
  3669. intel_dvo_init(dev);
  3670. if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
  3671. intel_tv_init(dev);
  3672. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3673. struct intel_output *intel_output = to_intel_output(connector);
  3674. struct drm_encoder *encoder = &intel_output->enc;
  3675. encoder->possible_crtcs = intel_output->crtc_mask;
  3676. encoder->possible_clones = intel_connector_clones(dev,
  3677. intel_output->clone_mask);
  3678. }
  3679. }
  3680. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  3681. {
  3682. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  3683. struct drm_device *dev = fb->dev;
  3684. if (fb->fbdev)
  3685. intelfb_remove(dev, fb);
  3686. drm_framebuffer_cleanup(fb);
  3687. mutex_lock(&dev->struct_mutex);
  3688. drm_gem_object_unreference(intel_fb->obj);
  3689. mutex_unlock(&dev->struct_mutex);
  3690. kfree(intel_fb);
  3691. }
  3692. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  3693. struct drm_file *file_priv,
  3694. unsigned int *handle)
  3695. {
  3696. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  3697. struct drm_gem_object *object = intel_fb->obj;
  3698. return drm_gem_handle_create(file_priv, object, handle);
  3699. }
  3700. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  3701. .destroy = intel_user_framebuffer_destroy,
  3702. .create_handle = intel_user_framebuffer_create_handle,
  3703. };
  3704. int intel_framebuffer_create(struct drm_device *dev,
  3705. struct drm_mode_fb_cmd *mode_cmd,
  3706. struct drm_framebuffer **fb,
  3707. struct drm_gem_object *obj)
  3708. {
  3709. struct intel_framebuffer *intel_fb;
  3710. int ret;
  3711. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  3712. if (!intel_fb)
  3713. return -ENOMEM;
  3714. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  3715. if (ret) {
  3716. DRM_ERROR("framebuffer init failed %d\n", ret);
  3717. return ret;
  3718. }
  3719. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  3720. intel_fb->obj = obj;
  3721. *fb = &intel_fb->base;
  3722. return 0;
  3723. }
  3724. static struct drm_framebuffer *
  3725. intel_user_framebuffer_create(struct drm_device *dev,
  3726. struct drm_file *filp,
  3727. struct drm_mode_fb_cmd *mode_cmd)
  3728. {
  3729. struct drm_gem_object *obj;
  3730. struct drm_framebuffer *fb;
  3731. int ret;
  3732. obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
  3733. if (!obj)
  3734. return NULL;
  3735. ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
  3736. if (ret) {
  3737. mutex_lock(&dev->struct_mutex);
  3738. drm_gem_object_unreference(obj);
  3739. mutex_unlock(&dev->struct_mutex);
  3740. return NULL;
  3741. }
  3742. return fb;
  3743. }
  3744. static const struct drm_mode_config_funcs intel_mode_funcs = {
  3745. .fb_create = intel_user_framebuffer_create,
  3746. .fb_changed = intelfb_probe,
  3747. };
  3748. void intel_init_clock_gating(struct drm_device *dev)
  3749. {
  3750. struct drm_i915_private *dev_priv = dev->dev_private;
  3751. /*
  3752. * Disable clock gating reported to work incorrectly according to the
  3753. * specs, but enable as much else as we can.
  3754. */
  3755. if (IS_IGDNG(dev)) {
  3756. return;
  3757. } else if (IS_G4X(dev)) {
  3758. uint32_t dspclk_gate;
  3759. I915_WRITE(RENCLK_GATE_D1, 0);
  3760. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  3761. GS_UNIT_CLOCK_GATE_DISABLE |
  3762. CL_UNIT_CLOCK_GATE_DISABLE);
  3763. I915_WRITE(RAMCLK_GATE_D, 0);
  3764. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  3765. OVRUNIT_CLOCK_GATE_DISABLE |
  3766. OVCUNIT_CLOCK_GATE_DISABLE;
  3767. if (IS_GM45(dev))
  3768. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  3769. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  3770. } else if (IS_I965GM(dev)) {
  3771. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  3772. I915_WRITE(RENCLK_GATE_D2, 0);
  3773. I915_WRITE(DSPCLK_GATE_D, 0);
  3774. I915_WRITE(RAMCLK_GATE_D, 0);
  3775. I915_WRITE16(DEUC, 0);
  3776. } else if (IS_I965G(dev)) {
  3777. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  3778. I965_RCC_CLOCK_GATE_DISABLE |
  3779. I965_RCPB_CLOCK_GATE_DISABLE |
  3780. I965_ISC_CLOCK_GATE_DISABLE |
  3781. I965_FBC_CLOCK_GATE_DISABLE);
  3782. I915_WRITE(RENCLK_GATE_D2, 0);
  3783. } else if (IS_I9XX(dev)) {
  3784. u32 dstate = I915_READ(D_STATE);
  3785. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  3786. DSTATE_DOT_CLOCK_GATING;
  3787. I915_WRITE(D_STATE, dstate);
  3788. } else if (IS_I85X(dev) || IS_I865G(dev)) {
  3789. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  3790. } else if (IS_I830(dev)) {
  3791. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  3792. }
  3793. /*
  3794. * GPU can automatically power down the render unit if given a page
  3795. * to save state.
  3796. */
  3797. if (I915_HAS_RC6(dev)) {
  3798. struct drm_gem_object *pwrctx;
  3799. struct drm_i915_gem_object *obj_priv;
  3800. int ret;
  3801. pwrctx = drm_gem_object_alloc(dev, 4096);
  3802. if (!pwrctx) {
  3803. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  3804. goto out;
  3805. }
  3806. ret = i915_gem_object_pin(pwrctx, 4096);
  3807. if (ret) {
  3808. DRM_ERROR("failed to pin power context: %d\n", ret);
  3809. drm_gem_object_unreference(pwrctx);
  3810. goto out;
  3811. }
  3812. i915_gem_object_set_to_gtt_domain(pwrctx, 1);
  3813. obj_priv = pwrctx->driver_private;
  3814. I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
  3815. I915_WRITE(MCHBAR_RENDER_STANDBY,
  3816. I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
  3817. dev_priv->pwrctx = pwrctx;
  3818. }
  3819. out:
  3820. return;
  3821. }
  3822. /* Set up chip specific display functions */
  3823. static void intel_init_display(struct drm_device *dev)
  3824. {
  3825. struct drm_i915_private *dev_priv = dev->dev_private;
  3826. /* We always want a DPMS function */
  3827. if (IS_IGDNG(dev))
  3828. dev_priv->display.dpms = igdng_crtc_dpms;
  3829. else
  3830. dev_priv->display.dpms = i9xx_crtc_dpms;
  3831. /* Only mobile has FBC, leave pointers NULL for other chips */
  3832. if (IS_MOBILE(dev)) {
  3833. if (IS_GM45(dev)) {
  3834. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  3835. dev_priv->display.enable_fbc = g4x_enable_fbc;
  3836. dev_priv->display.disable_fbc = g4x_disable_fbc;
  3837. } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
  3838. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  3839. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  3840. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  3841. }
  3842. /* 855GM needs testing */
  3843. }
  3844. /* Returns the core display clock speed */
  3845. if (IS_I945G(dev) || (IS_G33(dev) && ! IS_IGDGM(dev)))
  3846. dev_priv->display.get_display_clock_speed =
  3847. i945_get_display_clock_speed;
  3848. else if (IS_I915G(dev))
  3849. dev_priv->display.get_display_clock_speed =
  3850. i915_get_display_clock_speed;
  3851. else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
  3852. dev_priv->display.get_display_clock_speed =
  3853. i9xx_misc_get_display_clock_speed;
  3854. else if (IS_I915GM(dev))
  3855. dev_priv->display.get_display_clock_speed =
  3856. i915gm_get_display_clock_speed;
  3857. else if (IS_I865G(dev))
  3858. dev_priv->display.get_display_clock_speed =
  3859. i865_get_display_clock_speed;
  3860. else if (IS_I85X(dev))
  3861. dev_priv->display.get_display_clock_speed =
  3862. i855_get_display_clock_speed;
  3863. else /* 852, 830 */
  3864. dev_priv->display.get_display_clock_speed =
  3865. i830_get_display_clock_speed;
  3866. /* For FIFO watermark updates */
  3867. if (IS_IGDNG(dev))
  3868. dev_priv->display.update_wm = NULL;
  3869. else if (IS_G4X(dev))
  3870. dev_priv->display.update_wm = g4x_update_wm;
  3871. else if (IS_I965G(dev))
  3872. dev_priv->display.update_wm = i965_update_wm;
  3873. else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
  3874. dev_priv->display.update_wm = i9xx_update_wm;
  3875. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  3876. } else {
  3877. if (IS_I85X(dev))
  3878. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  3879. else if (IS_845G(dev))
  3880. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  3881. else
  3882. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3883. dev_priv->display.update_wm = i830_update_wm;
  3884. }
  3885. }
  3886. void intel_modeset_init(struct drm_device *dev)
  3887. {
  3888. struct drm_i915_private *dev_priv = dev->dev_private;
  3889. int num_pipe;
  3890. int i;
  3891. drm_mode_config_init(dev);
  3892. dev->mode_config.min_width = 0;
  3893. dev->mode_config.min_height = 0;
  3894. dev->mode_config.funcs = (void *)&intel_mode_funcs;
  3895. intel_init_display(dev);
  3896. if (IS_I965G(dev)) {
  3897. dev->mode_config.max_width = 8192;
  3898. dev->mode_config.max_height = 8192;
  3899. } else if (IS_I9XX(dev)) {
  3900. dev->mode_config.max_width = 4096;
  3901. dev->mode_config.max_height = 4096;
  3902. } else {
  3903. dev->mode_config.max_width = 2048;
  3904. dev->mode_config.max_height = 2048;
  3905. }
  3906. /* set memory base */
  3907. if (IS_I9XX(dev))
  3908. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
  3909. else
  3910. dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
  3911. if (IS_MOBILE(dev) || IS_I9XX(dev))
  3912. num_pipe = 2;
  3913. else
  3914. num_pipe = 1;
  3915. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  3916. num_pipe, num_pipe > 1 ? "s" : "");
  3917. if (IS_I85X(dev))
  3918. pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
  3919. else if (IS_I9XX(dev) || IS_G4X(dev))
  3920. pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
  3921. for (i = 0; i < num_pipe; i++) {
  3922. intel_crtc_init(dev, i);
  3923. }
  3924. intel_setup_outputs(dev);
  3925. intel_init_clock_gating(dev);
  3926. INIT_WORK(&dev_priv->idle_work, intel_idle_update);
  3927. setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
  3928. (unsigned long)dev);
  3929. intel_setup_overlay(dev);
  3930. }
  3931. void intel_modeset_cleanup(struct drm_device *dev)
  3932. {
  3933. struct drm_i915_private *dev_priv = dev->dev_private;
  3934. struct drm_crtc *crtc;
  3935. struct intel_crtc *intel_crtc;
  3936. mutex_lock(&dev->struct_mutex);
  3937. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  3938. /* Skip inactive CRTCs */
  3939. if (!crtc->fb)
  3940. continue;
  3941. intel_crtc = to_intel_crtc(crtc);
  3942. intel_increase_pllclock(crtc, false);
  3943. del_timer_sync(&intel_crtc->idle_timer);
  3944. }
  3945. intel_increase_renderclock(dev, false);
  3946. del_timer_sync(&dev_priv->idle_timer);
  3947. mutex_unlock(&dev->struct_mutex);
  3948. if (dev_priv->display.disable_fbc)
  3949. dev_priv->display.disable_fbc(dev);
  3950. if (dev_priv->pwrctx) {
  3951. i915_gem_object_unpin(dev_priv->pwrctx);
  3952. drm_gem_object_unreference(dev_priv->pwrctx);
  3953. }
  3954. drm_mode_config_cleanup(dev);
  3955. }
  3956. /* current intel driver doesn't take advantage of encoders
  3957. always give back the encoder for the connector
  3958. */
  3959. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  3960. {
  3961. struct intel_output *intel_output = to_intel_output(connector);
  3962. return &intel_output->enc;
  3963. }
  3964. /*
  3965. * set vga decode state - true == enable VGA decode
  3966. */
  3967. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  3968. {
  3969. struct drm_i915_private *dev_priv = dev->dev_private;
  3970. u16 gmch_ctrl;
  3971. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  3972. if (state)
  3973. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  3974. else
  3975. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  3976. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  3977. return 0;
  3978. }