builtin-kmem.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796
  1. #include "builtin.h"
  2. #include "perf.h"
  3. #include "util/util.h"
  4. #include "util/cache.h"
  5. #include "util/symbol.h"
  6. #include "util/thread.h"
  7. #include "util/header.h"
  8. #include "util/session.h"
  9. #include "util/tool.h"
  10. #include "util/parse-options.h"
  11. #include "util/trace-event.h"
  12. #include "util/debug.h"
  13. #include <linux/rbtree.h>
  14. struct alloc_stat;
  15. typedef int (*sort_fn_t)(struct alloc_stat *, struct alloc_stat *);
  16. static const char *input_name;
  17. static int alloc_flag;
  18. static int caller_flag;
  19. static int alloc_lines = -1;
  20. static int caller_lines = -1;
  21. static bool raw_ip;
  22. static char default_sort_order[] = "frag,hit,bytes";
  23. static int *cpunode_map;
  24. static int max_cpu_num;
  25. struct alloc_stat {
  26. u64 call_site;
  27. u64 ptr;
  28. u64 bytes_req;
  29. u64 bytes_alloc;
  30. u32 hit;
  31. u32 pingpong;
  32. short alloc_cpu;
  33. struct rb_node node;
  34. };
  35. static struct rb_root root_alloc_stat;
  36. static struct rb_root root_alloc_sorted;
  37. static struct rb_root root_caller_stat;
  38. static struct rb_root root_caller_sorted;
  39. static unsigned long total_requested, total_allocated;
  40. static unsigned long nr_allocs, nr_cross_allocs;
  41. #define PATH_SYS_NODE "/sys/devices/system/node"
  42. struct perf_kmem {
  43. struct perf_tool tool;
  44. struct perf_session *session;
  45. };
  46. static void init_cpunode_map(void)
  47. {
  48. FILE *fp;
  49. int i;
  50. fp = fopen("/sys/devices/system/cpu/kernel_max", "r");
  51. if (!fp) {
  52. max_cpu_num = 4096;
  53. return;
  54. }
  55. if (fscanf(fp, "%d", &max_cpu_num) < 1)
  56. die("Failed to read 'kernel_max' from sysfs");
  57. max_cpu_num++;
  58. cpunode_map = calloc(max_cpu_num, sizeof(int));
  59. if (!cpunode_map)
  60. die("calloc");
  61. for (i = 0; i < max_cpu_num; i++)
  62. cpunode_map[i] = -1;
  63. fclose(fp);
  64. }
  65. static void setup_cpunode_map(void)
  66. {
  67. struct dirent *dent1, *dent2;
  68. DIR *dir1, *dir2;
  69. unsigned int cpu, mem;
  70. char buf[PATH_MAX];
  71. init_cpunode_map();
  72. dir1 = opendir(PATH_SYS_NODE);
  73. if (!dir1)
  74. return;
  75. while ((dent1 = readdir(dir1)) != NULL) {
  76. if (dent1->d_type != DT_DIR ||
  77. sscanf(dent1->d_name, "node%u", &mem) < 1)
  78. continue;
  79. snprintf(buf, PATH_MAX, "%s/%s", PATH_SYS_NODE, dent1->d_name);
  80. dir2 = opendir(buf);
  81. if (!dir2)
  82. continue;
  83. while ((dent2 = readdir(dir2)) != NULL) {
  84. if (dent2->d_type != DT_LNK ||
  85. sscanf(dent2->d_name, "cpu%u", &cpu) < 1)
  86. continue;
  87. cpunode_map[cpu] = mem;
  88. }
  89. closedir(dir2);
  90. }
  91. closedir(dir1);
  92. }
  93. static void insert_alloc_stat(unsigned long call_site, unsigned long ptr,
  94. int bytes_req, int bytes_alloc, int cpu)
  95. {
  96. struct rb_node **node = &root_alloc_stat.rb_node;
  97. struct rb_node *parent = NULL;
  98. struct alloc_stat *data = NULL;
  99. while (*node) {
  100. parent = *node;
  101. data = rb_entry(*node, struct alloc_stat, node);
  102. if (ptr > data->ptr)
  103. node = &(*node)->rb_right;
  104. else if (ptr < data->ptr)
  105. node = &(*node)->rb_left;
  106. else
  107. break;
  108. }
  109. if (data && data->ptr == ptr) {
  110. data->hit++;
  111. data->bytes_req += bytes_req;
  112. data->bytes_alloc += bytes_alloc;
  113. } else {
  114. data = malloc(sizeof(*data));
  115. if (!data)
  116. die("malloc");
  117. data->ptr = ptr;
  118. data->pingpong = 0;
  119. data->hit = 1;
  120. data->bytes_req = bytes_req;
  121. data->bytes_alloc = bytes_alloc;
  122. rb_link_node(&data->node, parent, node);
  123. rb_insert_color(&data->node, &root_alloc_stat);
  124. }
  125. data->call_site = call_site;
  126. data->alloc_cpu = cpu;
  127. }
  128. static void insert_caller_stat(unsigned long call_site,
  129. int bytes_req, int bytes_alloc)
  130. {
  131. struct rb_node **node = &root_caller_stat.rb_node;
  132. struct rb_node *parent = NULL;
  133. struct alloc_stat *data = NULL;
  134. while (*node) {
  135. parent = *node;
  136. data = rb_entry(*node, struct alloc_stat, node);
  137. if (call_site > data->call_site)
  138. node = &(*node)->rb_right;
  139. else if (call_site < data->call_site)
  140. node = &(*node)->rb_left;
  141. else
  142. break;
  143. }
  144. if (data && data->call_site == call_site) {
  145. data->hit++;
  146. data->bytes_req += bytes_req;
  147. data->bytes_alloc += bytes_alloc;
  148. } else {
  149. data = malloc(sizeof(*data));
  150. if (!data)
  151. die("malloc");
  152. data->call_site = call_site;
  153. data->pingpong = 0;
  154. data->hit = 1;
  155. data->bytes_req = bytes_req;
  156. data->bytes_alloc = bytes_alloc;
  157. rb_link_node(&data->node, parent, node);
  158. rb_insert_color(&data->node, &root_caller_stat);
  159. }
  160. }
  161. static void process_alloc_event(void *data,
  162. struct event_format *event,
  163. int cpu,
  164. u64 timestamp __used,
  165. struct thread *thread __used,
  166. int node)
  167. {
  168. unsigned long call_site;
  169. unsigned long ptr;
  170. int bytes_req;
  171. int bytes_alloc;
  172. int node1, node2;
  173. ptr = raw_field_value(event, "ptr", data);
  174. call_site = raw_field_value(event, "call_site", data);
  175. bytes_req = raw_field_value(event, "bytes_req", data);
  176. bytes_alloc = raw_field_value(event, "bytes_alloc", data);
  177. insert_alloc_stat(call_site, ptr, bytes_req, bytes_alloc, cpu);
  178. insert_caller_stat(call_site, bytes_req, bytes_alloc);
  179. total_requested += bytes_req;
  180. total_allocated += bytes_alloc;
  181. if (node) {
  182. node1 = cpunode_map[cpu];
  183. node2 = raw_field_value(event, "node", data);
  184. if (node1 != node2)
  185. nr_cross_allocs++;
  186. }
  187. nr_allocs++;
  188. }
  189. static int ptr_cmp(struct alloc_stat *, struct alloc_stat *);
  190. static int callsite_cmp(struct alloc_stat *, struct alloc_stat *);
  191. static struct alloc_stat *search_alloc_stat(unsigned long ptr,
  192. unsigned long call_site,
  193. struct rb_root *root,
  194. sort_fn_t sort_fn)
  195. {
  196. struct rb_node *node = root->rb_node;
  197. struct alloc_stat key = { .ptr = ptr, .call_site = call_site };
  198. while (node) {
  199. struct alloc_stat *data;
  200. int cmp;
  201. data = rb_entry(node, struct alloc_stat, node);
  202. cmp = sort_fn(&key, data);
  203. if (cmp < 0)
  204. node = node->rb_left;
  205. else if (cmp > 0)
  206. node = node->rb_right;
  207. else
  208. return data;
  209. }
  210. return NULL;
  211. }
  212. static void process_free_event(void *data,
  213. struct event_format *event,
  214. int cpu,
  215. u64 timestamp __used,
  216. struct thread *thread __used)
  217. {
  218. unsigned long ptr;
  219. struct alloc_stat *s_alloc, *s_caller;
  220. ptr = raw_field_value(event, "ptr", data);
  221. s_alloc = search_alloc_stat(ptr, 0, &root_alloc_stat, ptr_cmp);
  222. if (!s_alloc)
  223. return;
  224. if (cpu != s_alloc->alloc_cpu) {
  225. s_alloc->pingpong++;
  226. s_caller = search_alloc_stat(0, s_alloc->call_site,
  227. &root_caller_stat, callsite_cmp);
  228. assert(s_caller);
  229. s_caller->pingpong++;
  230. }
  231. s_alloc->alloc_cpu = -1;
  232. }
  233. static void process_raw_event(struct perf_tool *tool,
  234. union perf_event *raw_event __used, void *data,
  235. int cpu, u64 timestamp, struct thread *thread)
  236. {
  237. struct perf_kmem *kmem = container_of(tool, struct perf_kmem, tool);
  238. struct event_format *event;
  239. int type;
  240. type = trace_parse_common_type(kmem->session->pevent, data);
  241. event = pevent_find_event(kmem->session->pevent, type);
  242. if (!strcmp(event->name, "kmalloc") ||
  243. !strcmp(event->name, "kmem_cache_alloc")) {
  244. process_alloc_event(data, event, cpu, timestamp, thread, 0);
  245. return;
  246. }
  247. if (!strcmp(event->name, "kmalloc_node") ||
  248. !strcmp(event->name, "kmem_cache_alloc_node")) {
  249. process_alloc_event(data, event, cpu, timestamp, thread, 1);
  250. return;
  251. }
  252. if (!strcmp(event->name, "kfree") ||
  253. !strcmp(event->name, "kmem_cache_free")) {
  254. process_free_event(data, event, cpu, timestamp, thread);
  255. return;
  256. }
  257. }
  258. static int process_sample_event(struct perf_tool *tool,
  259. union perf_event *event,
  260. struct perf_sample *sample,
  261. struct perf_evsel *evsel __used,
  262. struct machine *machine)
  263. {
  264. struct thread *thread = machine__findnew_thread(machine, event->ip.pid);
  265. if (thread == NULL) {
  266. pr_debug("problem processing %d event, skipping it.\n",
  267. event->header.type);
  268. return -1;
  269. }
  270. dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
  271. process_raw_event(tool, event, sample->raw_data, sample->cpu,
  272. sample->time, thread);
  273. return 0;
  274. }
  275. static struct perf_kmem perf_kmem = {
  276. .tool = {
  277. .sample = process_sample_event,
  278. .comm = perf_event__process_comm,
  279. .ordered_samples = true,
  280. },
  281. };
  282. static double fragmentation(unsigned long n_req, unsigned long n_alloc)
  283. {
  284. if (n_alloc == 0)
  285. return 0.0;
  286. else
  287. return 100.0 - (100.0 * n_req / n_alloc);
  288. }
  289. static void __print_result(struct rb_root *root, struct perf_session *session,
  290. int n_lines, int is_caller)
  291. {
  292. struct rb_node *next;
  293. struct machine *machine;
  294. printf("%.102s\n", graph_dotted_line);
  295. printf(" %-34s |", is_caller ? "Callsite": "Alloc Ptr");
  296. printf(" Total_alloc/Per | Total_req/Per | Hit | Ping-pong | Frag\n");
  297. printf("%.102s\n", graph_dotted_line);
  298. next = rb_first(root);
  299. machine = perf_session__find_host_machine(session);
  300. if (!machine) {
  301. pr_err("__print_result: couldn't find kernel information\n");
  302. return;
  303. }
  304. while (next && n_lines--) {
  305. struct alloc_stat *data = rb_entry(next, struct alloc_stat,
  306. node);
  307. struct symbol *sym = NULL;
  308. struct map *map;
  309. char buf[BUFSIZ];
  310. u64 addr;
  311. if (is_caller) {
  312. addr = data->call_site;
  313. if (!raw_ip)
  314. sym = machine__find_kernel_function(machine, addr, &map, NULL);
  315. } else
  316. addr = data->ptr;
  317. if (sym != NULL)
  318. snprintf(buf, sizeof(buf), "%s+%" PRIx64 "", sym->name,
  319. addr - map->unmap_ip(map, sym->start));
  320. else
  321. snprintf(buf, sizeof(buf), "%#" PRIx64 "", addr);
  322. printf(" %-34s |", buf);
  323. printf(" %9llu/%-5lu | %9llu/%-5lu | %8lu | %8lu | %6.3f%%\n",
  324. (unsigned long long)data->bytes_alloc,
  325. (unsigned long)data->bytes_alloc / data->hit,
  326. (unsigned long long)data->bytes_req,
  327. (unsigned long)data->bytes_req / data->hit,
  328. (unsigned long)data->hit,
  329. (unsigned long)data->pingpong,
  330. fragmentation(data->bytes_req, data->bytes_alloc));
  331. next = rb_next(next);
  332. }
  333. if (n_lines == -1)
  334. printf(" ... | ... | ... | ... | ... | ... \n");
  335. printf("%.102s\n", graph_dotted_line);
  336. }
  337. static void print_summary(void)
  338. {
  339. printf("\nSUMMARY\n=======\n");
  340. printf("Total bytes requested: %lu\n", total_requested);
  341. printf("Total bytes allocated: %lu\n", total_allocated);
  342. printf("Total bytes wasted on internal fragmentation: %lu\n",
  343. total_allocated - total_requested);
  344. printf("Internal fragmentation: %f%%\n",
  345. fragmentation(total_requested, total_allocated));
  346. printf("Cross CPU allocations: %lu/%lu\n", nr_cross_allocs, nr_allocs);
  347. }
  348. static void print_result(struct perf_session *session)
  349. {
  350. if (caller_flag)
  351. __print_result(&root_caller_sorted, session, caller_lines, 1);
  352. if (alloc_flag)
  353. __print_result(&root_alloc_sorted, session, alloc_lines, 0);
  354. print_summary();
  355. }
  356. struct sort_dimension {
  357. const char name[20];
  358. sort_fn_t cmp;
  359. struct list_head list;
  360. };
  361. static LIST_HEAD(caller_sort);
  362. static LIST_HEAD(alloc_sort);
  363. static void sort_insert(struct rb_root *root, struct alloc_stat *data,
  364. struct list_head *sort_list)
  365. {
  366. struct rb_node **new = &(root->rb_node);
  367. struct rb_node *parent = NULL;
  368. struct sort_dimension *sort;
  369. while (*new) {
  370. struct alloc_stat *this;
  371. int cmp = 0;
  372. this = rb_entry(*new, struct alloc_stat, node);
  373. parent = *new;
  374. list_for_each_entry(sort, sort_list, list) {
  375. cmp = sort->cmp(data, this);
  376. if (cmp)
  377. break;
  378. }
  379. if (cmp > 0)
  380. new = &((*new)->rb_left);
  381. else
  382. new = &((*new)->rb_right);
  383. }
  384. rb_link_node(&data->node, parent, new);
  385. rb_insert_color(&data->node, root);
  386. }
  387. static void __sort_result(struct rb_root *root, struct rb_root *root_sorted,
  388. struct list_head *sort_list)
  389. {
  390. struct rb_node *node;
  391. struct alloc_stat *data;
  392. for (;;) {
  393. node = rb_first(root);
  394. if (!node)
  395. break;
  396. rb_erase(node, root);
  397. data = rb_entry(node, struct alloc_stat, node);
  398. sort_insert(root_sorted, data, sort_list);
  399. }
  400. }
  401. static void sort_result(void)
  402. {
  403. __sort_result(&root_alloc_stat, &root_alloc_sorted, &alloc_sort);
  404. __sort_result(&root_caller_stat, &root_caller_sorted, &caller_sort);
  405. }
  406. static int __cmd_kmem(void)
  407. {
  408. int err = -EINVAL;
  409. struct perf_session *session;
  410. session = perf_session__new(input_name, O_RDONLY, 0, false,
  411. &perf_kmem.tool);
  412. if (session == NULL)
  413. return -ENOMEM;
  414. perf_kmem.session = session;
  415. if (perf_session__create_kernel_maps(session) < 0)
  416. goto out_delete;
  417. if (!perf_session__has_traces(session, "kmem record"))
  418. goto out_delete;
  419. setup_pager();
  420. err = perf_session__process_events(session, &perf_kmem.tool);
  421. if (err != 0)
  422. goto out_delete;
  423. sort_result();
  424. print_result(session);
  425. out_delete:
  426. perf_session__delete(session);
  427. return err;
  428. }
  429. static const char * const kmem_usage[] = {
  430. "perf kmem [<options>] {record|stat}",
  431. NULL
  432. };
  433. static int ptr_cmp(struct alloc_stat *l, struct alloc_stat *r)
  434. {
  435. if (l->ptr < r->ptr)
  436. return -1;
  437. else if (l->ptr > r->ptr)
  438. return 1;
  439. return 0;
  440. }
  441. static struct sort_dimension ptr_sort_dimension = {
  442. .name = "ptr",
  443. .cmp = ptr_cmp,
  444. };
  445. static int callsite_cmp(struct alloc_stat *l, struct alloc_stat *r)
  446. {
  447. if (l->call_site < r->call_site)
  448. return -1;
  449. else if (l->call_site > r->call_site)
  450. return 1;
  451. return 0;
  452. }
  453. static struct sort_dimension callsite_sort_dimension = {
  454. .name = "callsite",
  455. .cmp = callsite_cmp,
  456. };
  457. static int hit_cmp(struct alloc_stat *l, struct alloc_stat *r)
  458. {
  459. if (l->hit < r->hit)
  460. return -1;
  461. else if (l->hit > r->hit)
  462. return 1;
  463. return 0;
  464. }
  465. static struct sort_dimension hit_sort_dimension = {
  466. .name = "hit",
  467. .cmp = hit_cmp,
  468. };
  469. static int bytes_cmp(struct alloc_stat *l, struct alloc_stat *r)
  470. {
  471. if (l->bytes_alloc < r->bytes_alloc)
  472. return -1;
  473. else if (l->bytes_alloc > r->bytes_alloc)
  474. return 1;
  475. return 0;
  476. }
  477. static struct sort_dimension bytes_sort_dimension = {
  478. .name = "bytes",
  479. .cmp = bytes_cmp,
  480. };
  481. static int frag_cmp(struct alloc_stat *l, struct alloc_stat *r)
  482. {
  483. double x, y;
  484. x = fragmentation(l->bytes_req, l->bytes_alloc);
  485. y = fragmentation(r->bytes_req, r->bytes_alloc);
  486. if (x < y)
  487. return -1;
  488. else if (x > y)
  489. return 1;
  490. return 0;
  491. }
  492. static struct sort_dimension frag_sort_dimension = {
  493. .name = "frag",
  494. .cmp = frag_cmp,
  495. };
  496. static int pingpong_cmp(struct alloc_stat *l, struct alloc_stat *r)
  497. {
  498. if (l->pingpong < r->pingpong)
  499. return -1;
  500. else if (l->pingpong > r->pingpong)
  501. return 1;
  502. return 0;
  503. }
  504. static struct sort_dimension pingpong_sort_dimension = {
  505. .name = "pingpong",
  506. .cmp = pingpong_cmp,
  507. };
  508. static struct sort_dimension *avail_sorts[] = {
  509. &ptr_sort_dimension,
  510. &callsite_sort_dimension,
  511. &hit_sort_dimension,
  512. &bytes_sort_dimension,
  513. &frag_sort_dimension,
  514. &pingpong_sort_dimension,
  515. };
  516. #define NUM_AVAIL_SORTS \
  517. (int)(sizeof(avail_sorts) / sizeof(struct sort_dimension *))
  518. static int sort_dimension__add(const char *tok, struct list_head *list)
  519. {
  520. struct sort_dimension *sort;
  521. int i;
  522. for (i = 0; i < NUM_AVAIL_SORTS; i++) {
  523. if (!strcmp(avail_sorts[i]->name, tok)) {
  524. sort = malloc(sizeof(*sort));
  525. if (!sort)
  526. die("malloc");
  527. memcpy(sort, avail_sorts[i], sizeof(*sort));
  528. list_add_tail(&sort->list, list);
  529. return 0;
  530. }
  531. }
  532. return -1;
  533. }
  534. static int setup_sorting(struct list_head *sort_list, const char *arg)
  535. {
  536. char *tok;
  537. char *str = strdup(arg);
  538. if (!str)
  539. die("strdup");
  540. while (true) {
  541. tok = strsep(&str, ",");
  542. if (!tok)
  543. break;
  544. if (sort_dimension__add(tok, sort_list) < 0) {
  545. error("Unknown --sort key: '%s'", tok);
  546. free(str);
  547. return -1;
  548. }
  549. }
  550. free(str);
  551. return 0;
  552. }
  553. static int parse_sort_opt(const struct option *opt __used,
  554. const char *arg, int unset __used)
  555. {
  556. if (!arg)
  557. return -1;
  558. if (caller_flag > alloc_flag)
  559. return setup_sorting(&caller_sort, arg);
  560. else
  561. return setup_sorting(&alloc_sort, arg);
  562. return 0;
  563. }
  564. static int parse_caller_opt(const struct option *opt __used,
  565. const char *arg __used, int unset __used)
  566. {
  567. caller_flag = (alloc_flag + 1);
  568. return 0;
  569. }
  570. static int parse_alloc_opt(const struct option *opt __used,
  571. const char *arg __used, int unset __used)
  572. {
  573. alloc_flag = (caller_flag + 1);
  574. return 0;
  575. }
  576. static int parse_line_opt(const struct option *opt __used,
  577. const char *arg, int unset __used)
  578. {
  579. int lines;
  580. if (!arg)
  581. return -1;
  582. lines = strtoul(arg, NULL, 10);
  583. if (caller_flag > alloc_flag)
  584. caller_lines = lines;
  585. else
  586. alloc_lines = lines;
  587. return 0;
  588. }
  589. static const struct option kmem_options[] = {
  590. OPT_STRING('i', "input", &input_name, "file",
  591. "input file name"),
  592. OPT_CALLBACK_NOOPT(0, "caller", NULL, NULL,
  593. "show per-callsite statistics",
  594. parse_caller_opt),
  595. OPT_CALLBACK_NOOPT(0, "alloc", NULL, NULL,
  596. "show per-allocation statistics",
  597. parse_alloc_opt),
  598. OPT_CALLBACK('s', "sort", NULL, "key[,key2...]",
  599. "sort by keys: ptr, call_site, bytes, hit, pingpong, frag",
  600. parse_sort_opt),
  601. OPT_CALLBACK('l', "line", NULL, "num",
  602. "show n lines",
  603. parse_line_opt),
  604. OPT_BOOLEAN(0, "raw-ip", &raw_ip, "show raw ip instead of symbol"),
  605. OPT_END()
  606. };
  607. static const char *record_args[] = {
  608. "record",
  609. "-a",
  610. "-R",
  611. "-f",
  612. "-c", "1",
  613. "-e", "kmem:kmalloc",
  614. "-e", "kmem:kmalloc_node",
  615. "-e", "kmem:kfree",
  616. "-e", "kmem:kmem_cache_alloc",
  617. "-e", "kmem:kmem_cache_alloc_node",
  618. "-e", "kmem:kmem_cache_free",
  619. };
  620. static int __cmd_record(int argc, const char **argv)
  621. {
  622. unsigned int rec_argc, i, j;
  623. const char **rec_argv;
  624. rec_argc = ARRAY_SIZE(record_args) + argc - 1;
  625. rec_argv = calloc(rec_argc + 1, sizeof(char *));
  626. if (rec_argv == NULL)
  627. return -ENOMEM;
  628. for (i = 0; i < ARRAY_SIZE(record_args); i++)
  629. rec_argv[i] = strdup(record_args[i]);
  630. for (j = 1; j < (unsigned int)argc; j++, i++)
  631. rec_argv[i] = argv[j];
  632. return cmd_record(i, rec_argv, NULL);
  633. }
  634. int cmd_kmem(int argc, const char **argv, const char *prefix __used)
  635. {
  636. argc = parse_options(argc, argv, kmem_options, kmem_usage, 0);
  637. if (!argc)
  638. usage_with_options(kmem_usage, kmem_options);
  639. symbol__init();
  640. if (!strncmp(argv[0], "rec", 3)) {
  641. return __cmd_record(argc, argv);
  642. } else if (!strcmp(argv[0], "stat")) {
  643. setup_cpunode_map();
  644. if (list_empty(&caller_sort))
  645. setup_sorting(&caller_sort, default_sort_order);
  646. if (list_empty(&alloc_sort))
  647. setup_sorting(&alloc_sort, default_sort_order);
  648. return __cmd_kmem();
  649. } else
  650. usage_with_options(kmem_usage, kmem_options);
  651. return 0;
  652. }