xfrm_algo.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753
  1. /*
  2. * xfrm algorithm interface
  3. *
  4. * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the Free
  8. * Software Foundation; either version 2 of the License, or (at your option)
  9. * any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/kernel.h>
  13. #include <linux/pfkeyv2.h>
  14. #include <linux/crypto.h>
  15. #include <linux/scatterlist.h>
  16. #include <net/xfrm.h>
  17. #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
  18. #include <net/esp.h>
  19. #endif
  20. /*
  21. * Algorithms supported by IPsec. These entries contain properties which
  22. * are used in key negotiation and xfrm processing, and are used to verify
  23. * that instantiated crypto transforms have correct parameters for IPsec
  24. * purposes.
  25. */
  26. static struct xfrm_algo_desc aead_list[] = {
  27. {
  28. .name = "rfc4106(gcm(aes))",
  29. .uinfo = {
  30. .aead = {
  31. .icv_truncbits = 64,
  32. }
  33. },
  34. .desc = {
  35. .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
  36. .sadb_alg_ivlen = 8,
  37. .sadb_alg_minbits = 128,
  38. .sadb_alg_maxbits = 256
  39. }
  40. },
  41. {
  42. .name = "rfc4106(gcm(aes))",
  43. .uinfo = {
  44. .aead = {
  45. .icv_truncbits = 96,
  46. }
  47. },
  48. .desc = {
  49. .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
  50. .sadb_alg_ivlen = 8,
  51. .sadb_alg_minbits = 128,
  52. .sadb_alg_maxbits = 256
  53. }
  54. },
  55. {
  56. .name = "rfc4106(gcm(aes))",
  57. .uinfo = {
  58. .aead = {
  59. .icv_truncbits = 128,
  60. }
  61. },
  62. .desc = {
  63. .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
  64. .sadb_alg_ivlen = 8,
  65. .sadb_alg_minbits = 128,
  66. .sadb_alg_maxbits = 256
  67. }
  68. },
  69. {
  70. .name = "rfc4309(ccm(aes))",
  71. .uinfo = {
  72. .aead = {
  73. .icv_truncbits = 64,
  74. }
  75. },
  76. .desc = {
  77. .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
  78. .sadb_alg_ivlen = 8,
  79. .sadb_alg_minbits = 128,
  80. .sadb_alg_maxbits = 256
  81. }
  82. },
  83. {
  84. .name = "rfc4309(ccm(aes))",
  85. .uinfo = {
  86. .aead = {
  87. .icv_truncbits = 96,
  88. }
  89. },
  90. .desc = {
  91. .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
  92. .sadb_alg_ivlen = 8,
  93. .sadb_alg_minbits = 128,
  94. .sadb_alg_maxbits = 256
  95. }
  96. },
  97. {
  98. .name = "rfc4309(ccm(aes))",
  99. .uinfo = {
  100. .aead = {
  101. .icv_truncbits = 128,
  102. }
  103. },
  104. .desc = {
  105. .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
  106. .sadb_alg_ivlen = 8,
  107. .sadb_alg_minbits = 128,
  108. .sadb_alg_maxbits = 256
  109. }
  110. },
  111. {
  112. .name = "rfc4543(gcm(aes))",
  113. .uinfo = {
  114. .aead = {
  115. .icv_truncbits = 128,
  116. }
  117. },
  118. .desc = {
  119. .sadb_alg_id = SADB_X_EALG_NULL_AES_GMAC,
  120. .sadb_alg_ivlen = 8,
  121. .sadb_alg_minbits = 128,
  122. .sadb_alg_maxbits = 256
  123. }
  124. },
  125. };
  126. static struct xfrm_algo_desc aalg_list[] = {
  127. {
  128. .name = "digest_null",
  129. .uinfo = {
  130. .auth = {
  131. .icv_truncbits = 0,
  132. .icv_fullbits = 0,
  133. }
  134. },
  135. .desc = {
  136. .sadb_alg_id = SADB_X_AALG_NULL,
  137. .sadb_alg_ivlen = 0,
  138. .sadb_alg_minbits = 0,
  139. .sadb_alg_maxbits = 0
  140. }
  141. },
  142. {
  143. .name = "hmac(md5)",
  144. .compat = "md5",
  145. .uinfo = {
  146. .auth = {
  147. .icv_truncbits = 96,
  148. .icv_fullbits = 128,
  149. }
  150. },
  151. .desc = {
  152. .sadb_alg_id = SADB_AALG_MD5HMAC,
  153. .sadb_alg_ivlen = 0,
  154. .sadb_alg_minbits = 128,
  155. .sadb_alg_maxbits = 128
  156. }
  157. },
  158. {
  159. .name = "hmac(sha1)",
  160. .compat = "sha1",
  161. .uinfo = {
  162. .auth = {
  163. .icv_truncbits = 96,
  164. .icv_fullbits = 160,
  165. }
  166. },
  167. .desc = {
  168. .sadb_alg_id = SADB_AALG_SHA1HMAC,
  169. .sadb_alg_ivlen = 0,
  170. .sadb_alg_minbits = 160,
  171. .sadb_alg_maxbits = 160
  172. }
  173. },
  174. {
  175. .name = "hmac(sha256)",
  176. .compat = "sha256",
  177. .uinfo = {
  178. .auth = {
  179. .icv_truncbits = 96,
  180. .icv_fullbits = 256,
  181. }
  182. },
  183. .desc = {
  184. .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
  185. .sadb_alg_ivlen = 0,
  186. .sadb_alg_minbits = 256,
  187. .sadb_alg_maxbits = 256
  188. }
  189. },
  190. {
  191. .name = "hmac(sha384)",
  192. .uinfo = {
  193. .auth = {
  194. .icv_truncbits = 192,
  195. .icv_fullbits = 384,
  196. }
  197. },
  198. .desc = {
  199. .sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
  200. .sadb_alg_ivlen = 0,
  201. .sadb_alg_minbits = 384,
  202. .sadb_alg_maxbits = 384
  203. }
  204. },
  205. {
  206. .name = "hmac(sha512)",
  207. .uinfo = {
  208. .auth = {
  209. .icv_truncbits = 256,
  210. .icv_fullbits = 512,
  211. }
  212. },
  213. .desc = {
  214. .sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
  215. .sadb_alg_ivlen = 0,
  216. .sadb_alg_minbits = 512,
  217. .sadb_alg_maxbits = 512
  218. }
  219. },
  220. {
  221. .name = "hmac(rmd160)",
  222. .compat = "rmd160",
  223. .uinfo = {
  224. .auth = {
  225. .icv_truncbits = 96,
  226. .icv_fullbits = 160,
  227. }
  228. },
  229. .desc = {
  230. .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
  231. .sadb_alg_ivlen = 0,
  232. .sadb_alg_minbits = 160,
  233. .sadb_alg_maxbits = 160
  234. }
  235. },
  236. {
  237. .name = "xcbc(aes)",
  238. .uinfo = {
  239. .auth = {
  240. .icv_truncbits = 96,
  241. .icv_fullbits = 128,
  242. }
  243. },
  244. .desc = {
  245. .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
  246. .sadb_alg_ivlen = 0,
  247. .sadb_alg_minbits = 128,
  248. .sadb_alg_maxbits = 128
  249. }
  250. },
  251. };
  252. static struct xfrm_algo_desc ealg_list[] = {
  253. {
  254. .name = "ecb(cipher_null)",
  255. .compat = "cipher_null",
  256. .uinfo = {
  257. .encr = {
  258. .blockbits = 8,
  259. .defkeybits = 0,
  260. }
  261. },
  262. .desc = {
  263. .sadb_alg_id = SADB_EALG_NULL,
  264. .sadb_alg_ivlen = 0,
  265. .sadb_alg_minbits = 0,
  266. .sadb_alg_maxbits = 0
  267. }
  268. },
  269. {
  270. .name = "cbc(des)",
  271. .compat = "des",
  272. .uinfo = {
  273. .encr = {
  274. .blockbits = 64,
  275. .defkeybits = 64,
  276. }
  277. },
  278. .desc = {
  279. .sadb_alg_id = SADB_EALG_DESCBC,
  280. .sadb_alg_ivlen = 8,
  281. .sadb_alg_minbits = 64,
  282. .sadb_alg_maxbits = 64
  283. }
  284. },
  285. {
  286. .name = "cbc(des3_ede)",
  287. .compat = "des3_ede",
  288. .uinfo = {
  289. .encr = {
  290. .blockbits = 64,
  291. .defkeybits = 192,
  292. }
  293. },
  294. .desc = {
  295. .sadb_alg_id = SADB_EALG_3DESCBC,
  296. .sadb_alg_ivlen = 8,
  297. .sadb_alg_minbits = 192,
  298. .sadb_alg_maxbits = 192
  299. }
  300. },
  301. {
  302. .name = "cbc(cast5)",
  303. .compat = "cast5",
  304. .uinfo = {
  305. .encr = {
  306. .blockbits = 64,
  307. .defkeybits = 128,
  308. }
  309. },
  310. .desc = {
  311. .sadb_alg_id = SADB_X_EALG_CASTCBC,
  312. .sadb_alg_ivlen = 8,
  313. .sadb_alg_minbits = 40,
  314. .sadb_alg_maxbits = 128
  315. }
  316. },
  317. {
  318. .name = "cbc(blowfish)",
  319. .compat = "blowfish",
  320. .uinfo = {
  321. .encr = {
  322. .blockbits = 64,
  323. .defkeybits = 128,
  324. }
  325. },
  326. .desc = {
  327. .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
  328. .sadb_alg_ivlen = 8,
  329. .sadb_alg_minbits = 40,
  330. .sadb_alg_maxbits = 448
  331. }
  332. },
  333. {
  334. .name = "cbc(aes)",
  335. .compat = "aes",
  336. .uinfo = {
  337. .encr = {
  338. .blockbits = 128,
  339. .defkeybits = 128,
  340. }
  341. },
  342. .desc = {
  343. .sadb_alg_id = SADB_X_EALG_AESCBC,
  344. .sadb_alg_ivlen = 8,
  345. .sadb_alg_minbits = 128,
  346. .sadb_alg_maxbits = 256
  347. }
  348. },
  349. {
  350. .name = "cbc(serpent)",
  351. .compat = "serpent",
  352. .uinfo = {
  353. .encr = {
  354. .blockbits = 128,
  355. .defkeybits = 128,
  356. }
  357. },
  358. .desc = {
  359. .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
  360. .sadb_alg_ivlen = 8,
  361. .sadb_alg_minbits = 128,
  362. .sadb_alg_maxbits = 256,
  363. }
  364. },
  365. {
  366. .name = "cbc(camellia)",
  367. .compat = "camellia",
  368. .uinfo = {
  369. .encr = {
  370. .blockbits = 128,
  371. .defkeybits = 128,
  372. }
  373. },
  374. .desc = {
  375. .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
  376. .sadb_alg_ivlen = 8,
  377. .sadb_alg_minbits = 128,
  378. .sadb_alg_maxbits = 256
  379. }
  380. },
  381. {
  382. .name = "cbc(twofish)",
  383. .compat = "twofish",
  384. .uinfo = {
  385. .encr = {
  386. .blockbits = 128,
  387. .defkeybits = 128,
  388. }
  389. },
  390. .desc = {
  391. .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
  392. .sadb_alg_ivlen = 8,
  393. .sadb_alg_minbits = 128,
  394. .sadb_alg_maxbits = 256
  395. }
  396. },
  397. {
  398. .name = "rfc3686(ctr(aes))",
  399. .uinfo = {
  400. .encr = {
  401. .blockbits = 128,
  402. .defkeybits = 160, /* 128-bit key + 32-bit nonce */
  403. }
  404. },
  405. .desc = {
  406. .sadb_alg_id = SADB_X_EALG_AESCTR,
  407. .sadb_alg_ivlen = 8,
  408. .sadb_alg_minbits = 160,
  409. .sadb_alg_maxbits = 288
  410. }
  411. },
  412. };
  413. static struct xfrm_algo_desc calg_list[] = {
  414. {
  415. .name = "deflate",
  416. .uinfo = {
  417. .comp = {
  418. .threshold = 90,
  419. }
  420. },
  421. .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
  422. },
  423. {
  424. .name = "lzs",
  425. .uinfo = {
  426. .comp = {
  427. .threshold = 90,
  428. }
  429. },
  430. .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
  431. },
  432. {
  433. .name = "lzjh",
  434. .uinfo = {
  435. .comp = {
  436. .threshold = 50,
  437. }
  438. },
  439. .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
  440. },
  441. };
  442. static inline int aead_entries(void)
  443. {
  444. return ARRAY_SIZE(aead_list);
  445. }
  446. static inline int aalg_entries(void)
  447. {
  448. return ARRAY_SIZE(aalg_list);
  449. }
  450. static inline int ealg_entries(void)
  451. {
  452. return ARRAY_SIZE(ealg_list);
  453. }
  454. static inline int calg_entries(void)
  455. {
  456. return ARRAY_SIZE(calg_list);
  457. }
  458. struct xfrm_algo_list {
  459. struct xfrm_algo_desc *algs;
  460. int entries;
  461. u32 type;
  462. u32 mask;
  463. };
  464. static const struct xfrm_algo_list xfrm_aead_list = {
  465. .algs = aead_list,
  466. .entries = ARRAY_SIZE(aead_list),
  467. .type = CRYPTO_ALG_TYPE_AEAD,
  468. .mask = CRYPTO_ALG_TYPE_MASK,
  469. };
  470. static const struct xfrm_algo_list xfrm_aalg_list = {
  471. .algs = aalg_list,
  472. .entries = ARRAY_SIZE(aalg_list),
  473. .type = CRYPTO_ALG_TYPE_HASH,
  474. .mask = CRYPTO_ALG_TYPE_HASH_MASK,
  475. };
  476. static const struct xfrm_algo_list xfrm_ealg_list = {
  477. .algs = ealg_list,
  478. .entries = ARRAY_SIZE(ealg_list),
  479. .type = CRYPTO_ALG_TYPE_BLKCIPHER,
  480. .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
  481. };
  482. static const struct xfrm_algo_list xfrm_calg_list = {
  483. .algs = calg_list,
  484. .entries = ARRAY_SIZE(calg_list),
  485. .type = CRYPTO_ALG_TYPE_COMPRESS,
  486. .mask = CRYPTO_ALG_TYPE_MASK,
  487. };
  488. static struct xfrm_algo_desc *xfrm_find_algo(
  489. const struct xfrm_algo_list *algo_list,
  490. int match(const struct xfrm_algo_desc *entry, const void *data),
  491. const void *data, int probe)
  492. {
  493. struct xfrm_algo_desc *list = algo_list->algs;
  494. int i, status;
  495. for (i = 0; i < algo_list->entries; i++) {
  496. if (!match(list + i, data))
  497. continue;
  498. if (list[i].available)
  499. return &list[i];
  500. if (!probe)
  501. break;
  502. status = crypto_has_alg(list[i].name, algo_list->type,
  503. algo_list->mask);
  504. if (!status)
  505. break;
  506. list[i].available = status;
  507. return &list[i];
  508. }
  509. return NULL;
  510. }
  511. static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
  512. const void *data)
  513. {
  514. return entry->desc.sadb_alg_id == (unsigned long)data;
  515. }
  516. struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
  517. {
  518. return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
  519. (void *)(unsigned long)alg_id, 1);
  520. }
  521. EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
  522. struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
  523. {
  524. return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
  525. (void *)(unsigned long)alg_id, 1);
  526. }
  527. EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
  528. struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
  529. {
  530. return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
  531. (void *)(unsigned long)alg_id, 1);
  532. }
  533. EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
  534. static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
  535. const void *data)
  536. {
  537. const char *name = data;
  538. return name && (!strcmp(name, entry->name) ||
  539. (entry->compat && !strcmp(name, entry->compat)));
  540. }
  541. struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe)
  542. {
  543. return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
  544. probe);
  545. }
  546. EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
  547. struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe)
  548. {
  549. return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
  550. probe);
  551. }
  552. EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
  553. struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe)
  554. {
  555. return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
  556. probe);
  557. }
  558. EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
  559. struct xfrm_aead_name {
  560. const char *name;
  561. int icvbits;
  562. };
  563. static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
  564. const void *data)
  565. {
  566. const struct xfrm_aead_name *aead = data;
  567. const char *name = aead->name;
  568. return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
  569. !strcmp(name, entry->name);
  570. }
  571. struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe)
  572. {
  573. struct xfrm_aead_name data = {
  574. .name = name,
  575. .icvbits = icv_len,
  576. };
  577. return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
  578. probe);
  579. }
  580. EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
  581. struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
  582. {
  583. if (idx >= aalg_entries())
  584. return NULL;
  585. return &aalg_list[idx];
  586. }
  587. EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
  588. struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
  589. {
  590. if (idx >= ealg_entries())
  591. return NULL;
  592. return &ealg_list[idx];
  593. }
  594. EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
  595. /*
  596. * Probe for the availability of crypto algorithms, and set the available
  597. * flag for any algorithms found on the system. This is typically called by
  598. * pfkey during userspace SA add, update or register.
  599. */
  600. void xfrm_probe_algs(void)
  601. {
  602. int i, status;
  603. BUG_ON(in_softirq());
  604. for (i = 0; i < aalg_entries(); i++) {
  605. status = crypto_has_hash(aalg_list[i].name, 0,
  606. CRYPTO_ALG_ASYNC);
  607. if (aalg_list[i].available != status)
  608. aalg_list[i].available = status;
  609. }
  610. for (i = 0; i < ealg_entries(); i++) {
  611. status = crypto_has_blkcipher(ealg_list[i].name, 0,
  612. CRYPTO_ALG_ASYNC);
  613. if (ealg_list[i].available != status)
  614. ealg_list[i].available = status;
  615. }
  616. for (i = 0; i < calg_entries(); i++) {
  617. status = crypto_has_comp(calg_list[i].name, 0,
  618. CRYPTO_ALG_ASYNC);
  619. if (calg_list[i].available != status)
  620. calg_list[i].available = status;
  621. }
  622. }
  623. EXPORT_SYMBOL_GPL(xfrm_probe_algs);
  624. int xfrm_count_auth_supported(void)
  625. {
  626. int i, n;
  627. for (i = 0, n = 0; i < aalg_entries(); i++)
  628. if (aalg_list[i].available)
  629. n++;
  630. return n;
  631. }
  632. EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
  633. int xfrm_count_enc_supported(void)
  634. {
  635. int i, n;
  636. for (i = 0, n = 0; i < ealg_entries(); i++)
  637. if (ealg_list[i].available)
  638. n++;
  639. return n;
  640. }
  641. EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
  642. #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
  643. void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
  644. {
  645. if (tail != skb) {
  646. skb->data_len += len;
  647. skb->len += len;
  648. }
  649. return skb_put(tail, len);
  650. }
  651. EXPORT_SYMBOL_GPL(pskb_put);
  652. #endif
  653. MODULE_LICENSE("GPL");