auth.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962
  1. /* SCTP kernel implementation
  2. * (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
  3. *
  4. * This file is part of the SCTP kernel implementation
  5. *
  6. * This SCTP implementation is free software;
  7. * you can redistribute it and/or modify it under the terms of
  8. * the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2, or (at your option)
  10. * any later version.
  11. *
  12. * This SCTP implementation is distributed in the hope that it
  13. * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  14. * ************************
  15. * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  16. * See the GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with GNU CC; see the file COPYING. If not, write to
  20. * the Free Software Foundation, 59 Temple Place - Suite 330,
  21. * Boston, MA 02111-1307, USA.
  22. *
  23. * Please send any bug reports or fixes you make to the
  24. * email address(es):
  25. * lksctp developers <lksctp-developers@lists.sourceforge.net>
  26. *
  27. * Or submit a bug report through the following website:
  28. * http://www.sf.net/projects/lksctp
  29. *
  30. * Written or modified by:
  31. * Vlad Yasevich <vladislav.yasevich@hp.com>
  32. *
  33. * Any bugs reported given to us we will try to fix... any fixes shared will
  34. * be incorporated into the next SCTP release.
  35. */
  36. #include <linux/slab.h>
  37. #include <linux/types.h>
  38. #include <linux/crypto.h>
  39. #include <linux/scatterlist.h>
  40. #include <net/sctp/sctp.h>
  41. #include <net/sctp/auth.h>
  42. static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
  43. {
  44. /* id 0 is reserved. as all 0 */
  45. .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
  46. },
  47. {
  48. .hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
  49. .hmac_name="hmac(sha1)",
  50. .hmac_len = SCTP_SHA1_SIG_SIZE,
  51. },
  52. {
  53. /* id 2 is reserved as well */
  54. .hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
  55. },
  56. #if defined (CONFIG_CRYPTO_SHA256) || defined (CONFIG_CRYPTO_SHA256_MODULE)
  57. {
  58. .hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
  59. .hmac_name="hmac(sha256)",
  60. .hmac_len = SCTP_SHA256_SIG_SIZE,
  61. }
  62. #endif
  63. };
  64. void sctp_auth_key_put(struct sctp_auth_bytes *key)
  65. {
  66. if (!key)
  67. return;
  68. if (atomic_dec_and_test(&key->refcnt)) {
  69. kfree(key);
  70. SCTP_DBG_OBJCNT_DEC(keys);
  71. }
  72. }
  73. /* Create a new key structure of a given length */
  74. static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
  75. {
  76. struct sctp_auth_bytes *key;
  77. /* Verify that we are not going to overflow INT_MAX */
  78. if (key_len > (INT_MAX - sizeof(struct sctp_auth_bytes)))
  79. return NULL;
  80. /* Allocate the shared key */
  81. key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
  82. if (!key)
  83. return NULL;
  84. key->len = key_len;
  85. atomic_set(&key->refcnt, 1);
  86. SCTP_DBG_OBJCNT_INC(keys);
  87. return key;
  88. }
  89. /* Create a new shared key container with a give key id */
  90. struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
  91. {
  92. struct sctp_shared_key *new;
  93. /* Allocate the shared key container */
  94. new = kzalloc(sizeof(struct sctp_shared_key), gfp);
  95. if (!new)
  96. return NULL;
  97. INIT_LIST_HEAD(&new->key_list);
  98. new->key_id = key_id;
  99. return new;
  100. }
  101. /* Free the shared key structure */
  102. static void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
  103. {
  104. BUG_ON(!list_empty(&sh_key->key_list));
  105. sctp_auth_key_put(sh_key->key);
  106. sh_key->key = NULL;
  107. kfree(sh_key);
  108. }
  109. /* Destroy the entire key list. This is done during the
  110. * associon and endpoint free process.
  111. */
  112. void sctp_auth_destroy_keys(struct list_head *keys)
  113. {
  114. struct sctp_shared_key *ep_key;
  115. struct sctp_shared_key *tmp;
  116. if (list_empty(keys))
  117. return;
  118. key_for_each_safe(ep_key, tmp, keys) {
  119. list_del_init(&ep_key->key_list);
  120. sctp_auth_shkey_free(ep_key);
  121. }
  122. }
  123. /* Compare two byte vectors as numbers. Return values
  124. * are:
  125. * 0 - vectors are equal
  126. * < 0 - vector 1 is smaller than vector2
  127. * > 0 - vector 1 is greater than vector2
  128. *
  129. * Algorithm is:
  130. * This is performed by selecting the numerically smaller key vector...
  131. * If the key vectors are equal as numbers but differ in length ...
  132. * the shorter vector is considered smaller
  133. *
  134. * Examples (with small values):
  135. * 000123456789 > 123456789 (first number is longer)
  136. * 000123456789 < 234567891 (second number is larger numerically)
  137. * 123456789 > 2345678 (first number is both larger & longer)
  138. */
  139. static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
  140. struct sctp_auth_bytes *vector2)
  141. {
  142. int diff;
  143. int i;
  144. const __u8 *longer;
  145. diff = vector1->len - vector2->len;
  146. if (diff) {
  147. longer = (diff > 0) ? vector1->data : vector2->data;
  148. /* Check to see if the longer number is
  149. * lead-zero padded. If it is not, it
  150. * is automatically larger numerically.
  151. */
  152. for (i = 0; i < abs(diff); i++ ) {
  153. if (longer[i] != 0)
  154. return diff;
  155. }
  156. }
  157. /* lengths are the same, compare numbers */
  158. return memcmp(vector1->data, vector2->data, vector1->len);
  159. }
  160. /*
  161. * Create a key vector as described in SCTP-AUTH, Section 6.1
  162. * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
  163. * parameter sent by each endpoint are concatenated as byte vectors.
  164. * These parameters include the parameter type, parameter length, and
  165. * the parameter value, but padding is omitted; all padding MUST be
  166. * removed from this concatenation before proceeding with further
  167. * computation of keys. Parameters which were not sent are simply
  168. * omitted from the concatenation process. The resulting two vectors
  169. * are called the two key vectors.
  170. */
  171. static struct sctp_auth_bytes *sctp_auth_make_key_vector(
  172. sctp_random_param_t *random,
  173. sctp_chunks_param_t *chunks,
  174. sctp_hmac_algo_param_t *hmacs,
  175. gfp_t gfp)
  176. {
  177. struct sctp_auth_bytes *new;
  178. __u32 len;
  179. __u32 offset = 0;
  180. len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
  181. if (chunks)
  182. len += ntohs(chunks->param_hdr.length);
  183. new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
  184. if (!new)
  185. return NULL;
  186. new->len = len;
  187. memcpy(new->data, random, ntohs(random->param_hdr.length));
  188. offset += ntohs(random->param_hdr.length);
  189. if (chunks) {
  190. memcpy(new->data + offset, chunks,
  191. ntohs(chunks->param_hdr.length));
  192. offset += ntohs(chunks->param_hdr.length);
  193. }
  194. memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
  195. return new;
  196. }
  197. /* Make a key vector based on our local parameters */
  198. static struct sctp_auth_bytes *sctp_auth_make_local_vector(
  199. const struct sctp_association *asoc,
  200. gfp_t gfp)
  201. {
  202. return sctp_auth_make_key_vector(
  203. (sctp_random_param_t*)asoc->c.auth_random,
  204. (sctp_chunks_param_t*)asoc->c.auth_chunks,
  205. (sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
  206. gfp);
  207. }
  208. /* Make a key vector based on peer's parameters */
  209. static struct sctp_auth_bytes *sctp_auth_make_peer_vector(
  210. const struct sctp_association *asoc,
  211. gfp_t gfp)
  212. {
  213. return sctp_auth_make_key_vector(asoc->peer.peer_random,
  214. asoc->peer.peer_chunks,
  215. asoc->peer.peer_hmacs,
  216. gfp);
  217. }
  218. /* Set the value of the association shared key base on the parameters
  219. * given. The algorithm is:
  220. * From the endpoint pair shared keys and the key vectors the
  221. * association shared keys are computed. This is performed by selecting
  222. * the numerically smaller key vector and concatenating it to the
  223. * endpoint pair shared key, and then concatenating the numerically
  224. * larger key vector to that. The result of the concatenation is the
  225. * association shared key.
  226. */
  227. static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
  228. struct sctp_shared_key *ep_key,
  229. struct sctp_auth_bytes *first_vector,
  230. struct sctp_auth_bytes *last_vector,
  231. gfp_t gfp)
  232. {
  233. struct sctp_auth_bytes *secret;
  234. __u32 offset = 0;
  235. __u32 auth_len;
  236. auth_len = first_vector->len + last_vector->len;
  237. if (ep_key->key)
  238. auth_len += ep_key->key->len;
  239. secret = sctp_auth_create_key(auth_len, gfp);
  240. if (!secret)
  241. return NULL;
  242. if (ep_key->key) {
  243. memcpy(secret->data, ep_key->key->data, ep_key->key->len);
  244. offset += ep_key->key->len;
  245. }
  246. memcpy(secret->data + offset, first_vector->data, first_vector->len);
  247. offset += first_vector->len;
  248. memcpy(secret->data + offset, last_vector->data, last_vector->len);
  249. return secret;
  250. }
  251. /* Create an association shared key. Follow the algorithm
  252. * described in SCTP-AUTH, Section 6.1
  253. */
  254. static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
  255. const struct sctp_association *asoc,
  256. struct sctp_shared_key *ep_key,
  257. gfp_t gfp)
  258. {
  259. struct sctp_auth_bytes *local_key_vector;
  260. struct sctp_auth_bytes *peer_key_vector;
  261. struct sctp_auth_bytes *first_vector,
  262. *last_vector;
  263. struct sctp_auth_bytes *secret = NULL;
  264. int cmp;
  265. /* Now we need to build the key vectors
  266. * SCTP-AUTH , Section 6.1
  267. * The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
  268. * parameter sent by each endpoint are concatenated as byte vectors.
  269. * These parameters include the parameter type, parameter length, and
  270. * the parameter value, but padding is omitted; all padding MUST be
  271. * removed from this concatenation before proceeding with further
  272. * computation of keys. Parameters which were not sent are simply
  273. * omitted from the concatenation process. The resulting two vectors
  274. * are called the two key vectors.
  275. */
  276. local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
  277. peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
  278. if (!peer_key_vector || !local_key_vector)
  279. goto out;
  280. /* Figure out the order in which the key_vectors will be
  281. * added to the endpoint shared key.
  282. * SCTP-AUTH, Section 6.1:
  283. * This is performed by selecting the numerically smaller key
  284. * vector and concatenating it to the endpoint pair shared
  285. * key, and then concatenating the numerically larger key
  286. * vector to that. If the key vectors are equal as numbers
  287. * but differ in length, then the concatenation order is the
  288. * endpoint shared key, followed by the shorter key vector,
  289. * followed by the longer key vector. Otherwise, the key
  290. * vectors are identical, and may be concatenated to the
  291. * endpoint pair key in any order.
  292. */
  293. cmp = sctp_auth_compare_vectors(local_key_vector,
  294. peer_key_vector);
  295. if (cmp < 0) {
  296. first_vector = local_key_vector;
  297. last_vector = peer_key_vector;
  298. } else {
  299. first_vector = peer_key_vector;
  300. last_vector = local_key_vector;
  301. }
  302. secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
  303. gfp);
  304. out:
  305. kfree(local_key_vector);
  306. kfree(peer_key_vector);
  307. return secret;
  308. }
  309. /*
  310. * Populate the association overlay list with the list
  311. * from the endpoint.
  312. */
  313. int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
  314. struct sctp_association *asoc,
  315. gfp_t gfp)
  316. {
  317. struct sctp_shared_key *sh_key;
  318. struct sctp_shared_key *new;
  319. BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
  320. key_for_each(sh_key, &ep->endpoint_shared_keys) {
  321. new = sctp_auth_shkey_create(sh_key->key_id, gfp);
  322. if (!new)
  323. goto nomem;
  324. new->key = sh_key->key;
  325. sctp_auth_key_hold(new->key);
  326. list_add(&new->key_list, &asoc->endpoint_shared_keys);
  327. }
  328. return 0;
  329. nomem:
  330. sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
  331. return -ENOMEM;
  332. }
  333. /* Public interface to creat the association shared key.
  334. * See code above for the algorithm.
  335. */
  336. int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
  337. {
  338. struct net *net = sock_net(asoc->base.sk);
  339. struct sctp_auth_bytes *secret;
  340. struct sctp_shared_key *ep_key;
  341. /* If we don't support AUTH, or peer is not capable
  342. * we don't need to do anything.
  343. */
  344. if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
  345. return 0;
  346. /* If the key_id is non-zero and we couldn't find an
  347. * endpoint pair shared key, we can't compute the
  348. * secret.
  349. * For key_id 0, endpoint pair shared key is a NULL key.
  350. */
  351. ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
  352. BUG_ON(!ep_key);
  353. secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
  354. if (!secret)
  355. return -ENOMEM;
  356. sctp_auth_key_put(asoc->asoc_shared_key);
  357. asoc->asoc_shared_key = secret;
  358. return 0;
  359. }
  360. /* Find the endpoint pair shared key based on the key_id */
  361. struct sctp_shared_key *sctp_auth_get_shkey(
  362. const struct sctp_association *asoc,
  363. __u16 key_id)
  364. {
  365. struct sctp_shared_key *key;
  366. /* First search associations set of endpoint pair shared keys */
  367. key_for_each(key, &asoc->endpoint_shared_keys) {
  368. if (key->key_id == key_id)
  369. return key;
  370. }
  371. return NULL;
  372. }
  373. /*
  374. * Initialize all the possible digest transforms that we can use. Right now
  375. * now, the supported digests are SHA1 and SHA256. We do this here once
  376. * because of the restrictiong that transforms may only be allocated in
  377. * user context. This forces us to pre-allocated all possible transforms
  378. * at the endpoint init time.
  379. */
  380. int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
  381. {
  382. struct net *net = sock_net(ep->base.sk);
  383. struct crypto_hash *tfm = NULL;
  384. __u16 id;
  385. /* if the transforms are already allocted, we are done */
  386. if (!net->sctp.auth_enable) {
  387. ep->auth_hmacs = NULL;
  388. return 0;
  389. }
  390. if (ep->auth_hmacs)
  391. return 0;
  392. /* Allocated the array of pointers to transorms */
  393. ep->auth_hmacs = kzalloc(
  394. sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
  395. gfp);
  396. if (!ep->auth_hmacs)
  397. return -ENOMEM;
  398. for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
  399. /* See is we support the id. Supported IDs have name and
  400. * length fields set, so that we can allocated and use
  401. * them. We can safely just check for name, for without the
  402. * name, we can't allocate the TFM.
  403. */
  404. if (!sctp_hmac_list[id].hmac_name)
  405. continue;
  406. /* If this TFM has been allocated, we are all set */
  407. if (ep->auth_hmacs[id])
  408. continue;
  409. /* Allocate the ID */
  410. tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
  411. CRYPTO_ALG_ASYNC);
  412. if (IS_ERR(tfm))
  413. goto out_err;
  414. ep->auth_hmacs[id] = tfm;
  415. }
  416. return 0;
  417. out_err:
  418. /* Clean up any successful allocations */
  419. sctp_auth_destroy_hmacs(ep->auth_hmacs);
  420. return -ENOMEM;
  421. }
  422. /* Destroy the hmac tfm array */
  423. void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
  424. {
  425. int i;
  426. if (!auth_hmacs)
  427. return;
  428. for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
  429. {
  430. if (auth_hmacs[i])
  431. crypto_free_hash(auth_hmacs[i]);
  432. }
  433. kfree(auth_hmacs);
  434. }
  435. struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
  436. {
  437. return &sctp_hmac_list[hmac_id];
  438. }
  439. /* Get an hmac description information that we can use to build
  440. * the AUTH chunk
  441. */
  442. struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
  443. {
  444. struct sctp_hmac_algo_param *hmacs;
  445. __u16 n_elt;
  446. __u16 id = 0;
  447. int i;
  448. /* If we have a default entry, use it */
  449. if (asoc->default_hmac_id)
  450. return &sctp_hmac_list[asoc->default_hmac_id];
  451. /* Since we do not have a default entry, find the first entry
  452. * we support and return that. Do not cache that id.
  453. */
  454. hmacs = asoc->peer.peer_hmacs;
  455. if (!hmacs)
  456. return NULL;
  457. n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
  458. for (i = 0; i < n_elt; i++) {
  459. id = ntohs(hmacs->hmac_ids[i]);
  460. /* Check the id is in the supported range */
  461. if (id > SCTP_AUTH_HMAC_ID_MAX) {
  462. id = 0;
  463. continue;
  464. }
  465. /* See is we support the id. Supported IDs have name and
  466. * length fields set, so that we can allocated and use
  467. * them. We can safely just check for name, for without the
  468. * name, we can't allocate the TFM.
  469. */
  470. if (!sctp_hmac_list[id].hmac_name) {
  471. id = 0;
  472. continue;
  473. }
  474. break;
  475. }
  476. if (id == 0)
  477. return NULL;
  478. return &sctp_hmac_list[id];
  479. }
  480. static int __sctp_auth_find_hmacid(__be16 *hmacs, int n_elts, __be16 hmac_id)
  481. {
  482. int found = 0;
  483. int i;
  484. for (i = 0; i < n_elts; i++) {
  485. if (hmac_id == hmacs[i]) {
  486. found = 1;
  487. break;
  488. }
  489. }
  490. return found;
  491. }
  492. /* See if the HMAC_ID is one that we claim as supported */
  493. int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
  494. __be16 hmac_id)
  495. {
  496. struct sctp_hmac_algo_param *hmacs;
  497. __u16 n_elt;
  498. if (!asoc)
  499. return 0;
  500. hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
  501. n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
  502. return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
  503. }
  504. /* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
  505. * Section 6.1:
  506. * The receiver of a HMAC-ALGO parameter SHOULD use the first listed
  507. * algorithm it supports.
  508. */
  509. void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
  510. struct sctp_hmac_algo_param *hmacs)
  511. {
  512. struct sctp_endpoint *ep;
  513. __u16 id;
  514. int i;
  515. int n_params;
  516. /* if the default id is already set, use it */
  517. if (asoc->default_hmac_id)
  518. return;
  519. n_params = (ntohs(hmacs->param_hdr.length)
  520. - sizeof(sctp_paramhdr_t)) >> 1;
  521. ep = asoc->ep;
  522. for (i = 0; i < n_params; i++) {
  523. id = ntohs(hmacs->hmac_ids[i]);
  524. /* Check the id is in the supported range */
  525. if (id > SCTP_AUTH_HMAC_ID_MAX)
  526. continue;
  527. /* If this TFM has been allocated, use this id */
  528. if (ep->auth_hmacs[id]) {
  529. asoc->default_hmac_id = id;
  530. break;
  531. }
  532. }
  533. }
  534. /* Check to see if the given chunk is supposed to be authenticated */
  535. static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
  536. {
  537. unsigned short len;
  538. int found = 0;
  539. int i;
  540. if (!param || param->param_hdr.length == 0)
  541. return 0;
  542. len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
  543. /* SCTP-AUTH, Section 3.2
  544. * The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
  545. * chunks MUST NOT be listed in the CHUNKS parameter. However, if
  546. * a CHUNKS parameter is received then the types for INIT, INIT-ACK,
  547. * SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
  548. */
  549. for (i = 0; !found && i < len; i++) {
  550. switch (param->chunks[i]) {
  551. case SCTP_CID_INIT:
  552. case SCTP_CID_INIT_ACK:
  553. case SCTP_CID_SHUTDOWN_COMPLETE:
  554. case SCTP_CID_AUTH:
  555. break;
  556. default:
  557. if (param->chunks[i] == chunk)
  558. found = 1;
  559. break;
  560. }
  561. }
  562. return found;
  563. }
  564. /* Check if peer requested that this chunk is authenticated */
  565. int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
  566. {
  567. struct net *net;
  568. if (!asoc)
  569. return 0;
  570. net = sock_net(asoc->base.sk);
  571. if (!net->sctp.auth_enable || !asoc->peer.auth_capable)
  572. return 0;
  573. return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
  574. }
  575. /* Check if we requested that peer authenticate this chunk. */
  576. int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
  577. {
  578. struct net *net;
  579. if (!asoc)
  580. return 0;
  581. net = sock_net(asoc->base.sk);
  582. if (!net->sctp.auth_enable);
  583. return 0;
  584. return __sctp_auth_cid(chunk,
  585. (struct sctp_chunks_param *)asoc->c.auth_chunks);
  586. }
  587. /* SCTP-AUTH: Section 6.2:
  588. * The sender MUST calculate the MAC as described in RFC2104 [2] using
  589. * the hash function H as described by the MAC Identifier and the shared
  590. * association key K based on the endpoint pair shared key described by
  591. * the shared key identifier. The 'data' used for the computation of
  592. * the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
  593. * zero (as shown in Figure 6) followed by all chunks that are placed
  594. * after the AUTH chunk in the SCTP packet.
  595. */
  596. void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
  597. struct sk_buff *skb,
  598. struct sctp_auth_chunk *auth,
  599. gfp_t gfp)
  600. {
  601. struct scatterlist sg;
  602. struct hash_desc desc;
  603. struct sctp_auth_bytes *asoc_key;
  604. __u16 key_id, hmac_id;
  605. __u8 *digest;
  606. unsigned char *end;
  607. int free_key = 0;
  608. /* Extract the info we need:
  609. * - hmac id
  610. * - key id
  611. */
  612. key_id = ntohs(auth->auth_hdr.shkey_id);
  613. hmac_id = ntohs(auth->auth_hdr.hmac_id);
  614. if (key_id == asoc->active_key_id)
  615. asoc_key = asoc->asoc_shared_key;
  616. else {
  617. struct sctp_shared_key *ep_key;
  618. ep_key = sctp_auth_get_shkey(asoc, key_id);
  619. if (!ep_key)
  620. return;
  621. asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
  622. if (!asoc_key)
  623. return;
  624. free_key = 1;
  625. }
  626. /* set up scatter list */
  627. end = skb_tail_pointer(skb);
  628. sg_init_one(&sg, auth, end - (unsigned char *)auth);
  629. desc.tfm = asoc->ep->auth_hmacs[hmac_id];
  630. desc.flags = 0;
  631. digest = auth->auth_hdr.hmac;
  632. if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
  633. goto free;
  634. crypto_hash_digest(&desc, &sg, sg.length, digest);
  635. free:
  636. if (free_key)
  637. sctp_auth_key_put(asoc_key);
  638. }
  639. /* API Helpers */
  640. /* Add a chunk to the endpoint authenticated chunk list */
  641. int sctp_auth_ep_add_chunkid(struct sctp_endpoint *ep, __u8 chunk_id)
  642. {
  643. struct sctp_chunks_param *p = ep->auth_chunk_list;
  644. __u16 nchunks;
  645. __u16 param_len;
  646. /* If this chunk is already specified, we are done */
  647. if (__sctp_auth_cid(chunk_id, p))
  648. return 0;
  649. /* Check if we can add this chunk to the array */
  650. param_len = ntohs(p->param_hdr.length);
  651. nchunks = param_len - sizeof(sctp_paramhdr_t);
  652. if (nchunks == SCTP_NUM_CHUNK_TYPES)
  653. return -EINVAL;
  654. p->chunks[nchunks] = chunk_id;
  655. p->param_hdr.length = htons(param_len + 1);
  656. return 0;
  657. }
  658. /* Add hmac identifires to the endpoint list of supported hmac ids */
  659. int sctp_auth_ep_set_hmacs(struct sctp_endpoint *ep,
  660. struct sctp_hmacalgo *hmacs)
  661. {
  662. int has_sha1 = 0;
  663. __u16 id;
  664. int i;
  665. /* Scan the list looking for unsupported id. Also make sure that
  666. * SHA1 is specified.
  667. */
  668. for (i = 0; i < hmacs->shmac_num_idents; i++) {
  669. id = hmacs->shmac_idents[i];
  670. if (id > SCTP_AUTH_HMAC_ID_MAX)
  671. return -EOPNOTSUPP;
  672. if (SCTP_AUTH_HMAC_ID_SHA1 == id)
  673. has_sha1 = 1;
  674. if (!sctp_hmac_list[id].hmac_name)
  675. return -EOPNOTSUPP;
  676. }
  677. if (!has_sha1)
  678. return -EINVAL;
  679. memcpy(ep->auth_hmacs_list->hmac_ids, &hmacs->shmac_idents[0],
  680. hmacs->shmac_num_idents * sizeof(__u16));
  681. ep->auth_hmacs_list->param_hdr.length = htons(sizeof(sctp_paramhdr_t) +
  682. hmacs->shmac_num_idents * sizeof(__u16));
  683. return 0;
  684. }
  685. /* Set a new shared key on either endpoint or association. If the
  686. * the key with a same ID already exists, replace the key (remove the
  687. * old key and add a new one).
  688. */
  689. int sctp_auth_set_key(struct sctp_endpoint *ep,
  690. struct sctp_association *asoc,
  691. struct sctp_authkey *auth_key)
  692. {
  693. struct sctp_shared_key *cur_key = NULL;
  694. struct sctp_auth_bytes *key;
  695. struct list_head *sh_keys;
  696. int replace = 0;
  697. /* Try to find the given key id to see if
  698. * we are doing a replace, or adding a new key
  699. */
  700. if (asoc)
  701. sh_keys = &asoc->endpoint_shared_keys;
  702. else
  703. sh_keys = &ep->endpoint_shared_keys;
  704. key_for_each(cur_key, sh_keys) {
  705. if (cur_key->key_id == auth_key->sca_keynumber) {
  706. replace = 1;
  707. break;
  708. }
  709. }
  710. /* If we are not replacing a key id, we need to allocate
  711. * a shared key.
  712. */
  713. if (!replace) {
  714. cur_key = sctp_auth_shkey_create(auth_key->sca_keynumber,
  715. GFP_KERNEL);
  716. if (!cur_key)
  717. return -ENOMEM;
  718. }
  719. /* Create a new key data based on the info passed in */
  720. key = sctp_auth_create_key(auth_key->sca_keylength, GFP_KERNEL);
  721. if (!key)
  722. goto nomem;
  723. memcpy(key->data, &auth_key->sca_key[0], auth_key->sca_keylength);
  724. /* If we are replacing, remove the old keys data from the
  725. * key id. If we are adding new key id, add it to the
  726. * list.
  727. */
  728. if (replace)
  729. sctp_auth_key_put(cur_key->key);
  730. else
  731. list_add(&cur_key->key_list, sh_keys);
  732. cur_key->key = key;
  733. sctp_auth_key_hold(key);
  734. return 0;
  735. nomem:
  736. if (!replace)
  737. sctp_auth_shkey_free(cur_key);
  738. return -ENOMEM;
  739. }
  740. int sctp_auth_set_active_key(struct sctp_endpoint *ep,
  741. struct sctp_association *asoc,
  742. __u16 key_id)
  743. {
  744. struct sctp_shared_key *key;
  745. struct list_head *sh_keys;
  746. int found = 0;
  747. /* The key identifier MUST correst to an existing key */
  748. if (asoc)
  749. sh_keys = &asoc->endpoint_shared_keys;
  750. else
  751. sh_keys = &ep->endpoint_shared_keys;
  752. key_for_each(key, sh_keys) {
  753. if (key->key_id == key_id) {
  754. found = 1;
  755. break;
  756. }
  757. }
  758. if (!found)
  759. return -EINVAL;
  760. if (asoc) {
  761. asoc->active_key_id = key_id;
  762. sctp_auth_asoc_init_active_key(asoc, GFP_KERNEL);
  763. } else
  764. ep->active_key_id = key_id;
  765. return 0;
  766. }
  767. int sctp_auth_del_key_id(struct sctp_endpoint *ep,
  768. struct sctp_association *asoc,
  769. __u16 key_id)
  770. {
  771. struct sctp_shared_key *key;
  772. struct list_head *sh_keys;
  773. int found = 0;
  774. /* The key identifier MUST NOT be the current active key
  775. * The key identifier MUST correst to an existing key
  776. */
  777. if (asoc) {
  778. if (asoc->active_key_id == key_id)
  779. return -EINVAL;
  780. sh_keys = &asoc->endpoint_shared_keys;
  781. } else {
  782. if (ep->active_key_id == key_id)
  783. return -EINVAL;
  784. sh_keys = &ep->endpoint_shared_keys;
  785. }
  786. key_for_each(key, sh_keys) {
  787. if (key->key_id == key_id) {
  788. found = 1;
  789. break;
  790. }
  791. }
  792. if (!found)
  793. return -EINVAL;
  794. /* Delete the shared key */
  795. list_del_init(&key->key_list);
  796. sctp_auth_shkey_free(key);
  797. return 0;
  798. }