tcp_input.c 174 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_ecn __read_mostly = 2;
  81. EXPORT_SYMBOL(sysctl_tcp_ecn);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. /* rfc5961 challenge ack rate limiting */
  87. int sysctl_tcp_challenge_ack_limit = 100;
  88. int sysctl_tcp_stdurg __read_mostly;
  89. int sysctl_tcp_rfc1337 __read_mostly;
  90. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  91. int sysctl_tcp_frto __read_mostly = 2;
  92. int sysctl_tcp_frto_response __read_mostly;
  93. int sysctl_tcp_thin_dupack __read_mostly;
  94. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  95. int sysctl_tcp_abc __read_mostly;
  96. int sysctl_tcp_early_retrans __read_mostly = 2;
  97. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  98. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  99. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  100. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  101. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  102. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  103. #define FLAG_ECE 0x40 /* ECE in this ACK */
  104. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  105. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  106. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  107. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  108. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  109. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  110. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  111. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  112. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  113. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  114. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  115. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  116. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  117. /* Adapt the MSS value used to make delayed ack decision to the
  118. * real world.
  119. */
  120. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  121. {
  122. struct inet_connection_sock *icsk = inet_csk(sk);
  123. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  124. unsigned int len;
  125. icsk->icsk_ack.last_seg_size = 0;
  126. /* skb->len may jitter because of SACKs, even if peer
  127. * sends good full-sized frames.
  128. */
  129. len = skb_shinfo(skb)->gso_size ? : skb->len;
  130. if (len >= icsk->icsk_ack.rcv_mss) {
  131. icsk->icsk_ack.rcv_mss = len;
  132. } else {
  133. /* Otherwise, we make more careful check taking into account,
  134. * that SACKs block is variable.
  135. *
  136. * "len" is invariant segment length, including TCP header.
  137. */
  138. len += skb->data - skb_transport_header(skb);
  139. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  140. /* If PSH is not set, packet should be
  141. * full sized, provided peer TCP is not badly broken.
  142. * This observation (if it is correct 8)) allows
  143. * to handle super-low mtu links fairly.
  144. */
  145. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  146. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  147. /* Subtract also invariant (if peer is RFC compliant),
  148. * tcp header plus fixed timestamp option length.
  149. * Resulting "len" is MSS free of SACK jitter.
  150. */
  151. len -= tcp_sk(sk)->tcp_header_len;
  152. icsk->icsk_ack.last_seg_size = len;
  153. if (len == lss) {
  154. icsk->icsk_ack.rcv_mss = len;
  155. return;
  156. }
  157. }
  158. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  159. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  160. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  161. }
  162. }
  163. static void tcp_incr_quickack(struct sock *sk)
  164. {
  165. struct inet_connection_sock *icsk = inet_csk(sk);
  166. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  167. if (quickacks == 0)
  168. quickacks = 2;
  169. if (quickacks > icsk->icsk_ack.quick)
  170. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  171. }
  172. static void tcp_enter_quickack_mode(struct sock *sk)
  173. {
  174. struct inet_connection_sock *icsk = inet_csk(sk);
  175. tcp_incr_quickack(sk);
  176. icsk->icsk_ack.pingpong = 0;
  177. icsk->icsk_ack.ato = TCP_ATO_MIN;
  178. }
  179. /* Send ACKs quickly, if "quick" count is not exhausted
  180. * and the session is not interactive.
  181. */
  182. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  183. {
  184. const struct inet_connection_sock *icsk = inet_csk(sk);
  185. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  186. }
  187. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  188. {
  189. if (tp->ecn_flags & TCP_ECN_OK)
  190. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  191. }
  192. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  193. {
  194. if (tcp_hdr(skb)->cwr)
  195. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  196. }
  197. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  198. {
  199. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  200. }
  201. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  202. {
  203. if (!(tp->ecn_flags & TCP_ECN_OK))
  204. return;
  205. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  206. case INET_ECN_NOT_ECT:
  207. /* Funny extension: if ECT is not set on a segment,
  208. * and we already seen ECT on a previous segment,
  209. * it is probably a retransmit.
  210. */
  211. if (tp->ecn_flags & TCP_ECN_SEEN)
  212. tcp_enter_quickack_mode((struct sock *)tp);
  213. break;
  214. case INET_ECN_CE:
  215. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  216. /* Better not delay acks, sender can have a very low cwnd */
  217. tcp_enter_quickack_mode((struct sock *)tp);
  218. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  219. }
  220. /* fallinto */
  221. default:
  222. tp->ecn_flags |= TCP_ECN_SEEN;
  223. }
  224. }
  225. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  226. {
  227. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  228. tp->ecn_flags &= ~TCP_ECN_OK;
  229. }
  230. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  231. {
  232. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  233. tp->ecn_flags &= ~TCP_ECN_OK;
  234. }
  235. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  236. {
  237. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  238. return true;
  239. return false;
  240. }
  241. /* Buffer size and advertised window tuning.
  242. *
  243. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  244. */
  245. static void tcp_fixup_sndbuf(struct sock *sk)
  246. {
  247. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  248. sndmem *= TCP_INIT_CWND;
  249. if (sk->sk_sndbuf < sndmem)
  250. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  251. }
  252. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  253. *
  254. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  255. * forward and advertised in receiver window (tp->rcv_wnd) and
  256. * "application buffer", required to isolate scheduling/application
  257. * latencies from network.
  258. * window_clamp is maximal advertised window. It can be less than
  259. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  260. * is reserved for "application" buffer. The less window_clamp is
  261. * the smoother our behaviour from viewpoint of network, but the lower
  262. * throughput and the higher sensitivity of the connection to losses. 8)
  263. *
  264. * rcv_ssthresh is more strict window_clamp used at "slow start"
  265. * phase to predict further behaviour of this connection.
  266. * It is used for two goals:
  267. * - to enforce header prediction at sender, even when application
  268. * requires some significant "application buffer". It is check #1.
  269. * - to prevent pruning of receive queue because of misprediction
  270. * of receiver window. Check #2.
  271. *
  272. * The scheme does not work when sender sends good segments opening
  273. * window and then starts to feed us spaghetti. But it should work
  274. * in common situations. Otherwise, we have to rely on queue collapsing.
  275. */
  276. /* Slow part of check#2. */
  277. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  278. {
  279. struct tcp_sock *tp = tcp_sk(sk);
  280. /* Optimize this! */
  281. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  282. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  283. while (tp->rcv_ssthresh <= window) {
  284. if (truesize <= skb->len)
  285. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  286. truesize >>= 1;
  287. window >>= 1;
  288. }
  289. return 0;
  290. }
  291. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  292. {
  293. struct tcp_sock *tp = tcp_sk(sk);
  294. /* Check #1 */
  295. if (tp->rcv_ssthresh < tp->window_clamp &&
  296. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  297. !sk_under_memory_pressure(sk)) {
  298. int incr;
  299. /* Check #2. Increase window, if skb with such overhead
  300. * will fit to rcvbuf in future.
  301. */
  302. if (tcp_win_from_space(skb->truesize) <= skb->len)
  303. incr = 2 * tp->advmss;
  304. else
  305. incr = __tcp_grow_window(sk, skb);
  306. if (incr) {
  307. incr = max_t(int, incr, 2 * skb->len);
  308. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  309. tp->window_clamp);
  310. inet_csk(sk)->icsk_ack.quick |= 1;
  311. }
  312. }
  313. }
  314. /* 3. Tuning rcvbuf, when connection enters established state. */
  315. static void tcp_fixup_rcvbuf(struct sock *sk)
  316. {
  317. u32 mss = tcp_sk(sk)->advmss;
  318. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  319. int rcvmem;
  320. /* Limit to 10 segments if mss <= 1460,
  321. * or 14600/mss segments, with a minimum of two segments.
  322. */
  323. if (mss > 1460)
  324. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  325. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  326. while (tcp_win_from_space(rcvmem) < mss)
  327. rcvmem += 128;
  328. rcvmem *= icwnd;
  329. if (sk->sk_rcvbuf < rcvmem)
  330. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  331. }
  332. /* 4. Try to fixup all. It is made immediately after connection enters
  333. * established state.
  334. */
  335. static void tcp_init_buffer_space(struct sock *sk)
  336. {
  337. struct tcp_sock *tp = tcp_sk(sk);
  338. int maxwin;
  339. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  340. tcp_fixup_rcvbuf(sk);
  341. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  342. tcp_fixup_sndbuf(sk);
  343. tp->rcvq_space.space = tp->rcv_wnd;
  344. maxwin = tcp_full_space(sk);
  345. if (tp->window_clamp >= maxwin) {
  346. tp->window_clamp = maxwin;
  347. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  348. tp->window_clamp = max(maxwin -
  349. (maxwin >> sysctl_tcp_app_win),
  350. 4 * tp->advmss);
  351. }
  352. /* Force reservation of one segment. */
  353. if (sysctl_tcp_app_win &&
  354. tp->window_clamp > 2 * tp->advmss &&
  355. tp->window_clamp + tp->advmss > maxwin)
  356. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  357. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  358. tp->snd_cwnd_stamp = tcp_time_stamp;
  359. }
  360. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  361. static void tcp_clamp_window(struct sock *sk)
  362. {
  363. struct tcp_sock *tp = tcp_sk(sk);
  364. struct inet_connection_sock *icsk = inet_csk(sk);
  365. icsk->icsk_ack.quick = 0;
  366. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  367. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  368. !sk_under_memory_pressure(sk) &&
  369. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  370. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  371. sysctl_tcp_rmem[2]);
  372. }
  373. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  374. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  375. }
  376. /* Initialize RCV_MSS value.
  377. * RCV_MSS is an our guess about MSS used by the peer.
  378. * We haven't any direct information about the MSS.
  379. * It's better to underestimate the RCV_MSS rather than overestimate.
  380. * Overestimations make us ACKing less frequently than needed.
  381. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  382. */
  383. void tcp_initialize_rcv_mss(struct sock *sk)
  384. {
  385. const struct tcp_sock *tp = tcp_sk(sk);
  386. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  387. hint = min(hint, tp->rcv_wnd / 2);
  388. hint = min(hint, TCP_MSS_DEFAULT);
  389. hint = max(hint, TCP_MIN_MSS);
  390. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  391. }
  392. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  393. /* Receiver "autotuning" code.
  394. *
  395. * The algorithm for RTT estimation w/o timestamps is based on
  396. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  397. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  398. *
  399. * More detail on this code can be found at
  400. * <http://staff.psc.edu/jheffner/>,
  401. * though this reference is out of date. A new paper
  402. * is pending.
  403. */
  404. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  405. {
  406. u32 new_sample = tp->rcv_rtt_est.rtt;
  407. long m = sample;
  408. if (m == 0)
  409. m = 1;
  410. if (new_sample != 0) {
  411. /* If we sample in larger samples in the non-timestamp
  412. * case, we could grossly overestimate the RTT especially
  413. * with chatty applications or bulk transfer apps which
  414. * are stalled on filesystem I/O.
  415. *
  416. * Also, since we are only going for a minimum in the
  417. * non-timestamp case, we do not smooth things out
  418. * else with timestamps disabled convergence takes too
  419. * long.
  420. */
  421. if (!win_dep) {
  422. m -= (new_sample >> 3);
  423. new_sample += m;
  424. } else {
  425. m <<= 3;
  426. if (m < new_sample)
  427. new_sample = m;
  428. }
  429. } else {
  430. /* No previous measure. */
  431. new_sample = m << 3;
  432. }
  433. if (tp->rcv_rtt_est.rtt != new_sample)
  434. tp->rcv_rtt_est.rtt = new_sample;
  435. }
  436. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  437. {
  438. if (tp->rcv_rtt_est.time == 0)
  439. goto new_measure;
  440. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  441. return;
  442. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  443. new_measure:
  444. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  445. tp->rcv_rtt_est.time = tcp_time_stamp;
  446. }
  447. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  448. const struct sk_buff *skb)
  449. {
  450. struct tcp_sock *tp = tcp_sk(sk);
  451. if (tp->rx_opt.rcv_tsecr &&
  452. (TCP_SKB_CB(skb)->end_seq -
  453. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  454. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  455. }
  456. /*
  457. * This function should be called every time data is copied to user space.
  458. * It calculates the appropriate TCP receive buffer space.
  459. */
  460. void tcp_rcv_space_adjust(struct sock *sk)
  461. {
  462. struct tcp_sock *tp = tcp_sk(sk);
  463. int time;
  464. int space;
  465. if (tp->rcvq_space.time == 0)
  466. goto new_measure;
  467. time = tcp_time_stamp - tp->rcvq_space.time;
  468. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  469. return;
  470. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  471. space = max(tp->rcvq_space.space, space);
  472. if (tp->rcvq_space.space != space) {
  473. int rcvmem;
  474. tp->rcvq_space.space = space;
  475. if (sysctl_tcp_moderate_rcvbuf &&
  476. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  477. int new_clamp = space;
  478. /* Receive space grows, normalize in order to
  479. * take into account packet headers and sk_buff
  480. * structure overhead.
  481. */
  482. space /= tp->advmss;
  483. if (!space)
  484. space = 1;
  485. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  486. while (tcp_win_from_space(rcvmem) < tp->advmss)
  487. rcvmem += 128;
  488. space *= rcvmem;
  489. space = min(space, sysctl_tcp_rmem[2]);
  490. if (space > sk->sk_rcvbuf) {
  491. sk->sk_rcvbuf = space;
  492. /* Make the window clamp follow along. */
  493. tp->window_clamp = new_clamp;
  494. }
  495. }
  496. }
  497. new_measure:
  498. tp->rcvq_space.seq = tp->copied_seq;
  499. tp->rcvq_space.time = tcp_time_stamp;
  500. }
  501. /* There is something which you must keep in mind when you analyze the
  502. * behavior of the tp->ato delayed ack timeout interval. When a
  503. * connection starts up, we want to ack as quickly as possible. The
  504. * problem is that "good" TCP's do slow start at the beginning of data
  505. * transmission. The means that until we send the first few ACK's the
  506. * sender will sit on his end and only queue most of his data, because
  507. * he can only send snd_cwnd unacked packets at any given time. For
  508. * each ACK we send, he increments snd_cwnd and transmits more of his
  509. * queue. -DaveM
  510. */
  511. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  512. {
  513. struct tcp_sock *tp = tcp_sk(sk);
  514. struct inet_connection_sock *icsk = inet_csk(sk);
  515. u32 now;
  516. inet_csk_schedule_ack(sk);
  517. tcp_measure_rcv_mss(sk, skb);
  518. tcp_rcv_rtt_measure(tp);
  519. now = tcp_time_stamp;
  520. if (!icsk->icsk_ack.ato) {
  521. /* The _first_ data packet received, initialize
  522. * delayed ACK engine.
  523. */
  524. tcp_incr_quickack(sk);
  525. icsk->icsk_ack.ato = TCP_ATO_MIN;
  526. } else {
  527. int m = now - icsk->icsk_ack.lrcvtime;
  528. if (m <= TCP_ATO_MIN / 2) {
  529. /* The fastest case is the first. */
  530. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  531. } else if (m < icsk->icsk_ack.ato) {
  532. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  533. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  534. icsk->icsk_ack.ato = icsk->icsk_rto;
  535. } else if (m > icsk->icsk_rto) {
  536. /* Too long gap. Apparently sender failed to
  537. * restart window, so that we send ACKs quickly.
  538. */
  539. tcp_incr_quickack(sk);
  540. sk_mem_reclaim(sk);
  541. }
  542. }
  543. icsk->icsk_ack.lrcvtime = now;
  544. TCP_ECN_check_ce(tp, skb);
  545. if (skb->len >= 128)
  546. tcp_grow_window(sk, skb);
  547. }
  548. /* Called to compute a smoothed rtt estimate. The data fed to this
  549. * routine either comes from timestamps, or from segments that were
  550. * known _not_ to have been retransmitted [see Karn/Partridge
  551. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  552. * piece by Van Jacobson.
  553. * NOTE: the next three routines used to be one big routine.
  554. * To save cycles in the RFC 1323 implementation it was better to break
  555. * it up into three procedures. -- erics
  556. */
  557. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  558. {
  559. struct tcp_sock *tp = tcp_sk(sk);
  560. long m = mrtt; /* RTT */
  561. /* The following amusing code comes from Jacobson's
  562. * article in SIGCOMM '88. Note that rtt and mdev
  563. * are scaled versions of rtt and mean deviation.
  564. * This is designed to be as fast as possible
  565. * m stands for "measurement".
  566. *
  567. * On a 1990 paper the rto value is changed to:
  568. * RTO = rtt + 4 * mdev
  569. *
  570. * Funny. This algorithm seems to be very broken.
  571. * These formulae increase RTO, when it should be decreased, increase
  572. * too slowly, when it should be increased quickly, decrease too quickly
  573. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  574. * does not matter how to _calculate_ it. Seems, it was trap
  575. * that VJ failed to avoid. 8)
  576. */
  577. if (m == 0)
  578. m = 1;
  579. if (tp->srtt != 0) {
  580. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  581. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  582. if (m < 0) {
  583. m = -m; /* m is now abs(error) */
  584. m -= (tp->mdev >> 2); /* similar update on mdev */
  585. /* This is similar to one of Eifel findings.
  586. * Eifel blocks mdev updates when rtt decreases.
  587. * This solution is a bit different: we use finer gain
  588. * for mdev in this case (alpha*beta).
  589. * Like Eifel it also prevents growth of rto,
  590. * but also it limits too fast rto decreases,
  591. * happening in pure Eifel.
  592. */
  593. if (m > 0)
  594. m >>= 3;
  595. } else {
  596. m -= (tp->mdev >> 2); /* similar update on mdev */
  597. }
  598. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  599. if (tp->mdev > tp->mdev_max) {
  600. tp->mdev_max = tp->mdev;
  601. if (tp->mdev_max > tp->rttvar)
  602. tp->rttvar = tp->mdev_max;
  603. }
  604. if (after(tp->snd_una, tp->rtt_seq)) {
  605. if (tp->mdev_max < tp->rttvar)
  606. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  607. tp->rtt_seq = tp->snd_nxt;
  608. tp->mdev_max = tcp_rto_min(sk);
  609. }
  610. } else {
  611. /* no previous measure. */
  612. tp->srtt = m << 3; /* take the measured time to be rtt */
  613. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  614. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  615. tp->rtt_seq = tp->snd_nxt;
  616. }
  617. }
  618. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  619. * routine referred to above.
  620. */
  621. void tcp_set_rto(struct sock *sk)
  622. {
  623. const struct tcp_sock *tp = tcp_sk(sk);
  624. /* Old crap is replaced with new one. 8)
  625. *
  626. * More seriously:
  627. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  628. * It cannot be less due to utterly erratic ACK generation made
  629. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  630. * to do with delayed acks, because at cwnd>2 true delack timeout
  631. * is invisible. Actually, Linux-2.4 also generates erratic
  632. * ACKs in some circumstances.
  633. */
  634. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  635. /* 2. Fixups made earlier cannot be right.
  636. * If we do not estimate RTO correctly without them,
  637. * all the algo is pure shit and should be replaced
  638. * with correct one. It is exactly, which we pretend to do.
  639. */
  640. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  641. * guarantees that rto is higher.
  642. */
  643. tcp_bound_rto(sk);
  644. }
  645. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  646. {
  647. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  648. if (!cwnd)
  649. cwnd = TCP_INIT_CWND;
  650. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  651. }
  652. /* Set slow start threshold and cwnd not falling to slow start */
  653. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  654. {
  655. struct tcp_sock *tp = tcp_sk(sk);
  656. const struct inet_connection_sock *icsk = inet_csk(sk);
  657. tp->prior_ssthresh = 0;
  658. tp->bytes_acked = 0;
  659. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  660. tp->undo_marker = 0;
  661. if (set_ssthresh)
  662. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  663. tp->snd_cwnd = min(tp->snd_cwnd,
  664. tcp_packets_in_flight(tp) + 1U);
  665. tp->snd_cwnd_cnt = 0;
  666. tp->high_seq = tp->snd_nxt;
  667. tp->snd_cwnd_stamp = tcp_time_stamp;
  668. TCP_ECN_queue_cwr(tp);
  669. tcp_set_ca_state(sk, TCP_CA_CWR);
  670. }
  671. }
  672. /*
  673. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  674. * disables it when reordering is detected
  675. */
  676. void tcp_disable_fack(struct tcp_sock *tp)
  677. {
  678. /* RFC3517 uses different metric in lost marker => reset on change */
  679. if (tcp_is_fack(tp))
  680. tp->lost_skb_hint = NULL;
  681. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  682. }
  683. /* Take a notice that peer is sending D-SACKs */
  684. static void tcp_dsack_seen(struct tcp_sock *tp)
  685. {
  686. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  687. }
  688. static void tcp_update_reordering(struct sock *sk, const int metric,
  689. const int ts)
  690. {
  691. struct tcp_sock *tp = tcp_sk(sk);
  692. if (metric > tp->reordering) {
  693. int mib_idx;
  694. tp->reordering = min(TCP_MAX_REORDERING, metric);
  695. /* This exciting event is worth to be remembered. 8) */
  696. if (ts)
  697. mib_idx = LINUX_MIB_TCPTSREORDER;
  698. else if (tcp_is_reno(tp))
  699. mib_idx = LINUX_MIB_TCPRENOREORDER;
  700. else if (tcp_is_fack(tp))
  701. mib_idx = LINUX_MIB_TCPFACKREORDER;
  702. else
  703. mib_idx = LINUX_MIB_TCPSACKREORDER;
  704. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  705. #if FASTRETRANS_DEBUG > 1
  706. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  707. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  708. tp->reordering,
  709. tp->fackets_out,
  710. tp->sacked_out,
  711. tp->undo_marker ? tp->undo_retrans : 0);
  712. #endif
  713. tcp_disable_fack(tp);
  714. }
  715. if (metric > 0)
  716. tcp_disable_early_retrans(tp);
  717. }
  718. /* This must be called before lost_out is incremented */
  719. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  720. {
  721. if ((tp->retransmit_skb_hint == NULL) ||
  722. before(TCP_SKB_CB(skb)->seq,
  723. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  724. tp->retransmit_skb_hint = skb;
  725. if (!tp->lost_out ||
  726. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  727. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  728. }
  729. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  730. {
  731. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  732. tcp_verify_retransmit_hint(tp, skb);
  733. tp->lost_out += tcp_skb_pcount(skb);
  734. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  735. }
  736. }
  737. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  738. struct sk_buff *skb)
  739. {
  740. tcp_verify_retransmit_hint(tp, skb);
  741. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  742. tp->lost_out += tcp_skb_pcount(skb);
  743. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  744. }
  745. }
  746. /* This procedure tags the retransmission queue when SACKs arrive.
  747. *
  748. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  749. * Packets in queue with these bits set are counted in variables
  750. * sacked_out, retrans_out and lost_out, correspondingly.
  751. *
  752. * Valid combinations are:
  753. * Tag InFlight Description
  754. * 0 1 - orig segment is in flight.
  755. * S 0 - nothing flies, orig reached receiver.
  756. * L 0 - nothing flies, orig lost by net.
  757. * R 2 - both orig and retransmit are in flight.
  758. * L|R 1 - orig is lost, retransmit is in flight.
  759. * S|R 1 - orig reached receiver, retrans is still in flight.
  760. * (L|S|R is logically valid, it could occur when L|R is sacked,
  761. * but it is equivalent to plain S and code short-curcuits it to S.
  762. * L|S is logically invalid, it would mean -1 packet in flight 8))
  763. *
  764. * These 6 states form finite state machine, controlled by the following events:
  765. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  766. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  767. * 3. Loss detection event of two flavors:
  768. * A. Scoreboard estimator decided the packet is lost.
  769. * A'. Reno "three dupacks" marks head of queue lost.
  770. * A''. Its FACK modification, head until snd.fack is lost.
  771. * B. SACK arrives sacking SND.NXT at the moment, when the
  772. * segment was retransmitted.
  773. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  774. *
  775. * It is pleasant to note, that state diagram turns out to be commutative,
  776. * so that we are allowed not to be bothered by order of our actions,
  777. * when multiple events arrive simultaneously. (see the function below).
  778. *
  779. * Reordering detection.
  780. * --------------------
  781. * Reordering metric is maximal distance, which a packet can be displaced
  782. * in packet stream. With SACKs we can estimate it:
  783. *
  784. * 1. SACK fills old hole and the corresponding segment was not
  785. * ever retransmitted -> reordering. Alas, we cannot use it
  786. * when segment was retransmitted.
  787. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  788. * for retransmitted and already SACKed segment -> reordering..
  789. * Both of these heuristics are not used in Loss state, when we cannot
  790. * account for retransmits accurately.
  791. *
  792. * SACK block validation.
  793. * ----------------------
  794. *
  795. * SACK block range validation checks that the received SACK block fits to
  796. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  797. * Note that SND.UNA is not included to the range though being valid because
  798. * it means that the receiver is rather inconsistent with itself reporting
  799. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  800. * perfectly valid, however, in light of RFC2018 which explicitly states
  801. * that "SACK block MUST reflect the newest segment. Even if the newest
  802. * segment is going to be discarded ...", not that it looks very clever
  803. * in case of head skb. Due to potentional receiver driven attacks, we
  804. * choose to avoid immediate execution of a walk in write queue due to
  805. * reneging and defer head skb's loss recovery to standard loss recovery
  806. * procedure that will eventually trigger (nothing forbids us doing this).
  807. *
  808. * Implements also blockage to start_seq wrap-around. Problem lies in the
  809. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  810. * there's no guarantee that it will be before snd_nxt (n). The problem
  811. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  812. * wrap (s_w):
  813. *
  814. * <- outs wnd -> <- wrapzone ->
  815. * u e n u_w e_w s n_w
  816. * | | | | | | |
  817. * |<------------+------+----- TCP seqno space --------------+---------->|
  818. * ...-- <2^31 ->| |<--------...
  819. * ...---- >2^31 ------>| |<--------...
  820. *
  821. * Current code wouldn't be vulnerable but it's better still to discard such
  822. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  823. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  824. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  825. * equal to the ideal case (infinite seqno space without wrap caused issues).
  826. *
  827. * With D-SACK the lower bound is extended to cover sequence space below
  828. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  829. * again, D-SACK block must not to go across snd_una (for the same reason as
  830. * for the normal SACK blocks, explained above). But there all simplicity
  831. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  832. * fully below undo_marker they do not affect behavior in anyway and can
  833. * therefore be safely ignored. In rare cases (which are more or less
  834. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  835. * fragmentation and packet reordering past skb's retransmission. To consider
  836. * them correctly, the acceptable range must be extended even more though
  837. * the exact amount is rather hard to quantify. However, tp->max_window can
  838. * be used as an exaggerated estimate.
  839. */
  840. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  841. u32 start_seq, u32 end_seq)
  842. {
  843. /* Too far in future, or reversed (interpretation is ambiguous) */
  844. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  845. return false;
  846. /* Nasty start_seq wrap-around check (see comments above) */
  847. if (!before(start_seq, tp->snd_nxt))
  848. return false;
  849. /* In outstanding window? ...This is valid exit for D-SACKs too.
  850. * start_seq == snd_una is non-sensical (see comments above)
  851. */
  852. if (after(start_seq, tp->snd_una))
  853. return true;
  854. if (!is_dsack || !tp->undo_marker)
  855. return false;
  856. /* ...Then it's D-SACK, and must reside below snd_una completely */
  857. if (after(end_seq, tp->snd_una))
  858. return false;
  859. if (!before(start_seq, tp->undo_marker))
  860. return true;
  861. /* Too old */
  862. if (!after(end_seq, tp->undo_marker))
  863. return false;
  864. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  865. * start_seq < undo_marker and end_seq >= undo_marker.
  866. */
  867. return !before(start_seq, end_seq - tp->max_window);
  868. }
  869. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  870. * Event "B". Later note: FACK people cheated me again 8), we have to account
  871. * for reordering! Ugly, but should help.
  872. *
  873. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  874. * less than what is now known to be received by the other end (derived from
  875. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  876. * retransmitted skbs to avoid some costly processing per ACKs.
  877. */
  878. static void tcp_mark_lost_retrans(struct sock *sk)
  879. {
  880. const struct inet_connection_sock *icsk = inet_csk(sk);
  881. struct tcp_sock *tp = tcp_sk(sk);
  882. struct sk_buff *skb;
  883. int cnt = 0;
  884. u32 new_low_seq = tp->snd_nxt;
  885. u32 received_upto = tcp_highest_sack_seq(tp);
  886. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  887. !after(received_upto, tp->lost_retrans_low) ||
  888. icsk->icsk_ca_state != TCP_CA_Recovery)
  889. return;
  890. tcp_for_write_queue(skb, sk) {
  891. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  892. if (skb == tcp_send_head(sk))
  893. break;
  894. if (cnt == tp->retrans_out)
  895. break;
  896. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  897. continue;
  898. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  899. continue;
  900. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  901. * constraint here (see above) but figuring out that at
  902. * least tp->reordering SACK blocks reside between ack_seq
  903. * and received_upto is not easy task to do cheaply with
  904. * the available datastructures.
  905. *
  906. * Whether FACK should check here for tp->reordering segs
  907. * in-between one could argue for either way (it would be
  908. * rather simple to implement as we could count fack_count
  909. * during the walk and do tp->fackets_out - fack_count).
  910. */
  911. if (after(received_upto, ack_seq)) {
  912. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  913. tp->retrans_out -= tcp_skb_pcount(skb);
  914. tcp_skb_mark_lost_uncond_verify(tp, skb);
  915. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  916. } else {
  917. if (before(ack_seq, new_low_seq))
  918. new_low_seq = ack_seq;
  919. cnt += tcp_skb_pcount(skb);
  920. }
  921. }
  922. if (tp->retrans_out)
  923. tp->lost_retrans_low = new_low_seq;
  924. }
  925. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  926. struct tcp_sack_block_wire *sp, int num_sacks,
  927. u32 prior_snd_una)
  928. {
  929. struct tcp_sock *tp = tcp_sk(sk);
  930. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  931. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  932. bool dup_sack = false;
  933. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  934. dup_sack = true;
  935. tcp_dsack_seen(tp);
  936. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  937. } else if (num_sacks > 1) {
  938. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  939. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  940. if (!after(end_seq_0, end_seq_1) &&
  941. !before(start_seq_0, start_seq_1)) {
  942. dup_sack = true;
  943. tcp_dsack_seen(tp);
  944. NET_INC_STATS_BH(sock_net(sk),
  945. LINUX_MIB_TCPDSACKOFORECV);
  946. }
  947. }
  948. /* D-SACK for already forgotten data... Do dumb counting. */
  949. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  950. !after(end_seq_0, prior_snd_una) &&
  951. after(end_seq_0, tp->undo_marker))
  952. tp->undo_retrans--;
  953. return dup_sack;
  954. }
  955. struct tcp_sacktag_state {
  956. int reord;
  957. int fack_count;
  958. int flag;
  959. };
  960. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  961. * the incoming SACK may not exactly match but we can find smaller MSS
  962. * aligned portion of it that matches. Therefore we might need to fragment
  963. * which may fail and creates some hassle (caller must handle error case
  964. * returns).
  965. *
  966. * FIXME: this could be merged to shift decision code
  967. */
  968. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  969. u32 start_seq, u32 end_seq)
  970. {
  971. int err;
  972. bool in_sack;
  973. unsigned int pkt_len;
  974. unsigned int mss;
  975. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  976. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  977. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  978. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  979. mss = tcp_skb_mss(skb);
  980. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  981. if (!in_sack) {
  982. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  983. if (pkt_len < mss)
  984. pkt_len = mss;
  985. } else {
  986. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  987. if (pkt_len < mss)
  988. return -EINVAL;
  989. }
  990. /* Round if necessary so that SACKs cover only full MSSes
  991. * and/or the remaining small portion (if present)
  992. */
  993. if (pkt_len > mss) {
  994. unsigned int new_len = (pkt_len / mss) * mss;
  995. if (!in_sack && new_len < pkt_len) {
  996. new_len += mss;
  997. if (new_len > skb->len)
  998. return 0;
  999. }
  1000. pkt_len = new_len;
  1001. }
  1002. err = tcp_fragment(sk, skb, pkt_len, mss);
  1003. if (err < 0)
  1004. return err;
  1005. }
  1006. return in_sack;
  1007. }
  1008. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1009. static u8 tcp_sacktag_one(struct sock *sk,
  1010. struct tcp_sacktag_state *state, u8 sacked,
  1011. u32 start_seq, u32 end_seq,
  1012. bool dup_sack, int pcount)
  1013. {
  1014. struct tcp_sock *tp = tcp_sk(sk);
  1015. int fack_count = state->fack_count;
  1016. /* Account D-SACK for retransmitted packet. */
  1017. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1018. if (tp->undo_marker && tp->undo_retrans &&
  1019. after(end_seq, tp->undo_marker))
  1020. tp->undo_retrans--;
  1021. if (sacked & TCPCB_SACKED_ACKED)
  1022. state->reord = min(fack_count, state->reord);
  1023. }
  1024. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1025. if (!after(end_seq, tp->snd_una))
  1026. return sacked;
  1027. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1028. if (sacked & TCPCB_SACKED_RETRANS) {
  1029. /* If the segment is not tagged as lost,
  1030. * we do not clear RETRANS, believing
  1031. * that retransmission is still in flight.
  1032. */
  1033. if (sacked & TCPCB_LOST) {
  1034. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1035. tp->lost_out -= pcount;
  1036. tp->retrans_out -= pcount;
  1037. }
  1038. } else {
  1039. if (!(sacked & TCPCB_RETRANS)) {
  1040. /* New sack for not retransmitted frame,
  1041. * which was in hole. It is reordering.
  1042. */
  1043. if (before(start_seq,
  1044. tcp_highest_sack_seq(tp)))
  1045. state->reord = min(fack_count,
  1046. state->reord);
  1047. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1048. if (!after(end_seq, tp->frto_highmark))
  1049. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1050. }
  1051. if (sacked & TCPCB_LOST) {
  1052. sacked &= ~TCPCB_LOST;
  1053. tp->lost_out -= pcount;
  1054. }
  1055. }
  1056. sacked |= TCPCB_SACKED_ACKED;
  1057. state->flag |= FLAG_DATA_SACKED;
  1058. tp->sacked_out += pcount;
  1059. fack_count += pcount;
  1060. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1061. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1062. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1063. tp->lost_cnt_hint += pcount;
  1064. if (fack_count > tp->fackets_out)
  1065. tp->fackets_out = fack_count;
  1066. }
  1067. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1068. * frames and clear it. undo_retrans is decreased above, L|R frames
  1069. * are accounted above as well.
  1070. */
  1071. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1072. sacked &= ~TCPCB_SACKED_RETRANS;
  1073. tp->retrans_out -= pcount;
  1074. }
  1075. return sacked;
  1076. }
  1077. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1078. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1079. */
  1080. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1081. struct tcp_sacktag_state *state,
  1082. unsigned int pcount, int shifted, int mss,
  1083. bool dup_sack)
  1084. {
  1085. struct tcp_sock *tp = tcp_sk(sk);
  1086. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1087. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1088. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1089. BUG_ON(!pcount);
  1090. /* Adjust counters and hints for the newly sacked sequence
  1091. * range but discard the return value since prev is already
  1092. * marked. We must tag the range first because the seq
  1093. * advancement below implicitly advances
  1094. * tcp_highest_sack_seq() when skb is highest_sack.
  1095. */
  1096. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1097. start_seq, end_seq, dup_sack, pcount);
  1098. if (skb == tp->lost_skb_hint)
  1099. tp->lost_cnt_hint += pcount;
  1100. TCP_SKB_CB(prev)->end_seq += shifted;
  1101. TCP_SKB_CB(skb)->seq += shifted;
  1102. skb_shinfo(prev)->gso_segs += pcount;
  1103. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1104. skb_shinfo(skb)->gso_segs -= pcount;
  1105. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1106. * in theory this shouldn't be necessary but as long as DSACK
  1107. * code can come after this skb later on it's better to keep
  1108. * setting gso_size to something.
  1109. */
  1110. if (!skb_shinfo(prev)->gso_size) {
  1111. skb_shinfo(prev)->gso_size = mss;
  1112. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1113. }
  1114. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1115. if (skb_shinfo(skb)->gso_segs <= 1) {
  1116. skb_shinfo(skb)->gso_size = 0;
  1117. skb_shinfo(skb)->gso_type = 0;
  1118. }
  1119. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1120. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1121. if (skb->len > 0) {
  1122. BUG_ON(!tcp_skb_pcount(skb));
  1123. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1124. return false;
  1125. }
  1126. /* Whole SKB was eaten :-) */
  1127. if (skb == tp->retransmit_skb_hint)
  1128. tp->retransmit_skb_hint = prev;
  1129. if (skb == tp->scoreboard_skb_hint)
  1130. tp->scoreboard_skb_hint = prev;
  1131. if (skb == tp->lost_skb_hint) {
  1132. tp->lost_skb_hint = prev;
  1133. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1134. }
  1135. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1136. if (skb == tcp_highest_sack(sk))
  1137. tcp_advance_highest_sack(sk, skb);
  1138. tcp_unlink_write_queue(skb, sk);
  1139. sk_wmem_free_skb(sk, skb);
  1140. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1141. return true;
  1142. }
  1143. /* I wish gso_size would have a bit more sane initialization than
  1144. * something-or-zero which complicates things
  1145. */
  1146. static int tcp_skb_seglen(const struct sk_buff *skb)
  1147. {
  1148. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1149. }
  1150. /* Shifting pages past head area doesn't work */
  1151. static int skb_can_shift(const struct sk_buff *skb)
  1152. {
  1153. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1154. }
  1155. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1156. * skb.
  1157. */
  1158. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1159. struct tcp_sacktag_state *state,
  1160. u32 start_seq, u32 end_seq,
  1161. bool dup_sack)
  1162. {
  1163. struct tcp_sock *tp = tcp_sk(sk);
  1164. struct sk_buff *prev;
  1165. int mss;
  1166. int pcount = 0;
  1167. int len;
  1168. int in_sack;
  1169. if (!sk_can_gso(sk))
  1170. goto fallback;
  1171. /* Normally R but no L won't result in plain S */
  1172. if (!dup_sack &&
  1173. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1174. goto fallback;
  1175. if (!skb_can_shift(skb))
  1176. goto fallback;
  1177. /* This frame is about to be dropped (was ACKed). */
  1178. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1179. goto fallback;
  1180. /* Can only happen with delayed DSACK + discard craziness */
  1181. if (unlikely(skb == tcp_write_queue_head(sk)))
  1182. goto fallback;
  1183. prev = tcp_write_queue_prev(sk, skb);
  1184. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1185. goto fallback;
  1186. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1187. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1188. if (in_sack) {
  1189. len = skb->len;
  1190. pcount = tcp_skb_pcount(skb);
  1191. mss = tcp_skb_seglen(skb);
  1192. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1193. * drop this restriction as unnecessary
  1194. */
  1195. if (mss != tcp_skb_seglen(prev))
  1196. goto fallback;
  1197. } else {
  1198. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1199. goto noop;
  1200. /* CHECKME: This is non-MSS split case only?, this will
  1201. * cause skipped skbs due to advancing loop btw, original
  1202. * has that feature too
  1203. */
  1204. if (tcp_skb_pcount(skb) <= 1)
  1205. goto noop;
  1206. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1207. if (!in_sack) {
  1208. /* TODO: head merge to next could be attempted here
  1209. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1210. * though it might not be worth of the additional hassle
  1211. *
  1212. * ...we can probably just fallback to what was done
  1213. * previously. We could try merging non-SACKed ones
  1214. * as well but it probably isn't going to buy off
  1215. * because later SACKs might again split them, and
  1216. * it would make skb timestamp tracking considerably
  1217. * harder problem.
  1218. */
  1219. goto fallback;
  1220. }
  1221. len = end_seq - TCP_SKB_CB(skb)->seq;
  1222. BUG_ON(len < 0);
  1223. BUG_ON(len > skb->len);
  1224. /* MSS boundaries should be honoured or else pcount will
  1225. * severely break even though it makes things bit trickier.
  1226. * Optimize common case to avoid most of the divides
  1227. */
  1228. mss = tcp_skb_mss(skb);
  1229. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1230. * drop this restriction as unnecessary
  1231. */
  1232. if (mss != tcp_skb_seglen(prev))
  1233. goto fallback;
  1234. if (len == mss) {
  1235. pcount = 1;
  1236. } else if (len < mss) {
  1237. goto noop;
  1238. } else {
  1239. pcount = len / mss;
  1240. len = pcount * mss;
  1241. }
  1242. }
  1243. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1244. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1245. goto fallback;
  1246. if (!skb_shift(prev, skb, len))
  1247. goto fallback;
  1248. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1249. goto out;
  1250. /* Hole filled allows collapsing with the next as well, this is very
  1251. * useful when hole on every nth skb pattern happens
  1252. */
  1253. if (prev == tcp_write_queue_tail(sk))
  1254. goto out;
  1255. skb = tcp_write_queue_next(sk, prev);
  1256. if (!skb_can_shift(skb) ||
  1257. (skb == tcp_send_head(sk)) ||
  1258. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1259. (mss != tcp_skb_seglen(skb)))
  1260. goto out;
  1261. len = skb->len;
  1262. if (skb_shift(prev, skb, len)) {
  1263. pcount += tcp_skb_pcount(skb);
  1264. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1265. }
  1266. out:
  1267. state->fack_count += pcount;
  1268. return prev;
  1269. noop:
  1270. return skb;
  1271. fallback:
  1272. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1273. return NULL;
  1274. }
  1275. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1276. struct tcp_sack_block *next_dup,
  1277. struct tcp_sacktag_state *state,
  1278. u32 start_seq, u32 end_seq,
  1279. bool dup_sack_in)
  1280. {
  1281. struct tcp_sock *tp = tcp_sk(sk);
  1282. struct sk_buff *tmp;
  1283. tcp_for_write_queue_from(skb, sk) {
  1284. int in_sack = 0;
  1285. bool dup_sack = dup_sack_in;
  1286. if (skb == tcp_send_head(sk))
  1287. break;
  1288. /* queue is in-order => we can short-circuit the walk early */
  1289. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1290. break;
  1291. if ((next_dup != NULL) &&
  1292. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1293. in_sack = tcp_match_skb_to_sack(sk, skb,
  1294. next_dup->start_seq,
  1295. next_dup->end_seq);
  1296. if (in_sack > 0)
  1297. dup_sack = true;
  1298. }
  1299. /* skb reference here is a bit tricky to get right, since
  1300. * shifting can eat and free both this skb and the next,
  1301. * so not even _safe variant of the loop is enough.
  1302. */
  1303. if (in_sack <= 0) {
  1304. tmp = tcp_shift_skb_data(sk, skb, state,
  1305. start_seq, end_seq, dup_sack);
  1306. if (tmp != NULL) {
  1307. if (tmp != skb) {
  1308. skb = tmp;
  1309. continue;
  1310. }
  1311. in_sack = 0;
  1312. } else {
  1313. in_sack = tcp_match_skb_to_sack(sk, skb,
  1314. start_seq,
  1315. end_seq);
  1316. }
  1317. }
  1318. if (unlikely(in_sack < 0))
  1319. break;
  1320. if (in_sack) {
  1321. TCP_SKB_CB(skb)->sacked =
  1322. tcp_sacktag_one(sk,
  1323. state,
  1324. TCP_SKB_CB(skb)->sacked,
  1325. TCP_SKB_CB(skb)->seq,
  1326. TCP_SKB_CB(skb)->end_seq,
  1327. dup_sack,
  1328. tcp_skb_pcount(skb));
  1329. if (!before(TCP_SKB_CB(skb)->seq,
  1330. tcp_highest_sack_seq(tp)))
  1331. tcp_advance_highest_sack(sk, skb);
  1332. }
  1333. state->fack_count += tcp_skb_pcount(skb);
  1334. }
  1335. return skb;
  1336. }
  1337. /* Avoid all extra work that is being done by sacktag while walking in
  1338. * a normal way
  1339. */
  1340. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1341. struct tcp_sacktag_state *state,
  1342. u32 skip_to_seq)
  1343. {
  1344. tcp_for_write_queue_from(skb, sk) {
  1345. if (skb == tcp_send_head(sk))
  1346. break;
  1347. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1348. break;
  1349. state->fack_count += tcp_skb_pcount(skb);
  1350. }
  1351. return skb;
  1352. }
  1353. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1354. struct sock *sk,
  1355. struct tcp_sack_block *next_dup,
  1356. struct tcp_sacktag_state *state,
  1357. u32 skip_to_seq)
  1358. {
  1359. if (next_dup == NULL)
  1360. return skb;
  1361. if (before(next_dup->start_seq, skip_to_seq)) {
  1362. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1363. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1364. next_dup->start_seq, next_dup->end_seq,
  1365. 1);
  1366. }
  1367. return skb;
  1368. }
  1369. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1370. {
  1371. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1372. }
  1373. static int
  1374. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1375. u32 prior_snd_una)
  1376. {
  1377. const struct inet_connection_sock *icsk = inet_csk(sk);
  1378. struct tcp_sock *tp = tcp_sk(sk);
  1379. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1380. TCP_SKB_CB(ack_skb)->sacked);
  1381. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1382. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1383. struct tcp_sack_block *cache;
  1384. struct tcp_sacktag_state state;
  1385. struct sk_buff *skb;
  1386. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1387. int used_sacks;
  1388. bool found_dup_sack = false;
  1389. int i, j;
  1390. int first_sack_index;
  1391. state.flag = 0;
  1392. state.reord = tp->packets_out;
  1393. if (!tp->sacked_out) {
  1394. if (WARN_ON(tp->fackets_out))
  1395. tp->fackets_out = 0;
  1396. tcp_highest_sack_reset(sk);
  1397. }
  1398. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1399. num_sacks, prior_snd_una);
  1400. if (found_dup_sack)
  1401. state.flag |= FLAG_DSACKING_ACK;
  1402. /* Eliminate too old ACKs, but take into
  1403. * account more or less fresh ones, they can
  1404. * contain valid SACK info.
  1405. */
  1406. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1407. return 0;
  1408. if (!tp->packets_out)
  1409. goto out;
  1410. used_sacks = 0;
  1411. first_sack_index = 0;
  1412. for (i = 0; i < num_sacks; i++) {
  1413. bool dup_sack = !i && found_dup_sack;
  1414. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1415. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1416. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1417. sp[used_sacks].start_seq,
  1418. sp[used_sacks].end_seq)) {
  1419. int mib_idx;
  1420. if (dup_sack) {
  1421. if (!tp->undo_marker)
  1422. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1423. else
  1424. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1425. } else {
  1426. /* Don't count olds caused by ACK reordering */
  1427. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1428. !after(sp[used_sacks].end_seq, tp->snd_una))
  1429. continue;
  1430. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1431. }
  1432. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1433. if (i == 0)
  1434. first_sack_index = -1;
  1435. continue;
  1436. }
  1437. /* Ignore very old stuff early */
  1438. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1439. continue;
  1440. used_sacks++;
  1441. }
  1442. /* order SACK blocks to allow in order walk of the retrans queue */
  1443. for (i = used_sacks - 1; i > 0; i--) {
  1444. for (j = 0; j < i; j++) {
  1445. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1446. swap(sp[j], sp[j + 1]);
  1447. /* Track where the first SACK block goes to */
  1448. if (j == first_sack_index)
  1449. first_sack_index = j + 1;
  1450. }
  1451. }
  1452. }
  1453. skb = tcp_write_queue_head(sk);
  1454. state.fack_count = 0;
  1455. i = 0;
  1456. if (!tp->sacked_out) {
  1457. /* It's already past, so skip checking against it */
  1458. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1459. } else {
  1460. cache = tp->recv_sack_cache;
  1461. /* Skip empty blocks in at head of the cache */
  1462. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1463. !cache->end_seq)
  1464. cache++;
  1465. }
  1466. while (i < used_sacks) {
  1467. u32 start_seq = sp[i].start_seq;
  1468. u32 end_seq = sp[i].end_seq;
  1469. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1470. struct tcp_sack_block *next_dup = NULL;
  1471. if (found_dup_sack && ((i + 1) == first_sack_index))
  1472. next_dup = &sp[i + 1];
  1473. /* Skip too early cached blocks */
  1474. while (tcp_sack_cache_ok(tp, cache) &&
  1475. !before(start_seq, cache->end_seq))
  1476. cache++;
  1477. /* Can skip some work by looking recv_sack_cache? */
  1478. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1479. after(end_seq, cache->start_seq)) {
  1480. /* Head todo? */
  1481. if (before(start_seq, cache->start_seq)) {
  1482. skb = tcp_sacktag_skip(skb, sk, &state,
  1483. start_seq);
  1484. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1485. &state,
  1486. start_seq,
  1487. cache->start_seq,
  1488. dup_sack);
  1489. }
  1490. /* Rest of the block already fully processed? */
  1491. if (!after(end_seq, cache->end_seq))
  1492. goto advance_sp;
  1493. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1494. &state,
  1495. cache->end_seq);
  1496. /* ...tail remains todo... */
  1497. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1498. /* ...but better entrypoint exists! */
  1499. skb = tcp_highest_sack(sk);
  1500. if (skb == NULL)
  1501. break;
  1502. state.fack_count = tp->fackets_out;
  1503. cache++;
  1504. goto walk;
  1505. }
  1506. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1507. /* Check overlap against next cached too (past this one already) */
  1508. cache++;
  1509. continue;
  1510. }
  1511. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1512. skb = tcp_highest_sack(sk);
  1513. if (skb == NULL)
  1514. break;
  1515. state.fack_count = tp->fackets_out;
  1516. }
  1517. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1518. walk:
  1519. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1520. start_seq, end_seq, dup_sack);
  1521. advance_sp:
  1522. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1523. * due to in-order walk
  1524. */
  1525. if (after(end_seq, tp->frto_highmark))
  1526. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1527. i++;
  1528. }
  1529. /* Clear the head of the cache sack blocks so we can skip it next time */
  1530. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1531. tp->recv_sack_cache[i].start_seq = 0;
  1532. tp->recv_sack_cache[i].end_seq = 0;
  1533. }
  1534. for (j = 0; j < used_sacks; j++)
  1535. tp->recv_sack_cache[i++] = sp[j];
  1536. tcp_mark_lost_retrans(sk);
  1537. tcp_verify_left_out(tp);
  1538. if ((state.reord < tp->fackets_out) &&
  1539. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1540. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1541. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1542. out:
  1543. #if FASTRETRANS_DEBUG > 0
  1544. WARN_ON((int)tp->sacked_out < 0);
  1545. WARN_ON((int)tp->lost_out < 0);
  1546. WARN_ON((int)tp->retrans_out < 0);
  1547. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1548. #endif
  1549. return state.flag;
  1550. }
  1551. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1552. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1553. */
  1554. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1555. {
  1556. u32 holes;
  1557. holes = max(tp->lost_out, 1U);
  1558. holes = min(holes, tp->packets_out);
  1559. if ((tp->sacked_out + holes) > tp->packets_out) {
  1560. tp->sacked_out = tp->packets_out - holes;
  1561. return true;
  1562. }
  1563. return false;
  1564. }
  1565. /* If we receive more dupacks than we expected counting segments
  1566. * in assumption of absent reordering, interpret this as reordering.
  1567. * The only another reason could be bug in receiver TCP.
  1568. */
  1569. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1570. {
  1571. struct tcp_sock *tp = tcp_sk(sk);
  1572. if (tcp_limit_reno_sacked(tp))
  1573. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1574. }
  1575. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1576. static void tcp_add_reno_sack(struct sock *sk)
  1577. {
  1578. struct tcp_sock *tp = tcp_sk(sk);
  1579. tp->sacked_out++;
  1580. tcp_check_reno_reordering(sk, 0);
  1581. tcp_verify_left_out(tp);
  1582. }
  1583. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1584. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1585. {
  1586. struct tcp_sock *tp = tcp_sk(sk);
  1587. if (acked > 0) {
  1588. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1589. if (acked - 1 >= tp->sacked_out)
  1590. tp->sacked_out = 0;
  1591. else
  1592. tp->sacked_out -= acked - 1;
  1593. }
  1594. tcp_check_reno_reordering(sk, acked);
  1595. tcp_verify_left_out(tp);
  1596. }
  1597. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1598. {
  1599. tp->sacked_out = 0;
  1600. }
  1601. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1602. {
  1603. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1604. }
  1605. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1606. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1607. */
  1608. bool tcp_use_frto(struct sock *sk)
  1609. {
  1610. const struct tcp_sock *tp = tcp_sk(sk);
  1611. const struct inet_connection_sock *icsk = inet_csk(sk);
  1612. struct sk_buff *skb;
  1613. if (!sysctl_tcp_frto)
  1614. return false;
  1615. /* MTU probe and F-RTO won't really play nicely along currently */
  1616. if (icsk->icsk_mtup.probe_size)
  1617. return false;
  1618. if (tcp_is_sackfrto(tp))
  1619. return true;
  1620. /* Avoid expensive walking of rexmit queue if possible */
  1621. if (tp->retrans_out > 1)
  1622. return false;
  1623. skb = tcp_write_queue_head(sk);
  1624. if (tcp_skb_is_last(sk, skb))
  1625. return true;
  1626. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1627. tcp_for_write_queue_from(skb, sk) {
  1628. if (skb == tcp_send_head(sk))
  1629. break;
  1630. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1631. return false;
  1632. /* Short-circuit when first non-SACKed skb has been checked */
  1633. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1634. break;
  1635. }
  1636. return true;
  1637. }
  1638. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1639. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1640. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1641. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1642. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1643. * bits are handled if the Loss state is really to be entered (in
  1644. * tcp_enter_frto_loss).
  1645. *
  1646. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1647. * does:
  1648. * "Reduce ssthresh if it has not yet been made inside this window."
  1649. */
  1650. void tcp_enter_frto(struct sock *sk)
  1651. {
  1652. const struct inet_connection_sock *icsk = inet_csk(sk);
  1653. struct tcp_sock *tp = tcp_sk(sk);
  1654. struct sk_buff *skb;
  1655. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1656. tp->snd_una == tp->high_seq ||
  1657. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1658. !icsk->icsk_retransmits)) {
  1659. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1660. /* Our state is too optimistic in ssthresh() call because cwnd
  1661. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1662. * recovery has not yet completed. Pattern would be this: RTO,
  1663. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1664. * up here twice).
  1665. * RFC4138 should be more specific on what to do, even though
  1666. * RTO is quite unlikely to occur after the first Cumulative ACK
  1667. * due to back-off and complexity of triggering events ...
  1668. */
  1669. if (tp->frto_counter) {
  1670. u32 stored_cwnd;
  1671. stored_cwnd = tp->snd_cwnd;
  1672. tp->snd_cwnd = 2;
  1673. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1674. tp->snd_cwnd = stored_cwnd;
  1675. } else {
  1676. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1677. }
  1678. /* ... in theory, cong.control module could do "any tricks" in
  1679. * ssthresh(), which means that ca_state, lost bits and lost_out
  1680. * counter would have to be faked before the call occurs. We
  1681. * consider that too expensive, unlikely and hacky, so modules
  1682. * using these in ssthresh() must deal these incompatibility
  1683. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1684. */
  1685. tcp_ca_event(sk, CA_EVENT_FRTO);
  1686. }
  1687. tp->undo_marker = tp->snd_una;
  1688. tp->undo_retrans = 0;
  1689. skb = tcp_write_queue_head(sk);
  1690. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1691. tp->undo_marker = 0;
  1692. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1693. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1694. tp->retrans_out -= tcp_skb_pcount(skb);
  1695. }
  1696. tcp_verify_left_out(tp);
  1697. /* Too bad if TCP was application limited */
  1698. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1699. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1700. * The last condition is necessary at least in tp->frto_counter case.
  1701. */
  1702. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1703. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1704. after(tp->high_seq, tp->snd_una)) {
  1705. tp->frto_highmark = tp->high_seq;
  1706. } else {
  1707. tp->frto_highmark = tp->snd_nxt;
  1708. }
  1709. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1710. tp->high_seq = tp->snd_nxt;
  1711. tp->frto_counter = 1;
  1712. }
  1713. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1714. * which indicates that we should follow the traditional RTO recovery,
  1715. * i.e. mark everything lost and do go-back-N retransmission.
  1716. */
  1717. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1718. {
  1719. struct tcp_sock *tp = tcp_sk(sk);
  1720. struct sk_buff *skb;
  1721. tp->lost_out = 0;
  1722. tp->retrans_out = 0;
  1723. if (tcp_is_reno(tp))
  1724. tcp_reset_reno_sack(tp);
  1725. tcp_for_write_queue(skb, sk) {
  1726. if (skb == tcp_send_head(sk))
  1727. break;
  1728. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1729. /*
  1730. * Count the retransmission made on RTO correctly (only when
  1731. * waiting for the first ACK and did not get it)...
  1732. */
  1733. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1734. /* For some reason this R-bit might get cleared? */
  1735. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1736. tp->retrans_out += tcp_skb_pcount(skb);
  1737. /* ...enter this if branch just for the first segment */
  1738. flag |= FLAG_DATA_ACKED;
  1739. } else {
  1740. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1741. tp->undo_marker = 0;
  1742. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1743. }
  1744. /* Marking forward transmissions that were made after RTO lost
  1745. * can cause unnecessary retransmissions in some scenarios,
  1746. * SACK blocks will mitigate that in some but not in all cases.
  1747. * We used to not mark them but it was causing break-ups with
  1748. * receivers that do only in-order receival.
  1749. *
  1750. * TODO: we could detect presence of such receiver and select
  1751. * different behavior per flow.
  1752. */
  1753. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1754. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1755. tp->lost_out += tcp_skb_pcount(skb);
  1756. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1757. }
  1758. }
  1759. tcp_verify_left_out(tp);
  1760. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1761. tp->snd_cwnd_cnt = 0;
  1762. tp->snd_cwnd_stamp = tcp_time_stamp;
  1763. tp->frto_counter = 0;
  1764. tp->bytes_acked = 0;
  1765. tp->reordering = min_t(unsigned int, tp->reordering,
  1766. sysctl_tcp_reordering);
  1767. tcp_set_ca_state(sk, TCP_CA_Loss);
  1768. tp->high_seq = tp->snd_nxt;
  1769. TCP_ECN_queue_cwr(tp);
  1770. tcp_clear_all_retrans_hints(tp);
  1771. }
  1772. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1773. {
  1774. tp->retrans_out = 0;
  1775. tp->lost_out = 0;
  1776. tp->undo_marker = 0;
  1777. tp->undo_retrans = 0;
  1778. }
  1779. void tcp_clear_retrans(struct tcp_sock *tp)
  1780. {
  1781. tcp_clear_retrans_partial(tp);
  1782. tp->fackets_out = 0;
  1783. tp->sacked_out = 0;
  1784. }
  1785. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1786. * and reset tags completely, otherwise preserve SACKs. If receiver
  1787. * dropped its ofo queue, we will know this due to reneging detection.
  1788. */
  1789. void tcp_enter_loss(struct sock *sk, int how)
  1790. {
  1791. const struct inet_connection_sock *icsk = inet_csk(sk);
  1792. struct tcp_sock *tp = tcp_sk(sk);
  1793. struct sk_buff *skb;
  1794. /* Reduce ssthresh if it has not yet been made inside this window. */
  1795. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1796. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1797. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1798. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1799. tcp_ca_event(sk, CA_EVENT_LOSS);
  1800. }
  1801. tp->snd_cwnd = 1;
  1802. tp->snd_cwnd_cnt = 0;
  1803. tp->snd_cwnd_stamp = tcp_time_stamp;
  1804. tp->bytes_acked = 0;
  1805. tcp_clear_retrans_partial(tp);
  1806. if (tcp_is_reno(tp))
  1807. tcp_reset_reno_sack(tp);
  1808. if (!how) {
  1809. /* Push undo marker, if it was plain RTO and nothing
  1810. * was retransmitted. */
  1811. tp->undo_marker = tp->snd_una;
  1812. } else {
  1813. tp->sacked_out = 0;
  1814. tp->fackets_out = 0;
  1815. }
  1816. tcp_clear_all_retrans_hints(tp);
  1817. tcp_for_write_queue(skb, sk) {
  1818. if (skb == tcp_send_head(sk))
  1819. break;
  1820. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1821. tp->undo_marker = 0;
  1822. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1823. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1824. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1825. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1826. tp->lost_out += tcp_skb_pcount(skb);
  1827. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1828. }
  1829. }
  1830. tcp_verify_left_out(tp);
  1831. tp->reordering = min_t(unsigned int, tp->reordering,
  1832. sysctl_tcp_reordering);
  1833. tcp_set_ca_state(sk, TCP_CA_Loss);
  1834. tp->high_seq = tp->snd_nxt;
  1835. TCP_ECN_queue_cwr(tp);
  1836. /* Abort F-RTO algorithm if one is in progress */
  1837. tp->frto_counter = 0;
  1838. }
  1839. /* If ACK arrived pointing to a remembered SACK, it means that our
  1840. * remembered SACKs do not reflect real state of receiver i.e.
  1841. * receiver _host_ is heavily congested (or buggy).
  1842. *
  1843. * Do processing similar to RTO timeout.
  1844. */
  1845. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1846. {
  1847. if (flag & FLAG_SACK_RENEGING) {
  1848. struct inet_connection_sock *icsk = inet_csk(sk);
  1849. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1850. tcp_enter_loss(sk, 1);
  1851. icsk->icsk_retransmits++;
  1852. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1853. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1854. icsk->icsk_rto, TCP_RTO_MAX);
  1855. return true;
  1856. }
  1857. return false;
  1858. }
  1859. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1860. {
  1861. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1862. }
  1863. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1864. * counter when SACK is enabled (without SACK, sacked_out is used for
  1865. * that purpose).
  1866. *
  1867. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1868. * segments up to the highest received SACK block so far and holes in
  1869. * between them.
  1870. *
  1871. * With reordering, holes may still be in flight, so RFC3517 recovery
  1872. * uses pure sacked_out (total number of SACKed segments) even though
  1873. * it violates the RFC that uses duplicate ACKs, often these are equal
  1874. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1875. * they differ. Since neither occurs due to loss, TCP should really
  1876. * ignore them.
  1877. */
  1878. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1879. {
  1880. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1881. }
  1882. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1883. {
  1884. struct tcp_sock *tp = tcp_sk(sk);
  1885. unsigned long delay;
  1886. /* Delay early retransmit and entering fast recovery for
  1887. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1888. * available, or RTO is scheduled to fire first.
  1889. */
  1890. if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
  1891. return false;
  1892. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  1893. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1894. return false;
  1895. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
  1896. tp->early_retrans_delayed = 1;
  1897. return true;
  1898. }
  1899. static inline int tcp_skb_timedout(const struct sock *sk,
  1900. const struct sk_buff *skb)
  1901. {
  1902. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  1903. }
  1904. static inline int tcp_head_timedout(const struct sock *sk)
  1905. {
  1906. const struct tcp_sock *tp = tcp_sk(sk);
  1907. return tp->packets_out &&
  1908. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  1909. }
  1910. /* Linux NewReno/SACK/FACK/ECN state machine.
  1911. * --------------------------------------
  1912. *
  1913. * "Open" Normal state, no dubious events, fast path.
  1914. * "Disorder" In all the respects it is "Open",
  1915. * but requires a bit more attention. It is entered when
  1916. * we see some SACKs or dupacks. It is split of "Open"
  1917. * mainly to move some processing from fast path to slow one.
  1918. * "CWR" CWND was reduced due to some Congestion Notification event.
  1919. * It can be ECN, ICMP source quench, local device congestion.
  1920. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1921. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1922. *
  1923. * tcp_fastretrans_alert() is entered:
  1924. * - each incoming ACK, if state is not "Open"
  1925. * - when arrived ACK is unusual, namely:
  1926. * * SACK
  1927. * * Duplicate ACK.
  1928. * * ECN ECE.
  1929. *
  1930. * Counting packets in flight is pretty simple.
  1931. *
  1932. * in_flight = packets_out - left_out + retrans_out
  1933. *
  1934. * packets_out is SND.NXT-SND.UNA counted in packets.
  1935. *
  1936. * retrans_out is number of retransmitted segments.
  1937. *
  1938. * left_out is number of segments left network, but not ACKed yet.
  1939. *
  1940. * left_out = sacked_out + lost_out
  1941. *
  1942. * sacked_out: Packets, which arrived to receiver out of order
  1943. * and hence not ACKed. With SACKs this number is simply
  1944. * amount of SACKed data. Even without SACKs
  1945. * it is easy to give pretty reliable estimate of this number,
  1946. * counting duplicate ACKs.
  1947. *
  1948. * lost_out: Packets lost by network. TCP has no explicit
  1949. * "loss notification" feedback from network (for now).
  1950. * It means that this number can be only _guessed_.
  1951. * Actually, it is the heuristics to predict lossage that
  1952. * distinguishes different algorithms.
  1953. *
  1954. * F.e. after RTO, when all the queue is considered as lost,
  1955. * lost_out = packets_out and in_flight = retrans_out.
  1956. *
  1957. * Essentially, we have now two algorithms counting
  1958. * lost packets.
  1959. *
  1960. * FACK: It is the simplest heuristics. As soon as we decided
  1961. * that something is lost, we decide that _all_ not SACKed
  1962. * packets until the most forward SACK are lost. I.e.
  1963. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1964. * It is absolutely correct estimate, if network does not reorder
  1965. * packets. And it loses any connection to reality when reordering
  1966. * takes place. We use FACK by default until reordering
  1967. * is suspected on the path to this destination.
  1968. *
  1969. * NewReno: when Recovery is entered, we assume that one segment
  1970. * is lost (classic Reno). While we are in Recovery and
  1971. * a partial ACK arrives, we assume that one more packet
  1972. * is lost (NewReno). This heuristics are the same in NewReno
  1973. * and SACK.
  1974. *
  1975. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1976. * deflation etc. CWND is real congestion window, never inflated, changes
  1977. * only according to classic VJ rules.
  1978. *
  1979. * Really tricky (and requiring careful tuning) part of algorithm
  1980. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1981. * The first determines the moment _when_ we should reduce CWND and,
  1982. * hence, slow down forward transmission. In fact, it determines the moment
  1983. * when we decide that hole is caused by loss, rather than by a reorder.
  1984. *
  1985. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1986. * holes, caused by lost packets.
  1987. *
  1988. * And the most logically complicated part of algorithm is undo
  1989. * heuristics. We detect false retransmits due to both too early
  1990. * fast retransmit (reordering) and underestimated RTO, analyzing
  1991. * timestamps and D-SACKs. When we detect that some segments were
  1992. * retransmitted by mistake and CWND reduction was wrong, we undo
  1993. * window reduction and abort recovery phase. This logic is hidden
  1994. * inside several functions named tcp_try_undo_<something>.
  1995. */
  1996. /* This function decides, when we should leave Disordered state
  1997. * and enter Recovery phase, reducing congestion window.
  1998. *
  1999. * Main question: may we further continue forward transmission
  2000. * with the same cwnd?
  2001. */
  2002. static bool tcp_time_to_recover(struct sock *sk, int flag)
  2003. {
  2004. struct tcp_sock *tp = tcp_sk(sk);
  2005. __u32 packets_out;
  2006. /* Do not perform any recovery during F-RTO algorithm */
  2007. if (tp->frto_counter)
  2008. return false;
  2009. /* Trick#1: The loss is proven. */
  2010. if (tp->lost_out)
  2011. return true;
  2012. /* Not-A-Trick#2 : Classic rule... */
  2013. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2014. return true;
  2015. /* Trick#3 : when we use RFC2988 timer restart, fast
  2016. * retransmit can be triggered by timeout of queue head.
  2017. */
  2018. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2019. return true;
  2020. /* Trick#4: It is still not OK... But will it be useful to delay
  2021. * recovery more?
  2022. */
  2023. packets_out = tp->packets_out;
  2024. if (packets_out <= tp->reordering &&
  2025. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2026. !tcp_may_send_now(sk)) {
  2027. /* We have nothing to send. This connection is limited
  2028. * either by receiver window or by application.
  2029. */
  2030. return true;
  2031. }
  2032. /* If a thin stream is detected, retransmit after first
  2033. * received dupack. Employ only if SACK is supported in order
  2034. * to avoid possible corner-case series of spurious retransmissions
  2035. * Use only if there are no unsent data.
  2036. */
  2037. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2038. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2039. tcp_is_sack(tp) && !tcp_send_head(sk))
  2040. return true;
  2041. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  2042. * retransmissions due to small network reorderings, we implement
  2043. * Mitigation A.3 in the RFC and delay the retransmission for a short
  2044. * interval if appropriate.
  2045. */
  2046. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  2047. (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
  2048. !tcp_may_send_now(sk))
  2049. return !tcp_pause_early_retransmit(sk, flag);
  2050. return false;
  2051. }
  2052. /* New heuristics: it is possible only after we switched to restart timer
  2053. * each time when something is ACKed. Hence, we can detect timed out packets
  2054. * during fast retransmit without falling to slow start.
  2055. *
  2056. * Usefulness of this as is very questionable, since we should know which of
  2057. * the segments is the next to timeout which is relatively expensive to find
  2058. * in general case unless we add some data structure just for that. The
  2059. * current approach certainly won't find the right one too often and when it
  2060. * finally does find _something_ it usually marks large part of the window
  2061. * right away (because a retransmission with a larger timestamp blocks the
  2062. * loop from advancing). -ij
  2063. */
  2064. static void tcp_timeout_skbs(struct sock *sk)
  2065. {
  2066. struct tcp_sock *tp = tcp_sk(sk);
  2067. struct sk_buff *skb;
  2068. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2069. return;
  2070. skb = tp->scoreboard_skb_hint;
  2071. if (tp->scoreboard_skb_hint == NULL)
  2072. skb = tcp_write_queue_head(sk);
  2073. tcp_for_write_queue_from(skb, sk) {
  2074. if (skb == tcp_send_head(sk))
  2075. break;
  2076. if (!tcp_skb_timedout(sk, skb))
  2077. break;
  2078. tcp_skb_mark_lost(tp, skb);
  2079. }
  2080. tp->scoreboard_skb_hint = skb;
  2081. tcp_verify_left_out(tp);
  2082. }
  2083. /* Detect loss in event "A" above by marking head of queue up as lost.
  2084. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2085. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2086. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2087. * the maximum SACKed segments to pass before reaching this limit.
  2088. */
  2089. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2090. {
  2091. struct tcp_sock *tp = tcp_sk(sk);
  2092. struct sk_buff *skb;
  2093. int cnt, oldcnt;
  2094. int err;
  2095. unsigned int mss;
  2096. /* Use SACK to deduce losses of new sequences sent during recovery */
  2097. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2098. WARN_ON(packets > tp->packets_out);
  2099. if (tp->lost_skb_hint) {
  2100. skb = tp->lost_skb_hint;
  2101. cnt = tp->lost_cnt_hint;
  2102. /* Head already handled? */
  2103. if (mark_head && skb != tcp_write_queue_head(sk))
  2104. return;
  2105. } else {
  2106. skb = tcp_write_queue_head(sk);
  2107. cnt = 0;
  2108. }
  2109. tcp_for_write_queue_from(skb, sk) {
  2110. if (skb == tcp_send_head(sk))
  2111. break;
  2112. /* TODO: do this better */
  2113. /* this is not the most efficient way to do this... */
  2114. tp->lost_skb_hint = skb;
  2115. tp->lost_cnt_hint = cnt;
  2116. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2117. break;
  2118. oldcnt = cnt;
  2119. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2120. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2121. cnt += tcp_skb_pcount(skb);
  2122. if (cnt > packets) {
  2123. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2124. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  2125. (oldcnt >= packets))
  2126. break;
  2127. mss = skb_shinfo(skb)->gso_size;
  2128. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2129. if (err < 0)
  2130. break;
  2131. cnt = packets;
  2132. }
  2133. tcp_skb_mark_lost(tp, skb);
  2134. if (mark_head)
  2135. break;
  2136. }
  2137. tcp_verify_left_out(tp);
  2138. }
  2139. /* Account newly detected lost packet(s) */
  2140. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2141. {
  2142. struct tcp_sock *tp = tcp_sk(sk);
  2143. if (tcp_is_reno(tp)) {
  2144. tcp_mark_head_lost(sk, 1, 1);
  2145. } else if (tcp_is_fack(tp)) {
  2146. int lost = tp->fackets_out - tp->reordering;
  2147. if (lost <= 0)
  2148. lost = 1;
  2149. tcp_mark_head_lost(sk, lost, 0);
  2150. } else {
  2151. int sacked_upto = tp->sacked_out - tp->reordering;
  2152. if (sacked_upto >= 0)
  2153. tcp_mark_head_lost(sk, sacked_upto, 0);
  2154. else if (fast_rexmit)
  2155. tcp_mark_head_lost(sk, 1, 1);
  2156. }
  2157. tcp_timeout_skbs(sk);
  2158. }
  2159. /* CWND moderation, preventing bursts due to too big ACKs
  2160. * in dubious situations.
  2161. */
  2162. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2163. {
  2164. tp->snd_cwnd = min(tp->snd_cwnd,
  2165. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2166. tp->snd_cwnd_stamp = tcp_time_stamp;
  2167. }
  2168. /* Lower bound on congestion window is slow start threshold
  2169. * unless congestion avoidance choice decides to overide it.
  2170. */
  2171. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2172. {
  2173. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2174. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2175. }
  2176. /* Decrease cwnd each second ack. */
  2177. static void tcp_cwnd_down(struct sock *sk, int flag)
  2178. {
  2179. struct tcp_sock *tp = tcp_sk(sk);
  2180. int decr = tp->snd_cwnd_cnt + 1;
  2181. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2182. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2183. tp->snd_cwnd_cnt = decr & 1;
  2184. decr >>= 1;
  2185. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2186. tp->snd_cwnd -= decr;
  2187. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2188. tp->snd_cwnd_stamp = tcp_time_stamp;
  2189. }
  2190. }
  2191. /* Nothing was retransmitted or returned timestamp is less
  2192. * than timestamp of the first retransmission.
  2193. */
  2194. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  2195. {
  2196. return !tp->retrans_stamp ||
  2197. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2198. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2199. }
  2200. /* Undo procedures. */
  2201. #if FASTRETRANS_DEBUG > 1
  2202. static void DBGUNDO(struct sock *sk, const char *msg)
  2203. {
  2204. struct tcp_sock *tp = tcp_sk(sk);
  2205. struct inet_sock *inet = inet_sk(sk);
  2206. if (sk->sk_family == AF_INET) {
  2207. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2208. msg,
  2209. &inet->inet_daddr, ntohs(inet->inet_dport),
  2210. tp->snd_cwnd, tcp_left_out(tp),
  2211. tp->snd_ssthresh, tp->prior_ssthresh,
  2212. tp->packets_out);
  2213. }
  2214. #if IS_ENABLED(CONFIG_IPV6)
  2215. else if (sk->sk_family == AF_INET6) {
  2216. struct ipv6_pinfo *np = inet6_sk(sk);
  2217. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2218. msg,
  2219. &np->daddr, ntohs(inet->inet_dport),
  2220. tp->snd_cwnd, tcp_left_out(tp),
  2221. tp->snd_ssthresh, tp->prior_ssthresh,
  2222. tp->packets_out);
  2223. }
  2224. #endif
  2225. }
  2226. #else
  2227. #define DBGUNDO(x...) do { } while (0)
  2228. #endif
  2229. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2230. {
  2231. struct tcp_sock *tp = tcp_sk(sk);
  2232. if (tp->prior_ssthresh) {
  2233. const struct inet_connection_sock *icsk = inet_csk(sk);
  2234. if (icsk->icsk_ca_ops->undo_cwnd)
  2235. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2236. else
  2237. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2238. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2239. tp->snd_ssthresh = tp->prior_ssthresh;
  2240. TCP_ECN_withdraw_cwr(tp);
  2241. }
  2242. } else {
  2243. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2244. }
  2245. tp->snd_cwnd_stamp = tcp_time_stamp;
  2246. }
  2247. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2248. {
  2249. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2250. }
  2251. /* People celebrate: "We love our President!" */
  2252. static bool tcp_try_undo_recovery(struct sock *sk)
  2253. {
  2254. struct tcp_sock *tp = tcp_sk(sk);
  2255. if (tcp_may_undo(tp)) {
  2256. int mib_idx;
  2257. /* Happy end! We did not retransmit anything
  2258. * or our original transmission succeeded.
  2259. */
  2260. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2261. tcp_undo_cwr(sk, true);
  2262. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2263. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2264. else
  2265. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2266. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2267. tp->undo_marker = 0;
  2268. }
  2269. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2270. /* Hold old state until something *above* high_seq
  2271. * is ACKed. For Reno it is MUST to prevent false
  2272. * fast retransmits (RFC2582). SACK TCP is safe. */
  2273. tcp_moderate_cwnd(tp);
  2274. return true;
  2275. }
  2276. tcp_set_ca_state(sk, TCP_CA_Open);
  2277. return false;
  2278. }
  2279. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2280. static void tcp_try_undo_dsack(struct sock *sk)
  2281. {
  2282. struct tcp_sock *tp = tcp_sk(sk);
  2283. if (tp->undo_marker && !tp->undo_retrans) {
  2284. DBGUNDO(sk, "D-SACK");
  2285. tcp_undo_cwr(sk, true);
  2286. tp->undo_marker = 0;
  2287. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2288. }
  2289. }
  2290. /* We can clear retrans_stamp when there are no retransmissions in the
  2291. * window. It would seem that it is trivially available for us in
  2292. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2293. * what will happen if errors occur when sending retransmission for the
  2294. * second time. ...It could the that such segment has only
  2295. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2296. * the head skb is enough except for some reneging corner cases that
  2297. * are not worth the effort.
  2298. *
  2299. * Main reason for all this complexity is the fact that connection dying
  2300. * time now depends on the validity of the retrans_stamp, in particular,
  2301. * that successive retransmissions of a segment must not advance
  2302. * retrans_stamp under any conditions.
  2303. */
  2304. static bool tcp_any_retrans_done(const struct sock *sk)
  2305. {
  2306. const struct tcp_sock *tp = tcp_sk(sk);
  2307. struct sk_buff *skb;
  2308. if (tp->retrans_out)
  2309. return true;
  2310. skb = tcp_write_queue_head(sk);
  2311. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2312. return true;
  2313. return false;
  2314. }
  2315. /* Undo during fast recovery after partial ACK. */
  2316. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2317. {
  2318. struct tcp_sock *tp = tcp_sk(sk);
  2319. /* Partial ACK arrived. Force Hoe's retransmit. */
  2320. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2321. if (tcp_may_undo(tp)) {
  2322. /* Plain luck! Hole if filled with delayed
  2323. * packet, rather than with a retransmit.
  2324. */
  2325. if (!tcp_any_retrans_done(sk))
  2326. tp->retrans_stamp = 0;
  2327. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2328. DBGUNDO(sk, "Hoe");
  2329. tcp_undo_cwr(sk, false);
  2330. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2331. /* So... Do not make Hoe's retransmit yet.
  2332. * If the first packet was delayed, the rest
  2333. * ones are most probably delayed as well.
  2334. */
  2335. failed = 0;
  2336. }
  2337. return failed;
  2338. }
  2339. /* Undo during loss recovery after partial ACK. */
  2340. static bool tcp_try_undo_loss(struct sock *sk)
  2341. {
  2342. struct tcp_sock *tp = tcp_sk(sk);
  2343. if (tcp_may_undo(tp)) {
  2344. struct sk_buff *skb;
  2345. tcp_for_write_queue(skb, sk) {
  2346. if (skb == tcp_send_head(sk))
  2347. break;
  2348. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2349. }
  2350. tcp_clear_all_retrans_hints(tp);
  2351. DBGUNDO(sk, "partial loss");
  2352. tp->lost_out = 0;
  2353. tcp_undo_cwr(sk, true);
  2354. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2355. inet_csk(sk)->icsk_retransmits = 0;
  2356. tp->undo_marker = 0;
  2357. if (tcp_is_sack(tp))
  2358. tcp_set_ca_state(sk, TCP_CA_Open);
  2359. return true;
  2360. }
  2361. return false;
  2362. }
  2363. static inline void tcp_complete_cwr(struct sock *sk)
  2364. {
  2365. struct tcp_sock *tp = tcp_sk(sk);
  2366. /* Do not moderate cwnd if it's already undone in cwr or recovery. */
  2367. if (tp->undo_marker) {
  2368. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
  2369. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2370. tp->snd_cwnd_stamp = tcp_time_stamp;
  2371. } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
  2372. /* PRR algorithm. */
  2373. tp->snd_cwnd = tp->snd_ssthresh;
  2374. tp->snd_cwnd_stamp = tcp_time_stamp;
  2375. }
  2376. }
  2377. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2378. }
  2379. static void tcp_try_keep_open(struct sock *sk)
  2380. {
  2381. struct tcp_sock *tp = tcp_sk(sk);
  2382. int state = TCP_CA_Open;
  2383. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2384. state = TCP_CA_Disorder;
  2385. if (inet_csk(sk)->icsk_ca_state != state) {
  2386. tcp_set_ca_state(sk, state);
  2387. tp->high_seq = tp->snd_nxt;
  2388. }
  2389. }
  2390. static void tcp_try_to_open(struct sock *sk, int flag)
  2391. {
  2392. struct tcp_sock *tp = tcp_sk(sk);
  2393. tcp_verify_left_out(tp);
  2394. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2395. tp->retrans_stamp = 0;
  2396. if (flag & FLAG_ECE)
  2397. tcp_enter_cwr(sk, 1);
  2398. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2399. tcp_try_keep_open(sk);
  2400. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2401. tcp_moderate_cwnd(tp);
  2402. } else {
  2403. tcp_cwnd_down(sk, flag);
  2404. }
  2405. }
  2406. static void tcp_mtup_probe_failed(struct sock *sk)
  2407. {
  2408. struct inet_connection_sock *icsk = inet_csk(sk);
  2409. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2410. icsk->icsk_mtup.probe_size = 0;
  2411. }
  2412. static void tcp_mtup_probe_success(struct sock *sk)
  2413. {
  2414. struct tcp_sock *tp = tcp_sk(sk);
  2415. struct inet_connection_sock *icsk = inet_csk(sk);
  2416. /* FIXME: breaks with very large cwnd */
  2417. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2418. tp->snd_cwnd = tp->snd_cwnd *
  2419. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2420. icsk->icsk_mtup.probe_size;
  2421. tp->snd_cwnd_cnt = 0;
  2422. tp->snd_cwnd_stamp = tcp_time_stamp;
  2423. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2424. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2425. icsk->icsk_mtup.probe_size = 0;
  2426. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2427. }
  2428. /* Do a simple retransmit without using the backoff mechanisms in
  2429. * tcp_timer. This is used for path mtu discovery.
  2430. * The socket is already locked here.
  2431. */
  2432. void tcp_simple_retransmit(struct sock *sk)
  2433. {
  2434. const struct inet_connection_sock *icsk = inet_csk(sk);
  2435. struct tcp_sock *tp = tcp_sk(sk);
  2436. struct sk_buff *skb;
  2437. unsigned int mss = tcp_current_mss(sk);
  2438. u32 prior_lost = tp->lost_out;
  2439. tcp_for_write_queue(skb, sk) {
  2440. if (skb == tcp_send_head(sk))
  2441. break;
  2442. if (tcp_skb_seglen(skb) > mss &&
  2443. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2444. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2445. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2446. tp->retrans_out -= tcp_skb_pcount(skb);
  2447. }
  2448. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2449. }
  2450. }
  2451. tcp_clear_retrans_hints_partial(tp);
  2452. if (prior_lost == tp->lost_out)
  2453. return;
  2454. if (tcp_is_reno(tp))
  2455. tcp_limit_reno_sacked(tp);
  2456. tcp_verify_left_out(tp);
  2457. /* Don't muck with the congestion window here.
  2458. * Reason is that we do not increase amount of _data_
  2459. * in network, but units changed and effective
  2460. * cwnd/ssthresh really reduced now.
  2461. */
  2462. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2463. tp->high_seq = tp->snd_nxt;
  2464. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2465. tp->prior_ssthresh = 0;
  2466. tp->undo_marker = 0;
  2467. tcp_set_ca_state(sk, TCP_CA_Loss);
  2468. }
  2469. tcp_xmit_retransmit_queue(sk);
  2470. }
  2471. EXPORT_SYMBOL(tcp_simple_retransmit);
  2472. /* This function implements the PRR algorithm, specifcally the PRR-SSRB
  2473. * (proportional rate reduction with slow start reduction bound) as described in
  2474. * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
  2475. * It computes the number of packets to send (sndcnt) based on packets newly
  2476. * delivered:
  2477. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2478. * cwnd reductions across a full RTT.
  2479. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2480. * losses and/or application stalls), do not perform any further cwnd
  2481. * reductions, but instead slow start up to ssthresh.
  2482. */
  2483. static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
  2484. int fast_rexmit, int flag)
  2485. {
  2486. struct tcp_sock *tp = tcp_sk(sk);
  2487. int sndcnt = 0;
  2488. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2489. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2490. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2491. tp->prior_cwnd - 1;
  2492. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2493. } else {
  2494. sndcnt = min_t(int, delta,
  2495. max_t(int, tp->prr_delivered - tp->prr_out,
  2496. newly_acked_sacked) + 1);
  2497. }
  2498. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2499. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2500. }
  2501. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2502. {
  2503. struct tcp_sock *tp = tcp_sk(sk);
  2504. int mib_idx;
  2505. if (tcp_is_reno(tp))
  2506. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2507. else
  2508. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2509. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2510. tp->high_seq = tp->snd_nxt;
  2511. tp->prior_ssthresh = 0;
  2512. tp->undo_marker = tp->snd_una;
  2513. tp->undo_retrans = tp->retrans_out;
  2514. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2515. if (!ece_ack)
  2516. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2517. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2518. TCP_ECN_queue_cwr(tp);
  2519. }
  2520. tp->bytes_acked = 0;
  2521. tp->snd_cwnd_cnt = 0;
  2522. tp->prior_cwnd = tp->snd_cwnd;
  2523. tp->prr_delivered = 0;
  2524. tp->prr_out = 0;
  2525. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2526. }
  2527. /* Process an event, which can update packets-in-flight not trivially.
  2528. * Main goal of this function is to calculate new estimate for left_out,
  2529. * taking into account both packets sitting in receiver's buffer and
  2530. * packets lost by network.
  2531. *
  2532. * Besides that it does CWND reduction, when packet loss is detected
  2533. * and changes state of machine.
  2534. *
  2535. * It does _not_ decide what to send, it is made in function
  2536. * tcp_xmit_retransmit_queue().
  2537. */
  2538. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2539. int newly_acked_sacked, bool is_dupack,
  2540. int flag)
  2541. {
  2542. struct inet_connection_sock *icsk = inet_csk(sk);
  2543. struct tcp_sock *tp = tcp_sk(sk);
  2544. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2545. (tcp_fackets_out(tp) > tp->reordering));
  2546. int fast_rexmit = 0;
  2547. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2548. tp->sacked_out = 0;
  2549. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2550. tp->fackets_out = 0;
  2551. /* Now state machine starts.
  2552. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2553. if (flag & FLAG_ECE)
  2554. tp->prior_ssthresh = 0;
  2555. /* B. In all the states check for reneging SACKs. */
  2556. if (tcp_check_sack_reneging(sk, flag))
  2557. return;
  2558. /* C. Check consistency of the current state. */
  2559. tcp_verify_left_out(tp);
  2560. /* D. Check state exit conditions. State can be terminated
  2561. * when high_seq is ACKed. */
  2562. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2563. WARN_ON(tp->retrans_out != 0);
  2564. tp->retrans_stamp = 0;
  2565. } else if (!before(tp->snd_una, tp->high_seq)) {
  2566. switch (icsk->icsk_ca_state) {
  2567. case TCP_CA_Loss:
  2568. icsk->icsk_retransmits = 0;
  2569. if (tcp_try_undo_recovery(sk))
  2570. return;
  2571. break;
  2572. case TCP_CA_CWR:
  2573. /* CWR is to be held something *above* high_seq
  2574. * is ACKed for CWR bit to reach receiver. */
  2575. if (tp->snd_una != tp->high_seq) {
  2576. tcp_complete_cwr(sk);
  2577. tcp_set_ca_state(sk, TCP_CA_Open);
  2578. }
  2579. break;
  2580. case TCP_CA_Recovery:
  2581. if (tcp_is_reno(tp))
  2582. tcp_reset_reno_sack(tp);
  2583. if (tcp_try_undo_recovery(sk))
  2584. return;
  2585. tcp_complete_cwr(sk);
  2586. break;
  2587. }
  2588. }
  2589. /* E. Process state. */
  2590. switch (icsk->icsk_ca_state) {
  2591. case TCP_CA_Recovery:
  2592. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2593. if (tcp_is_reno(tp) && is_dupack)
  2594. tcp_add_reno_sack(sk);
  2595. } else
  2596. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2597. break;
  2598. case TCP_CA_Loss:
  2599. if (flag & FLAG_DATA_ACKED)
  2600. icsk->icsk_retransmits = 0;
  2601. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2602. tcp_reset_reno_sack(tp);
  2603. if (!tcp_try_undo_loss(sk)) {
  2604. tcp_moderate_cwnd(tp);
  2605. tcp_xmit_retransmit_queue(sk);
  2606. return;
  2607. }
  2608. if (icsk->icsk_ca_state != TCP_CA_Open)
  2609. return;
  2610. /* Loss is undone; fall through to processing in Open state. */
  2611. default:
  2612. if (tcp_is_reno(tp)) {
  2613. if (flag & FLAG_SND_UNA_ADVANCED)
  2614. tcp_reset_reno_sack(tp);
  2615. if (is_dupack)
  2616. tcp_add_reno_sack(sk);
  2617. }
  2618. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2619. tcp_try_undo_dsack(sk);
  2620. if (!tcp_time_to_recover(sk, flag)) {
  2621. tcp_try_to_open(sk, flag);
  2622. return;
  2623. }
  2624. /* MTU probe failure: don't reduce cwnd */
  2625. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2626. icsk->icsk_mtup.probe_size &&
  2627. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2628. tcp_mtup_probe_failed(sk);
  2629. /* Restores the reduction we did in tcp_mtup_probe() */
  2630. tp->snd_cwnd++;
  2631. tcp_simple_retransmit(sk);
  2632. return;
  2633. }
  2634. /* Otherwise enter Recovery state */
  2635. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2636. fast_rexmit = 1;
  2637. }
  2638. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2639. tcp_update_scoreboard(sk, fast_rexmit);
  2640. tp->prr_delivered += newly_acked_sacked;
  2641. tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
  2642. tcp_xmit_retransmit_queue(sk);
  2643. }
  2644. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2645. {
  2646. tcp_rtt_estimator(sk, seq_rtt);
  2647. tcp_set_rto(sk);
  2648. inet_csk(sk)->icsk_backoff = 0;
  2649. }
  2650. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2651. /* Read draft-ietf-tcplw-high-performance before mucking
  2652. * with this code. (Supersedes RFC1323)
  2653. */
  2654. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2655. {
  2656. /* RTTM Rule: A TSecr value received in a segment is used to
  2657. * update the averaged RTT measurement only if the segment
  2658. * acknowledges some new data, i.e., only if it advances the
  2659. * left edge of the send window.
  2660. *
  2661. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2662. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2663. *
  2664. * Changed: reset backoff as soon as we see the first valid sample.
  2665. * If we do not, we get strongly overestimated rto. With timestamps
  2666. * samples are accepted even from very old segments: f.e., when rtt=1
  2667. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2668. * answer arrives rto becomes 120 seconds! If at least one of segments
  2669. * in window is lost... Voila. --ANK (010210)
  2670. */
  2671. struct tcp_sock *tp = tcp_sk(sk);
  2672. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2673. }
  2674. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2675. {
  2676. /* We don't have a timestamp. Can only use
  2677. * packets that are not retransmitted to determine
  2678. * rtt estimates. Also, we must not reset the
  2679. * backoff for rto until we get a non-retransmitted
  2680. * packet. This allows us to deal with a situation
  2681. * where the network delay has increased suddenly.
  2682. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2683. */
  2684. if (flag & FLAG_RETRANS_DATA_ACKED)
  2685. return;
  2686. tcp_valid_rtt_meas(sk, seq_rtt);
  2687. }
  2688. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2689. const s32 seq_rtt)
  2690. {
  2691. const struct tcp_sock *tp = tcp_sk(sk);
  2692. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2693. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2694. tcp_ack_saw_tstamp(sk, flag);
  2695. else if (seq_rtt >= 0)
  2696. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2697. }
  2698. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2699. {
  2700. const struct inet_connection_sock *icsk = inet_csk(sk);
  2701. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2702. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2703. }
  2704. /* Restart timer after forward progress on connection.
  2705. * RFC2988 recommends to restart timer to now+rto.
  2706. */
  2707. void tcp_rearm_rto(struct sock *sk)
  2708. {
  2709. struct tcp_sock *tp = tcp_sk(sk);
  2710. if (!tp->packets_out) {
  2711. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2712. } else {
  2713. u32 rto = inet_csk(sk)->icsk_rto;
  2714. /* Offset the time elapsed after installing regular RTO */
  2715. if (tp->early_retrans_delayed) {
  2716. struct sk_buff *skb = tcp_write_queue_head(sk);
  2717. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2718. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2719. /* delta may not be positive if the socket is locked
  2720. * when the delayed ER timer fires and is rescheduled.
  2721. */
  2722. if (delta > 0)
  2723. rto = delta;
  2724. }
  2725. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2726. TCP_RTO_MAX);
  2727. }
  2728. tp->early_retrans_delayed = 0;
  2729. }
  2730. /* This function is called when the delayed ER timer fires. TCP enters
  2731. * fast recovery and performs fast-retransmit.
  2732. */
  2733. void tcp_resume_early_retransmit(struct sock *sk)
  2734. {
  2735. struct tcp_sock *tp = tcp_sk(sk);
  2736. tcp_rearm_rto(sk);
  2737. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2738. if (!tp->do_early_retrans)
  2739. return;
  2740. tcp_enter_recovery(sk, false);
  2741. tcp_update_scoreboard(sk, 1);
  2742. tcp_xmit_retransmit_queue(sk);
  2743. }
  2744. /* If we get here, the whole TSO packet has not been acked. */
  2745. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2746. {
  2747. struct tcp_sock *tp = tcp_sk(sk);
  2748. u32 packets_acked;
  2749. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2750. packets_acked = tcp_skb_pcount(skb);
  2751. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2752. return 0;
  2753. packets_acked -= tcp_skb_pcount(skb);
  2754. if (packets_acked) {
  2755. BUG_ON(tcp_skb_pcount(skb) == 0);
  2756. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2757. }
  2758. return packets_acked;
  2759. }
  2760. /* Remove acknowledged frames from the retransmission queue. If our packet
  2761. * is before the ack sequence we can discard it as it's confirmed to have
  2762. * arrived at the other end.
  2763. */
  2764. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2765. u32 prior_snd_una)
  2766. {
  2767. struct tcp_sock *tp = tcp_sk(sk);
  2768. const struct inet_connection_sock *icsk = inet_csk(sk);
  2769. struct sk_buff *skb;
  2770. u32 now = tcp_time_stamp;
  2771. int fully_acked = true;
  2772. int flag = 0;
  2773. u32 pkts_acked = 0;
  2774. u32 reord = tp->packets_out;
  2775. u32 prior_sacked = tp->sacked_out;
  2776. s32 seq_rtt = -1;
  2777. s32 ca_seq_rtt = -1;
  2778. ktime_t last_ackt = net_invalid_timestamp();
  2779. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2780. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2781. u32 acked_pcount;
  2782. u8 sacked = scb->sacked;
  2783. /* Determine how many packets and what bytes were acked, tso and else */
  2784. if (after(scb->end_seq, tp->snd_una)) {
  2785. if (tcp_skb_pcount(skb) == 1 ||
  2786. !after(tp->snd_una, scb->seq))
  2787. break;
  2788. acked_pcount = tcp_tso_acked(sk, skb);
  2789. if (!acked_pcount)
  2790. break;
  2791. fully_acked = false;
  2792. } else {
  2793. acked_pcount = tcp_skb_pcount(skb);
  2794. }
  2795. if (sacked & TCPCB_RETRANS) {
  2796. if (sacked & TCPCB_SACKED_RETRANS)
  2797. tp->retrans_out -= acked_pcount;
  2798. flag |= FLAG_RETRANS_DATA_ACKED;
  2799. ca_seq_rtt = -1;
  2800. seq_rtt = -1;
  2801. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2802. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2803. } else {
  2804. ca_seq_rtt = now - scb->when;
  2805. last_ackt = skb->tstamp;
  2806. if (seq_rtt < 0) {
  2807. seq_rtt = ca_seq_rtt;
  2808. }
  2809. if (!(sacked & TCPCB_SACKED_ACKED))
  2810. reord = min(pkts_acked, reord);
  2811. }
  2812. if (sacked & TCPCB_SACKED_ACKED)
  2813. tp->sacked_out -= acked_pcount;
  2814. if (sacked & TCPCB_LOST)
  2815. tp->lost_out -= acked_pcount;
  2816. tp->packets_out -= acked_pcount;
  2817. pkts_acked += acked_pcount;
  2818. /* Initial outgoing SYN's get put onto the write_queue
  2819. * just like anything else we transmit. It is not
  2820. * true data, and if we misinform our callers that
  2821. * this ACK acks real data, we will erroneously exit
  2822. * connection startup slow start one packet too
  2823. * quickly. This is severely frowned upon behavior.
  2824. */
  2825. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2826. flag |= FLAG_DATA_ACKED;
  2827. } else {
  2828. flag |= FLAG_SYN_ACKED;
  2829. tp->retrans_stamp = 0;
  2830. }
  2831. if (!fully_acked)
  2832. break;
  2833. tcp_unlink_write_queue(skb, sk);
  2834. sk_wmem_free_skb(sk, skb);
  2835. tp->scoreboard_skb_hint = NULL;
  2836. if (skb == tp->retransmit_skb_hint)
  2837. tp->retransmit_skb_hint = NULL;
  2838. if (skb == tp->lost_skb_hint)
  2839. tp->lost_skb_hint = NULL;
  2840. }
  2841. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2842. tp->snd_up = tp->snd_una;
  2843. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2844. flag |= FLAG_SACK_RENEGING;
  2845. if (flag & FLAG_ACKED) {
  2846. const struct tcp_congestion_ops *ca_ops
  2847. = inet_csk(sk)->icsk_ca_ops;
  2848. if (unlikely(icsk->icsk_mtup.probe_size &&
  2849. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2850. tcp_mtup_probe_success(sk);
  2851. }
  2852. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2853. tcp_rearm_rto(sk);
  2854. if (tcp_is_reno(tp)) {
  2855. tcp_remove_reno_sacks(sk, pkts_acked);
  2856. } else {
  2857. int delta;
  2858. /* Non-retransmitted hole got filled? That's reordering */
  2859. if (reord < prior_fackets)
  2860. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2861. delta = tcp_is_fack(tp) ? pkts_acked :
  2862. prior_sacked - tp->sacked_out;
  2863. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2864. }
  2865. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2866. if (ca_ops->pkts_acked) {
  2867. s32 rtt_us = -1;
  2868. /* Is the ACK triggering packet unambiguous? */
  2869. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2870. /* High resolution needed and available? */
  2871. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2872. !ktime_equal(last_ackt,
  2873. net_invalid_timestamp()))
  2874. rtt_us = ktime_us_delta(ktime_get_real(),
  2875. last_ackt);
  2876. else if (ca_seq_rtt >= 0)
  2877. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2878. }
  2879. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2880. }
  2881. }
  2882. #if FASTRETRANS_DEBUG > 0
  2883. WARN_ON((int)tp->sacked_out < 0);
  2884. WARN_ON((int)tp->lost_out < 0);
  2885. WARN_ON((int)tp->retrans_out < 0);
  2886. if (!tp->packets_out && tcp_is_sack(tp)) {
  2887. icsk = inet_csk(sk);
  2888. if (tp->lost_out) {
  2889. pr_debug("Leak l=%u %d\n",
  2890. tp->lost_out, icsk->icsk_ca_state);
  2891. tp->lost_out = 0;
  2892. }
  2893. if (tp->sacked_out) {
  2894. pr_debug("Leak s=%u %d\n",
  2895. tp->sacked_out, icsk->icsk_ca_state);
  2896. tp->sacked_out = 0;
  2897. }
  2898. if (tp->retrans_out) {
  2899. pr_debug("Leak r=%u %d\n",
  2900. tp->retrans_out, icsk->icsk_ca_state);
  2901. tp->retrans_out = 0;
  2902. }
  2903. }
  2904. #endif
  2905. return flag;
  2906. }
  2907. static void tcp_ack_probe(struct sock *sk)
  2908. {
  2909. const struct tcp_sock *tp = tcp_sk(sk);
  2910. struct inet_connection_sock *icsk = inet_csk(sk);
  2911. /* Was it a usable window open? */
  2912. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2913. icsk->icsk_backoff = 0;
  2914. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2915. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2916. * This function is not for random using!
  2917. */
  2918. } else {
  2919. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2920. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2921. TCP_RTO_MAX);
  2922. }
  2923. }
  2924. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2925. {
  2926. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2927. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2928. }
  2929. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2930. {
  2931. const struct tcp_sock *tp = tcp_sk(sk);
  2932. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2933. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  2934. }
  2935. /* Check that window update is acceptable.
  2936. * The function assumes that snd_una<=ack<=snd_next.
  2937. */
  2938. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2939. const u32 ack, const u32 ack_seq,
  2940. const u32 nwin)
  2941. {
  2942. return after(ack, tp->snd_una) ||
  2943. after(ack_seq, tp->snd_wl1) ||
  2944. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2945. }
  2946. /* Update our send window.
  2947. *
  2948. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2949. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2950. */
  2951. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2952. u32 ack_seq)
  2953. {
  2954. struct tcp_sock *tp = tcp_sk(sk);
  2955. int flag = 0;
  2956. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2957. if (likely(!tcp_hdr(skb)->syn))
  2958. nwin <<= tp->rx_opt.snd_wscale;
  2959. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2960. flag |= FLAG_WIN_UPDATE;
  2961. tcp_update_wl(tp, ack_seq);
  2962. if (tp->snd_wnd != nwin) {
  2963. tp->snd_wnd = nwin;
  2964. /* Note, it is the only place, where
  2965. * fast path is recovered for sending TCP.
  2966. */
  2967. tp->pred_flags = 0;
  2968. tcp_fast_path_check(sk);
  2969. if (nwin > tp->max_window) {
  2970. tp->max_window = nwin;
  2971. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2972. }
  2973. }
  2974. }
  2975. tp->snd_una = ack;
  2976. return flag;
  2977. }
  2978. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  2979. * continue in congestion avoidance.
  2980. */
  2981. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  2982. {
  2983. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2984. tp->snd_cwnd_cnt = 0;
  2985. tp->bytes_acked = 0;
  2986. TCP_ECN_queue_cwr(tp);
  2987. tcp_moderate_cwnd(tp);
  2988. }
  2989. /* A conservative spurious RTO response algorithm: reduce cwnd using
  2990. * rate halving and continue in congestion avoidance.
  2991. */
  2992. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  2993. {
  2994. tcp_enter_cwr(sk, 0);
  2995. }
  2996. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  2997. {
  2998. if (flag & FLAG_ECE)
  2999. tcp_ratehalving_spur_to_response(sk);
  3000. else
  3001. tcp_undo_cwr(sk, true);
  3002. }
  3003. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3004. *
  3005. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3006. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3007. * window (but not to or beyond highest sequence sent before RTO):
  3008. * On First ACK, send two new segments out.
  3009. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3010. * algorithm is not part of the F-RTO detection algorithm
  3011. * given in RFC4138 but can be selected separately).
  3012. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3013. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3014. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3015. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3016. *
  3017. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3018. * original window even after we transmit two new data segments.
  3019. *
  3020. * SACK version:
  3021. * on first step, wait until first cumulative ACK arrives, then move to
  3022. * the second step. In second step, the next ACK decides.
  3023. *
  3024. * F-RTO is implemented (mainly) in four functions:
  3025. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3026. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3027. * called when tcp_use_frto() showed green light
  3028. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3029. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3030. * to prove that the RTO is indeed spurious. It transfers the control
  3031. * from F-RTO to the conventional RTO recovery
  3032. */
  3033. static bool tcp_process_frto(struct sock *sk, int flag)
  3034. {
  3035. struct tcp_sock *tp = tcp_sk(sk);
  3036. tcp_verify_left_out(tp);
  3037. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3038. if (flag & FLAG_DATA_ACKED)
  3039. inet_csk(sk)->icsk_retransmits = 0;
  3040. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3041. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3042. tp->undo_marker = 0;
  3043. if (!before(tp->snd_una, tp->frto_highmark)) {
  3044. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3045. return true;
  3046. }
  3047. if (!tcp_is_sackfrto(tp)) {
  3048. /* RFC4138 shortcoming in step 2; should also have case c):
  3049. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3050. * data, winupdate
  3051. */
  3052. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3053. return true;
  3054. if (!(flag & FLAG_DATA_ACKED)) {
  3055. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3056. flag);
  3057. return true;
  3058. }
  3059. } else {
  3060. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3061. /* Prevent sending of new data. */
  3062. tp->snd_cwnd = min(tp->snd_cwnd,
  3063. tcp_packets_in_flight(tp));
  3064. return true;
  3065. }
  3066. if ((tp->frto_counter >= 2) &&
  3067. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3068. ((flag & FLAG_DATA_SACKED) &&
  3069. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3070. /* RFC4138 shortcoming (see comment above) */
  3071. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3072. (flag & FLAG_NOT_DUP))
  3073. return true;
  3074. tcp_enter_frto_loss(sk, 3, flag);
  3075. return true;
  3076. }
  3077. }
  3078. if (tp->frto_counter == 1) {
  3079. /* tcp_may_send_now needs to see updated state */
  3080. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3081. tp->frto_counter = 2;
  3082. if (!tcp_may_send_now(sk))
  3083. tcp_enter_frto_loss(sk, 2, flag);
  3084. return true;
  3085. } else {
  3086. switch (sysctl_tcp_frto_response) {
  3087. case 2:
  3088. tcp_undo_spur_to_response(sk, flag);
  3089. break;
  3090. case 1:
  3091. tcp_conservative_spur_to_response(tp);
  3092. break;
  3093. default:
  3094. tcp_ratehalving_spur_to_response(sk);
  3095. break;
  3096. }
  3097. tp->frto_counter = 0;
  3098. tp->undo_marker = 0;
  3099. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3100. }
  3101. return false;
  3102. }
  3103. /* This routine deals with incoming acks, but not outgoing ones. */
  3104. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3105. {
  3106. struct inet_connection_sock *icsk = inet_csk(sk);
  3107. struct tcp_sock *tp = tcp_sk(sk);
  3108. u32 prior_snd_una = tp->snd_una;
  3109. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3110. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3111. bool is_dupack = false;
  3112. u32 prior_in_flight;
  3113. u32 prior_fackets;
  3114. int prior_packets;
  3115. int prior_sacked = tp->sacked_out;
  3116. int pkts_acked = 0;
  3117. int newly_acked_sacked = 0;
  3118. bool frto_cwnd = false;
  3119. /* If the ack is older than previous acks
  3120. * then we can probably ignore it.
  3121. */
  3122. if (before(ack, prior_snd_una))
  3123. goto old_ack;
  3124. /* If the ack includes data we haven't sent yet, discard
  3125. * this segment (RFC793 Section 3.9).
  3126. */
  3127. if (after(ack, tp->snd_nxt))
  3128. goto invalid_ack;
  3129. if (tp->early_retrans_delayed)
  3130. tcp_rearm_rto(sk);
  3131. if (after(ack, prior_snd_una))
  3132. flag |= FLAG_SND_UNA_ADVANCED;
  3133. if (sysctl_tcp_abc) {
  3134. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3135. tp->bytes_acked += ack - prior_snd_una;
  3136. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3137. /* we assume just one segment left network */
  3138. tp->bytes_acked += min(ack - prior_snd_una,
  3139. tp->mss_cache);
  3140. }
  3141. prior_fackets = tp->fackets_out;
  3142. prior_in_flight = tcp_packets_in_flight(tp);
  3143. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3144. /* Window is constant, pure forward advance.
  3145. * No more checks are required.
  3146. * Note, we use the fact that SND.UNA>=SND.WL2.
  3147. */
  3148. tcp_update_wl(tp, ack_seq);
  3149. tp->snd_una = ack;
  3150. flag |= FLAG_WIN_UPDATE;
  3151. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3152. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3153. } else {
  3154. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3155. flag |= FLAG_DATA;
  3156. else
  3157. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3158. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3159. if (TCP_SKB_CB(skb)->sacked)
  3160. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3161. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3162. flag |= FLAG_ECE;
  3163. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3164. }
  3165. /* We passed data and got it acked, remove any soft error
  3166. * log. Something worked...
  3167. */
  3168. sk->sk_err_soft = 0;
  3169. icsk->icsk_probes_out = 0;
  3170. tp->rcv_tstamp = tcp_time_stamp;
  3171. prior_packets = tp->packets_out;
  3172. if (!prior_packets)
  3173. goto no_queue;
  3174. /* See if we can take anything off of the retransmit queue. */
  3175. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3176. pkts_acked = prior_packets - tp->packets_out;
  3177. newly_acked_sacked = (prior_packets - prior_sacked) -
  3178. (tp->packets_out - tp->sacked_out);
  3179. if (tp->frto_counter)
  3180. frto_cwnd = tcp_process_frto(sk, flag);
  3181. /* Guarantee sacktag reordering detection against wrap-arounds */
  3182. if (before(tp->frto_highmark, tp->snd_una))
  3183. tp->frto_highmark = 0;
  3184. if (tcp_ack_is_dubious(sk, flag)) {
  3185. /* Advance CWND, if state allows this. */
  3186. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3187. tcp_may_raise_cwnd(sk, flag))
  3188. tcp_cong_avoid(sk, ack, prior_in_flight);
  3189. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3190. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3191. is_dupack, flag);
  3192. } else {
  3193. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3194. tcp_cong_avoid(sk, ack, prior_in_flight);
  3195. }
  3196. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  3197. struct dst_entry *dst = __sk_dst_get(sk);
  3198. if (dst)
  3199. dst_confirm(dst);
  3200. }
  3201. return 1;
  3202. no_queue:
  3203. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3204. if (flag & FLAG_DSACKING_ACK)
  3205. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3206. is_dupack, flag);
  3207. /* If this ack opens up a zero window, clear backoff. It was
  3208. * being used to time the probes, and is probably far higher than
  3209. * it needs to be for normal retransmission.
  3210. */
  3211. if (tcp_send_head(sk))
  3212. tcp_ack_probe(sk);
  3213. return 1;
  3214. invalid_ack:
  3215. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3216. return -1;
  3217. old_ack:
  3218. /* If data was SACKed, tag it and see if we should send more data.
  3219. * If data was DSACKed, see if we can undo a cwnd reduction.
  3220. */
  3221. if (TCP_SKB_CB(skb)->sacked) {
  3222. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3223. newly_acked_sacked = tp->sacked_out - prior_sacked;
  3224. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3225. is_dupack, flag);
  3226. }
  3227. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3228. return 0;
  3229. }
  3230. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3231. * But, this can also be called on packets in the established flow when
  3232. * the fast version below fails.
  3233. */
  3234. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3235. const u8 **hvpp, int estab,
  3236. struct tcp_fastopen_cookie *foc)
  3237. {
  3238. const unsigned char *ptr;
  3239. const struct tcphdr *th = tcp_hdr(skb);
  3240. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3241. ptr = (const unsigned char *)(th + 1);
  3242. opt_rx->saw_tstamp = 0;
  3243. while (length > 0) {
  3244. int opcode = *ptr++;
  3245. int opsize;
  3246. switch (opcode) {
  3247. case TCPOPT_EOL:
  3248. return;
  3249. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3250. length--;
  3251. continue;
  3252. default:
  3253. opsize = *ptr++;
  3254. if (opsize < 2) /* "silly options" */
  3255. return;
  3256. if (opsize > length)
  3257. return; /* don't parse partial options */
  3258. switch (opcode) {
  3259. case TCPOPT_MSS:
  3260. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3261. u16 in_mss = get_unaligned_be16(ptr);
  3262. if (in_mss) {
  3263. if (opt_rx->user_mss &&
  3264. opt_rx->user_mss < in_mss)
  3265. in_mss = opt_rx->user_mss;
  3266. opt_rx->mss_clamp = in_mss;
  3267. }
  3268. }
  3269. break;
  3270. case TCPOPT_WINDOW:
  3271. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3272. !estab && sysctl_tcp_window_scaling) {
  3273. __u8 snd_wscale = *(__u8 *)ptr;
  3274. opt_rx->wscale_ok = 1;
  3275. if (snd_wscale > 14) {
  3276. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3277. __func__,
  3278. snd_wscale);
  3279. snd_wscale = 14;
  3280. }
  3281. opt_rx->snd_wscale = snd_wscale;
  3282. }
  3283. break;
  3284. case TCPOPT_TIMESTAMP:
  3285. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3286. ((estab && opt_rx->tstamp_ok) ||
  3287. (!estab && sysctl_tcp_timestamps))) {
  3288. opt_rx->saw_tstamp = 1;
  3289. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3290. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3291. }
  3292. break;
  3293. case TCPOPT_SACK_PERM:
  3294. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3295. !estab && sysctl_tcp_sack) {
  3296. opt_rx->sack_ok = TCP_SACK_SEEN;
  3297. tcp_sack_reset(opt_rx);
  3298. }
  3299. break;
  3300. case TCPOPT_SACK:
  3301. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3302. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3303. opt_rx->sack_ok) {
  3304. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3305. }
  3306. break;
  3307. #ifdef CONFIG_TCP_MD5SIG
  3308. case TCPOPT_MD5SIG:
  3309. /*
  3310. * The MD5 Hash has already been
  3311. * checked (see tcp_v{4,6}_do_rcv()).
  3312. */
  3313. break;
  3314. #endif
  3315. case TCPOPT_COOKIE:
  3316. /* This option is variable length.
  3317. */
  3318. switch (opsize) {
  3319. case TCPOLEN_COOKIE_BASE:
  3320. /* not yet implemented */
  3321. break;
  3322. case TCPOLEN_COOKIE_PAIR:
  3323. /* not yet implemented */
  3324. break;
  3325. case TCPOLEN_COOKIE_MIN+0:
  3326. case TCPOLEN_COOKIE_MIN+2:
  3327. case TCPOLEN_COOKIE_MIN+4:
  3328. case TCPOLEN_COOKIE_MIN+6:
  3329. case TCPOLEN_COOKIE_MAX:
  3330. /* 16-bit multiple */
  3331. opt_rx->cookie_plus = opsize;
  3332. *hvpp = ptr;
  3333. break;
  3334. default:
  3335. /* ignore option */
  3336. break;
  3337. }
  3338. break;
  3339. case TCPOPT_EXP:
  3340. /* Fast Open option shares code 254 using a
  3341. * 16 bits magic number. It's valid only in
  3342. * SYN or SYN-ACK with an even size.
  3343. */
  3344. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3345. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3346. foc == NULL || !th->syn || (opsize & 1))
  3347. break;
  3348. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3349. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3350. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3351. memcpy(foc->val, ptr + 2, foc->len);
  3352. else if (foc->len != 0)
  3353. foc->len = -1;
  3354. break;
  3355. }
  3356. ptr += opsize-2;
  3357. length -= opsize;
  3358. }
  3359. }
  3360. }
  3361. EXPORT_SYMBOL(tcp_parse_options);
  3362. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3363. {
  3364. const __be32 *ptr = (const __be32 *)(th + 1);
  3365. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3366. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3367. tp->rx_opt.saw_tstamp = 1;
  3368. ++ptr;
  3369. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3370. ++ptr;
  3371. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3372. return true;
  3373. }
  3374. return false;
  3375. }
  3376. /* Fast parse options. This hopes to only see timestamps.
  3377. * If it is wrong it falls back on tcp_parse_options().
  3378. */
  3379. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3380. const struct tcphdr *th,
  3381. struct tcp_sock *tp, const u8 **hvpp)
  3382. {
  3383. /* In the spirit of fast parsing, compare doff directly to constant
  3384. * values. Because equality is used, short doff can be ignored here.
  3385. */
  3386. if (th->doff == (sizeof(*th) / 4)) {
  3387. tp->rx_opt.saw_tstamp = 0;
  3388. return false;
  3389. } else if (tp->rx_opt.tstamp_ok &&
  3390. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3391. if (tcp_parse_aligned_timestamp(tp, th))
  3392. return true;
  3393. }
  3394. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1, NULL);
  3395. return true;
  3396. }
  3397. #ifdef CONFIG_TCP_MD5SIG
  3398. /*
  3399. * Parse MD5 Signature option
  3400. */
  3401. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3402. {
  3403. int length = (th->doff << 2) - sizeof(*th);
  3404. const u8 *ptr = (const u8 *)(th + 1);
  3405. /* If the TCP option is too short, we can short cut */
  3406. if (length < TCPOLEN_MD5SIG)
  3407. return NULL;
  3408. while (length > 0) {
  3409. int opcode = *ptr++;
  3410. int opsize;
  3411. switch(opcode) {
  3412. case TCPOPT_EOL:
  3413. return NULL;
  3414. case TCPOPT_NOP:
  3415. length--;
  3416. continue;
  3417. default:
  3418. opsize = *ptr++;
  3419. if (opsize < 2 || opsize > length)
  3420. return NULL;
  3421. if (opcode == TCPOPT_MD5SIG)
  3422. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3423. }
  3424. ptr += opsize - 2;
  3425. length -= opsize;
  3426. }
  3427. return NULL;
  3428. }
  3429. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3430. #endif
  3431. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3432. {
  3433. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3434. tp->rx_opt.ts_recent_stamp = get_seconds();
  3435. }
  3436. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3437. {
  3438. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3439. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3440. * extra check below makes sure this can only happen
  3441. * for pure ACK frames. -DaveM
  3442. *
  3443. * Not only, also it occurs for expired timestamps.
  3444. */
  3445. if (tcp_paws_check(&tp->rx_opt, 0))
  3446. tcp_store_ts_recent(tp);
  3447. }
  3448. }
  3449. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3450. *
  3451. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3452. * it can pass through stack. So, the following predicate verifies that
  3453. * this segment is not used for anything but congestion avoidance or
  3454. * fast retransmit. Moreover, we even are able to eliminate most of such
  3455. * second order effects, if we apply some small "replay" window (~RTO)
  3456. * to timestamp space.
  3457. *
  3458. * All these measures still do not guarantee that we reject wrapped ACKs
  3459. * on networks with high bandwidth, when sequence space is recycled fastly,
  3460. * but it guarantees that such events will be very rare and do not affect
  3461. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3462. * buggy extension.
  3463. *
  3464. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3465. * states that events when retransmit arrives after original data are rare.
  3466. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3467. * the biggest problem on large power networks even with minor reordering.
  3468. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3469. * up to bandwidth of 18Gigabit/sec. 8) ]
  3470. */
  3471. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3472. {
  3473. const struct tcp_sock *tp = tcp_sk(sk);
  3474. const struct tcphdr *th = tcp_hdr(skb);
  3475. u32 seq = TCP_SKB_CB(skb)->seq;
  3476. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3477. return (/* 1. Pure ACK with correct sequence number. */
  3478. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3479. /* 2. ... and duplicate ACK. */
  3480. ack == tp->snd_una &&
  3481. /* 3. ... and does not update window. */
  3482. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3483. /* 4. ... and sits in replay window. */
  3484. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3485. }
  3486. static inline bool tcp_paws_discard(const struct sock *sk,
  3487. const struct sk_buff *skb)
  3488. {
  3489. const struct tcp_sock *tp = tcp_sk(sk);
  3490. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3491. !tcp_disordered_ack(sk, skb);
  3492. }
  3493. /* Check segment sequence number for validity.
  3494. *
  3495. * Segment controls are considered valid, if the segment
  3496. * fits to the window after truncation to the window. Acceptability
  3497. * of data (and SYN, FIN, of course) is checked separately.
  3498. * See tcp_data_queue(), for example.
  3499. *
  3500. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3501. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3502. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3503. * (borrowed from freebsd)
  3504. */
  3505. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3506. {
  3507. return !before(end_seq, tp->rcv_wup) &&
  3508. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3509. }
  3510. /* When we get a reset we do this. */
  3511. static void tcp_reset(struct sock *sk)
  3512. {
  3513. /* We want the right error as BSD sees it (and indeed as we do). */
  3514. switch (sk->sk_state) {
  3515. case TCP_SYN_SENT:
  3516. sk->sk_err = ECONNREFUSED;
  3517. break;
  3518. case TCP_CLOSE_WAIT:
  3519. sk->sk_err = EPIPE;
  3520. break;
  3521. case TCP_CLOSE:
  3522. return;
  3523. default:
  3524. sk->sk_err = ECONNRESET;
  3525. }
  3526. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3527. smp_wmb();
  3528. if (!sock_flag(sk, SOCK_DEAD))
  3529. sk->sk_error_report(sk);
  3530. tcp_done(sk);
  3531. }
  3532. /*
  3533. * Process the FIN bit. This now behaves as it is supposed to work
  3534. * and the FIN takes effect when it is validly part of sequence
  3535. * space. Not before when we get holes.
  3536. *
  3537. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3538. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3539. * TIME-WAIT)
  3540. *
  3541. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3542. * close and we go into CLOSING (and later onto TIME-WAIT)
  3543. *
  3544. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3545. */
  3546. static void tcp_fin(struct sock *sk)
  3547. {
  3548. struct tcp_sock *tp = tcp_sk(sk);
  3549. inet_csk_schedule_ack(sk);
  3550. sk->sk_shutdown |= RCV_SHUTDOWN;
  3551. sock_set_flag(sk, SOCK_DONE);
  3552. switch (sk->sk_state) {
  3553. case TCP_SYN_RECV:
  3554. case TCP_ESTABLISHED:
  3555. /* Move to CLOSE_WAIT */
  3556. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3557. inet_csk(sk)->icsk_ack.pingpong = 1;
  3558. break;
  3559. case TCP_CLOSE_WAIT:
  3560. case TCP_CLOSING:
  3561. /* Received a retransmission of the FIN, do
  3562. * nothing.
  3563. */
  3564. break;
  3565. case TCP_LAST_ACK:
  3566. /* RFC793: Remain in the LAST-ACK state. */
  3567. break;
  3568. case TCP_FIN_WAIT1:
  3569. /* This case occurs when a simultaneous close
  3570. * happens, we must ack the received FIN and
  3571. * enter the CLOSING state.
  3572. */
  3573. tcp_send_ack(sk);
  3574. tcp_set_state(sk, TCP_CLOSING);
  3575. break;
  3576. case TCP_FIN_WAIT2:
  3577. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3578. tcp_send_ack(sk);
  3579. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3580. break;
  3581. default:
  3582. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3583. * cases we should never reach this piece of code.
  3584. */
  3585. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3586. __func__, sk->sk_state);
  3587. break;
  3588. }
  3589. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3590. * Probably, we should reset in this case. For now drop them.
  3591. */
  3592. __skb_queue_purge(&tp->out_of_order_queue);
  3593. if (tcp_is_sack(tp))
  3594. tcp_sack_reset(&tp->rx_opt);
  3595. sk_mem_reclaim(sk);
  3596. if (!sock_flag(sk, SOCK_DEAD)) {
  3597. sk->sk_state_change(sk);
  3598. /* Do not send POLL_HUP for half duplex close. */
  3599. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3600. sk->sk_state == TCP_CLOSE)
  3601. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3602. else
  3603. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3604. }
  3605. }
  3606. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3607. u32 end_seq)
  3608. {
  3609. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3610. if (before(seq, sp->start_seq))
  3611. sp->start_seq = seq;
  3612. if (after(end_seq, sp->end_seq))
  3613. sp->end_seq = end_seq;
  3614. return true;
  3615. }
  3616. return false;
  3617. }
  3618. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3619. {
  3620. struct tcp_sock *tp = tcp_sk(sk);
  3621. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3622. int mib_idx;
  3623. if (before(seq, tp->rcv_nxt))
  3624. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3625. else
  3626. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3627. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3628. tp->rx_opt.dsack = 1;
  3629. tp->duplicate_sack[0].start_seq = seq;
  3630. tp->duplicate_sack[0].end_seq = end_seq;
  3631. }
  3632. }
  3633. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3634. {
  3635. struct tcp_sock *tp = tcp_sk(sk);
  3636. if (!tp->rx_opt.dsack)
  3637. tcp_dsack_set(sk, seq, end_seq);
  3638. else
  3639. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3640. }
  3641. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3642. {
  3643. struct tcp_sock *tp = tcp_sk(sk);
  3644. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3645. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3646. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3647. tcp_enter_quickack_mode(sk);
  3648. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3649. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3650. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3651. end_seq = tp->rcv_nxt;
  3652. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3653. }
  3654. }
  3655. tcp_send_ack(sk);
  3656. }
  3657. /* These routines update the SACK block as out-of-order packets arrive or
  3658. * in-order packets close up the sequence space.
  3659. */
  3660. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3661. {
  3662. int this_sack;
  3663. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3664. struct tcp_sack_block *swalk = sp + 1;
  3665. /* See if the recent change to the first SACK eats into
  3666. * or hits the sequence space of other SACK blocks, if so coalesce.
  3667. */
  3668. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3669. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3670. int i;
  3671. /* Zap SWALK, by moving every further SACK up by one slot.
  3672. * Decrease num_sacks.
  3673. */
  3674. tp->rx_opt.num_sacks--;
  3675. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3676. sp[i] = sp[i + 1];
  3677. continue;
  3678. }
  3679. this_sack++, swalk++;
  3680. }
  3681. }
  3682. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3683. {
  3684. struct tcp_sock *tp = tcp_sk(sk);
  3685. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3686. int cur_sacks = tp->rx_opt.num_sacks;
  3687. int this_sack;
  3688. if (!cur_sacks)
  3689. goto new_sack;
  3690. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3691. if (tcp_sack_extend(sp, seq, end_seq)) {
  3692. /* Rotate this_sack to the first one. */
  3693. for (; this_sack > 0; this_sack--, sp--)
  3694. swap(*sp, *(sp - 1));
  3695. if (cur_sacks > 1)
  3696. tcp_sack_maybe_coalesce(tp);
  3697. return;
  3698. }
  3699. }
  3700. /* Could not find an adjacent existing SACK, build a new one,
  3701. * put it at the front, and shift everyone else down. We
  3702. * always know there is at least one SACK present already here.
  3703. *
  3704. * If the sack array is full, forget about the last one.
  3705. */
  3706. if (this_sack >= TCP_NUM_SACKS) {
  3707. this_sack--;
  3708. tp->rx_opt.num_sacks--;
  3709. sp--;
  3710. }
  3711. for (; this_sack > 0; this_sack--, sp--)
  3712. *sp = *(sp - 1);
  3713. new_sack:
  3714. /* Build the new head SACK, and we're done. */
  3715. sp->start_seq = seq;
  3716. sp->end_seq = end_seq;
  3717. tp->rx_opt.num_sacks++;
  3718. }
  3719. /* RCV.NXT advances, some SACKs should be eaten. */
  3720. static void tcp_sack_remove(struct tcp_sock *tp)
  3721. {
  3722. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3723. int num_sacks = tp->rx_opt.num_sacks;
  3724. int this_sack;
  3725. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3726. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3727. tp->rx_opt.num_sacks = 0;
  3728. return;
  3729. }
  3730. for (this_sack = 0; this_sack < num_sacks;) {
  3731. /* Check if the start of the sack is covered by RCV.NXT. */
  3732. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3733. int i;
  3734. /* RCV.NXT must cover all the block! */
  3735. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3736. /* Zap this SACK, by moving forward any other SACKS. */
  3737. for (i=this_sack+1; i < num_sacks; i++)
  3738. tp->selective_acks[i-1] = tp->selective_acks[i];
  3739. num_sacks--;
  3740. continue;
  3741. }
  3742. this_sack++;
  3743. sp++;
  3744. }
  3745. tp->rx_opt.num_sacks = num_sacks;
  3746. }
  3747. /* This one checks to see if we can put data from the
  3748. * out_of_order queue into the receive_queue.
  3749. */
  3750. static void tcp_ofo_queue(struct sock *sk)
  3751. {
  3752. struct tcp_sock *tp = tcp_sk(sk);
  3753. __u32 dsack_high = tp->rcv_nxt;
  3754. struct sk_buff *skb;
  3755. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3756. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3757. break;
  3758. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3759. __u32 dsack = dsack_high;
  3760. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3761. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3762. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3763. }
  3764. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3765. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3766. __skb_unlink(skb, &tp->out_of_order_queue);
  3767. __kfree_skb(skb);
  3768. continue;
  3769. }
  3770. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3771. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3772. TCP_SKB_CB(skb)->end_seq);
  3773. __skb_unlink(skb, &tp->out_of_order_queue);
  3774. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3775. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3776. if (tcp_hdr(skb)->fin)
  3777. tcp_fin(sk);
  3778. }
  3779. }
  3780. static bool tcp_prune_ofo_queue(struct sock *sk);
  3781. static int tcp_prune_queue(struct sock *sk);
  3782. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3783. unsigned int size)
  3784. {
  3785. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3786. !sk_rmem_schedule(sk, skb, size)) {
  3787. if (tcp_prune_queue(sk) < 0)
  3788. return -1;
  3789. if (!sk_rmem_schedule(sk, skb, size)) {
  3790. if (!tcp_prune_ofo_queue(sk))
  3791. return -1;
  3792. if (!sk_rmem_schedule(sk, skb, size))
  3793. return -1;
  3794. }
  3795. }
  3796. return 0;
  3797. }
  3798. /**
  3799. * tcp_try_coalesce - try to merge skb to prior one
  3800. * @sk: socket
  3801. * @to: prior buffer
  3802. * @from: buffer to add in queue
  3803. * @fragstolen: pointer to boolean
  3804. *
  3805. * Before queueing skb @from after @to, try to merge them
  3806. * to reduce overall memory use and queue lengths, if cost is small.
  3807. * Packets in ofo or receive queues can stay a long time.
  3808. * Better try to coalesce them right now to avoid future collapses.
  3809. * Returns true if caller should free @from instead of queueing it
  3810. */
  3811. static bool tcp_try_coalesce(struct sock *sk,
  3812. struct sk_buff *to,
  3813. struct sk_buff *from,
  3814. bool *fragstolen)
  3815. {
  3816. int delta;
  3817. *fragstolen = false;
  3818. if (tcp_hdr(from)->fin)
  3819. return false;
  3820. /* Its possible this segment overlaps with prior segment in queue */
  3821. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3822. return false;
  3823. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3824. return false;
  3825. atomic_add(delta, &sk->sk_rmem_alloc);
  3826. sk_mem_charge(sk, delta);
  3827. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3828. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3829. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3830. return true;
  3831. }
  3832. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3833. {
  3834. struct tcp_sock *tp = tcp_sk(sk);
  3835. struct sk_buff *skb1;
  3836. u32 seq, end_seq;
  3837. TCP_ECN_check_ce(tp, skb);
  3838. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3839. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3840. __kfree_skb(skb);
  3841. return;
  3842. }
  3843. /* Disable header prediction. */
  3844. tp->pred_flags = 0;
  3845. inet_csk_schedule_ack(sk);
  3846. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3847. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3848. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3849. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3850. if (!skb1) {
  3851. /* Initial out of order segment, build 1 SACK. */
  3852. if (tcp_is_sack(tp)) {
  3853. tp->rx_opt.num_sacks = 1;
  3854. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3855. tp->selective_acks[0].end_seq =
  3856. TCP_SKB_CB(skb)->end_seq;
  3857. }
  3858. __skb_queue_head(&tp->out_of_order_queue, skb);
  3859. goto end;
  3860. }
  3861. seq = TCP_SKB_CB(skb)->seq;
  3862. end_seq = TCP_SKB_CB(skb)->end_seq;
  3863. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3864. bool fragstolen;
  3865. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3866. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3867. } else {
  3868. kfree_skb_partial(skb, fragstolen);
  3869. skb = NULL;
  3870. }
  3871. if (!tp->rx_opt.num_sacks ||
  3872. tp->selective_acks[0].end_seq != seq)
  3873. goto add_sack;
  3874. /* Common case: data arrive in order after hole. */
  3875. tp->selective_acks[0].end_seq = end_seq;
  3876. goto end;
  3877. }
  3878. /* Find place to insert this segment. */
  3879. while (1) {
  3880. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3881. break;
  3882. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3883. skb1 = NULL;
  3884. break;
  3885. }
  3886. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3887. }
  3888. /* Do skb overlap to previous one? */
  3889. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3890. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3891. /* All the bits are present. Drop. */
  3892. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3893. __kfree_skb(skb);
  3894. skb = NULL;
  3895. tcp_dsack_set(sk, seq, end_seq);
  3896. goto add_sack;
  3897. }
  3898. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3899. /* Partial overlap. */
  3900. tcp_dsack_set(sk, seq,
  3901. TCP_SKB_CB(skb1)->end_seq);
  3902. } else {
  3903. if (skb_queue_is_first(&tp->out_of_order_queue,
  3904. skb1))
  3905. skb1 = NULL;
  3906. else
  3907. skb1 = skb_queue_prev(
  3908. &tp->out_of_order_queue,
  3909. skb1);
  3910. }
  3911. }
  3912. if (!skb1)
  3913. __skb_queue_head(&tp->out_of_order_queue, skb);
  3914. else
  3915. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3916. /* And clean segments covered by new one as whole. */
  3917. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3918. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3919. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3920. break;
  3921. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3922. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3923. end_seq);
  3924. break;
  3925. }
  3926. __skb_unlink(skb1, &tp->out_of_order_queue);
  3927. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3928. TCP_SKB_CB(skb1)->end_seq);
  3929. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3930. __kfree_skb(skb1);
  3931. }
  3932. add_sack:
  3933. if (tcp_is_sack(tp))
  3934. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3935. end:
  3936. if (skb)
  3937. skb_set_owner_r(skb, sk);
  3938. }
  3939. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3940. bool *fragstolen)
  3941. {
  3942. int eaten;
  3943. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3944. __skb_pull(skb, hdrlen);
  3945. eaten = (tail &&
  3946. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3947. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3948. if (!eaten) {
  3949. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3950. skb_set_owner_r(skb, sk);
  3951. }
  3952. return eaten;
  3953. }
  3954. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3955. {
  3956. struct sk_buff *skb = NULL;
  3957. struct tcphdr *th;
  3958. bool fragstolen;
  3959. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3960. if (!skb)
  3961. goto err;
  3962. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3963. goto err_free;
  3964. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3965. skb_reset_transport_header(skb);
  3966. memset(th, 0, sizeof(*th));
  3967. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3968. goto err_free;
  3969. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3970. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3971. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3972. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3973. WARN_ON_ONCE(fragstolen); /* should not happen */
  3974. __kfree_skb(skb);
  3975. }
  3976. return size;
  3977. err_free:
  3978. kfree_skb(skb);
  3979. err:
  3980. return -ENOMEM;
  3981. }
  3982. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3983. {
  3984. const struct tcphdr *th = tcp_hdr(skb);
  3985. struct tcp_sock *tp = tcp_sk(sk);
  3986. int eaten = -1;
  3987. bool fragstolen = false;
  3988. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3989. goto drop;
  3990. skb_dst_drop(skb);
  3991. __skb_pull(skb, th->doff * 4);
  3992. TCP_ECN_accept_cwr(tp, skb);
  3993. tp->rx_opt.dsack = 0;
  3994. /* Queue data for delivery to the user.
  3995. * Packets in sequence go to the receive queue.
  3996. * Out of sequence packets to the out_of_order_queue.
  3997. */
  3998. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3999. if (tcp_receive_window(tp) == 0)
  4000. goto out_of_window;
  4001. /* Ok. In sequence. In window. */
  4002. if (tp->ucopy.task == current &&
  4003. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  4004. sock_owned_by_user(sk) && !tp->urg_data) {
  4005. int chunk = min_t(unsigned int, skb->len,
  4006. tp->ucopy.len);
  4007. __set_current_state(TASK_RUNNING);
  4008. local_bh_enable();
  4009. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  4010. tp->ucopy.len -= chunk;
  4011. tp->copied_seq += chunk;
  4012. eaten = (chunk == skb->len);
  4013. tcp_rcv_space_adjust(sk);
  4014. }
  4015. local_bh_disable();
  4016. }
  4017. if (eaten <= 0) {
  4018. queue_and_out:
  4019. if (eaten < 0 &&
  4020. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  4021. goto drop;
  4022. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4023. }
  4024. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4025. if (skb->len)
  4026. tcp_event_data_recv(sk, skb);
  4027. if (th->fin)
  4028. tcp_fin(sk);
  4029. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4030. tcp_ofo_queue(sk);
  4031. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4032. * gap in queue is filled.
  4033. */
  4034. if (skb_queue_empty(&tp->out_of_order_queue))
  4035. inet_csk(sk)->icsk_ack.pingpong = 0;
  4036. }
  4037. if (tp->rx_opt.num_sacks)
  4038. tcp_sack_remove(tp);
  4039. tcp_fast_path_check(sk);
  4040. if (eaten > 0)
  4041. kfree_skb_partial(skb, fragstolen);
  4042. else if (!sock_flag(sk, SOCK_DEAD))
  4043. sk->sk_data_ready(sk, 0);
  4044. return;
  4045. }
  4046. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4047. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4048. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4049. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4050. out_of_window:
  4051. tcp_enter_quickack_mode(sk);
  4052. inet_csk_schedule_ack(sk);
  4053. drop:
  4054. __kfree_skb(skb);
  4055. return;
  4056. }
  4057. /* Out of window. F.e. zero window probe. */
  4058. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4059. goto out_of_window;
  4060. tcp_enter_quickack_mode(sk);
  4061. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4062. /* Partial packet, seq < rcv_next < end_seq */
  4063. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4064. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4065. TCP_SKB_CB(skb)->end_seq);
  4066. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4067. /* If window is closed, drop tail of packet. But after
  4068. * remembering D-SACK for its head made in previous line.
  4069. */
  4070. if (!tcp_receive_window(tp))
  4071. goto out_of_window;
  4072. goto queue_and_out;
  4073. }
  4074. tcp_data_queue_ofo(sk, skb);
  4075. }
  4076. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4077. struct sk_buff_head *list)
  4078. {
  4079. struct sk_buff *next = NULL;
  4080. if (!skb_queue_is_last(list, skb))
  4081. next = skb_queue_next(list, skb);
  4082. __skb_unlink(skb, list);
  4083. __kfree_skb(skb);
  4084. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4085. return next;
  4086. }
  4087. /* Collapse contiguous sequence of skbs head..tail with
  4088. * sequence numbers start..end.
  4089. *
  4090. * If tail is NULL, this means until the end of the list.
  4091. *
  4092. * Segments with FIN/SYN are not collapsed (only because this
  4093. * simplifies code)
  4094. */
  4095. static void
  4096. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4097. struct sk_buff *head, struct sk_buff *tail,
  4098. u32 start, u32 end)
  4099. {
  4100. struct sk_buff *skb, *n;
  4101. bool end_of_skbs;
  4102. /* First, check that queue is collapsible and find
  4103. * the point where collapsing can be useful. */
  4104. skb = head;
  4105. restart:
  4106. end_of_skbs = true;
  4107. skb_queue_walk_from_safe(list, skb, n) {
  4108. if (skb == tail)
  4109. break;
  4110. /* No new bits? It is possible on ofo queue. */
  4111. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4112. skb = tcp_collapse_one(sk, skb, list);
  4113. if (!skb)
  4114. break;
  4115. goto restart;
  4116. }
  4117. /* The first skb to collapse is:
  4118. * - not SYN/FIN and
  4119. * - bloated or contains data before "start" or
  4120. * overlaps to the next one.
  4121. */
  4122. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4123. (tcp_win_from_space(skb->truesize) > skb->len ||
  4124. before(TCP_SKB_CB(skb)->seq, start))) {
  4125. end_of_skbs = false;
  4126. break;
  4127. }
  4128. if (!skb_queue_is_last(list, skb)) {
  4129. struct sk_buff *next = skb_queue_next(list, skb);
  4130. if (next != tail &&
  4131. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4132. end_of_skbs = false;
  4133. break;
  4134. }
  4135. }
  4136. /* Decided to skip this, advance start seq. */
  4137. start = TCP_SKB_CB(skb)->end_seq;
  4138. }
  4139. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4140. return;
  4141. while (before(start, end)) {
  4142. struct sk_buff *nskb;
  4143. unsigned int header = skb_headroom(skb);
  4144. int copy = SKB_MAX_ORDER(header, 0);
  4145. /* Too big header? This can happen with IPv6. */
  4146. if (copy < 0)
  4147. return;
  4148. if (end - start < copy)
  4149. copy = end - start;
  4150. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4151. if (!nskb)
  4152. return;
  4153. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4154. skb_set_network_header(nskb, (skb_network_header(skb) -
  4155. skb->head));
  4156. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4157. skb->head));
  4158. skb_reserve(nskb, header);
  4159. memcpy(nskb->head, skb->head, header);
  4160. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4161. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4162. __skb_queue_before(list, skb, nskb);
  4163. skb_set_owner_r(nskb, sk);
  4164. /* Copy data, releasing collapsed skbs. */
  4165. while (copy > 0) {
  4166. int offset = start - TCP_SKB_CB(skb)->seq;
  4167. int size = TCP_SKB_CB(skb)->end_seq - start;
  4168. BUG_ON(offset < 0);
  4169. if (size > 0) {
  4170. size = min(copy, size);
  4171. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4172. BUG();
  4173. TCP_SKB_CB(nskb)->end_seq += size;
  4174. copy -= size;
  4175. start += size;
  4176. }
  4177. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4178. skb = tcp_collapse_one(sk, skb, list);
  4179. if (!skb ||
  4180. skb == tail ||
  4181. tcp_hdr(skb)->syn ||
  4182. tcp_hdr(skb)->fin)
  4183. return;
  4184. }
  4185. }
  4186. }
  4187. }
  4188. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4189. * and tcp_collapse() them until all the queue is collapsed.
  4190. */
  4191. static void tcp_collapse_ofo_queue(struct sock *sk)
  4192. {
  4193. struct tcp_sock *tp = tcp_sk(sk);
  4194. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4195. struct sk_buff *head;
  4196. u32 start, end;
  4197. if (skb == NULL)
  4198. return;
  4199. start = TCP_SKB_CB(skb)->seq;
  4200. end = TCP_SKB_CB(skb)->end_seq;
  4201. head = skb;
  4202. for (;;) {
  4203. struct sk_buff *next = NULL;
  4204. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4205. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4206. skb = next;
  4207. /* Segment is terminated when we see gap or when
  4208. * we are at the end of all the queue. */
  4209. if (!skb ||
  4210. after(TCP_SKB_CB(skb)->seq, end) ||
  4211. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4212. tcp_collapse(sk, &tp->out_of_order_queue,
  4213. head, skb, start, end);
  4214. head = skb;
  4215. if (!skb)
  4216. break;
  4217. /* Start new segment */
  4218. start = TCP_SKB_CB(skb)->seq;
  4219. end = TCP_SKB_CB(skb)->end_seq;
  4220. } else {
  4221. if (before(TCP_SKB_CB(skb)->seq, start))
  4222. start = TCP_SKB_CB(skb)->seq;
  4223. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4224. end = TCP_SKB_CB(skb)->end_seq;
  4225. }
  4226. }
  4227. }
  4228. /*
  4229. * Purge the out-of-order queue.
  4230. * Return true if queue was pruned.
  4231. */
  4232. static bool tcp_prune_ofo_queue(struct sock *sk)
  4233. {
  4234. struct tcp_sock *tp = tcp_sk(sk);
  4235. bool res = false;
  4236. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4237. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4238. __skb_queue_purge(&tp->out_of_order_queue);
  4239. /* Reset SACK state. A conforming SACK implementation will
  4240. * do the same at a timeout based retransmit. When a connection
  4241. * is in a sad state like this, we care only about integrity
  4242. * of the connection not performance.
  4243. */
  4244. if (tp->rx_opt.sack_ok)
  4245. tcp_sack_reset(&tp->rx_opt);
  4246. sk_mem_reclaim(sk);
  4247. res = true;
  4248. }
  4249. return res;
  4250. }
  4251. /* Reduce allocated memory if we can, trying to get
  4252. * the socket within its memory limits again.
  4253. *
  4254. * Return less than zero if we should start dropping frames
  4255. * until the socket owning process reads some of the data
  4256. * to stabilize the situation.
  4257. */
  4258. static int tcp_prune_queue(struct sock *sk)
  4259. {
  4260. struct tcp_sock *tp = tcp_sk(sk);
  4261. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4262. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4263. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4264. tcp_clamp_window(sk);
  4265. else if (sk_under_memory_pressure(sk))
  4266. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4267. tcp_collapse_ofo_queue(sk);
  4268. if (!skb_queue_empty(&sk->sk_receive_queue))
  4269. tcp_collapse(sk, &sk->sk_receive_queue,
  4270. skb_peek(&sk->sk_receive_queue),
  4271. NULL,
  4272. tp->copied_seq, tp->rcv_nxt);
  4273. sk_mem_reclaim(sk);
  4274. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4275. return 0;
  4276. /* Collapsing did not help, destructive actions follow.
  4277. * This must not ever occur. */
  4278. tcp_prune_ofo_queue(sk);
  4279. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4280. return 0;
  4281. /* If we are really being abused, tell the caller to silently
  4282. * drop receive data on the floor. It will get retransmitted
  4283. * and hopefully then we'll have sufficient space.
  4284. */
  4285. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4286. /* Massive buffer overcommit. */
  4287. tp->pred_flags = 0;
  4288. return -1;
  4289. }
  4290. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4291. * As additional protections, we do not touch cwnd in retransmission phases,
  4292. * and if application hit its sndbuf limit recently.
  4293. */
  4294. void tcp_cwnd_application_limited(struct sock *sk)
  4295. {
  4296. struct tcp_sock *tp = tcp_sk(sk);
  4297. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4298. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4299. /* Limited by application or receiver window. */
  4300. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4301. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4302. if (win_used < tp->snd_cwnd) {
  4303. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4304. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4305. }
  4306. tp->snd_cwnd_used = 0;
  4307. }
  4308. tp->snd_cwnd_stamp = tcp_time_stamp;
  4309. }
  4310. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4311. {
  4312. const struct tcp_sock *tp = tcp_sk(sk);
  4313. /* If the user specified a specific send buffer setting, do
  4314. * not modify it.
  4315. */
  4316. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4317. return false;
  4318. /* If we are under global TCP memory pressure, do not expand. */
  4319. if (sk_under_memory_pressure(sk))
  4320. return false;
  4321. /* If we are under soft global TCP memory pressure, do not expand. */
  4322. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4323. return false;
  4324. /* If we filled the congestion window, do not expand. */
  4325. if (tp->packets_out >= tp->snd_cwnd)
  4326. return false;
  4327. return true;
  4328. }
  4329. /* When incoming ACK allowed to free some skb from write_queue,
  4330. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4331. * on the exit from tcp input handler.
  4332. *
  4333. * PROBLEM: sndbuf expansion does not work well with largesend.
  4334. */
  4335. static void tcp_new_space(struct sock *sk)
  4336. {
  4337. struct tcp_sock *tp = tcp_sk(sk);
  4338. if (tcp_should_expand_sndbuf(sk)) {
  4339. int sndmem = SKB_TRUESIZE(max_t(u32,
  4340. tp->rx_opt.mss_clamp,
  4341. tp->mss_cache) +
  4342. MAX_TCP_HEADER);
  4343. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4344. tp->reordering + 1);
  4345. sndmem *= 2 * demanded;
  4346. if (sndmem > sk->sk_sndbuf)
  4347. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4348. tp->snd_cwnd_stamp = tcp_time_stamp;
  4349. }
  4350. sk->sk_write_space(sk);
  4351. }
  4352. static void tcp_check_space(struct sock *sk)
  4353. {
  4354. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4355. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4356. if (sk->sk_socket &&
  4357. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4358. tcp_new_space(sk);
  4359. }
  4360. }
  4361. static inline void tcp_data_snd_check(struct sock *sk)
  4362. {
  4363. tcp_push_pending_frames(sk);
  4364. tcp_check_space(sk);
  4365. }
  4366. /*
  4367. * Check if sending an ack is needed.
  4368. */
  4369. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4370. {
  4371. struct tcp_sock *tp = tcp_sk(sk);
  4372. /* More than one full frame received... */
  4373. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4374. /* ... and right edge of window advances far enough.
  4375. * (tcp_recvmsg() will send ACK otherwise). Or...
  4376. */
  4377. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4378. /* We ACK each frame or... */
  4379. tcp_in_quickack_mode(sk) ||
  4380. /* We have out of order data. */
  4381. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4382. /* Then ack it now */
  4383. tcp_send_ack(sk);
  4384. } else {
  4385. /* Else, send delayed ack. */
  4386. tcp_send_delayed_ack(sk);
  4387. }
  4388. }
  4389. static inline void tcp_ack_snd_check(struct sock *sk)
  4390. {
  4391. if (!inet_csk_ack_scheduled(sk)) {
  4392. /* We sent a data segment already. */
  4393. return;
  4394. }
  4395. __tcp_ack_snd_check(sk, 1);
  4396. }
  4397. /*
  4398. * This routine is only called when we have urgent data
  4399. * signaled. Its the 'slow' part of tcp_urg. It could be
  4400. * moved inline now as tcp_urg is only called from one
  4401. * place. We handle URGent data wrong. We have to - as
  4402. * BSD still doesn't use the correction from RFC961.
  4403. * For 1003.1g we should support a new option TCP_STDURG to permit
  4404. * either form (or just set the sysctl tcp_stdurg).
  4405. */
  4406. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4407. {
  4408. struct tcp_sock *tp = tcp_sk(sk);
  4409. u32 ptr = ntohs(th->urg_ptr);
  4410. if (ptr && !sysctl_tcp_stdurg)
  4411. ptr--;
  4412. ptr += ntohl(th->seq);
  4413. /* Ignore urgent data that we've already seen and read. */
  4414. if (after(tp->copied_seq, ptr))
  4415. return;
  4416. /* Do not replay urg ptr.
  4417. *
  4418. * NOTE: interesting situation not covered by specs.
  4419. * Misbehaving sender may send urg ptr, pointing to segment,
  4420. * which we already have in ofo queue. We are not able to fetch
  4421. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4422. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4423. * situations. But it is worth to think about possibility of some
  4424. * DoSes using some hypothetical application level deadlock.
  4425. */
  4426. if (before(ptr, tp->rcv_nxt))
  4427. return;
  4428. /* Do we already have a newer (or duplicate) urgent pointer? */
  4429. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4430. return;
  4431. /* Tell the world about our new urgent pointer. */
  4432. sk_send_sigurg(sk);
  4433. /* We may be adding urgent data when the last byte read was
  4434. * urgent. To do this requires some care. We cannot just ignore
  4435. * tp->copied_seq since we would read the last urgent byte again
  4436. * as data, nor can we alter copied_seq until this data arrives
  4437. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4438. *
  4439. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4440. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4441. * and expect that both A and B disappear from stream. This is _wrong_.
  4442. * Though this happens in BSD with high probability, this is occasional.
  4443. * Any application relying on this is buggy. Note also, that fix "works"
  4444. * only in this artificial test. Insert some normal data between A and B and we will
  4445. * decline of BSD again. Verdict: it is better to remove to trap
  4446. * buggy users.
  4447. */
  4448. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4449. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4450. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4451. tp->copied_seq++;
  4452. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4453. __skb_unlink(skb, &sk->sk_receive_queue);
  4454. __kfree_skb(skb);
  4455. }
  4456. }
  4457. tp->urg_data = TCP_URG_NOTYET;
  4458. tp->urg_seq = ptr;
  4459. /* Disable header prediction. */
  4460. tp->pred_flags = 0;
  4461. }
  4462. /* This is the 'fast' part of urgent handling. */
  4463. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4464. {
  4465. struct tcp_sock *tp = tcp_sk(sk);
  4466. /* Check if we get a new urgent pointer - normally not. */
  4467. if (th->urg)
  4468. tcp_check_urg(sk, th);
  4469. /* Do we wait for any urgent data? - normally not... */
  4470. if (tp->urg_data == TCP_URG_NOTYET) {
  4471. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4472. th->syn;
  4473. /* Is the urgent pointer pointing into this packet? */
  4474. if (ptr < skb->len) {
  4475. u8 tmp;
  4476. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4477. BUG();
  4478. tp->urg_data = TCP_URG_VALID | tmp;
  4479. if (!sock_flag(sk, SOCK_DEAD))
  4480. sk->sk_data_ready(sk, 0);
  4481. }
  4482. }
  4483. }
  4484. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4485. {
  4486. struct tcp_sock *tp = tcp_sk(sk);
  4487. int chunk = skb->len - hlen;
  4488. int err;
  4489. local_bh_enable();
  4490. if (skb_csum_unnecessary(skb))
  4491. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4492. else
  4493. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4494. tp->ucopy.iov);
  4495. if (!err) {
  4496. tp->ucopy.len -= chunk;
  4497. tp->copied_seq += chunk;
  4498. tcp_rcv_space_adjust(sk);
  4499. }
  4500. local_bh_disable();
  4501. return err;
  4502. }
  4503. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4504. struct sk_buff *skb)
  4505. {
  4506. __sum16 result;
  4507. if (sock_owned_by_user(sk)) {
  4508. local_bh_enable();
  4509. result = __tcp_checksum_complete(skb);
  4510. local_bh_disable();
  4511. } else {
  4512. result = __tcp_checksum_complete(skb);
  4513. }
  4514. return result;
  4515. }
  4516. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4517. struct sk_buff *skb)
  4518. {
  4519. return !skb_csum_unnecessary(skb) &&
  4520. __tcp_checksum_complete_user(sk, skb);
  4521. }
  4522. #ifdef CONFIG_NET_DMA
  4523. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4524. int hlen)
  4525. {
  4526. struct tcp_sock *tp = tcp_sk(sk);
  4527. int chunk = skb->len - hlen;
  4528. int dma_cookie;
  4529. bool copied_early = false;
  4530. if (tp->ucopy.wakeup)
  4531. return false;
  4532. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4533. tp->ucopy.dma_chan = net_dma_find_channel();
  4534. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4535. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4536. skb, hlen,
  4537. tp->ucopy.iov, chunk,
  4538. tp->ucopy.pinned_list);
  4539. if (dma_cookie < 0)
  4540. goto out;
  4541. tp->ucopy.dma_cookie = dma_cookie;
  4542. copied_early = true;
  4543. tp->ucopy.len -= chunk;
  4544. tp->copied_seq += chunk;
  4545. tcp_rcv_space_adjust(sk);
  4546. if ((tp->ucopy.len == 0) ||
  4547. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4548. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4549. tp->ucopy.wakeup = 1;
  4550. sk->sk_data_ready(sk, 0);
  4551. }
  4552. } else if (chunk > 0) {
  4553. tp->ucopy.wakeup = 1;
  4554. sk->sk_data_ready(sk, 0);
  4555. }
  4556. out:
  4557. return copied_early;
  4558. }
  4559. #endif /* CONFIG_NET_DMA */
  4560. static void tcp_send_challenge_ack(struct sock *sk)
  4561. {
  4562. /* unprotected vars, we dont care of overwrites */
  4563. static u32 challenge_timestamp;
  4564. static unsigned int challenge_count;
  4565. u32 now = jiffies / HZ;
  4566. if (now != challenge_timestamp) {
  4567. challenge_timestamp = now;
  4568. challenge_count = 0;
  4569. }
  4570. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  4571. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  4572. tcp_send_ack(sk);
  4573. }
  4574. }
  4575. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4576. * play significant role here.
  4577. */
  4578. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4579. const struct tcphdr *th, int syn_inerr)
  4580. {
  4581. const u8 *hash_location;
  4582. struct tcp_sock *tp = tcp_sk(sk);
  4583. /* RFC1323: H1. Apply PAWS check first. */
  4584. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4585. tp->rx_opt.saw_tstamp &&
  4586. tcp_paws_discard(sk, skb)) {
  4587. if (!th->rst) {
  4588. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4589. tcp_send_dupack(sk, skb);
  4590. goto discard;
  4591. }
  4592. /* Reset is accepted even if it did not pass PAWS. */
  4593. }
  4594. /* Step 1: check sequence number */
  4595. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4596. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4597. * (RST) segments are validated by checking their SEQ-fields."
  4598. * And page 69: "If an incoming segment is not acceptable,
  4599. * an acknowledgment should be sent in reply (unless the RST
  4600. * bit is set, if so drop the segment and return)".
  4601. */
  4602. if (!th->rst) {
  4603. if (th->syn)
  4604. goto syn_challenge;
  4605. tcp_send_dupack(sk, skb);
  4606. }
  4607. goto discard;
  4608. }
  4609. /* Step 2: check RST bit */
  4610. if (th->rst) {
  4611. /* RFC 5961 3.2 :
  4612. * If sequence number exactly matches RCV.NXT, then
  4613. * RESET the connection
  4614. * else
  4615. * Send a challenge ACK
  4616. */
  4617. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4618. tcp_reset(sk);
  4619. else
  4620. tcp_send_challenge_ack(sk);
  4621. goto discard;
  4622. }
  4623. /* ts_recent update must be made after we are sure that the packet
  4624. * is in window.
  4625. */
  4626. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4627. /* step 3: check security and precedence [ignored] */
  4628. /* step 4: Check for a SYN
  4629. * RFC 5691 4.2 : Send a challenge ack
  4630. */
  4631. if (th->syn) {
  4632. syn_challenge:
  4633. if (syn_inerr)
  4634. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4635. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4636. tcp_send_challenge_ack(sk);
  4637. goto discard;
  4638. }
  4639. return true;
  4640. discard:
  4641. __kfree_skb(skb);
  4642. return false;
  4643. }
  4644. /*
  4645. * TCP receive function for the ESTABLISHED state.
  4646. *
  4647. * It is split into a fast path and a slow path. The fast path is
  4648. * disabled when:
  4649. * - A zero window was announced from us - zero window probing
  4650. * is only handled properly in the slow path.
  4651. * - Out of order segments arrived.
  4652. * - Urgent data is expected.
  4653. * - There is no buffer space left
  4654. * - Unexpected TCP flags/window values/header lengths are received
  4655. * (detected by checking the TCP header against pred_flags)
  4656. * - Data is sent in both directions. Fast path only supports pure senders
  4657. * or pure receivers (this means either the sequence number or the ack
  4658. * value must stay constant)
  4659. * - Unexpected TCP option.
  4660. *
  4661. * When these conditions are not satisfied it drops into a standard
  4662. * receive procedure patterned after RFC793 to handle all cases.
  4663. * The first three cases are guaranteed by proper pred_flags setting,
  4664. * the rest is checked inline. Fast processing is turned on in
  4665. * tcp_data_queue when everything is OK.
  4666. */
  4667. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4668. const struct tcphdr *th, unsigned int len)
  4669. {
  4670. struct tcp_sock *tp = tcp_sk(sk);
  4671. /*
  4672. * Header prediction.
  4673. * The code loosely follows the one in the famous
  4674. * "30 instruction TCP receive" Van Jacobson mail.
  4675. *
  4676. * Van's trick is to deposit buffers into socket queue
  4677. * on a device interrupt, to call tcp_recv function
  4678. * on the receive process context and checksum and copy
  4679. * the buffer to user space. smart...
  4680. *
  4681. * Our current scheme is not silly either but we take the
  4682. * extra cost of the net_bh soft interrupt processing...
  4683. * We do checksum and copy also but from device to kernel.
  4684. */
  4685. tp->rx_opt.saw_tstamp = 0;
  4686. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4687. * if header_prediction is to be made
  4688. * 'S' will always be tp->tcp_header_len >> 2
  4689. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4690. * turn it off (when there are holes in the receive
  4691. * space for instance)
  4692. * PSH flag is ignored.
  4693. */
  4694. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4695. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4696. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4697. int tcp_header_len = tp->tcp_header_len;
  4698. /* Timestamp header prediction: tcp_header_len
  4699. * is automatically equal to th->doff*4 due to pred_flags
  4700. * match.
  4701. */
  4702. /* Check timestamp */
  4703. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4704. /* No? Slow path! */
  4705. if (!tcp_parse_aligned_timestamp(tp, th))
  4706. goto slow_path;
  4707. /* If PAWS failed, check it more carefully in slow path */
  4708. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4709. goto slow_path;
  4710. /* DO NOT update ts_recent here, if checksum fails
  4711. * and timestamp was corrupted part, it will result
  4712. * in a hung connection since we will drop all
  4713. * future packets due to the PAWS test.
  4714. */
  4715. }
  4716. if (len <= tcp_header_len) {
  4717. /* Bulk data transfer: sender */
  4718. if (len == tcp_header_len) {
  4719. /* Predicted packet is in window by definition.
  4720. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4721. * Hence, check seq<=rcv_wup reduces to:
  4722. */
  4723. if (tcp_header_len ==
  4724. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4725. tp->rcv_nxt == tp->rcv_wup)
  4726. tcp_store_ts_recent(tp);
  4727. /* We know that such packets are checksummed
  4728. * on entry.
  4729. */
  4730. tcp_ack(sk, skb, 0);
  4731. __kfree_skb(skb);
  4732. tcp_data_snd_check(sk);
  4733. return 0;
  4734. } else { /* Header too small */
  4735. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4736. goto discard;
  4737. }
  4738. } else {
  4739. int eaten = 0;
  4740. int copied_early = 0;
  4741. bool fragstolen = false;
  4742. if (tp->copied_seq == tp->rcv_nxt &&
  4743. len - tcp_header_len <= tp->ucopy.len) {
  4744. #ifdef CONFIG_NET_DMA
  4745. if (tp->ucopy.task == current &&
  4746. sock_owned_by_user(sk) &&
  4747. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4748. copied_early = 1;
  4749. eaten = 1;
  4750. }
  4751. #endif
  4752. if (tp->ucopy.task == current &&
  4753. sock_owned_by_user(sk) && !copied_early) {
  4754. __set_current_state(TASK_RUNNING);
  4755. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4756. eaten = 1;
  4757. }
  4758. if (eaten) {
  4759. /* Predicted packet is in window by definition.
  4760. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4761. * Hence, check seq<=rcv_wup reduces to:
  4762. */
  4763. if (tcp_header_len ==
  4764. (sizeof(struct tcphdr) +
  4765. TCPOLEN_TSTAMP_ALIGNED) &&
  4766. tp->rcv_nxt == tp->rcv_wup)
  4767. tcp_store_ts_recent(tp);
  4768. tcp_rcv_rtt_measure_ts(sk, skb);
  4769. __skb_pull(skb, tcp_header_len);
  4770. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4771. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4772. }
  4773. if (copied_early)
  4774. tcp_cleanup_rbuf(sk, skb->len);
  4775. }
  4776. if (!eaten) {
  4777. if (tcp_checksum_complete_user(sk, skb))
  4778. goto csum_error;
  4779. /* Predicted packet is in window by definition.
  4780. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4781. * Hence, check seq<=rcv_wup reduces to:
  4782. */
  4783. if (tcp_header_len ==
  4784. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4785. tp->rcv_nxt == tp->rcv_wup)
  4786. tcp_store_ts_recent(tp);
  4787. tcp_rcv_rtt_measure_ts(sk, skb);
  4788. if ((int)skb->truesize > sk->sk_forward_alloc)
  4789. goto step5;
  4790. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4791. /* Bulk data transfer: receiver */
  4792. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4793. &fragstolen);
  4794. }
  4795. tcp_event_data_recv(sk, skb);
  4796. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4797. /* Well, only one small jumplet in fast path... */
  4798. tcp_ack(sk, skb, FLAG_DATA);
  4799. tcp_data_snd_check(sk);
  4800. if (!inet_csk_ack_scheduled(sk))
  4801. goto no_ack;
  4802. }
  4803. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4804. __tcp_ack_snd_check(sk, 0);
  4805. no_ack:
  4806. #ifdef CONFIG_NET_DMA
  4807. if (copied_early)
  4808. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4809. else
  4810. #endif
  4811. if (eaten)
  4812. kfree_skb_partial(skb, fragstolen);
  4813. else
  4814. sk->sk_data_ready(sk, 0);
  4815. return 0;
  4816. }
  4817. }
  4818. slow_path:
  4819. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4820. goto csum_error;
  4821. /*
  4822. * Standard slow path.
  4823. */
  4824. if (!tcp_validate_incoming(sk, skb, th, 1))
  4825. return 0;
  4826. step5:
  4827. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4828. goto discard;
  4829. tcp_rcv_rtt_measure_ts(sk, skb);
  4830. /* Process urgent data. */
  4831. tcp_urg(sk, skb, th);
  4832. /* step 7: process the segment text */
  4833. tcp_data_queue(sk, skb);
  4834. tcp_data_snd_check(sk);
  4835. tcp_ack_snd_check(sk);
  4836. return 0;
  4837. csum_error:
  4838. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4839. discard:
  4840. __kfree_skb(skb);
  4841. return 0;
  4842. }
  4843. EXPORT_SYMBOL(tcp_rcv_established);
  4844. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4845. {
  4846. struct tcp_sock *tp = tcp_sk(sk);
  4847. struct inet_connection_sock *icsk = inet_csk(sk);
  4848. tcp_set_state(sk, TCP_ESTABLISHED);
  4849. if (skb != NULL) {
  4850. inet_sk_rx_dst_set(sk, skb);
  4851. security_inet_conn_established(sk, skb);
  4852. }
  4853. /* Make sure socket is routed, for correct metrics. */
  4854. icsk->icsk_af_ops->rebuild_header(sk);
  4855. tcp_init_metrics(sk);
  4856. tcp_init_congestion_control(sk);
  4857. /* Prevent spurious tcp_cwnd_restart() on first data
  4858. * packet.
  4859. */
  4860. tp->lsndtime = tcp_time_stamp;
  4861. tcp_init_buffer_space(sk);
  4862. if (sock_flag(sk, SOCK_KEEPOPEN))
  4863. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4864. if (!tp->rx_opt.snd_wscale)
  4865. __tcp_fast_path_on(tp, tp->snd_wnd);
  4866. else
  4867. tp->pred_flags = 0;
  4868. if (!sock_flag(sk, SOCK_DEAD)) {
  4869. sk->sk_state_change(sk);
  4870. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4871. }
  4872. }
  4873. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4874. struct tcp_fastopen_cookie *cookie)
  4875. {
  4876. struct tcp_sock *tp = tcp_sk(sk);
  4877. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4878. u16 mss = tp->rx_opt.mss_clamp;
  4879. bool syn_drop;
  4880. if (mss == tp->rx_opt.user_mss) {
  4881. struct tcp_options_received opt;
  4882. const u8 *hash_location;
  4883. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4884. tcp_clear_options(&opt);
  4885. opt.user_mss = opt.mss_clamp = 0;
  4886. tcp_parse_options(synack, &opt, &hash_location, 0, NULL);
  4887. mss = opt.mss_clamp;
  4888. }
  4889. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4890. cookie->len = -1;
  4891. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4892. * the remote receives only the retransmitted (regular) SYNs: either
  4893. * the original SYN-data or the corresponding SYN-ACK is lost.
  4894. */
  4895. syn_drop = (cookie->len <= 0 && data &&
  4896. inet_csk(sk)->icsk_retransmits);
  4897. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4898. if (data) { /* Retransmit unacked data in SYN */
  4899. tcp_retransmit_skb(sk, data);
  4900. tcp_rearm_rto(sk);
  4901. return true;
  4902. }
  4903. return false;
  4904. }
  4905. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4906. const struct tcphdr *th, unsigned int len)
  4907. {
  4908. const u8 *hash_location;
  4909. struct inet_connection_sock *icsk = inet_csk(sk);
  4910. struct tcp_sock *tp = tcp_sk(sk);
  4911. struct tcp_cookie_values *cvp = tp->cookie_values;
  4912. struct tcp_fastopen_cookie foc = { .len = -1 };
  4913. int saved_clamp = tp->rx_opt.mss_clamp;
  4914. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0, &foc);
  4915. if (th->ack) {
  4916. /* rfc793:
  4917. * "If the state is SYN-SENT then
  4918. * first check the ACK bit
  4919. * If the ACK bit is set
  4920. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4921. * a reset (unless the RST bit is set, if so drop
  4922. * the segment and return)"
  4923. */
  4924. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4925. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4926. goto reset_and_undo;
  4927. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4928. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4929. tcp_time_stamp)) {
  4930. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4931. goto reset_and_undo;
  4932. }
  4933. /* Now ACK is acceptable.
  4934. *
  4935. * "If the RST bit is set
  4936. * If the ACK was acceptable then signal the user "error:
  4937. * connection reset", drop the segment, enter CLOSED state,
  4938. * delete TCB, and return."
  4939. */
  4940. if (th->rst) {
  4941. tcp_reset(sk);
  4942. goto discard;
  4943. }
  4944. /* rfc793:
  4945. * "fifth, if neither of the SYN or RST bits is set then
  4946. * drop the segment and return."
  4947. *
  4948. * See note below!
  4949. * --ANK(990513)
  4950. */
  4951. if (!th->syn)
  4952. goto discard_and_undo;
  4953. /* rfc793:
  4954. * "If the SYN bit is on ...
  4955. * are acceptable then ...
  4956. * (our SYN has been ACKed), change the connection
  4957. * state to ESTABLISHED..."
  4958. */
  4959. TCP_ECN_rcv_synack(tp, th);
  4960. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4961. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4962. /* Ok.. it's good. Set up sequence numbers and
  4963. * move to established.
  4964. */
  4965. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4966. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4967. /* RFC1323: The window in SYN & SYN/ACK segments is
  4968. * never scaled.
  4969. */
  4970. tp->snd_wnd = ntohs(th->window);
  4971. if (!tp->rx_opt.wscale_ok) {
  4972. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4973. tp->window_clamp = min(tp->window_clamp, 65535U);
  4974. }
  4975. if (tp->rx_opt.saw_tstamp) {
  4976. tp->rx_opt.tstamp_ok = 1;
  4977. tp->tcp_header_len =
  4978. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4979. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4980. tcp_store_ts_recent(tp);
  4981. } else {
  4982. tp->tcp_header_len = sizeof(struct tcphdr);
  4983. }
  4984. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4985. tcp_enable_fack(tp);
  4986. tcp_mtup_init(sk);
  4987. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4988. tcp_initialize_rcv_mss(sk);
  4989. /* Remember, tcp_poll() does not lock socket!
  4990. * Change state from SYN-SENT only after copied_seq
  4991. * is initialized. */
  4992. tp->copied_seq = tp->rcv_nxt;
  4993. if (cvp != NULL &&
  4994. cvp->cookie_pair_size > 0 &&
  4995. tp->rx_opt.cookie_plus > 0) {
  4996. int cookie_size = tp->rx_opt.cookie_plus
  4997. - TCPOLEN_COOKIE_BASE;
  4998. int cookie_pair_size = cookie_size
  4999. + cvp->cookie_desired;
  5000. /* A cookie extension option was sent and returned.
  5001. * Note that each incoming SYNACK replaces the
  5002. * Responder cookie. The initial exchange is most
  5003. * fragile, as protection against spoofing relies
  5004. * entirely upon the sequence and timestamp (above).
  5005. * This replacement strategy allows the correct pair to
  5006. * pass through, while any others will be filtered via
  5007. * Responder verification later.
  5008. */
  5009. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  5010. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  5011. hash_location, cookie_size);
  5012. cvp->cookie_pair_size = cookie_pair_size;
  5013. }
  5014. }
  5015. smp_mb();
  5016. tcp_finish_connect(sk, skb);
  5017. if ((tp->syn_fastopen || tp->syn_data) &&
  5018. tcp_rcv_fastopen_synack(sk, skb, &foc))
  5019. return -1;
  5020. if (sk->sk_write_pending ||
  5021. icsk->icsk_accept_queue.rskq_defer_accept ||
  5022. icsk->icsk_ack.pingpong) {
  5023. /* Save one ACK. Data will be ready after
  5024. * several ticks, if write_pending is set.
  5025. *
  5026. * It may be deleted, but with this feature tcpdumps
  5027. * look so _wonderfully_ clever, that I was not able
  5028. * to stand against the temptation 8) --ANK
  5029. */
  5030. inet_csk_schedule_ack(sk);
  5031. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  5032. tcp_enter_quickack_mode(sk);
  5033. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  5034. TCP_DELACK_MAX, TCP_RTO_MAX);
  5035. discard:
  5036. __kfree_skb(skb);
  5037. return 0;
  5038. } else {
  5039. tcp_send_ack(sk);
  5040. }
  5041. return -1;
  5042. }
  5043. /* No ACK in the segment */
  5044. if (th->rst) {
  5045. /* rfc793:
  5046. * "If the RST bit is set
  5047. *
  5048. * Otherwise (no ACK) drop the segment and return."
  5049. */
  5050. goto discard_and_undo;
  5051. }
  5052. /* PAWS check. */
  5053. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5054. tcp_paws_reject(&tp->rx_opt, 0))
  5055. goto discard_and_undo;
  5056. if (th->syn) {
  5057. /* We see SYN without ACK. It is attempt of
  5058. * simultaneous connect with crossed SYNs.
  5059. * Particularly, it can be connect to self.
  5060. */
  5061. tcp_set_state(sk, TCP_SYN_RECV);
  5062. if (tp->rx_opt.saw_tstamp) {
  5063. tp->rx_opt.tstamp_ok = 1;
  5064. tcp_store_ts_recent(tp);
  5065. tp->tcp_header_len =
  5066. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5067. } else {
  5068. tp->tcp_header_len = sizeof(struct tcphdr);
  5069. }
  5070. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5071. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5072. /* RFC1323: The window in SYN & SYN/ACK segments is
  5073. * never scaled.
  5074. */
  5075. tp->snd_wnd = ntohs(th->window);
  5076. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5077. tp->max_window = tp->snd_wnd;
  5078. TCP_ECN_rcv_syn(tp, th);
  5079. tcp_mtup_init(sk);
  5080. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5081. tcp_initialize_rcv_mss(sk);
  5082. tcp_send_synack(sk);
  5083. #if 0
  5084. /* Note, we could accept data and URG from this segment.
  5085. * There are no obstacles to make this.
  5086. *
  5087. * However, if we ignore data in ACKless segments sometimes,
  5088. * we have no reasons to accept it sometimes.
  5089. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5090. * is not flawless. So, discard packet for sanity.
  5091. * Uncomment this return to process the data.
  5092. */
  5093. return -1;
  5094. #else
  5095. goto discard;
  5096. #endif
  5097. }
  5098. /* "fifth, if neither of the SYN or RST bits is set then
  5099. * drop the segment and return."
  5100. */
  5101. discard_and_undo:
  5102. tcp_clear_options(&tp->rx_opt);
  5103. tp->rx_opt.mss_clamp = saved_clamp;
  5104. goto discard;
  5105. reset_and_undo:
  5106. tcp_clear_options(&tp->rx_opt);
  5107. tp->rx_opt.mss_clamp = saved_clamp;
  5108. return 1;
  5109. }
  5110. /*
  5111. * This function implements the receiving procedure of RFC 793 for
  5112. * all states except ESTABLISHED and TIME_WAIT.
  5113. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5114. * address independent.
  5115. */
  5116. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5117. const struct tcphdr *th, unsigned int len)
  5118. {
  5119. struct tcp_sock *tp = tcp_sk(sk);
  5120. struct inet_connection_sock *icsk = inet_csk(sk);
  5121. int queued = 0;
  5122. tp->rx_opt.saw_tstamp = 0;
  5123. switch (sk->sk_state) {
  5124. case TCP_CLOSE:
  5125. goto discard;
  5126. case TCP_LISTEN:
  5127. if (th->ack)
  5128. return 1;
  5129. if (th->rst)
  5130. goto discard;
  5131. if (th->syn) {
  5132. if (th->fin)
  5133. goto discard;
  5134. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5135. return 1;
  5136. /* Now we have several options: In theory there is
  5137. * nothing else in the frame. KA9Q has an option to
  5138. * send data with the syn, BSD accepts data with the
  5139. * syn up to the [to be] advertised window and
  5140. * Solaris 2.1 gives you a protocol error. For now
  5141. * we just ignore it, that fits the spec precisely
  5142. * and avoids incompatibilities. It would be nice in
  5143. * future to drop through and process the data.
  5144. *
  5145. * Now that TTCP is starting to be used we ought to
  5146. * queue this data.
  5147. * But, this leaves one open to an easy denial of
  5148. * service attack, and SYN cookies can't defend
  5149. * against this problem. So, we drop the data
  5150. * in the interest of security over speed unless
  5151. * it's still in use.
  5152. */
  5153. kfree_skb(skb);
  5154. return 0;
  5155. }
  5156. goto discard;
  5157. case TCP_SYN_SENT:
  5158. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5159. if (queued >= 0)
  5160. return queued;
  5161. /* Do step6 onward by hand. */
  5162. tcp_urg(sk, skb, th);
  5163. __kfree_skb(skb);
  5164. tcp_data_snd_check(sk);
  5165. return 0;
  5166. }
  5167. if (!tcp_validate_incoming(sk, skb, th, 0))
  5168. return 0;
  5169. /* step 5: check the ACK field */
  5170. if (th->ack) {
  5171. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5172. switch (sk->sk_state) {
  5173. case TCP_SYN_RECV:
  5174. if (acceptable) {
  5175. tp->copied_seq = tp->rcv_nxt;
  5176. smp_mb();
  5177. tcp_set_state(sk, TCP_ESTABLISHED);
  5178. sk->sk_state_change(sk);
  5179. /* Note, that this wakeup is only for marginal
  5180. * crossed SYN case. Passively open sockets
  5181. * are not waked up, because sk->sk_sleep ==
  5182. * NULL and sk->sk_socket == NULL.
  5183. */
  5184. if (sk->sk_socket)
  5185. sk_wake_async(sk,
  5186. SOCK_WAKE_IO, POLL_OUT);
  5187. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5188. tp->snd_wnd = ntohs(th->window) <<
  5189. tp->rx_opt.snd_wscale;
  5190. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5191. if (tp->rx_opt.tstamp_ok)
  5192. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5193. /* Make sure socket is routed, for
  5194. * correct metrics.
  5195. */
  5196. icsk->icsk_af_ops->rebuild_header(sk);
  5197. tcp_init_metrics(sk);
  5198. tcp_init_congestion_control(sk);
  5199. /* Prevent spurious tcp_cwnd_restart() on
  5200. * first data packet.
  5201. */
  5202. tp->lsndtime = tcp_time_stamp;
  5203. tcp_mtup_init(sk);
  5204. tcp_initialize_rcv_mss(sk);
  5205. tcp_init_buffer_space(sk);
  5206. tcp_fast_path_on(tp);
  5207. } else {
  5208. return 1;
  5209. }
  5210. break;
  5211. case TCP_FIN_WAIT1:
  5212. if (tp->snd_una == tp->write_seq) {
  5213. struct dst_entry *dst;
  5214. tcp_set_state(sk, TCP_FIN_WAIT2);
  5215. sk->sk_shutdown |= SEND_SHUTDOWN;
  5216. dst = __sk_dst_get(sk);
  5217. if (dst)
  5218. dst_confirm(dst);
  5219. if (!sock_flag(sk, SOCK_DEAD))
  5220. /* Wake up lingering close() */
  5221. sk->sk_state_change(sk);
  5222. else {
  5223. int tmo;
  5224. if (tp->linger2 < 0 ||
  5225. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5226. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5227. tcp_done(sk);
  5228. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5229. return 1;
  5230. }
  5231. tmo = tcp_fin_time(sk);
  5232. if (tmo > TCP_TIMEWAIT_LEN) {
  5233. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5234. } else if (th->fin || sock_owned_by_user(sk)) {
  5235. /* Bad case. We could lose such FIN otherwise.
  5236. * It is not a big problem, but it looks confusing
  5237. * and not so rare event. We still can lose it now,
  5238. * if it spins in bh_lock_sock(), but it is really
  5239. * marginal case.
  5240. */
  5241. inet_csk_reset_keepalive_timer(sk, tmo);
  5242. } else {
  5243. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5244. goto discard;
  5245. }
  5246. }
  5247. }
  5248. break;
  5249. case TCP_CLOSING:
  5250. if (tp->snd_una == tp->write_seq) {
  5251. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5252. goto discard;
  5253. }
  5254. break;
  5255. case TCP_LAST_ACK:
  5256. if (tp->snd_una == tp->write_seq) {
  5257. tcp_update_metrics(sk);
  5258. tcp_done(sk);
  5259. goto discard;
  5260. }
  5261. break;
  5262. }
  5263. } else
  5264. goto discard;
  5265. /* step 6: check the URG bit */
  5266. tcp_urg(sk, skb, th);
  5267. /* step 7: process the segment text */
  5268. switch (sk->sk_state) {
  5269. case TCP_CLOSE_WAIT:
  5270. case TCP_CLOSING:
  5271. case TCP_LAST_ACK:
  5272. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5273. break;
  5274. case TCP_FIN_WAIT1:
  5275. case TCP_FIN_WAIT2:
  5276. /* RFC 793 says to queue data in these states,
  5277. * RFC 1122 says we MUST send a reset.
  5278. * BSD 4.4 also does reset.
  5279. */
  5280. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5281. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5282. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5283. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5284. tcp_reset(sk);
  5285. return 1;
  5286. }
  5287. }
  5288. /* Fall through */
  5289. case TCP_ESTABLISHED:
  5290. tcp_data_queue(sk, skb);
  5291. queued = 1;
  5292. break;
  5293. }
  5294. /* tcp_data could move socket to TIME-WAIT */
  5295. if (sk->sk_state != TCP_CLOSE) {
  5296. tcp_data_snd_check(sk);
  5297. tcp_ack_snd_check(sk);
  5298. }
  5299. if (!queued) {
  5300. discard:
  5301. __kfree_skb(skb);
  5302. }
  5303. return 0;
  5304. }
  5305. EXPORT_SYMBOL(tcp_rcv_state_process);