sock.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Generic socket support routines. Memory allocators, socket lock/release
  7. * handler for protocols to use and generic option handler.
  8. *
  9. *
  10. * Authors: Ross Biro
  11. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Alan Cox, <A.Cox@swansea.ac.uk>
  14. *
  15. * Fixes:
  16. * Alan Cox : Numerous verify_area() problems
  17. * Alan Cox : Connecting on a connecting socket
  18. * now returns an error for tcp.
  19. * Alan Cox : sock->protocol is set correctly.
  20. * and is not sometimes left as 0.
  21. * Alan Cox : connect handles icmp errors on a
  22. * connect properly. Unfortunately there
  23. * is a restart syscall nasty there. I
  24. * can't match BSD without hacking the C
  25. * library. Ideas urgently sought!
  26. * Alan Cox : Disallow bind() to addresses that are
  27. * not ours - especially broadcast ones!!
  28. * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
  29. * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
  30. * instead they leave that for the DESTROY timer.
  31. * Alan Cox : Clean up error flag in accept
  32. * Alan Cox : TCP ack handling is buggy, the DESTROY timer
  33. * was buggy. Put a remove_sock() in the handler
  34. * for memory when we hit 0. Also altered the timer
  35. * code. The ACK stuff can wait and needs major
  36. * TCP layer surgery.
  37. * Alan Cox : Fixed TCP ack bug, removed remove sock
  38. * and fixed timer/inet_bh race.
  39. * Alan Cox : Added zapped flag for TCP
  40. * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
  41. * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
  42. * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
  43. * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
  44. * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
  45. * Rick Sladkey : Relaxed UDP rules for matching packets.
  46. * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
  47. * Pauline Middelink : identd support
  48. * Alan Cox : Fixed connect() taking signals I think.
  49. * Alan Cox : SO_LINGER supported
  50. * Alan Cox : Error reporting fixes
  51. * Anonymous : inet_create tidied up (sk->reuse setting)
  52. * Alan Cox : inet sockets don't set sk->type!
  53. * Alan Cox : Split socket option code
  54. * Alan Cox : Callbacks
  55. * Alan Cox : Nagle flag for Charles & Johannes stuff
  56. * Alex : Removed restriction on inet fioctl
  57. * Alan Cox : Splitting INET from NET core
  58. * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
  59. * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
  60. * Alan Cox : Split IP from generic code
  61. * Alan Cox : New kfree_skbmem()
  62. * Alan Cox : Make SO_DEBUG superuser only.
  63. * Alan Cox : Allow anyone to clear SO_DEBUG
  64. * (compatibility fix)
  65. * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
  66. * Alan Cox : Allocator for a socket is settable.
  67. * Alan Cox : SO_ERROR includes soft errors.
  68. * Alan Cox : Allow NULL arguments on some SO_ opts
  69. * Alan Cox : Generic socket allocation to make hooks
  70. * easier (suggested by Craig Metz).
  71. * Michael Pall : SO_ERROR returns positive errno again
  72. * Steve Whitehouse: Added default destructor to free
  73. * protocol private data.
  74. * Steve Whitehouse: Added various other default routines
  75. * common to several socket families.
  76. * Chris Evans : Call suser() check last on F_SETOWN
  77. * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
  78. * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
  79. * Andi Kleen : Fix write_space callback
  80. * Chris Evans : Security fixes - signedness again
  81. * Arnaldo C. Melo : cleanups, use skb_queue_purge
  82. *
  83. * To Fix:
  84. *
  85. *
  86. * This program is free software; you can redistribute it and/or
  87. * modify it under the terms of the GNU General Public License
  88. * as published by the Free Software Foundation; either version
  89. * 2 of the License, or (at your option) any later version.
  90. */
  91. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  92. #include <linux/capability.h>
  93. #include <linux/errno.h>
  94. #include <linux/types.h>
  95. #include <linux/socket.h>
  96. #include <linux/in.h>
  97. #include <linux/kernel.h>
  98. #include <linux/module.h>
  99. #include <linux/proc_fs.h>
  100. #include <linux/seq_file.h>
  101. #include <linux/sched.h>
  102. #include <linux/timer.h>
  103. #include <linux/string.h>
  104. #include <linux/sockios.h>
  105. #include <linux/net.h>
  106. #include <linux/mm.h>
  107. #include <linux/slab.h>
  108. #include <linux/interrupt.h>
  109. #include <linux/poll.h>
  110. #include <linux/tcp.h>
  111. #include <linux/init.h>
  112. #include <linux/highmem.h>
  113. #include <linux/user_namespace.h>
  114. #include <linux/static_key.h>
  115. #include <linux/memcontrol.h>
  116. #include <linux/prefetch.h>
  117. #include <asm/uaccess.h>
  118. #include <linux/netdevice.h>
  119. #include <net/protocol.h>
  120. #include <linux/skbuff.h>
  121. #include <net/net_namespace.h>
  122. #include <net/request_sock.h>
  123. #include <net/sock.h>
  124. #include <linux/net_tstamp.h>
  125. #include <net/xfrm.h>
  126. #include <linux/ipsec.h>
  127. #include <net/cls_cgroup.h>
  128. #include <net/netprio_cgroup.h>
  129. #include <linux/filter.h>
  130. #include <trace/events/sock.h>
  131. #ifdef CONFIG_INET
  132. #include <net/tcp.h>
  133. #endif
  134. static DEFINE_MUTEX(proto_list_mutex);
  135. static LIST_HEAD(proto_list);
  136. #ifdef CONFIG_MEMCG_KMEM
  137. int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
  138. {
  139. struct proto *proto;
  140. int ret = 0;
  141. mutex_lock(&proto_list_mutex);
  142. list_for_each_entry(proto, &proto_list, node) {
  143. if (proto->init_cgroup) {
  144. ret = proto->init_cgroup(memcg, ss);
  145. if (ret)
  146. goto out;
  147. }
  148. }
  149. mutex_unlock(&proto_list_mutex);
  150. return ret;
  151. out:
  152. list_for_each_entry_continue_reverse(proto, &proto_list, node)
  153. if (proto->destroy_cgroup)
  154. proto->destroy_cgroup(memcg);
  155. mutex_unlock(&proto_list_mutex);
  156. return ret;
  157. }
  158. void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
  159. {
  160. struct proto *proto;
  161. mutex_lock(&proto_list_mutex);
  162. list_for_each_entry_reverse(proto, &proto_list, node)
  163. if (proto->destroy_cgroup)
  164. proto->destroy_cgroup(memcg);
  165. mutex_unlock(&proto_list_mutex);
  166. }
  167. #endif
  168. /*
  169. * Each address family might have different locking rules, so we have
  170. * one slock key per address family:
  171. */
  172. static struct lock_class_key af_family_keys[AF_MAX];
  173. static struct lock_class_key af_family_slock_keys[AF_MAX];
  174. struct static_key memcg_socket_limit_enabled;
  175. EXPORT_SYMBOL(memcg_socket_limit_enabled);
  176. /*
  177. * Make lock validator output more readable. (we pre-construct these
  178. * strings build-time, so that runtime initialization of socket
  179. * locks is fast):
  180. */
  181. static const char *const af_family_key_strings[AF_MAX+1] = {
  182. "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
  183. "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
  184. "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
  185. "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
  186. "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
  187. "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
  188. "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
  189. "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
  190. "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
  191. "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
  192. "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
  193. "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
  194. "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
  195. "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
  196. };
  197. static const char *const af_family_slock_key_strings[AF_MAX+1] = {
  198. "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
  199. "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
  200. "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
  201. "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
  202. "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
  203. "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
  204. "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
  205. "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
  206. "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
  207. "slock-27" , "slock-28" , "slock-AF_CAN" ,
  208. "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
  209. "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
  210. "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
  211. "slock-AF_NFC" , "slock-AF_MAX"
  212. };
  213. static const char *const af_family_clock_key_strings[AF_MAX+1] = {
  214. "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
  215. "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
  216. "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
  217. "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
  218. "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
  219. "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
  220. "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
  221. "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
  222. "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
  223. "clock-27" , "clock-28" , "clock-AF_CAN" ,
  224. "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
  225. "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
  226. "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
  227. "clock-AF_NFC" , "clock-AF_MAX"
  228. };
  229. /*
  230. * sk_callback_lock locking rules are per-address-family,
  231. * so split the lock classes by using a per-AF key:
  232. */
  233. static struct lock_class_key af_callback_keys[AF_MAX];
  234. /* Take into consideration the size of the struct sk_buff overhead in the
  235. * determination of these values, since that is non-constant across
  236. * platforms. This makes socket queueing behavior and performance
  237. * not depend upon such differences.
  238. */
  239. #define _SK_MEM_PACKETS 256
  240. #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
  241. #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  242. #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
  243. /* Run time adjustable parameters. */
  244. __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
  245. EXPORT_SYMBOL(sysctl_wmem_max);
  246. __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
  247. EXPORT_SYMBOL(sysctl_rmem_max);
  248. __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
  249. __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
  250. /* Maximal space eaten by iovec or ancillary data plus some space */
  251. int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
  252. EXPORT_SYMBOL(sysctl_optmem_max);
  253. struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
  254. EXPORT_SYMBOL_GPL(memalloc_socks);
  255. /**
  256. * sk_set_memalloc - sets %SOCK_MEMALLOC
  257. * @sk: socket to set it on
  258. *
  259. * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
  260. * It's the responsibility of the admin to adjust min_free_kbytes
  261. * to meet the requirements
  262. */
  263. void sk_set_memalloc(struct sock *sk)
  264. {
  265. sock_set_flag(sk, SOCK_MEMALLOC);
  266. sk->sk_allocation |= __GFP_MEMALLOC;
  267. static_key_slow_inc(&memalloc_socks);
  268. }
  269. EXPORT_SYMBOL_GPL(sk_set_memalloc);
  270. void sk_clear_memalloc(struct sock *sk)
  271. {
  272. sock_reset_flag(sk, SOCK_MEMALLOC);
  273. sk->sk_allocation &= ~__GFP_MEMALLOC;
  274. static_key_slow_dec(&memalloc_socks);
  275. /*
  276. * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
  277. * progress of swapping. However, if SOCK_MEMALLOC is cleared while
  278. * it has rmem allocations there is a risk that the user of the
  279. * socket cannot make forward progress due to exceeding the rmem
  280. * limits. By rights, sk_clear_memalloc() should only be called
  281. * on sockets being torn down but warn and reset the accounting if
  282. * that assumption breaks.
  283. */
  284. if (WARN_ON(sk->sk_forward_alloc))
  285. sk_mem_reclaim(sk);
  286. }
  287. EXPORT_SYMBOL_GPL(sk_clear_memalloc);
  288. int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
  289. {
  290. int ret;
  291. unsigned long pflags = current->flags;
  292. /* these should have been dropped before queueing */
  293. BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
  294. current->flags |= PF_MEMALLOC;
  295. ret = sk->sk_backlog_rcv(sk, skb);
  296. tsk_restore_flags(current, pflags, PF_MEMALLOC);
  297. return ret;
  298. }
  299. EXPORT_SYMBOL(__sk_backlog_rcv);
  300. #if defined(CONFIG_CGROUPS)
  301. #if !defined(CONFIG_NET_CLS_CGROUP)
  302. int net_cls_subsys_id = -1;
  303. EXPORT_SYMBOL_GPL(net_cls_subsys_id);
  304. #endif
  305. #if !defined(CONFIG_NETPRIO_CGROUP)
  306. int net_prio_subsys_id = -1;
  307. EXPORT_SYMBOL_GPL(net_prio_subsys_id);
  308. #endif
  309. #endif
  310. static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
  311. {
  312. struct timeval tv;
  313. if (optlen < sizeof(tv))
  314. return -EINVAL;
  315. if (copy_from_user(&tv, optval, sizeof(tv)))
  316. return -EFAULT;
  317. if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
  318. return -EDOM;
  319. if (tv.tv_sec < 0) {
  320. static int warned __read_mostly;
  321. *timeo_p = 0;
  322. if (warned < 10 && net_ratelimit()) {
  323. warned++;
  324. pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
  325. __func__, current->comm, task_pid_nr(current));
  326. }
  327. return 0;
  328. }
  329. *timeo_p = MAX_SCHEDULE_TIMEOUT;
  330. if (tv.tv_sec == 0 && tv.tv_usec == 0)
  331. return 0;
  332. if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
  333. *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
  334. return 0;
  335. }
  336. static void sock_warn_obsolete_bsdism(const char *name)
  337. {
  338. static int warned;
  339. static char warncomm[TASK_COMM_LEN];
  340. if (strcmp(warncomm, current->comm) && warned < 5) {
  341. strcpy(warncomm, current->comm);
  342. pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
  343. warncomm, name);
  344. warned++;
  345. }
  346. }
  347. #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
  348. static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
  349. {
  350. if (sk->sk_flags & flags) {
  351. sk->sk_flags &= ~flags;
  352. if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
  353. net_disable_timestamp();
  354. }
  355. }
  356. int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
  357. {
  358. int err;
  359. int skb_len;
  360. unsigned long flags;
  361. struct sk_buff_head *list = &sk->sk_receive_queue;
  362. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
  363. atomic_inc(&sk->sk_drops);
  364. trace_sock_rcvqueue_full(sk, skb);
  365. return -ENOMEM;
  366. }
  367. err = sk_filter(sk, skb);
  368. if (err)
  369. return err;
  370. if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
  371. atomic_inc(&sk->sk_drops);
  372. return -ENOBUFS;
  373. }
  374. skb->dev = NULL;
  375. skb_set_owner_r(skb, sk);
  376. /* Cache the SKB length before we tack it onto the receive
  377. * queue. Once it is added it no longer belongs to us and
  378. * may be freed by other threads of control pulling packets
  379. * from the queue.
  380. */
  381. skb_len = skb->len;
  382. /* we escape from rcu protected region, make sure we dont leak
  383. * a norefcounted dst
  384. */
  385. skb_dst_force(skb);
  386. spin_lock_irqsave(&list->lock, flags);
  387. skb->dropcount = atomic_read(&sk->sk_drops);
  388. __skb_queue_tail(list, skb);
  389. spin_unlock_irqrestore(&list->lock, flags);
  390. if (!sock_flag(sk, SOCK_DEAD))
  391. sk->sk_data_ready(sk, skb_len);
  392. return 0;
  393. }
  394. EXPORT_SYMBOL(sock_queue_rcv_skb);
  395. int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
  396. {
  397. int rc = NET_RX_SUCCESS;
  398. if (sk_filter(sk, skb))
  399. goto discard_and_relse;
  400. skb->dev = NULL;
  401. if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
  402. atomic_inc(&sk->sk_drops);
  403. goto discard_and_relse;
  404. }
  405. if (nested)
  406. bh_lock_sock_nested(sk);
  407. else
  408. bh_lock_sock(sk);
  409. if (!sock_owned_by_user(sk)) {
  410. /*
  411. * trylock + unlock semantics:
  412. */
  413. mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
  414. rc = sk_backlog_rcv(sk, skb);
  415. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  416. } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
  417. bh_unlock_sock(sk);
  418. atomic_inc(&sk->sk_drops);
  419. goto discard_and_relse;
  420. }
  421. bh_unlock_sock(sk);
  422. out:
  423. sock_put(sk);
  424. return rc;
  425. discard_and_relse:
  426. kfree_skb(skb);
  427. goto out;
  428. }
  429. EXPORT_SYMBOL(sk_receive_skb);
  430. void sk_reset_txq(struct sock *sk)
  431. {
  432. sk_tx_queue_clear(sk);
  433. }
  434. EXPORT_SYMBOL(sk_reset_txq);
  435. struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
  436. {
  437. struct dst_entry *dst = __sk_dst_get(sk);
  438. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  439. sk_tx_queue_clear(sk);
  440. RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
  441. dst_release(dst);
  442. return NULL;
  443. }
  444. return dst;
  445. }
  446. EXPORT_SYMBOL(__sk_dst_check);
  447. struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
  448. {
  449. struct dst_entry *dst = sk_dst_get(sk);
  450. if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
  451. sk_dst_reset(sk);
  452. dst_release(dst);
  453. return NULL;
  454. }
  455. return dst;
  456. }
  457. EXPORT_SYMBOL(sk_dst_check);
  458. static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
  459. {
  460. int ret = -ENOPROTOOPT;
  461. #ifdef CONFIG_NETDEVICES
  462. struct net *net = sock_net(sk);
  463. char devname[IFNAMSIZ];
  464. int index;
  465. /* Sorry... */
  466. ret = -EPERM;
  467. if (!capable(CAP_NET_RAW))
  468. goto out;
  469. ret = -EINVAL;
  470. if (optlen < 0)
  471. goto out;
  472. /* Bind this socket to a particular device like "eth0",
  473. * as specified in the passed interface name. If the
  474. * name is "" or the option length is zero the socket
  475. * is not bound.
  476. */
  477. if (optlen > IFNAMSIZ - 1)
  478. optlen = IFNAMSIZ - 1;
  479. memset(devname, 0, sizeof(devname));
  480. ret = -EFAULT;
  481. if (copy_from_user(devname, optval, optlen))
  482. goto out;
  483. index = 0;
  484. if (devname[0] != '\0') {
  485. struct net_device *dev;
  486. rcu_read_lock();
  487. dev = dev_get_by_name_rcu(net, devname);
  488. if (dev)
  489. index = dev->ifindex;
  490. rcu_read_unlock();
  491. ret = -ENODEV;
  492. if (!dev)
  493. goto out;
  494. }
  495. lock_sock(sk);
  496. sk->sk_bound_dev_if = index;
  497. sk_dst_reset(sk);
  498. release_sock(sk);
  499. ret = 0;
  500. out:
  501. #endif
  502. return ret;
  503. }
  504. static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
  505. {
  506. if (valbool)
  507. sock_set_flag(sk, bit);
  508. else
  509. sock_reset_flag(sk, bit);
  510. }
  511. /*
  512. * This is meant for all protocols to use and covers goings on
  513. * at the socket level. Everything here is generic.
  514. */
  515. int sock_setsockopt(struct socket *sock, int level, int optname,
  516. char __user *optval, unsigned int optlen)
  517. {
  518. struct sock *sk = sock->sk;
  519. int val;
  520. int valbool;
  521. struct linger ling;
  522. int ret = 0;
  523. /*
  524. * Options without arguments
  525. */
  526. if (optname == SO_BINDTODEVICE)
  527. return sock_bindtodevice(sk, optval, optlen);
  528. if (optlen < sizeof(int))
  529. return -EINVAL;
  530. if (get_user(val, (int __user *)optval))
  531. return -EFAULT;
  532. valbool = val ? 1 : 0;
  533. lock_sock(sk);
  534. switch (optname) {
  535. case SO_DEBUG:
  536. if (val && !capable(CAP_NET_ADMIN))
  537. ret = -EACCES;
  538. else
  539. sock_valbool_flag(sk, SOCK_DBG, valbool);
  540. break;
  541. case SO_REUSEADDR:
  542. sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
  543. break;
  544. case SO_TYPE:
  545. case SO_PROTOCOL:
  546. case SO_DOMAIN:
  547. case SO_ERROR:
  548. ret = -ENOPROTOOPT;
  549. break;
  550. case SO_DONTROUTE:
  551. sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
  552. break;
  553. case SO_BROADCAST:
  554. sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
  555. break;
  556. case SO_SNDBUF:
  557. /* Don't error on this BSD doesn't and if you think
  558. * about it this is right. Otherwise apps have to
  559. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  560. * are treated in BSD as hints
  561. */
  562. val = min_t(u32, val, sysctl_wmem_max);
  563. set_sndbuf:
  564. sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
  565. sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
  566. /* Wake up sending tasks if we upped the value. */
  567. sk->sk_write_space(sk);
  568. break;
  569. case SO_SNDBUFFORCE:
  570. if (!capable(CAP_NET_ADMIN)) {
  571. ret = -EPERM;
  572. break;
  573. }
  574. goto set_sndbuf;
  575. case SO_RCVBUF:
  576. /* Don't error on this BSD doesn't and if you think
  577. * about it this is right. Otherwise apps have to
  578. * play 'guess the biggest size' games. RCVBUF/SNDBUF
  579. * are treated in BSD as hints
  580. */
  581. val = min_t(u32, val, sysctl_rmem_max);
  582. set_rcvbuf:
  583. sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
  584. /*
  585. * We double it on the way in to account for
  586. * "struct sk_buff" etc. overhead. Applications
  587. * assume that the SO_RCVBUF setting they make will
  588. * allow that much actual data to be received on that
  589. * socket.
  590. *
  591. * Applications are unaware that "struct sk_buff" and
  592. * other overheads allocate from the receive buffer
  593. * during socket buffer allocation.
  594. *
  595. * And after considering the possible alternatives,
  596. * returning the value we actually used in getsockopt
  597. * is the most desirable behavior.
  598. */
  599. sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
  600. break;
  601. case SO_RCVBUFFORCE:
  602. if (!capable(CAP_NET_ADMIN)) {
  603. ret = -EPERM;
  604. break;
  605. }
  606. goto set_rcvbuf;
  607. case SO_KEEPALIVE:
  608. #ifdef CONFIG_INET
  609. if (sk->sk_protocol == IPPROTO_TCP)
  610. tcp_set_keepalive(sk, valbool);
  611. #endif
  612. sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
  613. break;
  614. case SO_OOBINLINE:
  615. sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
  616. break;
  617. case SO_NO_CHECK:
  618. sk->sk_no_check = valbool;
  619. break;
  620. case SO_PRIORITY:
  621. if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
  622. sk->sk_priority = val;
  623. else
  624. ret = -EPERM;
  625. break;
  626. case SO_LINGER:
  627. if (optlen < sizeof(ling)) {
  628. ret = -EINVAL; /* 1003.1g */
  629. break;
  630. }
  631. if (copy_from_user(&ling, optval, sizeof(ling))) {
  632. ret = -EFAULT;
  633. break;
  634. }
  635. if (!ling.l_onoff)
  636. sock_reset_flag(sk, SOCK_LINGER);
  637. else {
  638. #if (BITS_PER_LONG == 32)
  639. if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
  640. sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
  641. else
  642. #endif
  643. sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
  644. sock_set_flag(sk, SOCK_LINGER);
  645. }
  646. break;
  647. case SO_BSDCOMPAT:
  648. sock_warn_obsolete_bsdism("setsockopt");
  649. break;
  650. case SO_PASSCRED:
  651. if (valbool)
  652. set_bit(SOCK_PASSCRED, &sock->flags);
  653. else
  654. clear_bit(SOCK_PASSCRED, &sock->flags);
  655. break;
  656. case SO_TIMESTAMP:
  657. case SO_TIMESTAMPNS:
  658. if (valbool) {
  659. if (optname == SO_TIMESTAMP)
  660. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  661. else
  662. sock_set_flag(sk, SOCK_RCVTSTAMPNS);
  663. sock_set_flag(sk, SOCK_RCVTSTAMP);
  664. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  665. } else {
  666. sock_reset_flag(sk, SOCK_RCVTSTAMP);
  667. sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
  668. }
  669. break;
  670. case SO_TIMESTAMPING:
  671. if (val & ~SOF_TIMESTAMPING_MASK) {
  672. ret = -EINVAL;
  673. break;
  674. }
  675. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
  676. val & SOF_TIMESTAMPING_TX_HARDWARE);
  677. sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
  678. val & SOF_TIMESTAMPING_TX_SOFTWARE);
  679. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
  680. val & SOF_TIMESTAMPING_RX_HARDWARE);
  681. if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
  682. sock_enable_timestamp(sk,
  683. SOCK_TIMESTAMPING_RX_SOFTWARE);
  684. else
  685. sock_disable_timestamp(sk,
  686. (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
  687. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
  688. val & SOF_TIMESTAMPING_SOFTWARE);
  689. sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
  690. val & SOF_TIMESTAMPING_SYS_HARDWARE);
  691. sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
  692. val & SOF_TIMESTAMPING_RAW_HARDWARE);
  693. break;
  694. case SO_RCVLOWAT:
  695. if (val < 0)
  696. val = INT_MAX;
  697. sk->sk_rcvlowat = val ? : 1;
  698. break;
  699. case SO_RCVTIMEO:
  700. ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
  701. break;
  702. case SO_SNDTIMEO:
  703. ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
  704. break;
  705. case SO_ATTACH_FILTER:
  706. ret = -EINVAL;
  707. if (optlen == sizeof(struct sock_fprog)) {
  708. struct sock_fprog fprog;
  709. ret = -EFAULT;
  710. if (copy_from_user(&fprog, optval, sizeof(fprog)))
  711. break;
  712. ret = sk_attach_filter(&fprog, sk);
  713. }
  714. break;
  715. case SO_DETACH_FILTER:
  716. ret = sk_detach_filter(sk);
  717. break;
  718. case SO_PASSSEC:
  719. if (valbool)
  720. set_bit(SOCK_PASSSEC, &sock->flags);
  721. else
  722. clear_bit(SOCK_PASSSEC, &sock->flags);
  723. break;
  724. case SO_MARK:
  725. if (!capable(CAP_NET_ADMIN))
  726. ret = -EPERM;
  727. else
  728. sk->sk_mark = val;
  729. break;
  730. /* We implement the SO_SNDLOWAT etc to
  731. not be settable (1003.1g 5.3) */
  732. case SO_RXQ_OVFL:
  733. sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
  734. break;
  735. case SO_WIFI_STATUS:
  736. sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
  737. break;
  738. case SO_PEEK_OFF:
  739. if (sock->ops->set_peek_off)
  740. sock->ops->set_peek_off(sk, val);
  741. else
  742. ret = -EOPNOTSUPP;
  743. break;
  744. case SO_NOFCS:
  745. sock_valbool_flag(sk, SOCK_NOFCS, valbool);
  746. break;
  747. default:
  748. ret = -ENOPROTOOPT;
  749. break;
  750. }
  751. release_sock(sk);
  752. return ret;
  753. }
  754. EXPORT_SYMBOL(sock_setsockopt);
  755. void cred_to_ucred(struct pid *pid, const struct cred *cred,
  756. struct ucred *ucred)
  757. {
  758. ucred->pid = pid_vnr(pid);
  759. ucred->uid = ucred->gid = -1;
  760. if (cred) {
  761. struct user_namespace *current_ns = current_user_ns();
  762. ucred->uid = from_kuid(current_ns, cred->euid);
  763. ucred->gid = from_kgid(current_ns, cred->egid);
  764. }
  765. }
  766. EXPORT_SYMBOL_GPL(cred_to_ucred);
  767. int sock_getsockopt(struct socket *sock, int level, int optname,
  768. char __user *optval, int __user *optlen)
  769. {
  770. struct sock *sk = sock->sk;
  771. union {
  772. int val;
  773. struct linger ling;
  774. struct timeval tm;
  775. } v;
  776. int lv = sizeof(int);
  777. int len;
  778. if (get_user(len, optlen))
  779. return -EFAULT;
  780. if (len < 0)
  781. return -EINVAL;
  782. memset(&v, 0, sizeof(v));
  783. switch (optname) {
  784. case SO_DEBUG:
  785. v.val = sock_flag(sk, SOCK_DBG);
  786. break;
  787. case SO_DONTROUTE:
  788. v.val = sock_flag(sk, SOCK_LOCALROUTE);
  789. break;
  790. case SO_BROADCAST:
  791. v.val = sock_flag(sk, SOCK_BROADCAST);
  792. break;
  793. case SO_SNDBUF:
  794. v.val = sk->sk_sndbuf;
  795. break;
  796. case SO_RCVBUF:
  797. v.val = sk->sk_rcvbuf;
  798. break;
  799. case SO_REUSEADDR:
  800. v.val = sk->sk_reuse;
  801. break;
  802. case SO_KEEPALIVE:
  803. v.val = sock_flag(sk, SOCK_KEEPOPEN);
  804. break;
  805. case SO_TYPE:
  806. v.val = sk->sk_type;
  807. break;
  808. case SO_PROTOCOL:
  809. v.val = sk->sk_protocol;
  810. break;
  811. case SO_DOMAIN:
  812. v.val = sk->sk_family;
  813. break;
  814. case SO_ERROR:
  815. v.val = -sock_error(sk);
  816. if (v.val == 0)
  817. v.val = xchg(&sk->sk_err_soft, 0);
  818. break;
  819. case SO_OOBINLINE:
  820. v.val = sock_flag(sk, SOCK_URGINLINE);
  821. break;
  822. case SO_NO_CHECK:
  823. v.val = sk->sk_no_check;
  824. break;
  825. case SO_PRIORITY:
  826. v.val = sk->sk_priority;
  827. break;
  828. case SO_LINGER:
  829. lv = sizeof(v.ling);
  830. v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
  831. v.ling.l_linger = sk->sk_lingertime / HZ;
  832. break;
  833. case SO_BSDCOMPAT:
  834. sock_warn_obsolete_bsdism("getsockopt");
  835. break;
  836. case SO_TIMESTAMP:
  837. v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
  838. !sock_flag(sk, SOCK_RCVTSTAMPNS);
  839. break;
  840. case SO_TIMESTAMPNS:
  841. v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
  842. break;
  843. case SO_TIMESTAMPING:
  844. v.val = 0;
  845. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
  846. v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
  847. if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
  848. v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
  849. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
  850. v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
  851. if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
  852. v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
  853. if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
  854. v.val |= SOF_TIMESTAMPING_SOFTWARE;
  855. if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
  856. v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
  857. if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
  858. v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
  859. break;
  860. case SO_RCVTIMEO:
  861. lv = sizeof(struct timeval);
  862. if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
  863. v.tm.tv_sec = 0;
  864. v.tm.tv_usec = 0;
  865. } else {
  866. v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
  867. v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
  868. }
  869. break;
  870. case SO_SNDTIMEO:
  871. lv = sizeof(struct timeval);
  872. if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
  873. v.tm.tv_sec = 0;
  874. v.tm.tv_usec = 0;
  875. } else {
  876. v.tm.tv_sec = sk->sk_sndtimeo / HZ;
  877. v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
  878. }
  879. break;
  880. case SO_RCVLOWAT:
  881. v.val = sk->sk_rcvlowat;
  882. break;
  883. case SO_SNDLOWAT:
  884. v.val = 1;
  885. break;
  886. case SO_PASSCRED:
  887. v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
  888. break;
  889. case SO_PEERCRED:
  890. {
  891. struct ucred peercred;
  892. if (len > sizeof(peercred))
  893. len = sizeof(peercred);
  894. cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
  895. if (copy_to_user(optval, &peercred, len))
  896. return -EFAULT;
  897. goto lenout;
  898. }
  899. case SO_PEERNAME:
  900. {
  901. char address[128];
  902. if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
  903. return -ENOTCONN;
  904. if (lv < len)
  905. return -EINVAL;
  906. if (copy_to_user(optval, address, len))
  907. return -EFAULT;
  908. goto lenout;
  909. }
  910. /* Dubious BSD thing... Probably nobody even uses it, but
  911. * the UNIX standard wants it for whatever reason... -DaveM
  912. */
  913. case SO_ACCEPTCONN:
  914. v.val = sk->sk_state == TCP_LISTEN;
  915. break;
  916. case SO_PASSSEC:
  917. v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
  918. break;
  919. case SO_PEERSEC:
  920. return security_socket_getpeersec_stream(sock, optval, optlen, len);
  921. case SO_MARK:
  922. v.val = sk->sk_mark;
  923. break;
  924. case SO_RXQ_OVFL:
  925. v.val = sock_flag(sk, SOCK_RXQ_OVFL);
  926. break;
  927. case SO_WIFI_STATUS:
  928. v.val = sock_flag(sk, SOCK_WIFI_STATUS);
  929. break;
  930. case SO_PEEK_OFF:
  931. if (!sock->ops->set_peek_off)
  932. return -EOPNOTSUPP;
  933. v.val = sk->sk_peek_off;
  934. break;
  935. case SO_NOFCS:
  936. v.val = sock_flag(sk, SOCK_NOFCS);
  937. break;
  938. default:
  939. return -ENOPROTOOPT;
  940. }
  941. if (len > lv)
  942. len = lv;
  943. if (copy_to_user(optval, &v, len))
  944. return -EFAULT;
  945. lenout:
  946. if (put_user(len, optlen))
  947. return -EFAULT;
  948. return 0;
  949. }
  950. /*
  951. * Initialize an sk_lock.
  952. *
  953. * (We also register the sk_lock with the lock validator.)
  954. */
  955. static inline void sock_lock_init(struct sock *sk)
  956. {
  957. sock_lock_init_class_and_name(sk,
  958. af_family_slock_key_strings[sk->sk_family],
  959. af_family_slock_keys + sk->sk_family,
  960. af_family_key_strings[sk->sk_family],
  961. af_family_keys + sk->sk_family);
  962. }
  963. /*
  964. * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
  965. * even temporarly, because of RCU lookups. sk_node should also be left as is.
  966. * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
  967. */
  968. static void sock_copy(struct sock *nsk, const struct sock *osk)
  969. {
  970. #ifdef CONFIG_SECURITY_NETWORK
  971. void *sptr = nsk->sk_security;
  972. #endif
  973. memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
  974. memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
  975. osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
  976. #ifdef CONFIG_SECURITY_NETWORK
  977. nsk->sk_security = sptr;
  978. security_sk_clone(osk, nsk);
  979. #endif
  980. }
  981. /*
  982. * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
  983. * un-modified. Special care is taken when initializing object to zero.
  984. */
  985. static inline void sk_prot_clear_nulls(struct sock *sk, int size)
  986. {
  987. if (offsetof(struct sock, sk_node.next) != 0)
  988. memset(sk, 0, offsetof(struct sock, sk_node.next));
  989. memset(&sk->sk_node.pprev, 0,
  990. size - offsetof(struct sock, sk_node.pprev));
  991. }
  992. void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
  993. {
  994. unsigned long nulls1, nulls2;
  995. nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
  996. nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
  997. if (nulls1 > nulls2)
  998. swap(nulls1, nulls2);
  999. if (nulls1 != 0)
  1000. memset((char *)sk, 0, nulls1);
  1001. memset((char *)sk + nulls1 + sizeof(void *), 0,
  1002. nulls2 - nulls1 - sizeof(void *));
  1003. memset((char *)sk + nulls2 + sizeof(void *), 0,
  1004. size - nulls2 - sizeof(void *));
  1005. }
  1006. EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
  1007. static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
  1008. int family)
  1009. {
  1010. struct sock *sk;
  1011. struct kmem_cache *slab;
  1012. slab = prot->slab;
  1013. if (slab != NULL) {
  1014. sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
  1015. if (!sk)
  1016. return sk;
  1017. if (priority & __GFP_ZERO) {
  1018. if (prot->clear_sk)
  1019. prot->clear_sk(sk, prot->obj_size);
  1020. else
  1021. sk_prot_clear_nulls(sk, prot->obj_size);
  1022. }
  1023. } else
  1024. sk = kmalloc(prot->obj_size, priority);
  1025. if (sk != NULL) {
  1026. kmemcheck_annotate_bitfield(sk, flags);
  1027. if (security_sk_alloc(sk, family, priority))
  1028. goto out_free;
  1029. if (!try_module_get(prot->owner))
  1030. goto out_free_sec;
  1031. sk_tx_queue_clear(sk);
  1032. }
  1033. return sk;
  1034. out_free_sec:
  1035. security_sk_free(sk);
  1036. out_free:
  1037. if (slab != NULL)
  1038. kmem_cache_free(slab, sk);
  1039. else
  1040. kfree(sk);
  1041. return NULL;
  1042. }
  1043. static void sk_prot_free(struct proto *prot, struct sock *sk)
  1044. {
  1045. struct kmem_cache *slab;
  1046. struct module *owner;
  1047. owner = prot->owner;
  1048. slab = prot->slab;
  1049. security_sk_free(sk);
  1050. if (slab != NULL)
  1051. kmem_cache_free(slab, sk);
  1052. else
  1053. kfree(sk);
  1054. module_put(owner);
  1055. }
  1056. #ifdef CONFIG_CGROUPS
  1057. void sock_update_classid(struct sock *sk)
  1058. {
  1059. u32 classid;
  1060. rcu_read_lock(); /* doing current task, which cannot vanish. */
  1061. classid = task_cls_classid(current);
  1062. rcu_read_unlock();
  1063. if (classid && classid != sk->sk_classid)
  1064. sk->sk_classid = classid;
  1065. }
  1066. EXPORT_SYMBOL(sock_update_classid);
  1067. void sock_update_netprioidx(struct sock *sk, struct task_struct *task)
  1068. {
  1069. if (in_interrupt())
  1070. return;
  1071. sk->sk_cgrp_prioidx = task_netprioidx(task);
  1072. }
  1073. EXPORT_SYMBOL_GPL(sock_update_netprioidx);
  1074. #endif
  1075. /**
  1076. * sk_alloc - All socket objects are allocated here
  1077. * @net: the applicable net namespace
  1078. * @family: protocol family
  1079. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1080. * @prot: struct proto associated with this new sock instance
  1081. */
  1082. struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
  1083. struct proto *prot)
  1084. {
  1085. struct sock *sk;
  1086. sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
  1087. if (sk) {
  1088. sk->sk_family = family;
  1089. /*
  1090. * See comment in struct sock definition to understand
  1091. * why we need sk_prot_creator -acme
  1092. */
  1093. sk->sk_prot = sk->sk_prot_creator = prot;
  1094. sock_lock_init(sk);
  1095. sock_net_set(sk, get_net(net));
  1096. atomic_set(&sk->sk_wmem_alloc, 1);
  1097. sock_update_classid(sk);
  1098. sock_update_netprioidx(sk, current);
  1099. }
  1100. return sk;
  1101. }
  1102. EXPORT_SYMBOL(sk_alloc);
  1103. static void __sk_free(struct sock *sk)
  1104. {
  1105. struct sk_filter *filter;
  1106. if (sk->sk_destruct)
  1107. sk->sk_destruct(sk);
  1108. filter = rcu_dereference_check(sk->sk_filter,
  1109. atomic_read(&sk->sk_wmem_alloc) == 0);
  1110. if (filter) {
  1111. sk_filter_uncharge(sk, filter);
  1112. RCU_INIT_POINTER(sk->sk_filter, NULL);
  1113. }
  1114. sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
  1115. if (atomic_read(&sk->sk_omem_alloc))
  1116. pr_debug("%s: optmem leakage (%d bytes) detected\n",
  1117. __func__, atomic_read(&sk->sk_omem_alloc));
  1118. if (sk->sk_peer_cred)
  1119. put_cred(sk->sk_peer_cred);
  1120. put_pid(sk->sk_peer_pid);
  1121. put_net(sock_net(sk));
  1122. sk_prot_free(sk->sk_prot_creator, sk);
  1123. }
  1124. void sk_free(struct sock *sk)
  1125. {
  1126. /*
  1127. * We subtract one from sk_wmem_alloc and can know if
  1128. * some packets are still in some tx queue.
  1129. * If not null, sock_wfree() will call __sk_free(sk) later
  1130. */
  1131. if (atomic_dec_and_test(&sk->sk_wmem_alloc))
  1132. __sk_free(sk);
  1133. }
  1134. EXPORT_SYMBOL(sk_free);
  1135. /*
  1136. * Last sock_put should drop reference to sk->sk_net. It has already
  1137. * been dropped in sk_change_net. Taking reference to stopping namespace
  1138. * is not an option.
  1139. * Take reference to a socket to remove it from hash _alive_ and after that
  1140. * destroy it in the context of init_net.
  1141. */
  1142. void sk_release_kernel(struct sock *sk)
  1143. {
  1144. if (sk == NULL || sk->sk_socket == NULL)
  1145. return;
  1146. sock_hold(sk);
  1147. sock_release(sk->sk_socket);
  1148. release_net(sock_net(sk));
  1149. sock_net_set(sk, get_net(&init_net));
  1150. sock_put(sk);
  1151. }
  1152. EXPORT_SYMBOL(sk_release_kernel);
  1153. static void sk_update_clone(const struct sock *sk, struct sock *newsk)
  1154. {
  1155. if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
  1156. sock_update_memcg(newsk);
  1157. }
  1158. /**
  1159. * sk_clone_lock - clone a socket, and lock its clone
  1160. * @sk: the socket to clone
  1161. * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
  1162. *
  1163. * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
  1164. */
  1165. struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
  1166. {
  1167. struct sock *newsk;
  1168. newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
  1169. if (newsk != NULL) {
  1170. struct sk_filter *filter;
  1171. sock_copy(newsk, sk);
  1172. /* SANITY */
  1173. get_net(sock_net(newsk));
  1174. sk_node_init(&newsk->sk_node);
  1175. sock_lock_init(newsk);
  1176. bh_lock_sock(newsk);
  1177. newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
  1178. newsk->sk_backlog.len = 0;
  1179. atomic_set(&newsk->sk_rmem_alloc, 0);
  1180. /*
  1181. * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
  1182. */
  1183. atomic_set(&newsk->sk_wmem_alloc, 1);
  1184. atomic_set(&newsk->sk_omem_alloc, 0);
  1185. skb_queue_head_init(&newsk->sk_receive_queue);
  1186. skb_queue_head_init(&newsk->sk_write_queue);
  1187. #ifdef CONFIG_NET_DMA
  1188. skb_queue_head_init(&newsk->sk_async_wait_queue);
  1189. #endif
  1190. spin_lock_init(&newsk->sk_dst_lock);
  1191. rwlock_init(&newsk->sk_callback_lock);
  1192. lockdep_set_class_and_name(&newsk->sk_callback_lock,
  1193. af_callback_keys + newsk->sk_family,
  1194. af_family_clock_key_strings[newsk->sk_family]);
  1195. newsk->sk_dst_cache = NULL;
  1196. newsk->sk_wmem_queued = 0;
  1197. newsk->sk_forward_alloc = 0;
  1198. newsk->sk_send_head = NULL;
  1199. newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
  1200. sock_reset_flag(newsk, SOCK_DONE);
  1201. skb_queue_head_init(&newsk->sk_error_queue);
  1202. filter = rcu_dereference_protected(newsk->sk_filter, 1);
  1203. if (filter != NULL)
  1204. sk_filter_charge(newsk, filter);
  1205. if (unlikely(xfrm_sk_clone_policy(newsk))) {
  1206. /* It is still raw copy of parent, so invalidate
  1207. * destructor and make plain sk_free() */
  1208. newsk->sk_destruct = NULL;
  1209. bh_unlock_sock(newsk);
  1210. sk_free(newsk);
  1211. newsk = NULL;
  1212. goto out;
  1213. }
  1214. newsk->sk_err = 0;
  1215. newsk->sk_priority = 0;
  1216. /*
  1217. * Before updating sk_refcnt, we must commit prior changes to memory
  1218. * (Documentation/RCU/rculist_nulls.txt for details)
  1219. */
  1220. smp_wmb();
  1221. atomic_set(&newsk->sk_refcnt, 2);
  1222. /*
  1223. * Increment the counter in the same struct proto as the master
  1224. * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
  1225. * is the same as sk->sk_prot->socks, as this field was copied
  1226. * with memcpy).
  1227. *
  1228. * This _changes_ the previous behaviour, where
  1229. * tcp_create_openreq_child always was incrementing the
  1230. * equivalent to tcp_prot->socks (inet_sock_nr), so this have
  1231. * to be taken into account in all callers. -acme
  1232. */
  1233. sk_refcnt_debug_inc(newsk);
  1234. sk_set_socket(newsk, NULL);
  1235. newsk->sk_wq = NULL;
  1236. sk_update_clone(sk, newsk);
  1237. if (newsk->sk_prot->sockets_allocated)
  1238. sk_sockets_allocated_inc(newsk);
  1239. if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
  1240. net_enable_timestamp();
  1241. }
  1242. out:
  1243. return newsk;
  1244. }
  1245. EXPORT_SYMBOL_GPL(sk_clone_lock);
  1246. void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
  1247. {
  1248. __sk_dst_set(sk, dst);
  1249. sk->sk_route_caps = dst->dev->features;
  1250. if (sk->sk_route_caps & NETIF_F_GSO)
  1251. sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
  1252. sk->sk_route_caps &= ~sk->sk_route_nocaps;
  1253. if (sk_can_gso(sk)) {
  1254. if (dst->header_len) {
  1255. sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
  1256. } else {
  1257. sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
  1258. sk->sk_gso_max_size = dst->dev->gso_max_size;
  1259. sk->sk_gso_max_segs = dst->dev->gso_max_segs;
  1260. }
  1261. }
  1262. }
  1263. EXPORT_SYMBOL_GPL(sk_setup_caps);
  1264. void __init sk_init(void)
  1265. {
  1266. if (totalram_pages <= 4096) {
  1267. sysctl_wmem_max = 32767;
  1268. sysctl_rmem_max = 32767;
  1269. sysctl_wmem_default = 32767;
  1270. sysctl_rmem_default = 32767;
  1271. } else if (totalram_pages >= 131072) {
  1272. sysctl_wmem_max = 131071;
  1273. sysctl_rmem_max = 131071;
  1274. }
  1275. }
  1276. /*
  1277. * Simple resource managers for sockets.
  1278. */
  1279. /*
  1280. * Write buffer destructor automatically called from kfree_skb.
  1281. */
  1282. void sock_wfree(struct sk_buff *skb)
  1283. {
  1284. struct sock *sk = skb->sk;
  1285. unsigned int len = skb->truesize;
  1286. if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
  1287. /*
  1288. * Keep a reference on sk_wmem_alloc, this will be released
  1289. * after sk_write_space() call
  1290. */
  1291. atomic_sub(len - 1, &sk->sk_wmem_alloc);
  1292. sk->sk_write_space(sk);
  1293. len = 1;
  1294. }
  1295. /*
  1296. * if sk_wmem_alloc reaches 0, we must finish what sk_free()
  1297. * could not do because of in-flight packets
  1298. */
  1299. if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
  1300. __sk_free(sk);
  1301. }
  1302. EXPORT_SYMBOL(sock_wfree);
  1303. /*
  1304. * Read buffer destructor automatically called from kfree_skb.
  1305. */
  1306. void sock_rfree(struct sk_buff *skb)
  1307. {
  1308. struct sock *sk = skb->sk;
  1309. unsigned int len = skb->truesize;
  1310. atomic_sub(len, &sk->sk_rmem_alloc);
  1311. sk_mem_uncharge(sk, len);
  1312. }
  1313. EXPORT_SYMBOL(sock_rfree);
  1314. void sock_edemux(struct sk_buff *skb)
  1315. {
  1316. sock_put(skb->sk);
  1317. }
  1318. EXPORT_SYMBOL(sock_edemux);
  1319. int sock_i_uid(struct sock *sk)
  1320. {
  1321. int uid;
  1322. read_lock_bh(&sk->sk_callback_lock);
  1323. uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
  1324. read_unlock_bh(&sk->sk_callback_lock);
  1325. return uid;
  1326. }
  1327. EXPORT_SYMBOL(sock_i_uid);
  1328. unsigned long sock_i_ino(struct sock *sk)
  1329. {
  1330. unsigned long ino;
  1331. read_lock_bh(&sk->sk_callback_lock);
  1332. ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
  1333. read_unlock_bh(&sk->sk_callback_lock);
  1334. return ino;
  1335. }
  1336. EXPORT_SYMBOL(sock_i_ino);
  1337. /*
  1338. * Allocate a skb from the socket's send buffer.
  1339. */
  1340. struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
  1341. gfp_t priority)
  1342. {
  1343. if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1344. struct sk_buff *skb = alloc_skb(size, priority);
  1345. if (skb) {
  1346. skb_set_owner_w(skb, sk);
  1347. return skb;
  1348. }
  1349. }
  1350. return NULL;
  1351. }
  1352. EXPORT_SYMBOL(sock_wmalloc);
  1353. /*
  1354. * Allocate a skb from the socket's receive buffer.
  1355. */
  1356. struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
  1357. gfp_t priority)
  1358. {
  1359. if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
  1360. struct sk_buff *skb = alloc_skb(size, priority);
  1361. if (skb) {
  1362. skb_set_owner_r(skb, sk);
  1363. return skb;
  1364. }
  1365. }
  1366. return NULL;
  1367. }
  1368. /*
  1369. * Allocate a memory block from the socket's option memory buffer.
  1370. */
  1371. void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
  1372. {
  1373. if ((unsigned int)size <= sysctl_optmem_max &&
  1374. atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
  1375. void *mem;
  1376. /* First do the add, to avoid the race if kmalloc
  1377. * might sleep.
  1378. */
  1379. atomic_add(size, &sk->sk_omem_alloc);
  1380. mem = kmalloc(size, priority);
  1381. if (mem)
  1382. return mem;
  1383. atomic_sub(size, &sk->sk_omem_alloc);
  1384. }
  1385. return NULL;
  1386. }
  1387. EXPORT_SYMBOL(sock_kmalloc);
  1388. /*
  1389. * Free an option memory block.
  1390. */
  1391. void sock_kfree_s(struct sock *sk, void *mem, int size)
  1392. {
  1393. kfree(mem);
  1394. atomic_sub(size, &sk->sk_omem_alloc);
  1395. }
  1396. EXPORT_SYMBOL(sock_kfree_s);
  1397. /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
  1398. I think, these locks should be removed for datagram sockets.
  1399. */
  1400. static long sock_wait_for_wmem(struct sock *sk, long timeo)
  1401. {
  1402. DEFINE_WAIT(wait);
  1403. clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1404. for (;;) {
  1405. if (!timeo)
  1406. break;
  1407. if (signal_pending(current))
  1408. break;
  1409. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1410. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1411. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
  1412. break;
  1413. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1414. break;
  1415. if (sk->sk_err)
  1416. break;
  1417. timeo = schedule_timeout(timeo);
  1418. }
  1419. finish_wait(sk_sleep(sk), &wait);
  1420. return timeo;
  1421. }
  1422. /*
  1423. * Generic send/receive buffer handlers
  1424. */
  1425. struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
  1426. unsigned long data_len, int noblock,
  1427. int *errcode)
  1428. {
  1429. struct sk_buff *skb;
  1430. gfp_t gfp_mask;
  1431. long timeo;
  1432. int err;
  1433. int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
  1434. err = -EMSGSIZE;
  1435. if (npages > MAX_SKB_FRAGS)
  1436. goto failure;
  1437. gfp_mask = sk->sk_allocation;
  1438. if (gfp_mask & __GFP_WAIT)
  1439. gfp_mask |= __GFP_REPEAT;
  1440. timeo = sock_sndtimeo(sk, noblock);
  1441. while (1) {
  1442. err = sock_error(sk);
  1443. if (err != 0)
  1444. goto failure;
  1445. err = -EPIPE;
  1446. if (sk->sk_shutdown & SEND_SHUTDOWN)
  1447. goto failure;
  1448. if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
  1449. skb = alloc_skb(header_len, gfp_mask);
  1450. if (skb) {
  1451. int i;
  1452. /* No pages, we're done... */
  1453. if (!data_len)
  1454. break;
  1455. skb->truesize += data_len;
  1456. skb_shinfo(skb)->nr_frags = npages;
  1457. for (i = 0; i < npages; i++) {
  1458. struct page *page;
  1459. page = alloc_pages(sk->sk_allocation, 0);
  1460. if (!page) {
  1461. err = -ENOBUFS;
  1462. skb_shinfo(skb)->nr_frags = i;
  1463. kfree_skb(skb);
  1464. goto failure;
  1465. }
  1466. __skb_fill_page_desc(skb, i,
  1467. page, 0,
  1468. (data_len >= PAGE_SIZE ?
  1469. PAGE_SIZE :
  1470. data_len));
  1471. data_len -= PAGE_SIZE;
  1472. }
  1473. /* Full success... */
  1474. break;
  1475. }
  1476. err = -ENOBUFS;
  1477. goto failure;
  1478. }
  1479. set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
  1480. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1481. err = -EAGAIN;
  1482. if (!timeo)
  1483. goto failure;
  1484. if (signal_pending(current))
  1485. goto interrupted;
  1486. timeo = sock_wait_for_wmem(sk, timeo);
  1487. }
  1488. skb_set_owner_w(skb, sk);
  1489. return skb;
  1490. interrupted:
  1491. err = sock_intr_errno(timeo);
  1492. failure:
  1493. *errcode = err;
  1494. return NULL;
  1495. }
  1496. EXPORT_SYMBOL(sock_alloc_send_pskb);
  1497. struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
  1498. int noblock, int *errcode)
  1499. {
  1500. return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
  1501. }
  1502. EXPORT_SYMBOL(sock_alloc_send_skb);
  1503. static void __lock_sock(struct sock *sk)
  1504. __releases(&sk->sk_lock.slock)
  1505. __acquires(&sk->sk_lock.slock)
  1506. {
  1507. DEFINE_WAIT(wait);
  1508. for (;;) {
  1509. prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
  1510. TASK_UNINTERRUPTIBLE);
  1511. spin_unlock_bh(&sk->sk_lock.slock);
  1512. schedule();
  1513. spin_lock_bh(&sk->sk_lock.slock);
  1514. if (!sock_owned_by_user(sk))
  1515. break;
  1516. }
  1517. finish_wait(&sk->sk_lock.wq, &wait);
  1518. }
  1519. static void __release_sock(struct sock *sk)
  1520. __releases(&sk->sk_lock.slock)
  1521. __acquires(&sk->sk_lock.slock)
  1522. {
  1523. struct sk_buff *skb = sk->sk_backlog.head;
  1524. do {
  1525. sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
  1526. bh_unlock_sock(sk);
  1527. do {
  1528. struct sk_buff *next = skb->next;
  1529. prefetch(next);
  1530. WARN_ON_ONCE(skb_dst_is_noref(skb));
  1531. skb->next = NULL;
  1532. sk_backlog_rcv(sk, skb);
  1533. /*
  1534. * We are in process context here with softirqs
  1535. * disabled, use cond_resched_softirq() to preempt.
  1536. * This is safe to do because we've taken the backlog
  1537. * queue private:
  1538. */
  1539. cond_resched_softirq();
  1540. skb = next;
  1541. } while (skb != NULL);
  1542. bh_lock_sock(sk);
  1543. } while ((skb = sk->sk_backlog.head) != NULL);
  1544. /*
  1545. * Doing the zeroing here guarantee we can not loop forever
  1546. * while a wild producer attempts to flood us.
  1547. */
  1548. sk->sk_backlog.len = 0;
  1549. }
  1550. /**
  1551. * sk_wait_data - wait for data to arrive at sk_receive_queue
  1552. * @sk: sock to wait on
  1553. * @timeo: for how long
  1554. *
  1555. * Now socket state including sk->sk_err is changed only under lock,
  1556. * hence we may omit checks after joining wait queue.
  1557. * We check receive queue before schedule() only as optimization;
  1558. * it is very likely that release_sock() added new data.
  1559. */
  1560. int sk_wait_data(struct sock *sk, long *timeo)
  1561. {
  1562. int rc;
  1563. DEFINE_WAIT(wait);
  1564. prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
  1565. set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1566. rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
  1567. clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
  1568. finish_wait(sk_sleep(sk), &wait);
  1569. return rc;
  1570. }
  1571. EXPORT_SYMBOL(sk_wait_data);
  1572. /**
  1573. * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
  1574. * @sk: socket
  1575. * @size: memory size to allocate
  1576. * @kind: allocation type
  1577. *
  1578. * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
  1579. * rmem allocation. This function assumes that protocols which have
  1580. * memory_pressure use sk_wmem_queued as write buffer accounting.
  1581. */
  1582. int __sk_mem_schedule(struct sock *sk, int size, int kind)
  1583. {
  1584. struct proto *prot = sk->sk_prot;
  1585. int amt = sk_mem_pages(size);
  1586. long allocated;
  1587. int parent_status = UNDER_LIMIT;
  1588. sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
  1589. allocated = sk_memory_allocated_add(sk, amt, &parent_status);
  1590. /* Under limit. */
  1591. if (parent_status == UNDER_LIMIT &&
  1592. allocated <= sk_prot_mem_limits(sk, 0)) {
  1593. sk_leave_memory_pressure(sk);
  1594. return 1;
  1595. }
  1596. /* Under pressure. (we or our parents) */
  1597. if ((parent_status > SOFT_LIMIT) ||
  1598. allocated > sk_prot_mem_limits(sk, 1))
  1599. sk_enter_memory_pressure(sk);
  1600. /* Over hard limit (we or our parents) */
  1601. if ((parent_status == OVER_LIMIT) ||
  1602. (allocated > sk_prot_mem_limits(sk, 2)))
  1603. goto suppress_allocation;
  1604. /* guarantee minimum buffer size under pressure */
  1605. if (kind == SK_MEM_RECV) {
  1606. if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
  1607. return 1;
  1608. } else { /* SK_MEM_SEND */
  1609. if (sk->sk_type == SOCK_STREAM) {
  1610. if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
  1611. return 1;
  1612. } else if (atomic_read(&sk->sk_wmem_alloc) <
  1613. prot->sysctl_wmem[0])
  1614. return 1;
  1615. }
  1616. if (sk_has_memory_pressure(sk)) {
  1617. int alloc;
  1618. if (!sk_under_memory_pressure(sk))
  1619. return 1;
  1620. alloc = sk_sockets_allocated_read_positive(sk);
  1621. if (sk_prot_mem_limits(sk, 2) > alloc *
  1622. sk_mem_pages(sk->sk_wmem_queued +
  1623. atomic_read(&sk->sk_rmem_alloc) +
  1624. sk->sk_forward_alloc))
  1625. return 1;
  1626. }
  1627. suppress_allocation:
  1628. if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
  1629. sk_stream_moderate_sndbuf(sk);
  1630. /* Fail only if socket is _under_ its sndbuf.
  1631. * In this case we cannot block, so that we have to fail.
  1632. */
  1633. if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
  1634. return 1;
  1635. }
  1636. trace_sock_exceed_buf_limit(sk, prot, allocated);
  1637. /* Alas. Undo changes. */
  1638. sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
  1639. sk_memory_allocated_sub(sk, amt);
  1640. return 0;
  1641. }
  1642. EXPORT_SYMBOL(__sk_mem_schedule);
  1643. /**
  1644. * __sk_reclaim - reclaim memory_allocated
  1645. * @sk: socket
  1646. */
  1647. void __sk_mem_reclaim(struct sock *sk)
  1648. {
  1649. sk_memory_allocated_sub(sk,
  1650. sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
  1651. sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
  1652. if (sk_under_memory_pressure(sk) &&
  1653. (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
  1654. sk_leave_memory_pressure(sk);
  1655. }
  1656. EXPORT_SYMBOL(__sk_mem_reclaim);
  1657. /*
  1658. * Set of default routines for initialising struct proto_ops when
  1659. * the protocol does not support a particular function. In certain
  1660. * cases where it makes no sense for a protocol to have a "do nothing"
  1661. * function, some default processing is provided.
  1662. */
  1663. int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
  1664. {
  1665. return -EOPNOTSUPP;
  1666. }
  1667. EXPORT_SYMBOL(sock_no_bind);
  1668. int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
  1669. int len, int flags)
  1670. {
  1671. return -EOPNOTSUPP;
  1672. }
  1673. EXPORT_SYMBOL(sock_no_connect);
  1674. int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
  1675. {
  1676. return -EOPNOTSUPP;
  1677. }
  1678. EXPORT_SYMBOL(sock_no_socketpair);
  1679. int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
  1680. {
  1681. return -EOPNOTSUPP;
  1682. }
  1683. EXPORT_SYMBOL(sock_no_accept);
  1684. int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
  1685. int *len, int peer)
  1686. {
  1687. return -EOPNOTSUPP;
  1688. }
  1689. EXPORT_SYMBOL(sock_no_getname);
  1690. unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
  1691. {
  1692. return 0;
  1693. }
  1694. EXPORT_SYMBOL(sock_no_poll);
  1695. int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  1696. {
  1697. return -EOPNOTSUPP;
  1698. }
  1699. EXPORT_SYMBOL(sock_no_ioctl);
  1700. int sock_no_listen(struct socket *sock, int backlog)
  1701. {
  1702. return -EOPNOTSUPP;
  1703. }
  1704. EXPORT_SYMBOL(sock_no_listen);
  1705. int sock_no_shutdown(struct socket *sock, int how)
  1706. {
  1707. return -EOPNOTSUPP;
  1708. }
  1709. EXPORT_SYMBOL(sock_no_shutdown);
  1710. int sock_no_setsockopt(struct socket *sock, int level, int optname,
  1711. char __user *optval, unsigned int optlen)
  1712. {
  1713. return -EOPNOTSUPP;
  1714. }
  1715. EXPORT_SYMBOL(sock_no_setsockopt);
  1716. int sock_no_getsockopt(struct socket *sock, int level, int optname,
  1717. char __user *optval, int __user *optlen)
  1718. {
  1719. return -EOPNOTSUPP;
  1720. }
  1721. EXPORT_SYMBOL(sock_no_getsockopt);
  1722. int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1723. size_t len)
  1724. {
  1725. return -EOPNOTSUPP;
  1726. }
  1727. EXPORT_SYMBOL(sock_no_sendmsg);
  1728. int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
  1729. size_t len, int flags)
  1730. {
  1731. return -EOPNOTSUPP;
  1732. }
  1733. EXPORT_SYMBOL(sock_no_recvmsg);
  1734. int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
  1735. {
  1736. /* Mirror missing mmap method error code */
  1737. return -ENODEV;
  1738. }
  1739. EXPORT_SYMBOL(sock_no_mmap);
  1740. ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
  1741. {
  1742. ssize_t res;
  1743. struct msghdr msg = {.msg_flags = flags};
  1744. struct kvec iov;
  1745. char *kaddr = kmap(page);
  1746. iov.iov_base = kaddr + offset;
  1747. iov.iov_len = size;
  1748. res = kernel_sendmsg(sock, &msg, &iov, 1, size);
  1749. kunmap(page);
  1750. return res;
  1751. }
  1752. EXPORT_SYMBOL(sock_no_sendpage);
  1753. /*
  1754. * Default Socket Callbacks
  1755. */
  1756. static void sock_def_wakeup(struct sock *sk)
  1757. {
  1758. struct socket_wq *wq;
  1759. rcu_read_lock();
  1760. wq = rcu_dereference(sk->sk_wq);
  1761. if (wq_has_sleeper(wq))
  1762. wake_up_interruptible_all(&wq->wait);
  1763. rcu_read_unlock();
  1764. }
  1765. static void sock_def_error_report(struct sock *sk)
  1766. {
  1767. struct socket_wq *wq;
  1768. rcu_read_lock();
  1769. wq = rcu_dereference(sk->sk_wq);
  1770. if (wq_has_sleeper(wq))
  1771. wake_up_interruptible_poll(&wq->wait, POLLERR);
  1772. sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
  1773. rcu_read_unlock();
  1774. }
  1775. static void sock_def_readable(struct sock *sk, int len)
  1776. {
  1777. struct socket_wq *wq;
  1778. rcu_read_lock();
  1779. wq = rcu_dereference(sk->sk_wq);
  1780. if (wq_has_sleeper(wq))
  1781. wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
  1782. POLLRDNORM | POLLRDBAND);
  1783. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  1784. rcu_read_unlock();
  1785. }
  1786. static void sock_def_write_space(struct sock *sk)
  1787. {
  1788. struct socket_wq *wq;
  1789. rcu_read_lock();
  1790. /* Do not wake up a writer until he can make "significant"
  1791. * progress. --DaveM
  1792. */
  1793. if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
  1794. wq = rcu_dereference(sk->sk_wq);
  1795. if (wq_has_sleeper(wq))
  1796. wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
  1797. POLLWRNORM | POLLWRBAND);
  1798. /* Should agree with poll, otherwise some programs break */
  1799. if (sock_writeable(sk))
  1800. sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
  1801. }
  1802. rcu_read_unlock();
  1803. }
  1804. static void sock_def_destruct(struct sock *sk)
  1805. {
  1806. kfree(sk->sk_protinfo);
  1807. }
  1808. void sk_send_sigurg(struct sock *sk)
  1809. {
  1810. if (sk->sk_socket && sk->sk_socket->file)
  1811. if (send_sigurg(&sk->sk_socket->file->f_owner))
  1812. sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
  1813. }
  1814. EXPORT_SYMBOL(sk_send_sigurg);
  1815. void sk_reset_timer(struct sock *sk, struct timer_list* timer,
  1816. unsigned long expires)
  1817. {
  1818. if (!mod_timer(timer, expires))
  1819. sock_hold(sk);
  1820. }
  1821. EXPORT_SYMBOL(sk_reset_timer);
  1822. void sk_stop_timer(struct sock *sk, struct timer_list* timer)
  1823. {
  1824. if (timer_pending(timer) && del_timer(timer))
  1825. __sock_put(sk);
  1826. }
  1827. EXPORT_SYMBOL(sk_stop_timer);
  1828. void sock_init_data(struct socket *sock, struct sock *sk)
  1829. {
  1830. skb_queue_head_init(&sk->sk_receive_queue);
  1831. skb_queue_head_init(&sk->sk_write_queue);
  1832. skb_queue_head_init(&sk->sk_error_queue);
  1833. #ifdef CONFIG_NET_DMA
  1834. skb_queue_head_init(&sk->sk_async_wait_queue);
  1835. #endif
  1836. sk->sk_send_head = NULL;
  1837. init_timer(&sk->sk_timer);
  1838. sk->sk_allocation = GFP_KERNEL;
  1839. sk->sk_rcvbuf = sysctl_rmem_default;
  1840. sk->sk_sndbuf = sysctl_wmem_default;
  1841. sk->sk_state = TCP_CLOSE;
  1842. sk_set_socket(sk, sock);
  1843. sock_set_flag(sk, SOCK_ZAPPED);
  1844. if (sock) {
  1845. sk->sk_type = sock->type;
  1846. sk->sk_wq = sock->wq;
  1847. sock->sk = sk;
  1848. } else
  1849. sk->sk_wq = NULL;
  1850. spin_lock_init(&sk->sk_dst_lock);
  1851. rwlock_init(&sk->sk_callback_lock);
  1852. lockdep_set_class_and_name(&sk->sk_callback_lock,
  1853. af_callback_keys + sk->sk_family,
  1854. af_family_clock_key_strings[sk->sk_family]);
  1855. sk->sk_state_change = sock_def_wakeup;
  1856. sk->sk_data_ready = sock_def_readable;
  1857. sk->sk_write_space = sock_def_write_space;
  1858. sk->sk_error_report = sock_def_error_report;
  1859. sk->sk_destruct = sock_def_destruct;
  1860. sk->sk_sndmsg_page = NULL;
  1861. sk->sk_sndmsg_off = 0;
  1862. sk->sk_peek_off = -1;
  1863. sk->sk_peer_pid = NULL;
  1864. sk->sk_peer_cred = NULL;
  1865. sk->sk_write_pending = 0;
  1866. sk->sk_rcvlowat = 1;
  1867. sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
  1868. sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
  1869. sk->sk_stamp = ktime_set(-1L, 0);
  1870. /*
  1871. * Before updating sk_refcnt, we must commit prior changes to memory
  1872. * (Documentation/RCU/rculist_nulls.txt for details)
  1873. */
  1874. smp_wmb();
  1875. atomic_set(&sk->sk_refcnt, 1);
  1876. atomic_set(&sk->sk_drops, 0);
  1877. }
  1878. EXPORT_SYMBOL(sock_init_data);
  1879. void lock_sock_nested(struct sock *sk, int subclass)
  1880. {
  1881. might_sleep();
  1882. spin_lock_bh(&sk->sk_lock.slock);
  1883. if (sk->sk_lock.owned)
  1884. __lock_sock(sk);
  1885. sk->sk_lock.owned = 1;
  1886. spin_unlock(&sk->sk_lock.slock);
  1887. /*
  1888. * The sk_lock has mutex_lock() semantics here:
  1889. */
  1890. mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
  1891. local_bh_enable();
  1892. }
  1893. EXPORT_SYMBOL(lock_sock_nested);
  1894. void release_sock(struct sock *sk)
  1895. {
  1896. /*
  1897. * The sk_lock has mutex_unlock() semantics:
  1898. */
  1899. mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
  1900. spin_lock_bh(&sk->sk_lock.slock);
  1901. if (sk->sk_backlog.tail)
  1902. __release_sock(sk);
  1903. if (sk->sk_prot->release_cb)
  1904. sk->sk_prot->release_cb(sk);
  1905. sk->sk_lock.owned = 0;
  1906. if (waitqueue_active(&sk->sk_lock.wq))
  1907. wake_up(&sk->sk_lock.wq);
  1908. spin_unlock_bh(&sk->sk_lock.slock);
  1909. }
  1910. EXPORT_SYMBOL(release_sock);
  1911. /**
  1912. * lock_sock_fast - fast version of lock_sock
  1913. * @sk: socket
  1914. *
  1915. * This version should be used for very small section, where process wont block
  1916. * return false if fast path is taken
  1917. * sk_lock.slock locked, owned = 0, BH disabled
  1918. * return true if slow path is taken
  1919. * sk_lock.slock unlocked, owned = 1, BH enabled
  1920. */
  1921. bool lock_sock_fast(struct sock *sk)
  1922. {
  1923. might_sleep();
  1924. spin_lock_bh(&sk->sk_lock.slock);
  1925. if (!sk->sk_lock.owned)
  1926. /*
  1927. * Note : We must disable BH
  1928. */
  1929. return false;
  1930. __lock_sock(sk);
  1931. sk->sk_lock.owned = 1;
  1932. spin_unlock(&sk->sk_lock.slock);
  1933. /*
  1934. * The sk_lock has mutex_lock() semantics here:
  1935. */
  1936. mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
  1937. local_bh_enable();
  1938. return true;
  1939. }
  1940. EXPORT_SYMBOL(lock_sock_fast);
  1941. int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
  1942. {
  1943. struct timeval tv;
  1944. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1945. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1946. tv = ktime_to_timeval(sk->sk_stamp);
  1947. if (tv.tv_sec == -1)
  1948. return -ENOENT;
  1949. if (tv.tv_sec == 0) {
  1950. sk->sk_stamp = ktime_get_real();
  1951. tv = ktime_to_timeval(sk->sk_stamp);
  1952. }
  1953. return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
  1954. }
  1955. EXPORT_SYMBOL(sock_get_timestamp);
  1956. int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
  1957. {
  1958. struct timespec ts;
  1959. if (!sock_flag(sk, SOCK_TIMESTAMP))
  1960. sock_enable_timestamp(sk, SOCK_TIMESTAMP);
  1961. ts = ktime_to_timespec(sk->sk_stamp);
  1962. if (ts.tv_sec == -1)
  1963. return -ENOENT;
  1964. if (ts.tv_sec == 0) {
  1965. sk->sk_stamp = ktime_get_real();
  1966. ts = ktime_to_timespec(sk->sk_stamp);
  1967. }
  1968. return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
  1969. }
  1970. EXPORT_SYMBOL(sock_get_timestampns);
  1971. void sock_enable_timestamp(struct sock *sk, int flag)
  1972. {
  1973. if (!sock_flag(sk, flag)) {
  1974. unsigned long previous_flags = sk->sk_flags;
  1975. sock_set_flag(sk, flag);
  1976. /*
  1977. * we just set one of the two flags which require net
  1978. * time stamping, but time stamping might have been on
  1979. * already because of the other one
  1980. */
  1981. if (!(previous_flags & SK_FLAGS_TIMESTAMP))
  1982. net_enable_timestamp();
  1983. }
  1984. }
  1985. /*
  1986. * Get a socket option on an socket.
  1987. *
  1988. * FIX: POSIX 1003.1g is very ambiguous here. It states that
  1989. * asynchronous errors should be reported by getsockopt. We assume
  1990. * this means if you specify SO_ERROR (otherwise whats the point of it).
  1991. */
  1992. int sock_common_getsockopt(struct socket *sock, int level, int optname,
  1993. char __user *optval, int __user *optlen)
  1994. {
  1995. struct sock *sk = sock->sk;
  1996. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  1997. }
  1998. EXPORT_SYMBOL(sock_common_getsockopt);
  1999. #ifdef CONFIG_COMPAT
  2000. int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
  2001. char __user *optval, int __user *optlen)
  2002. {
  2003. struct sock *sk = sock->sk;
  2004. if (sk->sk_prot->compat_getsockopt != NULL)
  2005. return sk->sk_prot->compat_getsockopt(sk, level, optname,
  2006. optval, optlen);
  2007. return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
  2008. }
  2009. EXPORT_SYMBOL(compat_sock_common_getsockopt);
  2010. #endif
  2011. int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
  2012. struct msghdr *msg, size_t size, int flags)
  2013. {
  2014. struct sock *sk = sock->sk;
  2015. int addr_len = 0;
  2016. int err;
  2017. err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
  2018. flags & ~MSG_DONTWAIT, &addr_len);
  2019. if (err >= 0)
  2020. msg->msg_namelen = addr_len;
  2021. return err;
  2022. }
  2023. EXPORT_SYMBOL(sock_common_recvmsg);
  2024. /*
  2025. * Set socket options on an inet socket.
  2026. */
  2027. int sock_common_setsockopt(struct socket *sock, int level, int optname,
  2028. char __user *optval, unsigned int optlen)
  2029. {
  2030. struct sock *sk = sock->sk;
  2031. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2032. }
  2033. EXPORT_SYMBOL(sock_common_setsockopt);
  2034. #ifdef CONFIG_COMPAT
  2035. int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
  2036. char __user *optval, unsigned int optlen)
  2037. {
  2038. struct sock *sk = sock->sk;
  2039. if (sk->sk_prot->compat_setsockopt != NULL)
  2040. return sk->sk_prot->compat_setsockopt(sk, level, optname,
  2041. optval, optlen);
  2042. return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
  2043. }
  2044. EXPORT_SYMBOL(compat_sock_common_setsockopt);
  2045. #endif
  2046. void sk_common_release(struct sock *sk)
  2047. {
  2048. if (sk->sk_prot->destroy)
  2049. sk->sk_prot->destroy(sk);
  2050. /*
  2051. * Observation: when sock_common_release is called, processes have
  2052. * no access to socket. But net still has.
  2053. * Step one, detach it from networking:
  2054. *
  2055. * A. Remove from hash tables.
  2056. */
  2057. sk->sk_prot->unhash(sk);
  2058. /*
  2059. * In this point socket cannot receive new packets, but it is possible
  2060. * that some packets are in flight because some CPU runs receiver and
  2061. * did hash table lookup before we unhashed socket. They will achieve
  2062. * receive queue and will be purged by socket destructor.
  2063. *
  2064. * Also we still have packets pending on receive queue and probably,
  2065. * our own packets waiting in device queues. sock_destroy will drain
  2066. * receive queue, but transmitted packets will delay socket destruction
  2067. * until the last reference will be released.
  2068. */
  2069. sock_orphan(sk);
  2070. xfrm_sk_free_policy(sk);
  2071. sk_refcnt_debug_release(sk);
  2072. sock_put(sk);
  2073. }
  2074. EXPORT_SYMBOL(sk_common_release);
  2075. #ifdef CONFIG_PROC_FS
  2076. #define PROTO_INUSE_NR 64 /* should be enough for the first time */
  2077. struct prot_inuse {
  2078. int val[PROTO_INUSE_NR];
  2079. };
  2080. static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
  2081. #ifdef CONFIG_NET_NS
  2082. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2083. {
  2084. __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
  2085. }
  2086. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2087. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2088. {
  2089. int cpu, idx = prot->inuse_idx;
  2090. int res = 0;
  2091. for_each_possible_cpu(cpu)
  2092. res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
  2093. return res >= 0 ? res : 0;
  2094. }
  2095. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2096. static int __net_init sock_inuse_init_net(struct net *net)
  2097. {
  2098. net->core.inuse = alloc_percpu(struct prot_inuse);
  2099. return net->core.inuse ? 0 : -ENOMEM;
  2100. }
  2101. static void __net_exit sock_inuse_exit_net(struct net *net)
  2102. {
  2103. free_percpu(net->core.inuse);
  2104. }
  2105. static struct pernet_operations net_inuse_ops = {
  2106. .init = sock_inuse_init_net,
  2107. .exit = sock_inuse_exit_net,
  2108. };
  2109. static __init int net_inuse_init(void)
  2110. {
  2111. if (register_pernet_subsys(&net_inuse_ops))
  2112. panic("Cannot initialize net inuse counters");
  2113. return 0;
  2114. }
  2115. core_initcall(net_inuse_init);
  2116. #else
  2117. static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
  2118. void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
  2119. {
  2120. __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
  2121. }
  2122. EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
  2123. int sock_prot_inuse_get(struct net *net, struct proto *prot)
  2124. {
  2125. int cpu, idx = prot->inuse_idx;
  2126. int res = 0;
  2127. for_each_possible_cpu(cpu)
  2128. res += per_cpu(prot_inuse, cpu).val[idx];
  2129. return res >= 0 ? res : 0;
  2130. }
  2131. EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
  2132. #endif
  2133. static void assign_proto_idx(struct proto *prot)
  2134. {
  2135. prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
  2136. if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
  2137. pr_err("PROTO_INUSE_NR exhausted\n");
  2138. return;
  2139. }
  2140. set_bit(prot->inuse_idx, proto_inuse_idx);
  2141. }
  2142. static void release_proto_idx(struct proto *prot)
  2143. {
  2144. if (prot->inuse_idx != PROTO_INUSE_NR - 1)
  2145. clear_bit(prot->inuse_idx, proto_inuse_idx);
  2146. }
  2147. #else
  2148. static inline void assign_proto_idx(struct proto *prot)
  2149. {
  2150. }
  2151. static inline void release_proto_idx(struct proto *prot)
  2152. {
  2153. }
  2154. #endif
  2155. int proto_register(struct proto *prot, int alloc_slab)
  2156. {
  2157. if (alloc_slab) {
  2158. prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
  2159. SLAB_HWCACHE_ALIGN | prot->slab_flags,
  2160. NULL);
  2161. if (prot->slab == NULL) {
  2162. pr_crit("%s: Can't create sock SLAB cache!\n",
  2163. prot->name);
  2164. goto out;
  2165. }
  2166. if (prot->rsk_prot != NULL) {
  2167. prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
  2168. if (prot->rsk_prot->slab_name == NULL)
  2169. goto out_free_sock_slab;
  2170. prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
  2171. prot->rsk_prot->obj_size, 0,
  2172. SLAB_HWCACHE_ALIGN, NULL);
  2173. if (prot->rsk_prot->slab == NULL) {
  2174. pr_crit("%s: Can't create request sock SLAB cache!\n",
  2175. prot->name);
  2176. goto out_free_request_sock_slab_name;
  2177. }
  2178. }
  2179. if (prot->twsk_prot != NULL) {
  2180. prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
  2181. if (prot->twsk_prot->twsk_slab_name == NULL)
  2182. goto out_free_request_sock_slab;
  2183. prot->twsk_prot->twsk_slab =
  2184. kmem_cache_create(prot->twsk_prot->twsk_slab_name,
  2185. prot->twsk_prot->twsk_obj_size,
  2186. 0,
  2187. SLAB_HWCACHE_ALIGN |
  2188. prot->slab_flags,
  2189. NULL);
  2190. if (prot->twsk_prot->twsk_slab == NULL)
  2191. goto out_free_timewait_sock_slab_name;
  2192. }
  2193. }
  2194. mutex_lock(&proto_list_mutex);
  2195. list_add(&prot->node, &proto_list);
  2196. assign_proto_idx(prot);
  2197. mutex_unlock(&proto_list_mutex);
  2198. return 0;
  2199. out_free_timewait_sock_slab_name:
  2200. kfree(prot->twsk_prot->twsk_slab_name);
  2201. out_free_request_sock_slab:
  2202. if (prot->rsk_prot && prot->rsk_prot->slab) {
  2203. kmem_cache_destroy(prot->rsk_prot->slab);
  2204. prot->rsk_prot->slab = NULL;
  2205. }
  2206. out_free_request_sock_slab_name:
  2207. if (prot->rsk_prot)
  2208. kfree(prot->rsk_prot->slab_name);
  2209. out_free_sock_slab:
  2210. kmem_cache_destroy(prot->slab);
  2211. prot->slab = NULL;
  2212. out:
  2213. return -ENOBUFS;
  2214. }
  2215. EXPORT_SYMBOL(proto_register);
  2216. void proto_unregister(struct proto *prot)
  2217. {
  2218. mutex_lock(&proto_list_mutex);
  2219. release_proto_idx(prot);
  2220. list_del(&prot->node);
  2221. mutex_unlock(&proto_list_mutex);
  2222. if (prot->slab != NULL) {
  2223. kmem_cache_destroy(prot->slab);
  2224. prot->slab = NULL;
  2225. }
  2226. if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
  2227. kmem_cache_destroy(prot->rsk_prot->slab);
  2228. kfree(prot->rsk_prot->slab_name);
  2229. prot->rsk_prot->slab = NULL;
  2230. }
  2231. if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
  2232. kmem_cache_destroy(prot->twsk_prot->twsk_slab);
  2233. kfree(prot->twsk_prot->twsk_slab_name);
  2234. prot->twsk_prot->twsk_slab = NULL;
  2235. }
  2236. }
  2237. EXPORT_SYMBOL(proto_unregister);
  2238. #ifdef CONFIG_PROC_FS
  2239. static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
  2240. __acquires(proto_list_mutex)
  2241. {
  2242. mutex_lock(&proto_list_mutex);
  2243. return seq_list_start_head(&proto_list, *pos);
  2244. }
  2245. static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2246. {
  2247. return seq_list_next(v, &proto_list, pos);
  2248. }
  2249. static void proto_seq_stop(struct seq_file *seq, void *v)
  2250. __releases(proto_list_mutex)
  2251. {
  2252. mutex_unlock(&proto_list_mutex);
  2253. }
  2254. static char proto_method_implemented(const void *method)
  2255. {
  2256. return method == NULL ? 'n' : 'y';
  2257. }
  2258. static long sock_prot_memory_allocated(struct proto *proto)
  2259. {
  2260. return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
  2261. }
  2262. static char *sock_prot_memory_pressure(struct proto *proto)
  2263. {
  2264. return proto->memory_pressure != NULL ?
  2265. proto_memory_pressure(proto) ? "yes" : "no" : "NI";
  2266. }
  2267. static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
  2268. {
  2269. seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
  2270. "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
  2271. proto->name,
  2272. proto->obj_size,
  2273. sock_prot_inuse_get(seq_file_net(seq), proto),
  2274. sock_prot_memory_allocated(proto),
  2275. sock_prot_memory_pressure(proto),
  2276. proto->max_header,
  2277. proto->slab == NULL ? "no" : "yes",
  2278. module_name(proto->owner),
  2279. proto_method_implemented(proto->close),
  2280. proto_method_implemented(proto->connect),
  2281. proto_method_implemented(proto->disconnect),
  2282. proto_method_implemented(proto->accept),
  2283. proto_method_implemented(proto->ioctl),
  2284. proto_method_implemented(proto->init),
  2285. proto_method_implemented(proto->destroy),
  2286. proto_method_implemented(proto->shutdown),
  2287. proto_method_implemented(proto->setsockopt),
  2288. proto_method_implemented(proto->getsockopt),
  2289. proto_method_implemented(proto->sendmsg),
  2290. proto_method_implemented(proto->recvmsg),
  2291. proto_method_implemented(proto->sendpage),
  2292. proto_method_implemented(proto->bind),
  2293. proto_method_implemented(proto->backlog_rcv),
  2294. proto_method_implemented(proto->hash),
  2295. proto_method_implemented(proto->unhash),
  2296. proto_method_implemented(proto->get_port),
  2297. proto_method_implemented(proto->enter_memory_pressure));
  2298. }
  2299. static int proto_seq_show(struct seq_file *seq, void *v)
  2300. {
  2301. if (v == &proto_list)
  2302. seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
  2303. "protocol",
  2304. "size",
  2305. "sockets",
  2306. "memory",
  2307. "press",
  2308. "maxhdr",
  2309. "slab",
  2310. "module",
  2311. "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
  2312. else
  2313. proto_seq_printf(seq, list_entry(v, struct proto, node));
  2314. return 0;
  2315. }
  2316. static const struct seq_operations proto_seq_ops = {
  2317. .start = proto_seq_start,
  2318. .next = proto_seq_next,
  2319. .stop = proto_seq_stop,
  2320. .show = proto_seq_show,
  2321. };
  2322. static int proto_seq_open(struct inode *inode, struct file *file)
  2323. {
  2324. return seq_open_net(inode, file, &proto_seq_ops,
  2325. sizeof(struct seq_net_private));
  2326. }
  2327. static const struct file_operations proto_seq_fops = {
  2328. .owner = THIS_MODULE,
  2329. .open = proto_seq_open,
  2330. .read = seq_read,
  2331. .llseek = seq_lseek,
  2332. .release = seq_release_net,
  2333. };
  2334. static __net_init int proto_init_net(struct net *net)
  2335. {
  2336. if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
  2337. return -ENOMEM;
  2338. return 0;
  2339. }
  2340. static __net_exit void proto_exit_net(struct net *net)
  2341. {
  2342. proc_net_remove(net, "protocols");
  2343. }
  2344. static __net_initdata struct pernet_operations proto_net_ops = {
  2345. .init = proto_init_net,
  2346. .exit = proto_exit_net,
  2347. };
  2348. static int __init proto_init(void)
  2349. {
  2350. return register_pernet_subsys(&proto_net_ops);
  2351. }
  2352. subsys_initcall(proto_init);
  2353. #endif /* PROC_FS */