workqueue.c 102 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762
  1. /*
  2. * kernel/workqueue.c - generic async execution with shared worker pool
  3. *
  4. * Copyright (C) 2002 Ingo Molnar
  5. *
  6. * Derived from the taskqueue/keventd code by:
  7. * David Woodhouse <dwmw2@infradead.org>
  8. * Andrew Morton
  9. * Kai Petzke <wpp@marie.physik.tu-berlin.de>
  10. * Theodore Ts'o <tytso@mit.edu>
  11. *
  12. * Made to use alloc_percpu by Christoph Lameter.
  13. *
  14. * Copyright (C) 2010 SUSE Linux Products GmbH
  15. * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
  16. *
  17. * This is the generic async execution mechanism. Work items as are
  18. * executed in process context. The worker pool is shared and
  19. * automatically managed. There is one worker pool for each CPU and
  20. * one extra for works which are better served by workers which are
  21. * not bound to any specific CPU.
  22. *
  23. * Please read Documentation/workqueue.txt for details.
  24. */
  25. #include <linux/export.h>
  26. #include <linux/kernel.h>
  27. #include <linux/sched.h>
  28. #include <linux/init.h>
  29. #include <linux/signal.h>
  30. #include <linux/completion.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/slab.h>
  33. #include <linux/cpu.h>
  34. #include <linux/notifier.h>
  35. #include <linux/kthread.h>
  36. #include <linux/hardirq.h>
  37. #include <linux/mempolicy.h>
  38. #include <linux/freezer.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/debug_locks.h>
  41. #include <linux/lockdep.h>
  42. #include <linux/idr.h>
  43. #include "workqueue_sched.h"
  44. enum {
  45. /*
  46. * global_cwq flags
  47. *
  48. * A bound gcwq is either associated or disassociated with its CPU.
  49. * While associated (!DISASSOCIATED), all workers are bound to the
  50. * CPU and none has %WORKER_UNBOUND set and concurrency management
  51. * is in effect.
  52. *
  53. * While DISASSOCIATED, the cpu may be offline and all workers have
  54. * %WORKER_UNBOUND set and concurrency management disabled, and may
  55. * be executing on any CPU. The gcwq behaves as an unbound one.
  56. *
  57. * Note that DISASSOCIATED can be flipped only while holding
  58. * managership of all pools on the gcwq to avoid changing binding
  59. * state while create_worker() is in progress.
  60. */
  61. GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */
  62. GCWQ_FREEZING = 1 << 1, /* freeze in progress */
  63. /* pool flags */
  64. POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
  65. /* worker flags */
  66. WORKER_STARTED = 1 << 0, /* started */
  67. WORKER_DIE = 1 << 1, /* die die die */
  68. WORKER_IDLE = 1 << 2, /* is idle */
  69. WORKER_PREP = 1 << 3, /* preparing to run works */
  70. WORKER_REBIND = 1 << 5, /* mom is home, come back */
  71. WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
  72. WORKER_UNBOUND = 1 << 7, /* worker is unbound */
  73. WORKER_NOT_RUNNING = WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
  74. WORKER_CPU_INTENSIVE,
  75. NR_WORKER_POOLS = 2, /* # worker pools per gcwq */
  76. BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
  77. BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
  78. BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
  79. MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
  80. IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
  81. MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
  82. /* call for help after 10ms
  83. (min two ticks) */
  84. MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
  85. CREATE_COOLDOWN = HZ, /* time to breath after fail */
  86. /*
  87. * Rescue workers are used only on emergencies and shared by
  88. * all cpus. Give -20.
  89. */
  90. RESCUER_NICE_LEVEL = -20,
  91. HIGHPRI_NICE_LEVEL = -20,
  92. };
  93. /*
  94. * Structure fields follow one of the following exclusion rules.
  95. *
  96. * I: Modifiable by initialization/destruction paths and read-only for
  97. * everyone else.
  98. *
  99. * P: Preemption protected. Disabling preemption is enough and should
  100. * only be modified and accessed from the local cpu.
  101. *
  102. * L: gcwq->lock protected. Access with gcwq->lock held.
  103. *
  104. * X: During normal operation, modification requires gcwq->lock and
  105. * should be done only from local cpu. Either disabling preemption
  106. * on local cpu or grabbing gcwq->lock is enough for read access.
  107. * If GCWQ_DISASSOCIATED is set, it's identical to L.
  108. *
  109. * F: wq->flush_mutex protected.
  110. *
  111. * W: workqueue_lock protected.
  112. */
  113. struct global_cwq;
  114. struct worker_pool;
  115. struct idle_rebind;
  116. /*
  117. * The poor guys doing the actual heavy lifting. All on-duty workers
  118. * are either serving the manager role, on idle list or on busy hash.
  119. */
  120. struct worker {
  121. /* on idle list while idle, on busy hash table while busy */
  122. union {
  123. struct list_head entry; /* L: while idle */
  124. struct hlist_node hentry; /* L: while busy */
  125. };
  126. struct work_struct *current_work; /* L: work being processed */
  127. struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
  128. struct list_head scheduled; /* L: scheduled works */
  129. struct task_struct *task; /* I: worker task */
  130. struct worker_pool *pool; /* I: the associated pool */
  131. /* 64 bytes boundary on 64bit, 32 on 32bit */
  132. unsigned long last_active; /* L: last active timestamp */
  133. unsigned int flags; /* X: flags */
  134. int id; /* I: worker id */
  135. /* for rebinding worker to CPU */
  136. struct idle_rebind *idle_rebind; /* L: for idle worker */
  137. struct work_struct rebind_work; /* L: for busy worker */
  138. };
  139. struct worker_pool {
  140. struct global_cwq *gcwq; /* I: the owning gcwq */
  141. unsigned int flags; /* X: flags */
  142. struct list_head worklist; /* L: list of pending works */
  143. int nr_workers; /* L: total number of workers */
  144. int nr_idle; /* L: currently idle ones */
  145. struct list_head idle_list; /* X: list of idle workers */
  146. struct timer_list idle_timer; /* L: worker idle timeout */
  147. struct timer_list mayday_timer; /* L: SOS timer for workers */
  148. struct mutex manager_mutex; /* mutex manager should hold */
  149. struct ida worker_ida; /* L: for worker IDs */
  150. };
  151. /*
  152. * Global per-cpu workqueue. There's one and only one for each cpu
  153. * and all works are queued and processed here regardless of their
  154. * target workqueues.
  155. */
  156. struct global_cwq {
  157. spinlock_t lock; /* the gcwq lock */
  158. unsigned int cpu; /* I: the associated cpu */
  159. unsigned int flags; /* L: GCWQ_* flags */
  160. /* workers are chained either in busy_hash or pool idle_list */
  161. struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
  162. /* L: hash of busy workers */
  163. struct worker_pool pools[2]; /* normal and highpri pools */
  164. wait_queue_head_t rebind_hold; /* rebind hold wait */
  165. } ____cacheline_aligned_in_smp;
  166. /*
  167. * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
  168. * work_struct->data are used for flags and thus cwqs need to be
  169. * aligned at two's power of the number of flag bits.
  170. */
  171. struct cpu_workqueue_struct {
  172. struct worker_pool *pool; /* I: the associated pool */
  173. struct workqueue_struct *wq; /* I: the owning workqueue */
  174. int work_color; /* L: current color */
  175. int flush_color; /* L: flushing color */
  176. int nr_in_flight[WORK_NR_COLORS];
  177. /* L: nr of in_flight works */
  178. int nr_active; /* L: nr of active works */
  179. int max_active; /* L: max active works */
  180. struct list_head delayed_works; /* L: delayed works */
  181. };
  182. /*
  183. * Structure used to wait for workqueue flush.
  184. */
  185. struct wq_flusher {
  186. struct list_head list; /* F: list of flushers */
  187. int flush_color; /* F: flush color waiting for */
  188. struct completion done; /* flush completion */
  189. };
  190. /*
  191. * All cpumasks are assumed to be always set on UP and thus can't be
  192. * used to determine whether there's something to be done.
  193. */
  194. #ifdef CONFIG_SMP
  195. typedef cpumask_var_t mayday_mask_t;
  196. #define mayday_test_and_set_cpu(cpu, mask) \
  197. cpumask_test_and_set_cpu((cpu), (mask))
  198. #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
  199. #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
  200. #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
  201. #define free_mayday_mask(mask) free_cpumask_var((mask))
  202. #else
  203. typedef unsigned long mayday_mask_t;
  204. #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
  205. #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
  206. #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
  207. #define alloc_mayday_mask(maskp, gfp) true
  208. #define free_mayday_mask(mask) do { } while (0)
  209. #endif
  210. /*
  211. * The externally visible workqueue abstraction is an array of
  212. * per-CPU workqueues:
  213. */
  214. struct workqueue_struct {
  215. unsigned int flags; /* W: WQ_* flags */
  216. union {
  217. struct cpu_workqueue_struct __percpu *pcpu;
  218. struct cpu_workqueue_struct *single;
  219. unsigned long v;
  220. } cpu_wq; /* I: cwq's */
  221. struct list_head list; /* W: list of all workqueues */
  222. struct mutex flush_mutex; /* protects wq flushing */
  223. int work_color; /* F: current work color */
  224. int flush_color; /* F: current flush color */
  225. atomic_t nr_cwqs_to_flush; /* flush in progress */
  226. struct wq_flusher *first_flusher; /* F: first flusher */
  227. struct list_head flusher_queue; /* F: flush waiters */
  228. struct list_head flusher_overflow; /* F: flush overflow list */
  229. mayday_mask_t mayday_mask; /* cpus requesting rescue */
  230. struct worker *rescuer; /* I: rescue worker */
  231. int nr_drainers; /* W: drain in progress */
  232. int saved_max_active; /* W: saved cwq max_active */
  233. #ifdef CONFIG_LOCKDEP
  234. struct lockdep_map lockdep_map;
  235. #endif
  236. char name[]; /* I: workqueue name */
  237. };
  238. struct workqueue_struct *system_wq __read_mostly;
  239. struct workqueue_struct *system_long_wq __read_mostly;
  240. struct workqueue_struct *system_nrt_wq __read_mostly;
  241. struct workqueue_struct *system_unbound_wq __read_mostly;
  242. struct workqueue_struct *system_freezable_wq __read_mostly;
  243. struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
  244. EXPORT_SYMBOL_GPL(system_wq);
  245. EXPORT_SYMBOL_GPL(system_long_wq);
  246. EXPORT_SYMBOL_GPL(system_nrt_wq);
  247. EXPORT_SYMBOL_GPL(system_unbound_wq);
  248. EXPORT_SYMBOL_GPL(system_freezable_wq);
  249. EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
  250. #define CREATE_TRACE_POINTS
  251. #include <trace/events/workqueue.h>
  252. #define for_each_worker_pool(pool, gcwq) \
  253. for ((pool) = &(gcwq)->pools[0]; \
  254. (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
  255. #define for_each_busy_worker(worker, i, pos, gcwq) \
  256. for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
  257. hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
  258. static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
  259. unsigned int sw)
  260. {
  261. if (cpu < nr_cpu_ids) {
  262. if (sw & 1) {
  263. cpu = cpumask_next(cpu, mask);
  264. if (cpu < nr_cpu_ids)
  265. return cpu;
  266. }
  267. if (sw & 2)
  268. return WORK_CPU_UNBOUND;
  269. }
  270. return WORK_CPU_NONE;
  271. }
  272. static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
  273. struct workqueue_struct *wq)
  274. {
  275. return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
  276. }
  277. /*
  278. * CPU iterators
  279. *
  280. * An extra gcwq is defined for an invalid cpu number
  281. * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
  282. * specific CPU. The following iterators are similar to
  283. * for_each_*_cpu() iterators but also considers the unbound gcwq.
  284. *
  285. * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND
  286. * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND
  287. * for_each_cwq_cpu() : possible CPUs for bound workqueues,
  288. * WORK_CPU_UNBOUND for unbound workqueues
  289. */
  290. #define for_each_gcwq_cpu(cpu) \
  291. for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
  292. (cpu) < WORK_CPU_NONE; \
  293. (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
  294. #define for_each_online_gcwq_cpu(cpu) \
  295. for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
  296. (cpu) < WORK_CPU_NONE; \
  297. (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
  298. #define for_each_cwq_cpu(cpu, wq) \
  299. for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
  300. (cpu) < WORK_CPU_NONE; \
  301. (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
  302. #ifdef CONFIG_DEBUG_OBJECTS_WORK
  303. static struct debug_obj_descr work_debug_descr;
  304. static void *work_debug_hint(void *addr)
  305. {
  306. return ((struct work_struct *) addr)->func;
  307. }
  308. /*
  309. * fixup_init is called when:
  310. * - an active object is initialized
  311. */
  312. static int work_fixup_init(void *addr, enum debug_obj_state state)
  313. {
  314. struct work_struct *work = addr;
  315. switch (state) {
  316. case ODEBUG_STATE_ACTIVE:
  317. cancel_work_sync(work);
  318. debug_object_init(work, &work_debug_descr);
  319. return 1;
  320. default:
  321. return 0;
  322. }
  323. }
  324. /*
  325. * fixup_activate is called when:
  326. * - an active object is activated
  327. * - an unknown object is activated (might be a statically initialized object)
  328. */
  329. static int work_fixup_activate(void *addr, enum debug_obj_state state)
  330. {
  331. struct work_struct *work = addr;
  332. switch (state) {
  333. case ODEBUG_STATE_NOTAVAILABLE:
  334. /*
  335. * This is not really a fixup. The work struct was
  336. * statically initialized. We just make sure that it
  337. * is tracked in the object tracker.
  338. */
  339. if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
  340. debug_object_init(work, &work_debug_descr);
  341. debug_object_activate(work, &work_debug_descr);
  342. return 0;
  343. }
  344. WARN_ON_ONCE(1);
  345. return 0;
  346. case ODEBUG_STATE_ACTIVE:
  347. WARN_ON(1);
  348. default:
  349. return 0;
  350. }
  351. }
  352. /*
  353. * fixup_free is called when:
  354. * - an active object is freed
  355. */
  356. static int work_fixup_free(void *addr, enum debug_obj_state state)
  357. {
  358. struct work_struct *work = addr;
  359. switch (state) {
  360. case ODEBUG_STATE_ACTIVE:
  361. cancel_work_sync(work);
  362. debug_object_free(work, &work_debug_descr);
  363. return 1;
  364. default:
  365. return 0;
  366. }
  367. }
  368. static struct debug_obj_descr work_debug_descr = {
  369. .name = "work_struct",
  370. .debug_hint = work_debug_hint,
  371. .fixup_init = work_fixup_init,
  372. .fixup_activate = work_fixup_activate,
  373. .fixup_free = work_fixup_free,
  374. };
  375. static inline void debug_work_activate(struct work_struct *work)
  376. {
  377. debug_object_activate(work, &work_debug_descr);
  378. }
  379. static inline void debug_work_deactivate(struct work_struct *work)
  380. {
  381. debug_object_deactivate(work, &work_debug_descr);
  382. }
  383. void __init_work(struct work_struct *work, int onstack)
  384. {
  385. if (onstack)
  386. debug_object_init_on_stack(work, &work_debug_descr);
  387. else
  388. debug_object_init(work, &work_debug_descr);
  389. }
  390. EXPORT_SYMBOL_GPL(__init_work);
  391. void destroy_work_on_stack(struct work_struct *work)
  392. {
  393. debug_object_free(work, &work_debug_descr);
  394. }
  395. EXPORT_SYMBOL_GPL(destroy_work_on_stack);
  396. #else
  397. static inline void debug_work_activate(struct work_struct *work) { }
  398. static inline void debug_work_deactivate(struct work_struct *work) { }
  399. #endif
  400. /* Serializes the accesses to the list of workqueues. */
  401. static DEFINE_SPINLOCK(workqueue_lock);
  402. static LIST_HEAD(workqueues);
  403. static bool workqueue_freezing; /* W: have wqs started freezing? */
  404. /*
  405. * The almighty global cpu workqueues. nr_running is the only field
  406. * which is expected to be used frequently by other cpus via
  407. * try_to_wake_up(). Put it in a separate cacheline.
  408. */
  409. static DEFINE_PER_CPU(struct global_cwq, global_cwq);
  410. static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
  411. /*
  412. * Global cpu workqueue and nr_running counter for unbound gcwq. The
  413. * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
  414. * workers have WORKER_UNBOUND set.
  415. */
  416. static struct global_cwq unbound_global_cwq;
  417. static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
  418. [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */
  419. };
  420. static int worker_thread(void *__worker);
  421. static int worker_pool_pri(struct worker_pool *pool)
  422. {
  423. return pool - pool->gcwq->pools;
  424. }
  425. static struct global_cwq *get_gcwq(unsigned int cpu)
  426. {
  427. if (cpu != WORK_CPU_UNBOUND)
  428. return &per_cpu(global_cwq, cpu);
  429. else
  430. return &unbound_global_cwq;
  431. }
  432. static atomic_t *get_pool_nr_running(struct worker_pool *pool)
  433. {
  434. int cpu = pool->gcwq->cpu;
  435. int idx = worker_pool_pri(pool);
  436. if (cpu != WORK_CPU_UNBOUND)
  437. return &per_cpu(pool_nr_running, cpu)[idx];
  438. else
  439. return &unbound_pool_nr_running[idx];
  440. }
  441. static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
  442. struct workqueue_struct *wq)
  443. {
  444. if (!(wq->flags & WQ_UNBOUND)) {
  445. if (likely(cpu < nr_cpu_ids))
  446. return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
  447. } else if (likely(cpu == WORK_CPU_UNBOUND))
  448. return wq->cpu_wq.single;
  449. return NULL;
  450. }
  451. static unsigned int work_color_to_flags(int color)
  452. {
  453. return color << WORK_STRUCT_COLOR_SHIFT;
  454. }
  455. static int get_work_color(struct work_struct *work)
  456. {
  457. return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
  458. ((1 << WORK_STRUCT_COLOR_BITS) - 1);
  459. }
  460. static int work_next_color(int color)
  461. {
  462. return (color + 1) % WORK_NR_COLORS;
  463. }
  464. /*
  465. * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
  466. * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
  467. * cleared and the work data contains the cpu number it was last on.
  468. *
  469. * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
  470. * cwq, cpu or clear work->data. These functions should only be
  471. * called while the work is owned - ie. while the PENDING bit is set.
  472. *
  473. * get_work_[g]cwq() can be used to obtain the gcwq or cwq
  474. * corresponding to a work. gcwq is available once the work has been
  475. * queued anywhere after initialization. cwq is available only from
  476. * queueing until execution starts.
  477. */
  478. static inline void set_work_data(struct work_struct *work, unsigned long data,
  479. unsigned long flags)
  480. {
  481. BUG_ON(!work_pending(work));
  482. atomic_long_set(&work->data, data | flags | work_static(work));
  483. }
  484. static void set_work_cwq(struct work_struct *work,
  485. struct cpu_workqueue_struct *cwq,
  486. unsigned long extra_flags)
  487. {
  488. set_work_data(work, (unsigned long)cwq,
  489. WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
  490. }
  491. static void set_work_cpu(struct work_struct *work, unsigned int cpu)
  492. {
  493. set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
  494. }
  495. static void clear_work_data(struct work_struct *work)
  496. {
  497. set_work_data(work, WORK_STRUCT_NO_CPU, 0);
  498. }
  499. static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
  500. {
  501. unsigned long data = atomic_long_read(&work->data);
  502. if (data & WORK_STRUCT_CWQ)
  503. return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
  504. else
  505. return NULL;
  506. }
  507. static struct global_cwq *get_work_gcwq(struct work_struct *work)
  508. {
  509. unsigned long data = atomic_long_read(&work->data);
  510. unsigned int cpu;
  511. if (data & WORK_STRUCT_CWQ)
  512. return ((struct cpu_workqueue_struct *)
  513. (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
  514. cpu = data >> WORK_STRUCT_FLAG_BITS;
  515. if (cpu == WORK_CPU_NONE)
  516. return NULL;
  517. BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
  518. return get_gcwq(cpu);
  519. }
  520. /*
  521. * Policy functions. These define the policies on how the global worker
  522. * pools are managed. Unless noted otherwise, these functions assume that
  523. * they're being called with gcwq->lock held.
  524. */
  525. static bool __need_more_worker(struct worker_pool *pool)
  526. {
  527. return !atomic_read(get_pool_nr_running(pool));
  528. }
  529. /*
  530. * Need to wake up a worker? Called from anything but currently
  531. * running workers.
  532. *
  533. * Note that, because unbound workers never contribute to nr_running, this
  534. * function will always return %true for unbound gcwq as long as the
  535. * worklist isn't empty.
  536. */
  537. static bool need_more_worker(struct worker_pool *pool)
  538. {
  539. return !list_empty(&pool->worklist) && __need_more_worker(pool);
  540. }
  541. /* Can I start working? Called from busy but !running workers. */
  542. static bool may_start_working(struct worker_pool *pool)
  543. {
  544. return pool->nr_idle;
  545. }
  546. /* Do I need to keep working? Called from currently running workers. */
  547. static bool keep_working(struct worker_pool *pool)
  548. {
  549. atomic_t *nr_running = get_pool_nr_running(pool);
  550. return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
  551. }
  552. /* Do we need a new worker? Called from manager. */
  553. static bool need_to_create_worker(struct worker_pool *pool)
  554. {
  555. return need_more_worker(pool) && !may_start_working(pool);
  556. }
  557. /* Do I need to be the manager? */
  558. static bool need_to_manage_workers(struct worker_pool *pool)
  559. {
  560. return need_to_create_worker(pool) ||
  561. (pool->flags & POOL_MANAGE_WORKERS);
  562. }
  563. /* Do we have too many workers and should some go away? */
  564. static bool too_many_workers(struct worker_pool *pool)
  565. {
  566. bool managing = mutex_is_locked(&pool->manager_mutex);
  567. int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
  568. int nr_busy = pool->nr_workers - nr_idle;
  569. return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
  570. }
  571. /*
  572. * Wake up functions.
  573. */
  574. /* Return the first worker. Safe with preemption disabled */
  575. static struct worker *first_worker(struct worker_pool *pool)
  576. {
  577. if (unlikely(list_empty(&pool->idle_list)))
  578. return NULL;
  579. return list_first_entry(&pool->idle_list, struct worker, entry);
  580. }
  581. /**
  582. * wake_up_worker - wake up an idle worker
  583. * @pool: worker pool to wake worker from
  584. *
  585. * Wake up the first idle worker of @pool.
  586. *
  587. * CONTEXT:
  588. * spin_lock_irq(gcwq->lock).
  589. */
  590. static void wake_up_worker(struct worker_pool *pool)
  591. {
  592. struct worker *worker = first_worker(pool);
  593. if (likely(worker))
  594. wake_up_process(worker->task);
  595. }
  596. /**
  597. * wq_worker_waking_up - a worker is waking up
  598. * @task: task waking up
  599. * @cpu: CPU @task is waking up to
  600. *
  601. * This function is called during try_to_wake_up() when a worker is
  602. * being awoken.
  603. *
  604. * CONTEXT:
  605. * spin_lock_irq(rq->lock)
  606. */
  607. void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
  608. {
  609. struct worker *worker = kthread_data(task);
  610. if (!(worker->flags & WORKER_NOT_RUNNING))
  611. atomic_inc(get_pool_nr_running(worker->pool));
  612. }
  613. /**
  614. * wq_worker_sleeping - a worker is going to sleep
  615. * @task: task going to sleep
  616. * @cpu: CPU in question, must be the current CPU number
  617. *
  618. * This function is called during schedule() when a busy worker is
  619. * going to sleep. Worker on the same cpu can be woken up by
  620. * returning pointer to its task.
  621. *
  622. * CONTEXT:
  623. * spin_lock_irq(rq->lock)
  624. *
  625. * RETURNS:
  626. * Worker task on @cpu to wake up, %NULL if none.
  627. */
  628. struct task_struct *wq_worker_sleeping(struct task_struct *task,
  629. unsigned int cpu)
  630. {
  631. struct worker *worker = kthread_data(task), *to_wakeup = NULL;
  632. struct worker_pool *pool = worker->pool;
  633. atomic_t *nr_running = get_pool_nr_running(pool);
  634. if (worker->flags & WORKER_NOT_RUNNING)
  635. return NULL;
  636. /* this can only happen on the local cpu */
  637. BUG_ON(cpu != raw_smp_processor_id());
  638. /*
  639. * The counterpart of the following dec_and_test, implied mb,
  640. * worklist not empty test sequence is in insert_work().
  641. * Please read comment there.
  642. *
  643. * NOT_RUNNING is clear. This means that we're bound to and
  644. * running on the local cpu w/ rq lock held and preemption
  645. * disabled, which in turn means that none else could be
  646. * manipulating idle_list, so dereferencing idle_list without gcwq
  647. * lock is safe.
  648. */
  649. if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
  650. to_wakeup = first_worker(pool);
  651. return to_wakeup ? to_wakeup->task : NULL;
  652. }
  653. /**
  654. * worker_set_flags - set worker flags and adjust nr_running accordingly
  655. * @worker: self
  656. * @flags: flags to set
  657. * @wakeup: wakeup an idle worker if necessary
  658. *
  659. * Set @flags in @worker->flags and adjust nr_running accordingly. If
  660. * nr_running becomes zero and @wakeup is %true, an idle worker is
  661. * woken up.
  662. *
  663. * CONTEXT:
  664. * spin_lock_irq(gcwq->lock)
  665. */
  666. static inline void worker_set_flags(struct worker *worker, unsigned int flags,
  667. bool wakeup)
  668. {
  669. struct worker_pool *pool = worker->pool;
  670. WARN_ON_ONCE(worker->task != current);
  671. /*
  672. * If transitioning into NOT_RUNNING, adjust nr_running and
  673. * wake up an idle worker as necessary if requested by
  674. * @wakeup.
  675. */
  676. if ((flags & WORKER_NOT_RUNNING) &&
  677. !(worker->flags & WORKER_NOT_RUNNING)) {
  678. atomic_t *nr_running = get_pool_nr_running(pool);
  679. if (wakeup) {
  680. if (atomic_dec_and_test(nr_running) &&
  681. !list_empty(&pool->worklist))
  682. wake_up_worker(pool);
  683. } else
  684. atomic_dec(nr_running);
  685. }
  686. worker->flags |= flags;
  687. }
  688. /**
  689. * worker_clr_flags - clear worker flags and adjust nr_running accordingly
  690. * @worker: self
  691. * @flags: flags to clear
  692. *
  693. * Clear @flags in @worker->flags and adjust nr_running accordingly.
  694. *
  695. * CONTEXT:
  696. * spin_lock_irq(gcwq->lock)
  697. */
  698. static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
  699. {
  700. struct worker_pool *pool = worker->pool;
  701. unsigned int oflags = worker->flags;
  702. WARN_ON_ONCE(worker->task != current);
  703. worker->flags &= ~flags;
  704. /*
  705. * If transitioning out of NOT_RUNNING, increment nr_running. Note
  706. * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
  707. * of multiple flags, not a single flag.
  708. */
  709. if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
  710. if (!(worker->flags & WORKER_NOT_RUNNING))
  711. atomic_inc(get_pool_nr_running(pool));
  712. }
  713. /**
  714. * busy_worker_head - return the busy hash head for a work
  715. * @gcwq: gcwq of interest
  716. * @work: work to be hashed
  717. *
  718. * Return hash head of @gcwq for @work.
  719. *
  720. * CONTEXT:
  721. * spin_lock_irq(gcwq->lock).
  722. *
  723. * RETURNS:
  724. * Pointer to the hash head.
  725. */
  726. static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
  727. struct work_struct *work)
  728. {
  729. const int base_shift = ilog2(sizeof(struct work_struct));
  730. unsigned long v = (unsigned long)work;
  731. /* simple shift and fold hash, do we need something better? */
  732. v >>= base_shift;
  733. v += v >> BUSY_WORKER_HASH_ORDER;
  734. v &= BUSY_WORKER_HASH_MASK;
  735. return &gcwq->busy_hash[v];
  736. }
  737. /**
  738. * __find_worker_executing_work - find worker which is executing a work
  739. * @gcwq: gcwq of interest
  740. * @bwh: hash head as returned by busy_worker_head()
  741. * @work: work to find worker for
  742. *
  743. * Find a worker which is executing @work on @gcwq. @bwh should be
  744. * the hash head obtained by calling busy_worker_head() with the same
  745. * work.
  746. *
  747. * CONTEXT:
  748. * spin_lock_irq(gcwq->lock).
  749. *
  750. * RETURNS:
  751. * Pointer to worker which is executing @work if found, NULL
  752. * otherwise.
  753. */
  754. static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
  755. struct hlist_head *bwh,
  756. struct work_struct *work)
  757. {
  758. struct worker *worker;
  759. struct hlist_node *tmp;
  760. hlist_for_each_entry(worker, tmp, bwh, hentry)
  761. if (worker->current_work == work)
  762. return worker;
  763. return NULL;
  764. }
  765. /**
  766. * find_worker_executing_work - find worker which is executing a work
  767. * @gcwq: gcwq of interest
  768. * @work: work to find worker for
  769. *
  770. * Find a worker which is executing @work on @gcwq. This function is
  771. * identical to __find_worker_executing_work() except that this
  772. * function calculates @bwh itself.
  773. *
  774. * CONTEXT:
  775. * spin_lock_irq(gcwq->lock).
  776. *
  777. * RETURNS:
  778. * Pointer to worker which is executing @work if found, NULL
  779. * otherwise.
  780. */
  781. static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
  782. struct work_struct *work)
  783. {
  784. return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
  785. work);
  786. }
  787. /**
  788. * insert_work - insert a work into gcwq
  789. * @cwq: cwq @work belongs to
  790. * @work: work to insert
  791. * @head: insertion point
  792. * @extra_flags: extra WORK_STRUCT_* flags to set
  793. *
  794. * Insert @work which belongs to @cwq into @gcwq after @head.
  795. * @extra_flags is or'd to work_struct flags.
  796. *
  797. * CONTEXT:
  798. * spin_lock_irq(gcwq->lock).
  799. */
  800. static void insert_work(struct cpu_workqueue_struct *cwq,
  801. struct work_struct *work, struct list_head *head,
  802. unsigned int extra_flags)
  803. {
  804. struct worker_pool *pool = cwq->pool;
  805. /* we own @work, set data and link */
  806. set_work_cwq(work, cwq, extra_flags);
  807. /*
  808. * Ensure that we get the right work->data if we see the
  809. * result of list_add() below, see try_to_grab_pending().
  810. */
  811. smp_wmb();
  812. list_add_tail(&work->entry, head);
  813. /*
  814. * Ensure either worker_sched_deactivated() sees the above
  815. * list_add_tail() or we see zero nr_running to avoid workers
  816. * lying around lazily while there are works to be processed.
  817. */
  818. smp_mb();
  819. if (__need_more_worker(pool))
  820. wake_up_worker(pool);
  821. }
  822. /*
  823. * Test whether @work is being queued from another work executing on the
  824. * same workqueue. This is rather expensive and should only be used from
  825. * cold paths.
  826. */
  827. static bool is_chained_work(struct workqueue_struct *wq)
  828. {
  829. unsigned long flags;
  830. unsigned int cpu;
  831. for_each_gcwq_cpu(cpu) {
  832. struct global_cwq *gcwq = get_gcwq(cpu);
  833. struct worker *worker;
  834. struct hlist_node *pos;
  835. int i;
  836. spin_lock_irqsave(&gcwq->lock, flags);
  837. for_each_busy_worker(worker, i, pos, gcwq) {
  838. if (worker->task != current)
  839. continue;
  840. spin_unlock_irqrestore(&gcwq->lock, flags);
  841. /*
  842. * I'm @worker, no locking necessary. See if @work
  843. * is headed to the same workqueue.
  844. */
  845. return worker->current_cwq->wq == wq;
  846. }
  847. spin_unlock_irqrestore(&gcwq->lock, flags);
  848. }
  849. return false;
  850. }
  851. static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
  852. struct work_struct *work)
  853. {
  854. struct global_cwq *gcwq;
  855. struct cpu_workqueue_struct *cwq;
  856. struct list_head *worklist;
  857. unsigned int work_flags;
  858. unsigned long flags;
  859. debug_work_activate(work);
  860. /* if dying, only works from the same workqueue are allowed */
  861. if (unlikely(wq->flags & WQ_DRAINING) &&
  862. WARN_ON_ONCE(!is_chained_work(wq)))
  863. return;
  864. /* determine gcwq to use */
  865. if (!(wq->flags & WQ_UNBOUND)) {
  866. struct global_cwq *last_gcwq;
  867. if (unlikely(cpu == WORK_CPU_UNBOUND))
  868. cpu = raw_smp_processor_id();
  869. /*
  870. * It's multi cpu. If @wq is non-reentrant and @work
  871. * was previously on a different cpu, it might still
  872. * be running there, in which case the work needs to
  873. * be queued on that cpu to guarantee non-reentrance.
  874. */
  875. gcwq = get_gcwq(cpu);
  876. if (wq->flags & WQ_NON_REENTRANT &&
  877. (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
  878. struct worker *worker;
  879. spin_lock_irqsave(&last_gcwq->lock, flags);
  880. worker = find_worker_executing_work(last_gcwq, work);
  881. if (worker && worker->current_cwq->wq == wq)
  882. gcwq = last_gcwq;
  883. else {
  884. /* meh... not running there, queue here */
  885. spin_unlock_irqrestore(&last_gcwq->lock, flags);
  886. spin_lock_irqsave(&gcwq->lock, flags);
  887. }
  888. } else
  889. spin_lock_irqsave(&gcwq->lock, flags);
  890. } else {
  891. gcwq = get_gcwq(WORK_CPU_UNBOUND);
  892. spin_lock_irqsave(&gcwq->lock, flags);
  893. }
  894. /* gcwq determined, get cwq and queue */
  895. cwq = get_cwq(gcwq->cpu, wq);
  896. trace_workqueue_queue_work(cpu, cwq, work);
  897. if (WARN_ON(!list_empty(&work->entry))) {
  898. spin_unlock_irqrestore(&gcwq->lock, flags);
  899. return;
  900. }
  901. cwq->nr_in_flight[cwq->work_color]++;
  902. work_flags = work_color_to_flags(cwq->work_color);
  903. if (likely(cwq->nr_active < cwq->max_active)) {
  904. trace_workqueue_activate_work(work);
  905. cwq->nr_active++;
  906. worklist = &cwq->pool->worklist;
  907. } else {
  908. work_flags |= WORK_STRUCT_DELAYED;
  909. worklist = &cwq->delayed_works;
  910. }
  911. insert_work(cwq, work, worklist, work_flags);
  912. spin_unlock_irqrestore(&gcwq->lock, flags);
  913. }
  914. /**
  915. * queue_work - queue work on a workqueue
  916. * @wq: workqueue to use
  917. * @work: work to queue
  918. *
  919. * Returns 0 if @work was already on a queue, non-zero otherwise.
  920. *
  921. * We queue the work to the CPU on which it was submitted, but if the CPU dies
  922. * it can be processed by another CPU.
  923. */
  924. int queue_work(struct workqueue_struct *wq, struct work_struct *work)
  925. {
  926. int ret;
  927. ret = queue_work_on(get_cpu(), wq, work);
  928. put_cpu();
  929. return ret;
  930. }
  931. EXPORT_SYMBOL_GPL(queue_work);
  932. /**
  933. * queue_work_on - queue work on specific cpu
  934. * @cpu: CPU number to execute work on
  935. * @wq: workqueue to use
  936. * @work: work to queue
  937. *
  938. * Returns 0 if @work was already on a queue, non-zero otherwise.
  939. *
  940. * We queue the work to a specific CPU, the caller must ensure it
  941. * can't go away.
  942. */
  943. int
  944. queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
  945. {
  946. int ret = 0;
  947. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  948. __queue_work(cpu, wq, work);
  949. ret = 1;
  950. }
  951. return ret;
  952. }
  953. EXPORT_SYMBOL_GPL(queue_work_on);
  954. static void delayed_work_timer_fn(unsigned long __data)
  955. {
  956. struct delayed_work *dwork = (struct delayed_work *)__data;
  957. struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
  958. __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
  959. }
  960. /**
  961. * queue_delayed_work - queue work on a workqueue after delay
  962. * @wq: workqueue to use
  963. * @dwork: delayable work to queue
  964. * @delay: number of jiffies to wait before queueing
  965. *
  966. * Returns 0 if @work was already on a queue, non-zero otherwise.
  967. */
  968. int queue_delayed_work(struct workqueue_struct *wq,
  969. struct delayed_work *dwork, unsigned long delay)
  970. {
  971. if (delay == 0)
  972. return queue_work(wq, &dwork->work);
  973. return queue_delayed_work_on(-1, wq, dwork, delay);
  974. }
  975. EXPORT_SYMBOL_GPL(queue_delayed_work);
  976. /**
  977. * queue_delayed_work_on - queue work on specific CPU after delay
  978. * @cpu: CPU number to execute work on
  979. * @wq: workqueue to use
  980. * @dwork: work to queue
  981. * @delay: number of jiffies to wait before queueing
  982. *
  983. * Returns 0 if @work was already on a queue, non-zero otherwise.
  984. */
  985. int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
  986. struct delayed_work *dwork, unsigned long delay)
  987. {
  988. int ret = 0;
  989. struct timer_list *timer = &dwork->timer;
  990. struct work_struct *work = &dwork->work;
  991. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
  992. unsigned int lcpu;
  993. BUG_ON(timer_pending(timer));
  994. BUG_ON(!list_empty(&work->entry));
  995. timer_stats_timer_set_start_info(&dwork->timer);
  996. /*
  997. * This stores cwq for the moment, for the timer_fn.
  998. * Note that the work's gcwq is preserved to allow
  999. * reentrance detection for delayed works.
  1000. */
  1001. if (!(wq->flags & WQ_UNBOUND)) {
  1002. struct global_cwq *gcwq = get_work_gcwq(work);
  1003. if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
  1004. lcpu = gcwq->cpu;
  1005. else
  1006. lcpu = raw_smp_processor_id();
  1007. } else
  1008. lcpu = WORK_CPU_UNBOUND;
  1009. set_work_cwq(work, get_cwq(lcpu, wq), 0);
  1010. timer->expires = jiffies + delay;
  1011. timer->data = (unsigned long)dwork;
  1012. timer->function = delayed_work_timer_fn;
  1013. if (unlikely(cpu >= 0))
  1014. add_timer_on(timer, cpu);
  1015. else
  1016. add_timer(timer);
  1017. ret = 1;
  1018. }
  1019. return ret;
  1020. }
  1021. EXPORT_SYMBOL_GPL(queue_delayed_work_on);
  1022. /**
  1023. * worker_enter_idle - enter idle state
  1024. * @worker: worker which is entering idle state
  1025. *
  1026. * @worker is entering idle state. Update stats and idle timer if
  1027. * necessary.
  1028. *
  1029. * LOCKING:
  1030. * spin_lock_irq(gcwq->lock).
  1031. */
  1032. static void worker_enter_idle(struct worker *worker)
  1033. {
  1034. struct worker_pool *pool = worker->pool;
  1035. struct global_cwq *gcwq = pool->gcwq;
  1036. BUG_ON(worker->flags & WORKER_IDLE);
  1037. BUG_ON(!list_empty(&worker->entry) &&
  1038. (worker->hentry.next || worker->hentry.pprev));
  1039. /* can't use worker_set_flags(), also called from start_worker() */
  1040. worker->flags |= WORKER_IDLE;
  1041. pool->nr_idle++;
  1042. worker->last_active = jiffies;
  1043. /* idle_list is LIFO */
  1044. list_add(&worker->entry, &pool->idle_list);
  1045. if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
  1046. mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
  1047. /*
  1048. * Sanity check nr_running. Because gcwq_unbind_fn() releases
  1049. * gcwq->lock between setting %WORKER_UNBOUND and zapping
  1050. * nr_running, the warning may trigger spuriously. Check iff
  1051. * unbind is not in progress.
  1052. */
  1053. WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
  1054. pool->nr_workers == pool->nr_idle &&
  1055. atomic_read(get_pool_nr_running(pool)));
  1056. }
  1057. /**
  1058. * worker_leave_idle - leave idle state
  1059. * @worker: worker which is leaving idle state
  1060. *
  1061. * @worker is leaving idle state. Update stats.
  1062. *
  1063. * LOCKING:
  1064. * spin_lock_irq(gcwq->lock).
  1065. */
  1066. static void worker_leave_idle(struct worker *worker)
  1067. {
  1068. struct worker_pool *pool = worker->pool;
  1069. BUG_ON(!(worker->flags & WORKER_IDLE));
  1070. worker_clr_flags(worker, WORKER_IDLE);
  1071. pool->nr_idle--;
  1072. list_del_init(&worker->entry);
  1073. }
  1074. /**
  1075. * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
  1076. * @worker: self
  1077. *
  1078. * Works which are scheduled while the cpu is online must at least be
  1079. * scheduled to a worker which is bound to the cpu so that if they are
  1080. * flushed from cpu callbacks while cpu is going down, they are
  1081. * guaranteed to execute on the cpu.
  1082. *
  1083. * This function is to be used by rogue workers and rescuers to bind
  1084. * themselves to the target cpu and may race with cpu going down or
  1085. * coming online. kthread_bind() can't be used because it may put the
  1086. * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
  1087. * verbatim as it's best effort and blocking and gcwq may be
  1088. * [dis]associated in the meantime.
  1089. *
  1090. * This function tries set_cpus_allowed() and locks gcwq and verifies the
  1091. * binding against %GCWQ_DISASSOCIATED which is set during
  1092. * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
  1093. * enters idle state or fetches works without dropping lock, it can
  1094. * guarantee the scheduling requirement described in the first paragraph.
  1095. *
  1096. * CONTEXT:
  1097. * Might sleep. Called without any lock but returns with gcwq->lock
  1098. * held.
  1099. *
  1100. * RETURNS:
  1101. * %true if the associated gcwq is online (@worker is successfully
  1102. * bound), %false if offline.
  1103. */
  1104. static bool worker_maybe_bind_and_lock(struct worker *worker)
  1105. __acquires(&gcwq->lock)
  1106. {
  1107. struct global_cwq *gcwq = worker->pool->gcwq;
  1108. struct task_struct *task = worker->task;
  1109. while (true) {
  1110. /*
  1111. * The following call may fail, succeed or succeed
  1112. * without actually migrating the task to the cpu if
  1113. * it races with cpu hotunplug operation. Verify
  1114. * against GCWQ_DISASSOCIATED.
  1115. */
  1116. if (!(gcwq->flags & GCWQ_DISASSOCIATED))
  1117. set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
  1118. spin_lock_irq(&gcwq->lock);
  1119. if (gcwq->flags & GCWQ_DISASSOCIATED)
  1120. return false;
  1121. if (task_cpu(task) == gcwq->cpu &&
  1122. cpumask_equal(&current->cpus_allowed,
  1123. get_cpu_mask(gcwq->cpu)))
  1124. return true;
  1125. spin_unlock_irq(&gcwq->lock);
  1126. /*
  1127. * We've raced with CPU hot[un]plug. Give it a breather
  1128. * and retry migration. cond_resched() is required here;
  1129. * otherwise, we might deadlock against cpu_stop trying to
  1130. * bring down the CPU on non-preemptive kernel.
  1131. */
  1132. cpu_relax();
  1133. cond_resched();
  1134. }
  1135. }
  1136. struct idle_rebind {
  1137. int cnt; /* # workers to be rebound */
  1138. struct completion done; /* all workers rebound */
  1139. };
  1140. /*
  1141. * Rebind an idle @worker to its CPU. During CPU onlining, this has to
  1142. * happen synchronously for idle workers. worker_thread() will test
  1143. * %WORKER_REBIND before leaving idle and call this function.
  1144. */
  1145. static void idle_worker_rebind(struct worker *worker)
  1146. {
  1147. struct global_cwq *gcwq = worker->pool->gcwq;
  1148. /* CPU must be online at this point */
  1149. WARN_ON(!worker_maybe_bind_and_lock(worker));
  1150. if (!--worker->idle_rebind->cnt)
  1151. complete(&worker->idle_rebind->done);
  1152. spin_unlock_irq(&worker->pool->gcwq->lock);
  1153. /* we did our part, wait for rebind_workers() to finish up */
  1154. wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
  1155. }
  1156. /*
  1157. * Function for @worker->rebind.work used to rebind unbound busy workers to
  1158. * the associated cpu which is coming back online. This is scheduled by
  1159. * cpu up but can race with other cpu hotplug operations and may be
  1160. * executed twice without intervening cpu down.
  1161. */
  1162. static void busy_worker_rebind_fn(struct work_struct *work)
  1163. {
  1164. struct worker *worker = container_of(work, struct worker, rebind_work);
  1165. struct global_cwq *gcwq = worker->pool->gcwq;
  1166. if (worker_maybe_bind_and_lock(worker))
  1167. worker_clr_flags(worker, WORKER_REBIND);
  1168. spin_unlock_irq(&gcwq->lock);
  1169. }
  1170. /**
  1171. * rebind_workers - rebind all workers of a gcwq to the associated CPU
  1172. * @gcwq: gcwq of interest
  1173. *
  1174. * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding
  1175. * is different for idle and busy ones.
  1176. *
  1177. * The idle ones should be rebound synchronously and idle rebinding should
  1178. * be complete before any worker starts executing work items with
  1179. * concurrency management enabled; otherwise, scheduler may oops trying to
  1180. * wake up non-local idle worker from wq_worker_sleeping().
  1181. *
  1182. * This is achieved by repeatedly requesting rebinding until all idle
  1183. * workers are known to have been rebound under @gcwq->lock and holding all
  1184. * idle workers from becoming busy until idle rebinding is complete.
  1185. *
  1186. * Once idle workers are rebound, busy workers can be rebound as they
  1187. * finish executing their current work items. Queueing the rebind work at
  1188. * the head of their scheduled lists is enough. Note that nr_running will
  1189. * be properbly bumped as busy workers rebind.
  1190. *
  1191. * On return, all workers are guaranteed to either be bound or have rebind
  1192. * work item scheduled.
  1193. */
  1194. static void rebind_workers(struct global_cwq *gcwq)
  1195. __releases(&gcwq->lock) __acquires(&gcwq->lock)
  1196. {
  1197. struct idle_rebind idle_rebind;
  1198. struct worker_pool *pool;
  1199. struct worker *worker;
  1200. struct hlist_node *pos;
  1201. int i;
  1202. lockdep_assert_held(&gcwq->lock);
  1203. for_each_worker_pool(pool, gcwq)
  1204. lockdep_assert_held(&pool->manager_mutex);
  1205. /*
  1206. * Rebind idle workers. Interlocked both ways. We wait for
  1207. * workers to rebind via @idle_rebind.done. Workers will wait for
  1208. * us to finish up by watching %WORKER_REBIND.
  1209. */
  1210. init_completion(&idle_rebind.done);
  1211. retry:
  1212. idle_rebind.cnt = 1;
  1213. INIT_COMPLETION(idle_rebind.done);
  1214. /* set REBIND and kick idle ones, we'll wait for these later */
  1215. for_each_worker_pool(pool, gcwq) {
  1216. list_for_each_entry(worker, &pool->idle_list, entry) {
  1217. if (worker->flags & WORKER_REBIND)
  1218. continue;
  1219. /* morph UNBOUND to REBIND */
  1220. worker->flags &= ~WORKER_UNBOUND;
  1221. worker->flags |= WORKER_REBIND;
  1222. idle_rebind.cnt++;
  1223. worker->idle_rebind = &idle_rebind;
  1224. /* worker_thread() will call idle_worker_rebind() */
  1225. wake_up_process(worker->task);
  1226. }
  1227. }
  1228. if (--idle_rebind.cnt) {
  1229. spin_unlock_irq(&gcwq->lock);
  1230. wait_for_completion(&idle_rebind.done);
  1231. spin_lock_irq(&gcwq->lock);
  1232. /* busy ones might have become idle while waiting, retry */
  1233. goto retry;
  1234. }
  1235. /*
  1236. * All idle workers are rebound and waiting for %WORKER_REBIND to
  1237. * be cleared inside idle_worker_rebind(). Clear and release.
  1238. * Clearing %WORKER_REBIND from this foreign context is safe
  1239. * because these workers are still guaranteed to be idle.
  1240. */
  1241. for_each_worker_pool(pool, gcwq)
  1242. list_for_each_entry(worker, &pool->idle_list, entry)
  1243. worker->flags &= ~WORKER_REBIND;
  1244. wake_up_all(&gcwq->rebind_hold);
  1245. /* rebind busy workers */
  1246. for_each_busy_worker(worker, i, pos, gcwq) {
  1247. struct work_struct *rebind_work = &worker->rebind_work;
  1248. /* morph UNBOUND to REBIND */
  1249. worker->flags &= ~WORKER_UNBOUND;
  1250. worker->flags |= WORKER_REBIND;
  1251. if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
  1252. work_data_bits(rebind_work)))
  1253. continue;
  1254. /* wq doesn't matter, use the default one */
  1255. debug_work_activate(rebind_work);
  1256. insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
  1257. worker->scheduled.next,
  1258. work_color_to_flags(WORK_NO_COLOR));
  1259. }
  1260. }
  1261. static struct worker *alloc_worker(void)
  1262. {
  1263. struct worker *worker;
  1264. worker = kzalloc(sizeof(*worker), GFP_KERNEL);
  1265. if (worker) {
  1266. INIT_LIST_HEAD(&worker->entry);
  1267. INIT_LIST_HEAD(&worker->scheduled);
  1268. INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
  1269. /* on creation a worker is in !idle && prep state */
  1270. worker->flags = WORKER_PREP;
  1271. }
  1272. return worker;
  1273. }
  1274. /**
  1275. * create_worker - create a new workqueue worker
  1276. * @pool: pool the new worker will belong to
  1277. *
  1278. * Create a new worker which is bound to @pool. The returned worker
  1279. * can be started by calling start_worker() or destroyed using
  1280. * destroy_worker().
  1281. *
  1282. * CONTEXT:
  1283. * Might sleep. Does GFP_KERNEL allocations.
  1284. *
  1285. * RETURNS:
  1286. * Pointer to the newly created worker.
  1287. */
  1288. static struct worker *create_worker(struct worker_pool *pool)
  1289. {
  1290. struct global_cwq *gcwq = pool->gcwq;
  1291. const char *pri = worker_pool_pri(pool) ? "H" : "";
  1292. struct worker *worker = NULL;
  1293. int id = -1;
  1294. spin_lock_irq(&gcwq->lock);
  1295. while (ida_get_new(&pool->worker_ida, &id)) {
  1296. spin_unlock_irq(&gcwq->lock);
  1297. if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
  1298. goto fail;
  1299. spin_lock_irq(&gcwq->lock);
  1300. }
  1301. spin_unlock_irq(&gcwq->lock);
  1302. worker = alloc_worker();
  1303. if (!worker)
  1304. goto fail;
  1305. worker->pool = pool;
  1306. worker->id = id;
  1307. if (gcwq->cpu != WORK_CPU_UNBOUND)
  1308. worker->task = kthread_create_on_node(worker_thread,
  1309. worker, cpu_to_node(gcwq->cpu),
  1310. "kworker/%u:%d%s", gcwq->cpu, id, pri);
  1311. else
  1312. worker->task = kthread_create(worker_thread, worker,
  1313. "kworker/u:%d%s", id, pri);
  1314. if (IS_ERR(worker->task))
  1315. goto fail;
  1316. if (worker_pool_pri(pool))
  1317. set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
  1318. /*
  1319. * Determine CPU binding of the new worker depending on
  1320. * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the
  1321. * flag remains stable across this function. See the comments
  1322. * above the flag definition for details.
  1323. *
  1324. * As an unbound worker may later become a regular one if CPU comes
  1325. * online, make sure every worker has %PF_THREAD_BOUND set.
  1326. */
  1327. if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
  1328. kthread_bind(worker->task, gcwq->cpu);
  1329. } else {
  1330. worker->task->flags |= PF_THREAD_BOUND;
  1331. worker->flags |= WORKER_UNBOUND;
  1332. }
  1333. return worker;
  1334. fail:
  1335. if (id >= 0) {
  1336. spin_lock_irq(&gcwq->lock);
  1337. ida_remove(&pool->worker_ida, id);
  1338. spin_unlock_irq(&gcwq->lock);
  1339. }
  1340. kfree(worker);
  1341. return NULL;
  1342. }
  1343. /**
  1344. * start_worker - start a newly created worker
  1345. * @worker: worker to start
  1346. *
  1347. * Make the gcwq aware of @worker and start it.
  1348. *
  1349. * CONTEXT:
  1350. * spin_lock_irq(gcwq->lock).
  1351. */
  1352. static void start_worker(struct worker *worker)
  1353. {
  1354. worker->flags |= WORKER_STARTED;
  1355. worker->pool->nr_workers++;
  1356. worker_enter_idle(worker);
  1357. wake_up_process(worker->task);
  1358. }
  1359. /**
  1360. * destroy_worker - destroy a workqueue worker
  1361. * @worker: worker to be destroyed
  1362. *
  1363. * Destroy @worker and adjust @gcwq stats accordingly.
  1364. *
  1365. * CONTEXT:
  1366. * spin_lock_irq(gcwq->lock) which is released and regrabbed.
  1367. */
  1368. static void destroy_worker(struct worker *worker)
  1369. {
  1370. struct worker_pool *pool = worker->pool;
  1371. struct global_cwq *gcwq = pool->gcwq;
  1372. int id = worker->id;
  1373. /* sanity check frenzy */
  1374. BUG_ON(worker->current_work);
  1375. BUG_ON(!list_empty(&worker->scheduled));
  1376. if (worker->flags & WORKER_STARTED)
  1377. pool->nr_workers--;
  1378. if (worker->flags & WORKER_IDLE)
  1379. pool->nr_idle--;
  1380. list_del_init(&worker->entry);
  1381. worker->flags |= WORKER_DIE;
  1382. spin_unlock_irq(&gcwq->lock);
  1383. kthread_stop(worker->task);
  1384. kfree(worker);
  1385. spin_lock_irq(&gcwq->lock);
  1386. ida_remove(&pool->worker_ida, id);
  1387. }
  1388. static void idle_worker_timeout(unsigned long __pool)
  1389. {
  1390. struct worker_pool *pool = (void *)__pool;
  1391. struct global_cwq *gcwq = pool->gcwq;
  1392. spin_lock_irq(&gcwq->lock);
  1393. if (too_many_workers(pool)) {
  1394. struct worker *worker;
  1395. unsigned long expires;
  1396. /* idle_list is kept in LIFO order, check the last one */
  1397. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1398. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1399. if (time_before(jiffies, expires))
  1400. mod_timer(&pool->idle_timer, expires);
  1401. else {
  1402. /* it's been idle for too long, wake up manager */
  1403. pool->flags |= POOL_MANAGE_WORKERS;
  1404. wake_up_worker(pool);
  1405. }
  1406. }
  1407. spin_unlock_irq(&gcwq->lock);
  1408. }
  1409. static bool send_mayday(struct work_struct *work)
  1410. {
  1411. struct cpu_workqueue_struct *cwq = get_work_cwq(work);
  1412. struct workqueue_struct *wq = cwq->wq;
  1413. unsigned int cpu;
  1414. if (!(wq->flags & WQ_RESCUER))
  1415. return false;
  1416. /* mayday mayday mayday */
  1417. cpu = cwq->pool->gcwq->cpu;
  1418. /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
  1419. if (cpu == WORK_CPU_UNBOUND)
  1420. cpu = 0;
  1421. if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
  1422. wake_up_process(wq->rescuer->task);
  1423. return true;
  1424. }
  1425. static void gcwq_mayday_timeout(unsigned long __pool)
  1426. {
  1427. struct worker_pool *pool = (void *)__pool;
  1428. struct global_cwq *gcwq = pool->gcwq;
  1429. struct work_struct *work;
  1430. spin_lock_irq(&gcwq->lock);
  1431. if (need_to_create_worker(pool)) {
  1432. /*
  1433. * We've been trying to create a new worker but
  1434. * haven't been successful. We might be hitting an
  1435. * allocation deadlock. Send distress signals to
  1436. * rescuers.
  1437. */
  1438. list_for_each_entry(work, &pool->worklist, entry)
  1439. send_mayday(work);
  1440. }
  1441. spin_unlock_irq(&gcwq->lock);
  1442. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
  1443. }
  1444. /**
  1445. * maybe_create_worker - create a new worker if necessary
  1446. * @pool: pool to create a new worker for
  1447. *
  1448. * Create a new worker for @pool if necessary. @pool is guaranteed to
  1449. * have at least one idle worker on return from this function. If
  1450. * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
  1451. * sent to all rescuers with works scheduled on @pool to resolve
  1452. * possible allocation deadlock.
  1453. *
  1454. * On return, need_to_create_worker() is guaranteed to be false and
  1455. * may_start_working() true.
  1456. *
  1457. * LOCKING:
  1458. * spin_lock_irq(gcwq->lock) which may be released and regrabbed
  1459. * multiple times. Does GFP_KERNEL allocations. Called only from
  1460. * manager.
  1461. *
  1462. * RETURNS:
  1463. * false if no action was taken and gcwq->lock stayed locked, true
  1464. * otherwise.
  1465. */
  1466. static bool maybe_create_worker(struct worker_pool *pool)
  1467. __releases(&gcwq->lock)
  1468. __acquires(&gcwq->lock)
  1469. {
  1470. struct global_cwq *gcwq = pool->gcwq;
  1471. if (!need_to_create_worker(pool))
  1472. return false;
  1473. restart:
  1474. spin_unlock_irq(&gcwq->lock);
  1475. /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
  1476. mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
  1477. while (true) {
  1478. struct worker *worker;
  1479. worker = create_worker(pool);
  1480. if (worker) {
  1481. del_timer_sync(&pool->mayday_timer);
  1482. spin_lock_irq(&gcwq->lock);
  1483. start_worker(worker);
  1484. BUG_ON(need_to_create_worker(pool));
  1485. return true;
  1486. }
  1487. if (!need_to_create_worker(pool))
  1488. break;
  1489. __set_current_state(TASK_INTERRUPTIBLE);
  1490. schedule_timeout(CREATE_COOLDOWN);
  1491. if (!need_to_create_worker(pool))
  1492. break;
  1493. }
  1494. del_timer_sync(&pool->mayday_timer);
  1495. spin_lock_irq(&gcwq->lock);
  1496. if (need_to_create_worker(pool))
  1497. goto restart;
  1498. return true;
  1499. }
  1500. /**
  1501. * maybe_destroy_worker - destroy workers which have been idle for a while
  1502. * @pool: pool to destroy workers for
  1503. *
  1504. * Destroy @pool workers which have been idle for longer than
  1505. * IDLE_WORKER_TIMEOUT.
  1506. *
  1507. * LOCKING:
  1508. * spin_lock_irq(gcwq->lock) which may be released and regrabbed
  1509. * multiple times. Called only from manager.
  1510. *
  1511. * RETURNS:
  1512. * false if no action was taken and gcwq->lock stayed locked, true
  1513. * otherwise.
  1514. */
  1515. static bool maybe_destroy_workers(struct worker_pool *pool)
  1516. {
  1517. bool ret = false;
  1518. while (too_many_workers(pool)) {
  1519. struct worker *worker;
  1520. unsigned long expires;
  1521. worker = list_entry(pool->idle_list.prev, struct worker, entry);
  1522. expires = worker->last_active + IDLE_WORKER_TIMEOUT;
  1523. if (time_before(jiffies, expires)) {
  1524. mod_timer(&pool->idle_timer, expires);
  1525. break;
  1526. }
  1527. destroy_worker(worker);
  1528. ret = true;
  1529. }
  1530. return ret;
  1531. }
  1532. /**
  1533. * manage_workers - manage worker pool
  1534. * @worker: self
  1535. *
  1536. * Assume the manager role and manage gcwq worker pool @worker belongs
  1537. * to. At any given time, there can be only zero or one manager per
  1538. * gcwq. The exclusion is handled automatically by this function.
  1539. *
  1540. * The caller can safely start processing works on false return. On
  1541. * true return, it's guaranteed that need_to_create_worker() is false
  1542. * and may_start_working() is true.
  1543. *
  1544. * CONTEXT:
  1545. * spin_lock_irq(gcwq->lock) which may be released and regrabbed
  1546. * multiple times. Does GFP_KERNEL allocations.
  1547. *
  1548. * RETURNS:
  1549. * false if no action was taken and gcwq->lock stayed locked, true if
  1550. * some action was taken.
  1551. */
  1552. static bool manage_workers(struct worker *worker)
  1553. {
  1554. struct worker_pool *pool = worker->pool;
  1555. bool ret = false;
  1556. if (!mutex_trylock(&pool->manager_mutex))
  1557. return ret;
  1558. pool->flags &= ~POOL_MANAGE_WORKERS;
  1559. /*
  1560. * Destroy and then create so that may_start_working() is true
  1561. * on return.
  1562. */
  1563. ret |= maybe_destroy_workers(pool);
  1564. ret |= maybe_create_worker(pool);
  1565. mutex_unlock(&pool->manager_mutex);
  1566. return ret;
  1567. }
  1568. /**
  1569. * move_linked_works - move linked works to a list
  1570. * @work: start of series of works to be scheduled
  1571. * @head: target list to append @work to
  1572. * @nextp: out paramter for nested worklist walking
  1573. *
  1574. * Schedule linked works starting from @work to @head. Work series to
  1575. * be scheduled starts at @work and includes any consecutive work with
  1576. * WORK_STRUCT_LINKED set in its predecessor.
  1577. *
  1578. * If @nextp is not NULL, it's updated to point to the next work of
  1579. * the last scheduled work. This allows move_linked_works() to be
  1580. * nested inside outer list_for_each_entry_safe().
  1581. *
  1582. * CONTEXT:
  1583. * spin_lock_irq(gcwq->lock).
  1584. */
  1585. static void move_linked_works(struct work_struct *work, struct list_head *head,
  1586. struct work_struct **nextp)
  1587. {
  1588. struct work_struct *n;
  1589. /*
  1590. * Linked worklist will always end before the end of the list,
  1591. * use NULL for list head.
  1592. */
  1593. list_for_each_entry_safe_from(work, n, NULL, entry) {
  1594. list_move_tail(&work->entry, head);
  1595. if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
  1596. break;
  1597. }
  1598. /*
  1599. * If we're already inside safe list traversal and have moved
  1600. * multiple works to the scheduled queue, the next position
  1601. * needs to be updated.
  1602. */
  1603. if (nextp)
  1604. *nextp = n;
  1605. }
  1606. static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
  1607. {
  1608. struct work_struct *work = list_first_entry(&cwq->delayed_works,
  1609. struct work_struct, entry);
  1610. trace_workqueue_activate_work(work);
  1611. move_linked_works(work, &cwq->pool->worklist, NULL);
  1612. __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
  1613. cwq->nr_active++;
  1614. }
  1615. /**
  1616. * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
  1617. * @cwq: cwq of interest
  1618. * @color: color of work which left the queue
  1619. * @delayed: for a delayed work
  1620. *
  1621. * A work either has completed or is removed from pending queue,
  1622. * decrement nr_in_flight of its cwq and handle workqueue flushing.
  1623. *
  1624. * CONTEXT:
  1625. * spin_lock_irq(gcwq->lock).
  1626. */
  1627. static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
  1628. bool delayed)
  1629. {
  1630. /* ignore uncolored works */
  1631. if (color == WORK_NO_COLOR)
  1632. return;
  1633. cwq->nr_in_flight[color]--;
  1634. if (!delayed) {
  1635. cwq->nr_active--;
  1636. if (!list_empty(&cwq->delayed_works)) {
  1637. /* one down, submit a delayed one */
  1638. if (cwq->nr_active < cwq->max_active)
  1639. cwq_activate_first_delayed(cwq);
  1640. }
  1641. }
  1642. /* is flush in progress and are we at the flushing tip? */
  1643. if (likely(cwq->flush_color != color))
  1644. return;
  1645. /* are there still in-flight works? */
  1646. if (cwq->nr_in_flight[color])
  1647. return;
  1648. /* this cwq is done, clear flush_color */
  1649. cwq->flush_color = -1;
  1650. /*
  1651. * If this was the last cwq, wake up the first flusher. It
  1652. * will handle the rest.
  1653. */
  1654. if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
  1655. complete(&cwq->wq->first_flusher->done);
  1656. }
  1657. /**
  1658. * process_one_work - process single work
  1659. * @worker: self
  1660. * @work: work to process
  1661. *
  1662. * Process @work. This function contains all the logics necessary to
  1663. * process a single work including synchronization against and
  1664. * interaction with other workers on the same cpu, queueing and
  1665. * flushing. As long as context requirement is met, any worker can
  1666. * call this function to process a work.
  1667. *
  1668. * CONTEXT:
  1669. * spin_lock_irq(gcwq->lock) which is released and regrabbed.
  1670. */
  1671. static void process_one_work(struct worker *worker, struct work_struct *work)
  1672. __releases(&gcwq->lock)
  1673. __acquires(&gcwq->lock)
  1674. {
  1675. struct cpu_workqueue_struct *cwq = get_work_cwq(work);
  1676. struct worker_pool *pool = worker->pool;
  1677. struct global_cwq *gcwq = pool->gcwq;
  1678. struct hlist_head *bwh = busy_worker_head(gcwq, work);
  1679. bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
  1680. work_func_t f = work->func;
  1681. int work_color;
  1682. struct worker *collision;
  1683. #ifdef CONFIG_LOCKDEP
  1684. /*
  1685. * It is permissible to free the struct work_struct from
  1686. * inside the function that is called from it, this we need to
  1687. * take into account for lockdep too. To avoid bogus "held
  1688. * lock freed" warnings as well as problems when looking into
  1689. * work->lockdep_map, make a copy and use that here.
  1690. */
  1691. struct lockdep_map lockdep_map;
  1692. lockdep_copy_map(&lockdep_map, &work->lockdep_map);
  1693. #endif
  1694. /*
  1695. * Ensure we're on the correct CPU. DISASSOCIATED test is
  1696. * necessary to avoid spurious warnings from rescuers servicing the
  1697. * unbound or a disassociated gcwq.
  1698. */
  1699. WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
  1700. !(gcwq->flags & GCWQ_DISASSOCIATED) &&
  1701. raw_smp_processor_id() != gcwq->cpu);
  1702. /*
  1703. * A single work shouldn't be executed concurrently by
  1704. * multiple workers on a single cpu. Check whether anyone is
  1705. * already processing the work. If so, defer the work to the
  1706. * currently executing one.
  1707. */
  1708. collision = __find_worker_executing_work(gcwq, bwh, work);
  1709. if (unlikely(collision)) {
  1710. move_linked_works(work, &collision->scheduled, NULL);
  1711. return;
  1712. }
  1713. /* claim and process */
  1714. debug_work_deactivate(work);
  1715. hlist_add_head(&worker->hentry, bwh);
  1716. worker->current_work = work;
  1717. worker->current_cwq = cwq;
  1718. work_color = get_work_color(work);
  1719. /* record the current cpu number in the work data and dequeue */
  1720. set_work_cpu(work, gcwq->cpu);
  1721. list_del_init(&work->entry);
  1722. /*
  1723. * CPU intensive works don't participate in concurrency
  1724. * management. They're the scheduler's responsibility.
  1725. */
  1726. if (unlikely(cpu_intensive))
  1727. worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
  1728. /*
  1729. * Unbound gcwq isn't concurrency managed and work items should be
  1730. * executed ASAP. Wake up another worker if necessary.
  1731. */
  1732. if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
  1733. wake_up_worker(pool);
  1734. spin_unlock_irq(&gcwq->lock);
  1735. work_clear_pending(work);
  1736. lock_map_acquire_read(&cwq->wq->lockdep_map);
  1737. lock_map_acquire(&lockdep_map);
  1738. trace_workqueue_execute_start(work);
  1739. f(work);
  1740. /*
  1741. * While we must be careful to not use "work" after this, the trace
  1742. * point will only record its address.
  1743. */
  1744. trace_workqueue_execute_end(work);
  1745. lock_map_release(&lockdep_map);
  1746. lock_map_release(&cwq->wq->lockdep_map);
  1747. if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
  1748. printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
  1749. "%s/0x%08x/%d\n",
  1750. current->comm, preempt_count(), task_pid_nr(current));
  1751. printk(KERN_ERR " last function: ");
  1752. print_symbol("%s\n", (unsigned long)f);
  1753. debug_show_held_locks(current);
  1754. dump_stack();
  1755. }
  1756. spin_lock_irq(&gcwq->lock);
  1757. /* clear cpu intensive status */
  1758. if (unlikely(cpu_intensive))
  1759. worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
  1760. /* we're done with it, release */
  1761. hlist_del_init(&worker->hentry);
  1762. worker->current_work = NULL;
  1763. worker->current_cwq = NULL;
  1764. cwq_dec_nr_in_flight(cwq, work_color, false);
  1765. }
  1766. /**
  1767. * process_scheduled_works - process scheduled works
  1768. * @worker: self
  1769. *
  1770. * Process all scheduled works. Please note that the scheduled list
  1771. * may change while processing a work, so this function repeatedly
  1772. * fetches a work from the top and executes it.
  1773. *
  1774. * CONTEXT:
  1775. * spin_lock_irq(gcwq->lock) which may be released and regrabbed
  1776. * multiple times.
  1777. */
  1778. static void process_scheduled_works(struct worker *worker)
  1779. {
  1780. while (!list_empty(&worker->scheduled)) {
  1781. struct work_struct *work = list_first_entry(&worker->scheduled,
  1782. struct work_struct, entry);
  1783. process_one_work(worker, work);
  1784. }
  1785. }
  1786. /**
  1787. * worker_thread - the worker thread function
  1788. * @__worker: self
  1789. *
  1790. * The gcwq worker thread function. There's a single dynamic pool of
  1791. * these per each cpu. These workers process all works regardless of
  1792. * their specific target workqueue. The only exception is works which
  1793. * belong to workqueues with a rescuer which will be explained in
  1794. * rescuer_thread().
  1795. */
  1796. static int worker_thread(void *__worker)
  1797. {
  1798. struct worker *worker = __worker;
  1799. struct worker_pool *pool = worker->pool;
  1800. struct global_cwq *gcwq = pool->gcwq;
  1801. /* tell the scheduler that this is a workqueue worker */
  1802. worker->task->flags |= PF_WQ_WORKER;
  1803. woke_up:
  1804. spin_lock_irq(&gcwq->lock);
  1805. /*
  1806. * DIE can be set only while idle and REBIND set while busy has
  1807. * @worker->rebind_work scheduled. Checking here is enough.
  1808. */
  1809. if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
  1810. spin_unlock_irq(&gcwq->lock);
  1811. if (worker->flags & WORKER_DIE) {
  1812. worker->task->flags &= ~PF_WQ_WORKER;
  1813. return 0;
  1814. }
  1815. idle_worker_rebind(worker);
  1816. goto woke_up;
  1817. }
  1818. worker_leave_idle(worker);
  1819. recheck:
  1820. /* no more worker necessary? */
  1821. if (!need_more_worker(pool))
  1822. goto sleep;
  1823. /* do we need to manage? */
  1824. if (unlikely(!may_start_working(pool)) && manage_workers(worker))
  1825. goto recheck;
  1826. /*
  1827. * ->scheduled list can only be filled while a worker is
  1828. * preparing to process a work or actually processing it.
  1829. * Make sure nobody diddled with it while I was sleeping.
  1830. */
  1831. BUG_ON(!list_empty(&worker->scheduled));
  1832. /*
  1833. * When control reaches this point, we're guaranteed to have
  1834. * at least one idle worker or that someone else has already
  1835. * assumed the manager role.
  1836. */
  1837. worker_clr_flags(worker, WORKER_PREP);
  1838. do {
  1839. struct work_struct *work =
  1840. list_first_entry(&pool->worklist,
  1841. struct work_struct, entry);
  1842. if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
  1843. /* optimization path, not strictly necessary */
  1844. process_one_work(worker, work);
  1845. if (unlikely(!list_empty(&worker->scheduled)))
  1846. process_scheduled_works(worker);
  1847. } else {
  1848. move_linked_works(work, &worker->scheduled, NULL);
  1849. process_scheduled_works(worker);
  1850. }
  1851. } while (keep_working(pool));
  1852. worker_set_flags(worker, WORKER_PREP, false);
  1853. sleep:
  1854. if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
  1855. goto recheck;
  1856. /*
  1857. * gcwq->lock is held and there's no work to process and no
  1858. * need to manage, sleep. Workers are woken up only while
  1859. * holding gcwq->lock or from local cpu, so setting the
  1860. * current state before releasing gcwq->lock is enough to
  1861. * prevent losing any event.
  1862. */
  1863. worker_enter_idle(worker);
  1864. __set_current_state(TASK_INTERRUPTIBLE);
  1865. spin_unlock_irq(&gcwq->lock);
  1866. schedule();
  1867. goto woke_up;
  1868. }
  1869. /**
  1870. * rescuer_thread - the rescuer thread function
  1871. * @__wq: the associated workqueue
  1872. *
  1873. * Workqueue rescuer thread function. There's one rescuer for each
  1874. * workqueue which has WQ_RESCUER set.
  1875. *
  1876. * Regular work processing on a gcwq may block trying to create a new
  1877. * worker which uses GFP_KERNEL allocation which has slight chance of
  1878. * developing into deadlock if some works currently on the same queue
  1879. * need to be processed to satisfy the GFP_KERNEL allocation. This is
  1880. * the problem rescuer solves.
  1881. *
  1882. * When such condition is possible, the gcwq summons rescuers of all
  1883. * workqueues which have works queued on the gcwq and let them process
  1884. * those works so that forward progress can be guaranteed.
  1885. *
  1886. * This should happen rarely.
  1887. */
  1888. static int rescuer_thread(void *__wq)
  1889. {
  1890. struct workqueue_struct *wq = __wq;
  1891. struct worker *rescuer = wq->rescuer;
  1892. struct list_head *scheduled = &rescuer->scheduled;
  1893. bool is_unbound = wq->flags & WQ_UNBOUND;
  1894. unsigned int cpu;
  1895. set_user_nice(current, RESCUER_NICE_LEVEL);
  1896. repeat:
  1897. set_current_state(TASK_INTERRUPTIBLE);
  1898. if (kthread_should_stop())
  1899. return 0;
  1900. /*
  1901. * See whether any cpu is asking for help. Unbounded
  1902. * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
  1903. */
  1904. for_each_mayday_cpu(cpu, wq->mayday_mask) {
  1905. unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
  1906. struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
  1907. struct worker_pool *pool = cwq->pool;
  1908. struct global_cwq *gcwq = pool->gcwq;
  1909. struct work_struct *work, *n;
  1910. __set_current_state(TASK_RUNNING);
  1911. mayday_clear_cpu(cpu, wq->mayday_mask);
  1912. /* migrate to the target cpu if possible */
  1913. rescuer->pool = pool;
  1914. worker_maybe_bind_and_lock(rescuer);
  1915. /*
  1916. * Slurp in all works issued via this workqueue and
  1917. * process'em.
  1918. */
  1919. BUG_ON(!list_empty(&rescuer->scheduled));
  1920. list_for_each_entry_safe(work, n, &pool->worklist, entry)
  1921. if (get_work_cwq(work) == cwq)
  1922. move_linked_works(work, scheduled, &n);
  1923. process_scheduled_works(rescuer);
  1924. /*
  1925. * Leave this gcwq. If keep_working() is %true, notify a
  1926. * regular worker; otherwise, we end up with 0 concurrency
  1927. * and stalling the execution.
  1928. */
  1929. if (keep_working(pool))
  1930. wake_up_worker(pool);
  1931. spin_unlock_irq(&gcwq->lock);
  1932. }
  1933. schedule();
  1934. goto repeat;
  1935. }
  1936. struct wq_barrier {
  1937. struct work_struct work;
  1938. struct completion done;
  1939. };
  1940. static void wq_barrier_func(struct work_struct *work)
  1941. {
  1942. struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
  1943. complete(&barr->done);
  1944. }
  1945. /**
  1946. * insert_wq_barrier - insert a barrier work
  1947. * @cwq: cwq to insert barrier into
  1948. * @barr: wq_barrier to insert
  1949. * @target: target work to attach @barr to
  1950. * @worker: worker currently executing @target, NULL if @target is not executing
  1951. *
  1952. * @barr is linked to @target such that @barr is completed only after
  1953. * @target finishes execution. Please note that the ordering
  1954. * guarantee is observed only with respect to @target and on the local
  1955. * cpu.
  1956. *
  1957. * Currently, a queued barrier can't be canceled. This is because
  1958. * try_to_grab_pending() can't determine whether the work to be
  1959. * grabbed is at the head of the queue and thus can't clear LINKED
  1960. * flag of the previous work while there must be a valid next work
  1961. * after a work with LINKED flag set.
  1962. *
  1963. * Note that when @worker is non-NULL, @target may be modified
  1964. * underneath us, so we can't reliably determine cwq from @target.
  1965. *
  1966. * CONTEXT:
  1967. * spin_lock_irq(gcwq->lock).
  1968. */
  1969. static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
  1970. struct wq_barrier *barr,
  1971. struct work_struct *target, struct worker *worker)
  1972. {
  1973. struct list_head *head;
  1974. unsigned int linked = 0;
  1975. /*
  1976. * debugobject calls are safe here even with gcwq->lock locked
  1977. * as we know for sure that this will not trigger any of the
  1978. * checks and call back into the fixup functions where we
  1979. * might deadlock.
  1980. */
  1981. INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
  1982. __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
  1983. init_completion(&barr->done);
  1984. /*
  1985. * If @target is currently being executed, schedule the
  1986. * barrier to the worker; otherwise, put it after @target.
  1987. */
  1988. if (worker)
  1989. head = worker->scheduled.next;
  1990. else {
  1991. unsigned long *bits = work_data_bits(target);
  1992. head = target->entry.next;
  1993. /* there can already be other linked works, inherit and set */
  1994. linked = *bits & WORK_STRUCT_LINKED;
  1995. __set_bit(WORK_STRUCT_LINKED_BIT, bits);
  1996. }
  1997. debug_work_activate(&barr->work);
  1998. insert_work(cwq, &barr->work, head,
  1999. work_color_to_flags(WORK_NO_COLOR) | linked);
  2000. }
  2001. /**
  2002. * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
  2003. * @wq: workqueue being flushed
  2004. * @flush_color: new flush color, < 0 for no-op
  2005. * @work_color: new work color, < 0 for no-op
  2006. *
  2007. * Prepare cwqs for workqueue flushing.
  2008. *
  2009. * If @flush_color is non-negative, flush_color on all cwqs should be
  2010. * -1. If no cwq has in-flight commands at the specified color, all
  2011. * cwq->flush_color's stay at -1 and %false is returned. If any cwq
  2012. * has in flight commands, its cwq->flush_color is set to
  2013. * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
  2014. * wakeup logic is armed and %true is returned.
  2015. *
  2016. * The caller should have initialized @wq->first_flusher prior to
  2017. * calling this function with non-negative @flush_color. If
  2018. * @flush_color is negative, no flush color update is done and %false
  2019. * is returned.
  2020. *
  2021. * If @work_color is non-negative, all cwqs should have the same
  2022. * work_color which is previous to @work_color and all will be
  2023. * advanced to @work_color.
  2024. *
  2025. * CONTEXT:
  2026. * mutex_lock(wq->flush_mutex).
  2027. *
  2028. * RETURNS:
  2029. * %true if @flush_color >= 0 and there's something to flush. %false
  2030. * otherwise.
  2031. */
  2032. static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
  2033. int flush_color, int work_color)
  2034. {
  2035. bool wait = false;
  2036. unsigned int cpu;
  2037. if (flush_color >= 0) {
  2038. BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
  2039. atomic_set(&wq->nr_cwqs_to_flush, 1);
  2040. }
  2041. for_each_cwq_cpu(cpu, wq) {
  2042. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  2043. struct global_cwq *gcwq = cwq->pool->gcwq;
  2044. spin_lock_irq(&gcwq->lock);
  2045. if (flush_color >= 0) {
  2046. BUG_ON(cwq->flush_color != -1);
  2047. if (cwq->nr_in_flight[flush_color]) {
  2048. cwq->flush_color = flush_color;
  2049. atomic_inc(&wq->nr_cwqs_to_flush);
  2050. wait = true;
  2051. }
  2052. }
  2053. if (work_color >= 0) {
  2054. BUG_ON(work_color != work_next_color(cwq->work_color));
  2055. cwq->work_color = work_color;
  2056. }
  2057. spin_unlock_irq(&gcwq->lock);
  2058. }
  2059. if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
  2060. complete(&wq->first_flusher->done);
  2061. return wait;
  2062. }
  2063. /**
  2064. * flush_workqueue - ensure that any scheduled work has run to completion.
  2065. * @wq: workqueue to flush
  2066. *
  2067. * Forces execution of the workqueue and blocks until its completion.
  2068. * This is typically used in driver shutdown handlers.
  2069. *
  2070. * We sleep until all works which were queued on entry have been handled,
  2071. * but we are not livelocked by new incoming ones.
  2072. */
  2073. void flush_workqueue(struct workqueue_struct *wq)
  2074. {
  2075. struct wq_flusher this_flusher = {
  2076. .list = LIST_HEAD_INIT(this_flusher.list),
  2077. .flush_color = -1,
  2078. .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
  2079. };
  2080. int next_color;
  2081. lock_map_acquire(&wq->lockdep_map);
  2082. lock_map_release(&wq->lockdep_map);
  2083. mutex_lock(&wq->flush_mutex);
  2084. /*
  2085. * Start-to-wait phase
  2086. */
  2087. next_color = work_next_color(wq->work_color);
  2088. if (next_color != wq->flush_color) {
  2089. /*
  2090. * Color space is not full. The current work_color
  2091. * becomes our flush_color and work_color is advanced
  2092. * by one.
  2093. */
  2094. BUG_ON(!list_empty(&wq->flusher_overflow));
  2095. this_flusher.flush_color = wq->work_color;
  2096. wq->work_color = next_color;
  2097. if (!wq->first_flusher) {
  2098. /* no flush in progress, become the first flusher */
  2099. BUG_ON(wq->flush_color != this_flusher.flush_color);
  2100. wq->first_flusher = &this_flusher;
  2101. if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
  2102. wq->work_color)) {
  2103. /* nothing to flush, done */
  2104. wq->flush_color = next_color;
  2105. wq->first_flusher = NULL;
  2106. goto out_unlock;
  2107. }
  2108. } else {
  2109. /* wait in queue */
  2110. BUG_ON(wq->flush_color == this_flusher.flush_color);
  2111. list_add_tail(&this_flusher.list, &wq->flusher_queue);
  2112. flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
  2113. }
  2114. } else {
  2115. /*
  2116. * Oops, color space is full, wait on overflow queue.
  2117. * The next flush completion will assign us
  2118. * flush_color and transfer to flusher_queue.
  2119. */
  2120. list_add_tail(&this_flusher.list, &wq->flusher_overflow);
  2121. }
  2122. mutex_unlock(&wq->flush_mutex);
  2123. wait_for_completion(&this_flusher.done);
  2124. /*
  2125. * Wake-up-and-cascade phase
  2126. *
  2127. * First flushers are responsible for cascading flushes and
  2128. * handling overflow. Non-first flushers can simply return.
  2129. */
  2130. if (wq->first_flusher != &this_flusher)
  2131. return;
  2132. mutex_lock(&wq->flush_mutex);
  2133. /* we might have raced, check again with mutex held */
  2134. if (wq->first_flusher != &this_flusher)
  2135. goto out_unlock;
  2136. wq->first_flusher = NULL;
  2137. BUG_ON(!list_empty(&this_flusher.list));
  2138. BUG_ON(wq->flush_color != this_flusher.flush_color);
  2139. while (true) {
  2140. struct wq_flusher *next, *tmp;
  2141. /* complete all the flushers sharing the current flush color */
  2142. list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
  2143. if (next->flush_color != wq->flush_color)
  2144. break;
  2145. list_del_init(&next->list);
  2146. complete(&next->done);
  2147. }
  2148. BUG_ON(!list_empty(&wq->flusher_overflow) &&
  2149. wq->flush_color != work_next_color(wq->work_color));
  2150. /* this flush_color is finished, advance by one */
  2151. wq->flush_color = work_next_color(wq->flush_color);
  2152. /* one color has been freed, handle overflow queue */
  2153. if (!list_empty(&wq->flusher_overflow)) {
  2154. /*
  2155. * Assign the same color to all overflowed
  2156. * flushers, advance work_color and append to
  2157. * flusher_queue. This is the start-to-wait
  2158. * phase for these overflowed flushers.
  2159. */
  2160. list_for_each_entry(tmp, &wq->flusher_overflow, list)
  2161. tmp->flush_color = wq->work_color;
  2162. wq->work_color = work_next_color(wq->work_color);
  2163. list_splice_tail_init(&wq->flusher_overflow,
  2164. &wq->flusher_queue);
  2165. flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
  2166. }
  2167. if (list_empty(&wq->flusher_queue)) {
  2168. BUG_ON(wq->flush_color != wq->work_color);
  2169. break;
  2170. }
  2171. /*
  2172. * Need to flush more colors. Make the next flusher
  2173. * the new first flusher and arm cwqs.
  2174. */
  2175. BUG_ON(wq->flush_color == wq->work_color);
  2176. BUG_ON(wq->flush_color != next->flush_color);
  2177. list_del_init(&next->list);
  2178. wq->first_flusher = next;
  2179. if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
  2180. break;
  2181. /*
  2182. * Meh... this color is already done, clear first
  2183. * flusher and repeat cascading.
  2184. */
  2185. wq->first_flusher = NULL;
  2186. }
  2187. out_unlock:
  2188. mutex_unlock(&wq->flush_mutex);
  2189. }
  2190. EXPORT_SYMBOL_GPL(flush_workqueue);
  2191. /**
  2192. * drain_workqueue - drain a workqueue
  2193. * @wq: workqueue to drain
  2194. *
  2195. * Wait until the workqueue becomes empty. While draining is in progress,
  2196. * only chain queueing is allowed. IOW, only currently pending or running
  2197. * work items on @wq can queue further work items on it. @wq is flushed
  2198. * repeatedly until it becomes empty. The number of flushing is detemined
  2199. * by the depth of chaining and should be relatively short. Whine if it
  2200. * takes too long.
  2201. */
  2202. void drain_workqueue(struct workqueue_struct *wq)
  2203. {
  2204. unsigned int flush_cnt = 0;
  2205. unsigned int cpu;
  2206. /*
  2207. * __queue_work() needs to test whether there are drainers, is much
  2208. * hotter than drain_workqueue() and already looks at @wq->flags.
  2209. * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
  2210. */
  2211. spin_lock(&workqueue_lock);
  2212. if (!wq->nr_drainers++)
  2213. wq->flags |= WQ_DRAINING;
  2214. spin_unlock(&workqueue_lock);
  2215. reflush:
  2216. flush_workqueue(wq);
  2217. for_each_cwq_cpu(cpu, wq) {
  2218. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  2219. bool drained;
  2220. spin_lock_irq(&cwq->pool->gcwq->lock);
  2221. drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
  2222. spin_unlock_irq(&cwq->pool->gcwq->lock);
  2223. if (drained)
  2224. continue;
  2225. if (++flush_cnt == 10 ||
  2226. (flush_cnt % 100 == 0 && flush_cnt <= 1000))
  2227. pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
  2228. wq->name, flush_cnt);
  2229. goto reflush;
  2230. }
  2231. spin_lock(&workqueue_lock);
  2232. if (!--wq->nr_drainers)
  2233. wq->flags &= ~WQ_DRAINING;
  2234. spin_unlock(&workqueue_lock);
  2235. }
  2236. EXPORT_SYMBOL_GPL(drain_workqueue);
  2237. static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
  2238. bool wait_executing)
  2239. {
  2240. struct worker *worker = NULL;
  2241. struct global_cwq *gcwq;
  2242. struct cpu_workqueue_struct *cwq;
  2243. might_sleep();
  2244. gcwq = get_work_gcwq(work);
  2245. if (!gcwq)
  2246. return false;
  2247. spin_lock_irq(&gcwq->lock);
  2248. if (!list_empty(&work->entry)) {
  2249. /*
  2250. * See the comment near try_to_grab_pending()->smp_rmb().
  2251. * If it was re-queued to a different gcwq under us, we
  2252. * are not going to wait.
  2253. */
  2254. smp_rmb();
  2255. cwq = get_work_cwq(work);
  2256. if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
  2257. goto already_gone;
  2258. } else if (wait_executing) {
  2259. worker = find_worker_executing_work(gcwq, work);
  2260. if (!worker)
  2261. goto already_gone;
  2262. cwq = worker->current_cwq;
  2263. } else
  2264. goto already_gone;
  2265. insert_wq_barrier(cwq, barr, work, worker);
  2266. spin_unlock_irq(&gcwq->lock);
  2267. /*
  2268. * If @max_active is 1 or rescuer is in use, flushing another work
  2269. * item on the same workqueue may lead to deadlock. Make sure the
  2270. * flusher is not running on the same workqueue by verifying write
  2271. * access.
  2272. */
  2273. if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
  2274. lock_map_acquire(&cwq->wq->lockdep_map);
  2275. else
  2276. lock_map_acquire_read(&cwq->wq->lockdep_map);
  2277. lock_map_release(&cwq->wq->lockdep_map);
  2278. return true;
  2279. already_gone:
  2280. spin_unlock_irq(&gcwq->lock);
  2281. return false;
  2282. }
  2283. /**
  2284. * flush_work - wait for a work to finish executing the last queueing instance
  2285. * @work: the work to flush
  2286. *
  2287. * Wait until @work has finished execution. This function considers
  2288. * only the last queueing instance of @work. If @work has been
  2289. * enqueued across different CPUs on a non-reentrant workqueue or on
  2290. * multiple workqueues, @work might still be executing on return on
  2291. * some of the CPUs from earlier queueing.
  2292. *
  2293. * If @work was queued only on a non-reentrant, ordered or unbound
  2294. * workqueue, @work is guaranteed to be idle on return if it hasn't
  2295. * been requeued since flush started.
  2296. *
  2297. * RETURNS:
  2298. * %true if flush_work() waited for the work to finish execution,
  2299. * %false if it was already idle.
  2300. */
  2301. bool flush_work(struct work_struct *work)
  2302. {
  2303. struct wq_barrier barr;
  2304. lock_map_acquire(&work->lockdep_map);
  2305. lock_map_release(&work->lockdep_map);
  2306. if (start_flush_work(work, &barr, true)) {
  2307. wait_for_completion(&barr.done);
  2308. destroy_work_on_stack(&barr.work);
  2309. return true;
  2310. } else
  2311. return false;
  2312. }
  2313. EXPORT_SYMBOL_GPL(flush_work);
  2314. static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
  2315. {
  2316. struct wq_barrier barr;
  2317. struct worker *worker;
  2318. spin_lock_irq(&gcwq->lock);
  2319. worker = find_worker_executing_work(gcwq, work);
  2320. if (unlikely(worker))
  2321. insert_wq_barrier(worker->current_cwq, &barr, work, worker);
  2322. spin_unlock_irq(&gcwq->lock);
  2323. if (unlikely(worker)) {
  2324. wait_for_completion(&barr.done);
  2325. destroy_work_on_stack(&barr.work);
  2326. return true;
  2327. } else
  2328. return false;
  2329. }
  2330. static bool wait_on_work(struct work_struct *work)
  2331. {
  2332. bool ret = false;
  2333. int cpu;
  2334. might_sleep();
  2335. lock_map_acquire(&work->lockdep_map);
  2336. lock_map_release(&work->lockdep_map);
  2337. for_each_gcwq_cpu(cpu)
  2338. ret |= wait_on_cpu_work(get_gcwq(cpu), work);
  2339. return ret;
  2340. }
  2341. /**
  2342. * flush_work_sync - wait until a work has finished execution
  2343. * @work: the work to flush
  2344. *
  2345. * Wait until @work has finished execution. On return, it's
  2346. * guaranteed that all queueing instances of @work which happened
  2347. * before this function is called are finished. In other words, if
  2348. * @work hasn't been requeued since this function was called, @work is
  2349. * guaranteed to be idle on return.
  2350. *
  2351. * RETURNS:
  2352. * %true if flush_work_sync() waited for the work to finish execution,
  2353. * %false if it was already idle.
  2354. */
  2355. bool flush_work_sync(struct work_struct *work)
  2356. {
  2357. struct wq_barrier barr;
  2358. bool pending, waited;
  2359. /* we'll wait for executions separately, queue barr only if pending */
  2360. pending = start_flush_work(work, &barr, false);
  2361. /* wait for executions to finish */
  2362. waited = wait_on_work(work);
  2363. /* wait for the pending one */
  2364. if (pending) {
  2365. wait_for_completion(&barr.done);
  2366. destroy_work_on_stack(&barr.work);
  2367. }
  2368. return pending || waited;
  2369. }
  2370. EXPORT_SYMBOL_GPL(flush_work_sync);
  2371. /*
  2372. * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
  2373. * so this work can't be re-armed in any way.
  2374. */
  2375. static int try_to_grab_pending(struct work_struct *work)
  2376. {
  2377. struct global_cwq *gcwq;
  2378. int ret = -1;
  2379. if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
  2380. return 0;
  2381. /*
  2382. * The queueing is in progress, or it is already queued. Try to
  2383. * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
  2384. */
  2385. gcwq = get_work_gcwq(work);
  2386. if (!gcwq)
  2387. return ret;
  2388. spin_lock_irq(&gcwq->lock);
  2389. if (!list_empty(&work->entry)) {
  2390. /*
  2391. * This work is queued, but perhaps we locked the wrong gcwq.
  2392. * In that case we must see the new value after rmb(), see
  2393. * insert_work()->wmb().
  2394. */
  2395. smp_rmb();
  2396. if (gcwq == get_work_gcwq(work)) {
  2397. debug_work_deactivate(work);
  2398. list_del_init(&work->entry);
  2399. cwq_dec_nr_in_flight(get_work_cwq(work),
  2400. get_work_color(work),
  2401. *work_data_bits(work) & WORK_STRUCT_DELAYED);
  2402. ret = 1;
  2403. }
  2404. }
  2405. spin_unlock_irq(&gcwq->lock);
  2406. return ret;
  2407. }
  2408. static bool __cancel_work_timer(struct work_struct *work,
  2409. struct timer_list* timer)
  2410. {
  2411. int ret;
  2412. do {
  2413. ret = (timer && likely(del_timer(timer)));
  2414. if (!ret)
  2415. ret = try_to_grab_pending(work);
  2416. wait_on_work(work);
  2417. } while (unlikely(ret < 0));
  2418. clear_work_data(work);
  2419. return ret;
  2420. }
  2421. /**
  2422. * cancel_work_sync - cancel a work and wait for it to finish
  2423. * @work: the work to cancel
  2424. *
  2425. * Cancel @work and wait for its execution to finish. This function
  2426. * can be used even if the work re-queues itself or migrates to
  2427. * another workqueue. On return from this function, @work is
  2428. * guaranteed to be not pending or executing on any CPU.
  2429. *
  2430. * cancel_work_sync(&delayed_work->work) must not be used for
  2431. * delayed_work's. Use cancel_delayed_work_sync() instead.
  2432. *
  2433. * The caller must ensure that the workqueue on which @work was last
  2434. * queued can't be destroyed before this function returns.
  2435. *
  2436. * RETURNS:
  2437. * %true if @work was pending, %false otherwise.
  2438. */
  2439. bool cancel_work_sync(struct work_struct *work)
  2440. {
  2441. return __cancel_work_timer(work, NULL);
  2442. }
  2443. EXPORT_SYMBOL_GPL(cancel_work_sync);
  2444. /**
  2445. * flush_delayed_work - wait for a dwork to finish executing the last queueing
  2446. * @dwork: the delayed work to flush
  2447. *
  2448. * Delayed timer is cancelled and the pending work is queued for
  2449. * immediate execution. Like flush_work(), this function only
  2450. * considers the last queueing instance of @dwork.
  2451. *
  2452. * RETURNS:
  2453. * %true if flush_work() waited for the work to finish execution,
  2454. * %false if it was already idle.
  2455. */
  2456. bool flush_delayed_work(struct delayed_work *dwork)
  2457. {
  2458. if (del_timer_sync(&dwork->timer))
  2459. __queue_work(raw_smp_processor_id(),
  2460. get_work_cwq(&dwork->work)->wq, &dwork->work);
  2461. return flush_work(&dwork->work);
  2462. }
  2463. EXPORT_SYMBOL(flush_delayed_work);
  2464. /**
  2465. * flush_delayed_work_sync - wait for a dwork to finish
  2466. * @dwork: the delayed work to flush
  2467. *
  2468. * Delayed timer is cancelled and the pending work is queued for
  2469. * execution immediately. Other than timer handling, its behavior
  2470. * is identical to flush_work_sync().
  2471. *
  2472. * RETURNS:
  2473. * %true if flush_work_sync() waited for the work to finish execution,
  2474. * %false if it was already idle.
  2475. */
  2476. bool flush_delayed_work_sync(struct delayed_work *dwork)
  2477. {
  2478. if (del_timer_sync(&dwork->timer))
  2479. __queue_work(raw_smp_processor_id(),
  2480. get_work_cwq(&dwork->work)->wq, &dwork->work);
  2481. return flush_work_sync(&dwork->work);
  2482. }
  2483. EXPORT_SYMBOL(flush_delayed_work_sync);
  2484. /**
  2485. * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
  2486. * @dwork: the delayed work cancel
  2487. *
  2488. * This is cancel_work_sync() for delayed works.
  2489. *
  2490. * RETURNS:
  2491. * %true if @dwork was pending, %false otherwise.
  2492. */
  2493. bool cancel_delayed_work_sync(struct delayed_work *dwork)
  2494. {
  2495. return __cancel_work_timer(&dwork->work, &dwork->timer);
  2496. }
  2497. EXPORT_SYMBOL(cancel_delayed_work_sync);
  2498. /**
  2499. * schedule_work - put work task in global workqueue
  2500. * @work: job to be done
  2501. *
  2502. * Returns zero if @work was already on the kernel-global workqueue and
  2503. * non-zero otherwise.
  2504. *
  2505. * This puts a job in the kernel-global workqueue if it was not already
  2506. * queued and leaves it in the same position on the kernel-global
  2507. * workqueue otherwise.
  2508. */
  2509. int schedule_work(struct work_struct *work)
  2510. {
  2511. return queue_work(system_wq, work);
  2512. }
  2513. EXPORT_SYMBOL(schedule_work);
  2514. /*
  2515. * schedule_work_on - put work task on a specific cpu
  2516. * @cpu: cpu to put the work task on
  2517. * @work: job to be done
  2518. *
  2519. * This puts a job on a specific cpu
  2520. */
  2521. int schedule_work_on(int cpu, struct work_struct *work)
  2522. {
  2523. return queue_work_on(cpu, system_wq, work);
  2524. }
  2525. EXPORT_SYMBOL(schedule_work_on);
  2526. /**
  2527. * schedule_delayed_work - put work task in global workqueue after delay
  2528. * @dwork: job to be done
  2529. * @delay: number of jiffies to wait or 0 for immediate execution
  2530. *
  2531. * After waiting for a given time this puts a job in the kernel-global
  2532. * workqueue.
  2533. */
  2534. int schedule_delayed_work(struct delayed_work *dwork,
  2535. unsigned long delay)
  2536. {
  2537. return queue_delayed_work(system_wq, dwork, delay);
  2538. }
  2539. EXPORT_SYMBOL(schedule_delayed_work);
  2540. /**
  2541. * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
  2542. * @cpu: cpu to use
  2543. * @dwork: job to be done
  2544. * @delay: number of jiffies to wait
  2545. *
  2546. * After waiting for a given time this puts a job in the kernel-global
  2547. * workqueue on the specified CPU.
  2548. */
  2549. int schedule_delayed_work_on(int cpu,
  2550. struct delayed_work *dwork, unsigned long delay)
  2551. {
  2552. return queue_delayed_work_on(cpu, system_wq, dwork, delay);
  2553. }
  2554. EXPORT_SYMBOL(schedule_delayed_work_on);
  2555. /**
  2556. * schedule_on_each_cpu - execute a function synchronously on each online CPU
  2557. * @func: the function to call
  2558. *
  2559. * schedule_on_each_cpu() executes @func on each online CPU using the
  2560. * system workqueue and blocks until all CPUs have completed.
  2561. * schedule_on_each_cpu() is very slow.
  2562. *
  2563. * RETURNS:
  2564. * 0 on success, -errno on failure.
  2565. */
  2566. int schedule_on_each_cpu(work_func_t func)
  2567. {
  2568. int cpu;
  2569. struct work_struct __percpu *works;
  2570. works = alloc_percpu(struct work_struct);
  2571. if (!works)
  2572. return -ENOMEM;
  2573. get_online_cpus();
  2574. for_each_online_cpu(cpu) {
  2575. struct work_struct *work = per_cpu_ptr(works, cpu);
  2576. INIT_WORK(work, func);
  2577. schedule_work_on(cpu, work);
  2578. }
  2579. for_each_online_cpu(cpu)
  2580. flush_work(per_cpu_ptr(works, cpu));
  2581. put_online_cpus();
  2582. free_percpu(works);
  2583. return 0;
  2584. }
  2585. /**
  2586. * flush_scheduled_work - ensure that any scheduled work has run to completion.
  2587. *
  2588. * Forces execution of the kernel-global workqueue and blocks until its
  2589. * completion.
  2590. *
  2591. * Think twice before calling this function! It's very easy to get into
  2592. * trouble if you don't take great care. Either of the following situations
  2593. * will lead to deadlock:
  2594. *
  2595. * One of the work items currently on the workqueue needs to acquire
  2596. * a lock held by your code or its caller.
  2597. *
  2598. * Your code is running in the context of a work routine.
  2599. *
  2600. * They will be detected by lockdep when they occur, but the first might not
  2601. * occur very often. It depends on what work items are on the workqueue and
  2602. * what locks they need, which you have no control over.
  2603. *
  2604. * In most situations flushing the entire workqueue is overkill; you merely
  2605. * need to know that a particular work item isn't queued and isn't running.
  2606. * In such cases you should use cancel_delayed_work_sync() or
  2607. * cancel_work_sync() instead.
  2608. */
  2609. void flush_scheduled_work(void)
  2610. {
  2611. flush_workqueue(system_wq);
  2612. }
  2613. EXPORT_SYMBOL(flush_scheduled_work);
  2614. /**
  2615. * execute_in_process_context - reliably execute the routine with user context
  2616. * @fn: the function to execute
  2617. * @ew: guaranteed storage for the execute work structure (must
  2618. * be available when the work executes)
  2619. *
  2620. * Executes the function immediately if process context is available,
  2621. * otherwise schedules the function for delayed execution.
  2622. *
  2623. * Returns: 0 - function was executed
  2624. * 1 - function was scheduled for execution
  2625. */
  2626. int execute_in_process_context(work_func_t fn, struct execute_work *ew)
  2627. {
  2628. if (!in_interrupt()) {
  2629. fn(&ew->work);
  2630. return 0;
  2631. }
  2632. INIT_WORK(&ew->work, fn);
  2633. schedule_work(&ew->work);
  2634. return 1;
  2635. }
  2636. EXPORT_SYMBOL_GPL(execute_in_process_context);
  2637. int keventd_up(void)
  2638. {
  2639. return system_wq != NULL;
  2640. }
  2641. static int alloc_cwqs(struct workqueue_struct *wq)
  2642. {
  2643. /*
  2644. * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
  2645. * Make sure that the alignment isn't lower than that of
  2646. * unsigned long long.
  2647. */
  2648. const size_t size = sizeof(struct cpu_workqueue_struct);
  2649. const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
  2650. __alignof__(unsigned long long));
  2651. if (!(wq->flags & WQ_UNBOUND))
  2652. wq->cpu_wq.pcpu = __alloc_percpu(size, align);
  2653. else {
  2654. void *ptr;
  2655. /*
  2656. * Allocate enough room to align cwq and put an extra
  2657. * pointer at the end pointing back to the originally
  2658. * allocated pointer which will be used for free.
  2659. */
  2660. ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
  2661. if (ptr) {
  2662. wq->cpu_wq.single = PTR_ALIGN(ptr, align);
  2663. *(void **)(wq->cpu_wq.single + 1) = ptr;
  2664. }
  2665. }
  2666. /* just in case, make sure it's actually aligned */
  2667. BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
  2668. return wq->cpu_wq.v ? 0 : -ENOMEM;
  2669. }
  2670. static void free_cwqs(struct workqueue_struct *wq)
  2671. {
  2672. if (!(wq->flags & WQ_UNBOUND))
  2673. free_percpu(wq->cpu_wq.pcpu);
  2674. else if (wq->cpu_wq.single) {
  2675. /* the pointer to free is stored right after the cwq */
  2676. kfree(*(void **)(wq->cpu_wq.single + 1));
  2677. }
  2678. }
  2679. static int wq_clamp_max_active(int max_active, unsigned int flags,
  2680. const char *name)
  2681. {
  2682. int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
  2683. if (max_active < 1 || max_active > lim)
  2684. printk(KERN_WARNING "workqueue: max_active %d requested for %s "
  2685. "is out of range, clamping between %d and %d\n",
  2686. max_active, name, 1, lim);
  2687. return clamp_val(max_active, 1, lim);
  2688. }
  2689. struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
  2690. unsigned int flags,
  2691. int max_active,
  2692. struct lock_class_key *key,
  2693. const char *lock_name, ...)
  2694. {
  2695. va_list args, args1;
  2696. struct workqueue_struct *wq;
  2697. unsigned int cpu;
  2698. size_t namelen;
  2699. /* determine namelen, allocate wq and format name */
  2700. va_start(args, lock_name);
  2701. va_copy(args1, args);
  2702. namelen = vsnprintf(NULL, 0, fmt, args) + 1;
  2703. wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
  2704. if (!wq)
  2705. goto err;
  2706. vsnprintf(wq->name, namelen, fmt, args1);
  2707. va_end(args);
  2708. va_end(args1);
  2709. /*
  2710. * Workqueues which may be used during memory reclaim should
  2711. * have a rescuer to guarantee forward progress.
  2712. */
  2713. if (flags & WQ_MEM_RECLAIM)
  2714. flags |= WQ_RESCUER;
  2715. max_active = max_active ?: WQ_DFL_ACTIVE;
  2716. max_active = wq_clamp_max_active(max_active, flags, wq->name);
  2717. /* init wq */
  2718. wq->flags = flags;
  2719. wq->saved_max_active = max_active;
  2720. mutex_init(&wq->flush_mutex);
  2721. atomic_set(&wq->nr_cwqs_to_flush, 0);
  2722. INIT_LIST_HEAD(&wq->flusher_queue);
  2723. INIT_LIST_HEAD(&wq->flusher_overflow);
  2724. lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
  2725. INIT_LIST_HEAD(&wq->list);
  2726. if (alloc_cwqs(wq) < 0)
  2727. goto err;
  2728. for_each_cwq_cpu(cpu, wq) {
  2729. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  2730. struct global_cwq *gcwq = get_gcwq(cpu);
  2731. int pool_idx = (bool)(flags & WQ_HIGHPRI);
  2732. BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
  2733. cwq->pool = &gcwq->pools[pool_idx];
  2734. cwq->wq = wq;
  2735. cwq->flush_color = -1;
  2736. cwq->max_active = max_active;
  2737. INIT_LIST_HEAD(&cwq->delayed_works);
  2738. }
  2739. if (flags & WQ_RESCUER) {
  2740. struct worker *rescuer;
  2741. if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
  2742. goto err;
  2743. wq->rescuer = rescuer = alloc_worker();
  2744. if (!rescuer)
  2745. goto err;
  2746. rescuer->task = kthread_create(rescuer_thread, wq, "%s",
  2747. wq->name);
  2748. if (IS_ERR(rescuer->task))
  2749. goto err;
  2750. rescuer->task->flags |= PF_THREAD_BOUND;
  2751. wake_up_process(rescuer->task);
  2752. }
  2753. /*
  2754. * workqueue_lock protects global freeze state and workqueues
  2755. * list. Grab it, set max_active accordingly and add the new
  2756. * workqueue to workqueues list.
  2757. */
  2758. spin_lock(&workqueue_lock);
  2759. if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
  2760. for_each_cwq_cpu(cpu, wq)
  2761. get_cwq(cpu, wq)->max_active = 0;
  2762. list_add(&wq->list, &workqueues);
  2763. spin_unlock(&workqueue_lock);
  2764. return wq;
  2765. err:
  2766. if (wq) {
  2767. free_cwqs(wq);
  2768. free_mayday_mask(wq->mayday_mask);
  2769. kfree(wq->rescuer);
  2770. kfree(wq);
  2771. }
  2772. return NULL;
  2773. }
  2774. EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
  2775. /**
  2776. * destroy_workqueue - safely terminate a workqueue
  2777. * @wq: target workqueue
  2778. *
  2779. * Safely destroy a workqueue. All work currently pending will be done first.
  2780. */
  2781. void destroy_workqueue(struct workqueue_struct *wq)
  2782. {
  2783. unsigned int cpu;
  2784. /* drain it before proceeding with destruction */
  2785. drain_workqueue(wq);
  2786. /*
  2787. * wq list is used to freeze wq, remove from list after
  2788. * flushing is complete in case freeze races us.
  2789. */
  2790. spin_lock(&workqueue_lock);
  2791. list_del(&wq->list);
  2792. spin_unlock(&workqueue_lock);
  2793. /* sanity check */
  2794. for_each_cwq_cpu(cpu, wq) {
  2795. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  2796. int i;
  2797. for (i = 0; i < WORK_NR_COLORS; i++)
  2798. BUG_ON(cwq->nr_in_flight[i]);
  2799. BUG_ON(cwq->nr_active);
  2800. BUG_ON(!list_empty(&cwq->delayed_works));
  2801. }
  2802. if (wq->flags & WQ_RESCUER) {
  2803. kthread_stop(wq->rescuer->task);
  2804. free_mayday_mask(wq->mayday_mask);
  2805. kfree(wq->rescuer);
  2806. }
  2807. free_cwqs(wq);
  2808. kfree(wq);
  2809. }
  2810. EXPORT_SYMBOL_GPL(destroy_workqueue);
  2811. /**
  2812. * workqueue_set_max_active - adjust max_active of a workqueue
  2813. * @wq: target workqueue
  2814. * @max_active: new max_active value.
  2815. *
  2816. * Set max_active of @wq to @max_active.
  2817. *
  2818. * CONTEXT:
  2819. * Don't call from IRQ context.
  2820. */
  2821. void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
  2822. {
  2823. unsigned int cpu;
  2824. max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
  2825. spin_lock(&workqueue_lock);
  2826. wq->saved_max_active = max_active;
  2827. for_each_cwq_cpu(cpu, wq) {
  2828. struct global_cwq *gcwq = get_gcwq(cpu);
  2829. spin_lock_irq(&gcwq->lock);
  2830. if (!(wq->flags & WQ_FREEZABLE) ||
  2831. !(gcwq->flags & GCWQ_FREEZING))
  2832. get_cwq(gcwq->cpu, wq)->max_active = max_active;
  2833. spin_unlock_irq(&gcwq->lock);
  2834. }
  2835. spin_unlock(&workqueue_lock);
  2836. }
  2837. EXPORT_SYMBOL_GPL(workqueue_set_max_active);
  2838. /**
  2839. * workqueue_congested - test whether a workqueue is congested
  2840. * @cpu: CPU in question
  2841. * @wq: target workqueue
  2842. *
  2843. * Test whether @wq's cpu workqueue for @cpu is congested. There is
  2844. * no synchronization around this function and the test result is
  2845. * unreliable and only useful as advisory hints or for debugging.
  2846. *
  2847. * RETURNS:
  2848. * %true if congested, %false otherwise.
  2849. */
  2850. bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
  2851. {
  2852. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  2853. return !list_empty(&cwq->delayed_works);
  2854. }
  2855. EXPORT_SYMBOL_GPL(workqueue_congested);
  2856. /**
  2857. * work_cpu - return the last known associated cpu for @work
  2858. * @work: the work of interest
  2859. *
  2860. * RETURNS:
  2861. * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
  2862. */
  2863. unsigned int work_cpu(struct work_struct *work)
  2864. {
  2865. struct global_cwq *gcwq = get_work_gcwq(work);
  2866. return gcwq ? gcwq->cpu : WORK_CPU_NONE;
  2867. }
  2868. EXPORT_SYMBOL_GPL(work_cpu);
  2869. /**
  2870. * work_busy - test whether a work is currently pending or running
  2871. * @work: the work to be tested
  2872. *
  2873. * Test whether @work is currently pending or running. There is no
  2874. * synchronization around this function and the test result is
  2875. * unreliable and only useful as advisory hints or for debugging.
  2876. * Especially for reentrant wqs, the pending state might hide the
  2877. * running state.
  2878. *
  2879. * RETURNS:
  2880. * OR'd bitmask of WORK_BUSY_* bits.
  2881. */
  2882. unsigned int work_busy(struct work_struct *work)
  2883. {
  2884. struct global_cwq *gcwq = get_work_gcwq(work);
  2885. unsigned long flags;
  2886. unsigned int ret = 0;
  2887. if (!gcwq)
  2888. return false;
  2889. spin_lock_irqsave(&gcwq->lock, flags);
  2890. if (work_pending(work))
  2891. ret |= WORK_BUSY_PENDING;
  2892. if (find_worker_executing_work(gcwq, work))
  2893. ret |= WORK_BUSY_RUNNING;
  2894. spin_unlock_irqrestore(&gcwq->lock, flags);
  2895. return ret;
  2896. }
  2897. EXPORT_SYMBOL_GPL(work_busy);
  2898. /*
  2899. * CPU hotplug.
  2900. *
  2901. * There are two challenges in supporting CPU hotplug. Firstly, there
  2902. * are a lot of assumptions on strong associations among work, cwq and
  2903. * gcwq which make migrating pending and scheduled works very
  2904. * difficult to implement without impacting hot paths. Secondly,
  2905. * gcwqs serve mix of short, long and very long running works making
  2906. * blocked draining impractical.
  2907. *
  2908. * This is solved by allowing a gcwq to be disassociated from the CPU
  2909. * running as an unbound one and allowing it to be reattached later if the
  2910. * cpu comes back online.
  2911. */
  2912. /* claim manager positions of all pools */
  2913. static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
  2914. {
  2915. struct worker_pool *pool;
  2916. for_each_worker_pool(pool, gcwq)
  2917. mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
  2918. spin_lock_irq(&gcwq->lock);
  2919. }
  2920. /* release manager positions */
  2921. static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
  2922. {
  2923. struct worker_pool *pool;
  2924. spin_unlock_irq(&gcwq->lock);
  2925. for_each_worker_pool(pool, gcwq)
  2926. mutex_unlock(&pool->manager_mutex);
  2927. }
  2928. static void gcwq_unbind_fn(struct work_struct *work)
  2929. {
  2930. struct global_cwq *gcwq = get_gcwq(smp_processor_id());
  2931. struct worker_pool *pool;
  2932. struct worker *worker;
  2933. struct hlist_node *pos;
  2934. int i;
  2935. BUG_ON(gcwq->cpu != smp_processor_id());
  2936. gcwq_claim_management_and_lock(gcwq);
  2937. /*
  2938. * We've claimed all manager positions. Make all workers unbound
  2939. * and set DISASSOCIATED. Before this, all workers except for the
  2940. * ones which are still executing works from before the last CPU
  2941. * down must be on the cpu. After this, they may become diasporas.
  2942. */
  2943. for_each_worker_pool(pool, gcwq)
  2944. list_for_each_entry(worker, &pool->idle_list, entry)
  2945. worker->flags |= WORKER_UNBOUND;
  2946. for_each_busy_worker(worker, i, pos, gcwq)
  2947. worker->flags |= WORKER_UNBOUND;
  2948. gcwq->flags |= GCWQ_DISASSOCIATED;
  2949. gcwq_release_management_and_unlock(gcwq);
  2950. /*
  2951. * Call schedule() so that we cross rq->lock and thus can guarantee
  2952. * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
  2953. * as scheduler callbacks may be invoked from other cpus.
  2954. */
  2955. schedule();
  2956. /*
  2957. * Sched callbacks are disabled now. Zap nr_running. After this,
  2958. * nr_running stays zero and need_more_worker() and keep_working()
  2959. * are always true as long as the worklist is not empty. @gcwq now
  2960. * behaves as unbound (in terms of concurrency management) gcwq
  2961. * which is served by workers tied to the CPU.
  2962. *
  2963. * On return from this function, the current worker would trigger
  2964. * unbound chain execution of pending work items if other workers
  2965. * didn't already.
  2966. */
  2967. for_each_worker_pool(pool, gcwq)
  2968. atomic_set(get_pool_nr_running(pool), 0);
  2969. }
  2970. /*
  2971. * Workqueues should be brought up before normal priority CPU notifiers.
  2972. * This will be registered high priority CPU notifier.
  2973. */
  2974. static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
  2975. unsigned long action,
  2976. void *hcpu)
  2977. {
  2978. unsigned int cpu = (unsigned long)hcpu;
  2979. struct global_cwq *gcwq = get_gcwq(cpu);
  2980. struct worker_pool *pool;
  2981. switch (action & ~CPU_TASKS_FROZEN) {
  2982. case CPU_UP_PREPARE:
  2983. for_each_worker_pool(pool, gcwq) {
  2984. struct worker *worker;
  2985. if (pool->nr_workers)
  2986. continue;
  2987. worker = create_worker(pool);
  2988. if (!worker)
  2989. return NOTIFY_BAD;
  2990. spin_lock_irq(&gcwq->lock);
  2991. start_worker(worker);
  2992. spin_unlock_irq(&gcwq->lock);
  2993. }
  2994. break;
  2995. case CPU_DOWN_FAILED:
  2996. case CPU_ONLINE:
  2997. gcwq_claim_management_and_lock(gcwq);
  2998. gcwq->flags &= ~GCWQ_DISASSOCIATED;
  2999. rebind_workers(gcwq);
  3000. gcwq_release_management_and_unlock(gcwq);
  3001. break;
  3002. }
  3003. return NOTIFY_OK;
  3004. }
  3005. /*
  3006. * Workqueues should be brought down after normal priority CPU notifiers.
  3007. * This will be registered as low priority CPU notifier.
  3008. */
  3009. static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
  3010. unsigned long action,
  3011. void *hcpu)
  3012. {
  3013. unsigned int cpu = (unsigned long)hcpu;
  3014. struct work_struct unbind_work;
  3015. switch (action & ~CPU_TASKS_FROZEN) {
  3016. case CPU_DOWN_PREPARE:
  3017. /* unbinding should happen on the local CPU */
  3018. INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
  3019. schedule_work_on(cpu, &unbind_work);
  3020. flush_work(&unbind_work);
  3021. break;
  3022. }
  3023. return NOTIFY_OK;
  3024. }
  3025. #ifdef CONFIG_SMP
  3026. struct work_for_cpu {
  3027. struct completion completion;
  3028. long (*fn)(void *);
  3029. void *arg;
  3030. long ret;
  3031. };
  3032. static int do_work_for_cpu(void *_wfc)
  3033. {
  3034. struct work_for_cpu *wfc = _wfc;
  3035. wfc->ret = wfc->fn(wfc->arg);
  3036. complete(&wfc->completion);
  3037. return 0;
  3038. }
  3039. /**
  3040. * work_on_cpu - run a function in user context on a particular cpu
  3041. * @cpu: the cpu to run on
  3042. * @fn: the function to run
  3043. * @arg: the function arg
  3044. *
  3045. * This will return the value @fn returns.
  3046. * It is up to the caller to ensure that the cpu doesn't go offline.
  3047. * The caller must not hold any locks which would prevent @fn from completing.
  3048. */
  3049. long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
  3050. {
  3051. struct task_struct *sub_thread;
  3052. struct work_for_cpu wfc = {
  3053. .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
  3054. .fn = fn,
  3055. .arg = arg,
  3056. };
  3057. sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
  3058. if (IS_ERR(sub_thread))
  3059. return PTR_ERR(sub_thread);
  3060. kthread_bind(sub_thread, cpu);
  3061. wake_up_process(sub_thread);
  3062. wait_for_completion(&wfc.completion);
  3063. return wfc.ret;
  3064. }
  3065. EXPORT_SYMBOL_GPL(work_on_cpu);
  3066. #endif /* CONFIG_SMP */
  3067. #ifdef CONFIG_FREEZER
  3068. /**
  3069. * freeze_workqueues_begin - begin freezing workqueues
  3070. *
  3071. * Start freezing workqueues. After this function returns, all freezable
  3072. * workqueues will queue new works to their frozen_works list instead of
  3073. * gcwq->worklist.
  3074. *
  3075. * CONTEXT:
  3076. * Grabs and releases workqueue_lock and gcwq->lock's.
  3077. */
  3078. void freeze_workqueues_begin(void)
  3079. {
  3080. unsigned int cpu;
  3081. spin_lock(&workqueue_lock);
  3082. BUG_ON(workqueue_freezing);
  3083. workqueue_freezing = true;
  3084. for_each_gcwq_cpu(cpu) {
  3085. struct global_cwq *gcwq = get_gcwq(cpu);
  3086. struct workqueue_struct *wq;
  3087. spin_lock_irq(&gcwq->lock);
  3088. BUG_ON(gcwq->flags & GCWQ_FREEZING);
  3089. gcwq->flags |= GCWQ_FREEZING;
  3090. list_for_each_entry(wq, &workqueues, list) {
  3091. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  3092. if (cwq && wq->flags & WQ_FREEZABLE)
  3093. cwq->max_active = 0;
  3094. }
  3095. spin_unlock_irq(&gcwq->lock);
  3096. }
  3097. spin_unlock(&workqueue_lock);
  3098. }
  3099. /**
  3100. * freeze_workqueues_busy - are freezable workqueues still busy?
  3101. *
  3102. * Check whether freezing is complete. This function must be called
  3103. * between freeze_workqueues_begin() and thaw_workqueues().
  3104. *
  3105. * CONTEXT:
  3106. * Grabs and releases workqueue_lock.
  3107. *
  3108. * RETURNS:
  3109. * %true if some freezable workqueues are still busy. %false if freezing
  3110. * is complete.
  3111. */
  3112. bool freeze_workqueues_busy(void)
  3113. {
  3114. unsigned int cpu;
  3115. bool busy = false;
  3116. spin_lock(&workqueue_lock);
  3117. BUG_ON(!workqueue_freezing);
  3118. for_each_gcwq_cpu(cpu) {
  3119. struct workqueue_struct *wq;
  3120. /*
  3121. * nr_active is monotonically decreasing. It's safe
  3122. * to peek without lock.
  3123. */
  3124. list_for_each_entry(wq, &workqueues, list) {
  3125. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  3126. if (!cwq || !(wq->flags & WQ_FREEZABLE))
  3127. continue;
  3128. BUG_ON(cwq->nr_active < 0);
  3129. if (cwq->nr_active) {
  3130. busy = true;
  3131. goto out_unlock;
  3132. }
  3133. }
  3134. }
  3135. out_unlock:
  3136. spin_unlock(&workqueue_lock);
  3137. return busy;
  3138. }
  3139. /**
  3140. * thaw_workqueues - thaw workqueues
  3141. *
  3142. * Thaw workqueues. Normal queueing is restored and all collected
  3143. * frozen works are transferred to their respective gcwq worklists.
  3144. *
  3145. * CONTEXT:
  3146. * Grabs and releases workqueue_lock and gcwq->lock's.
  3147. */
  3148. void thaw_workqueues(void)
  3149. {
  3150. unsigned int cpu;
  3151. spin_lock(&workqueue_lock);
  3152. if (!workqueue_freezing)
  3153. goto out_unlock;
  3154. for_each_gcwq_cpu(cpu) {
  3155. struct global_cwq *gcwq = get_gcwq(cpu);
  3156. struct worker_pool *pool;
  3157. struct workqueue_struct *wq;
  3158. spin_lock_irq(&gcwq->lock);
  3159. BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
  3160. gcwq->flags &= ~GCWQ_FREEZING;
  3161. list_for_each_entry(wq, &workqueues, list) {
  3162. struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
  3163. if (!cwq || !(wq->flags & WQ_FREEZABLE))
  3164. continue;
  3165. /* restore max_active and repopulate worklist */
  3166. cwq->max_active = wq->saved_max_active;
  3167. while (!list_empty(&cwq->delayed_works) &&
  3168. cwq->nr_active < cwq->max_active)
  3169. cwq_activate_first_delayed(cwq);
  3170. }
  3171. for_each_worker_pool(pool, gcwq)
  3172. wake_up_worker(pool);
  3173. spin_unlock_irq(&gcwq->lock);
  3174. }
  3175. workqueue_freezing = false;
  3176. out_unlock:
  3177. spin_unlock(&workqueue_lock);
  3178. }
  3179. #endif /* CONFIG_FREEZER */
  3180. static int __init init_workqueues(void)
  3181. {
  3182. unsigned int cpu;
  3183. int i;
  3184. cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
  3185. cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
  3186. /* initialize gcwqs */
  3187. for_each_gcwq_cpu(cpu) {
  3188. struct global_cwq *gcwq = get_gcwq(cpu);
  3189. struct worker_pool *pool;
  3190. spin_lock_init(&gcwq->lock);
  3191. gcwq->cpu = cpu;
  3192. gcwq->flags |= GCWQ_DISASSOCIATED;
  3193. for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
  3194. INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
  3195. for_each_worker_pool(pool, gcwq) {
  3196. pool->gcwq = gcwq;
  3197. INIT_LIST_HEAD(&pool->worklist);
  3198. INIT_LIST_HEAD(&pool->idle_list);
  3199. init_timer_deferrable(&pool->idle_timer);
  3200. pool->idle_timer.function = idle_worker_timeout;
  3201. pool->idle_timer.data = (unsigned long)pool;
  3202. setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
  3203. (unsigned long)pool);
  3204. mutex_init(&pool->manager_mutex);
  3205. ida_init(&pool->worker_ida);
  3206. }
  3207. init_waitqueue_head(&gcwq->rebind_hold);
  3208. }
  3209. /* create the initial worker */
  3210. for_each_online_gcwq_cpu(cpu) {
  3211. struct global_cwq *gcwq = get_gcwq(cpu);
  3212. struct worker_pool *pool;
  3213. if (cpu != WORK_CPU_UNBOUND)
  3214. gcwq->flags &= ~GCWQ_DISASSOCIATED;
  3215. for_each_worker_pool(pool, gcwq) {
  3216. struct worker *worker;
  3217. worker = create_worker(pool);
  3218. BUG_ON(!worker);
  3219. spin_lock_irq(&gcwq->lock);
  3220. start_worker(worker);
  3221. spin_unlock_irq(&gcwq->lock);
  3222. }
  3223. }
  3224. system_wq = alloc_workqueue("events", 0, 0);
  3225. system_long_wq = alloc_workqueue("events_long", 0, 0);
  3226. system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
  3227. system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
  3228. WQ_UNBOUND_MAX_ACTIVE);
  3229. system_freezable_wq = alloc_workqueue("events_freezable",
  3230. WQ_FREEZABLE, 0);
  3231. system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
  3232. WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
  3233. BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
  3234. !system_unbound_wq || !system_freezable_wq ||
  3235. !system_nrt_freezable_wq);
  3236. return 0;
  3237. }
  3238. early_initcall(init_workqueues);