time.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/export.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/clocksource.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <linux/math64.h>
  38. #include <linux/ptrace.h>
  39. #include <asm/uaccess.h>
  40. #include <asm/unistd.h>
  41. #include "timeconst.h"
  42. /*
  43. * The timezone where the local system is located. Used as a default by some
  44. * programs who obtain this value by using gettimeofday.
  45. */
  46. struct timezone sys_tz;
  47. EXPORT_SYMBOL(sys_tz);
  48. #ifdef __ARCH_WANT_SYS_TIME
  49. /*
  50. * sys_time() can be implemented in user-level using
  51. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  52. * why not move it into the appropriate arch directory (for those
  53. * architectures that need it).
  54. */
  55. SYSCALL_DEFINE1(time, time_t __user *, tloc)
  56. {
  57. time_t i = get_seconds();
  58. if (tloc) {
  59. if (put_user(i,tloc))
  60. return -EFAULT;
  61. }
  62. force_successful_syscall_return();
  63. return i;
  64. }
  65. /*
  66. * sys_stime() can be implemented in user-level using
  67. * sys_settimeofday(). Is this for backwards compatibility? If so,
  68. * why not move it into the appropriate arch directory (for those
  69. * architectures that need it).
  70. */
  71. SYSCALL_DEFINE1(stime, time_t __user *, tptr)
  72. {
  73. struct timespec tv;
  74. int err;
  75. if (get_user(tv.tv_sec, tptr))
  76. return -EFAULT;
  77. tv.tv_nsec = 0;
  78. err = security_settime(&tv, NULL);
  79. if (err)
  80. return err;
  81. do_settimeofday(&tv);
  82. return 0;
  83. }
  84. #endif /* __ARCH_WANT_SYS_TIME */
  85. SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
  86. struct timezone __user *, tz)
  87. {
  88. if (likely(tv != NULL)) {
  89. struct timeval ktv;
  90. do_gettimeofday(&ktv);
  91. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  92. return -EFAULT;
  93. }
  94. if (unlikely(tz != NULL)) {
  95. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  96. return -EFAULT;
  97. }
  98. return 0;
  99. }
  100. /*
  101. * Adjust the time obtained from the CMOS to be UTC time instead of
  102. * local time.
  103. *
  104. * This is ugly, but preferable to the alternatives. Otherwise we
  105. * would either need to write a program to do it in /etc/rc (and risk
  106. * confusion if the program gets run more than once; it would also be
  107. * hard to make the program warp the clock precisely n hours) or
  108. * compile in the timezone information into the kernel. Bad, bad....
  109. *
  110. * - TYT, 1992-01-01
  111. *
  112. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  113. * as real UNIX machines always do it. This avoids all headaches about
  114. * daylight saving times and warping kernel clocks.
  115. */
  116. static inline void warp_clock(void)
  117. {
  118. struct timespec adjust;
  119. adjust = current_kernel_time();
  120. adjust.tv_sec += sys_tz.tz_minuteswest * 60;
  121. do_settimeofday(&adjust);
  122. }
  123. /*
  124. * In case for some reason the CMOS clock has not already been running
  125. * in UTC, but in some local time: The first time we set the timezone,
  126. * we will warp the clock so that it is ticking UTC time instead of
  127. * local time. Presumably, if someone is setting the timezone then we
  128. * are running in an environment where the programs understand about
  129. * timezones. This should be done at boot time in the /etc/rc script,
  130. * as soon as possible, so that the clock can be set right. Otherwise,
  131. * various programs will get confused when the clock gets warped.
  132. */
  133. int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
  134. {
  135. static int firsttime = 1;
  136. int error = 0;
  137. if (tv && !timespec_valid(tv))
  138. return -EINVAL;
  139. error = security_settime(tv, tz);
  140. if (error)
  141. return error;
  142. if (tz) {
  143. sys_tz = *tz;
  144. update_vsyscall_tz();
  145. if (firsttime) {
  146. firsttime = 0;
  147. if (!tv)
  148. warp_clock();
  149. }
  150. }
  151. if (tv)
  152. return do_settimeofday(tv);
  153. return 0;
  154. }
  155. SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
  156. struct timezone __user *, tz)
  157. {
  158. struct timeval user_tv;
  159. struct timespec new_ts;
  160. struct timezone new_tz;
  161. if (tv) {
  162. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  163. return -EFAULT;
  164. new_ts.tv_sec = user_tv.tv_sec;
  165. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  166. }
  167. if (tz) {
  168. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  169. return -EFAULT;
  170. }
  171. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  172. }
  173. SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
  174. {
  175. struct timex txc; /* Local copy of parameter */
  176. int ret;
  177. /* Copy the user data space into the kernel copy
  178. * structure. But bear in mind that the structures
  179. * may change
  180. */
  181. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  182. return -EFAULT;
  183. ret = do_adjtimex(&txc);
  184. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  185. }
  186. /**
  187. * current_fs_time - Return FS time
  188. * @sb: Superblock.
  189. *
  190. * Return the current time truncated to the time granularity supported by
  191. * the fs.
  192. */
  193. struct timespec current_fs_time(struct super_block *sb)
  194. {
  195. struct timespec now = current_kernel_time();
  196. return timespec_trunc(now, sb->s_time_gran);
  197. }
  198. EXPORT_SYMBOL(current_fs_time);
  199. /*
  200. * Convert jiffies to milliseconds and back.
  201. *
  202. * Avoid unnecessary multiplications/divisions in the
  203. * two most common HZ cases:
  204. */
  205. inline unsigned int jiffies_to_msecs(const unsigned long j)
  206. {
  207. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  208. return (MSEC_PER_SEC / HZ) * j;
  209. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  210. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  211. #else
  212. # if BITS_PER_LONG == 32
  213. return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  214. # else
  215. return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  216. # endif
  217. #endif
  218. }
  219. EXPORT_SYMBOL(jiffies_to_msecs);
  220. inline unsigned int jiffies_to_usecs(const unsigned long j)
  221. {
  222. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  223. return (USEC_PER_SEC / HZ) * j;
  224. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  225. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  226. #else
  227. # if BITS_PER_LONG == 32
  228. return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  229. # else
  230. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  231. # endif
  232. #endif
  233. }
  234. EXPORT_SYMBOL(jiffies_to_usecs);
  235. /**
  236. * timespec_trunc - Truncate timespec to a granularity
  237. * @t: Timespec
  238. * @gran: Granularity in ns.
  239. *
  240. * Truncate a timespec to a granularity. gran must be smaller than a second.
  241. * Always rounds down.
  242. *
  243. * This function should be only used for timestamps returned by
  244. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  245. * it doesn't handle the better resolution of the latter.
  246. */
  247. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  248. {
  249. /*
  250. * Division is pretty slow so avoid it for common cases.
  251. * Currently current_kernel_time() never returns better than
  252. * jiffies resolution. Exploit that.
  253. */
  254. if (gran <= jiffies_to_usecs(1) * 1000) {
  255. /* nothing */
  256. } else if (gran == 1000000000) {
  257. t.tv_nsec = 0;
  258. } else {
  259. t.tv_nsec -= t.tv_nsec % gran;
  260. }
  261. return t;
  262. }
  263. EXPORT_SYMBOL(timespec_trunc);
  264. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  265. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  266. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  267. *
  268. * [For the Julian calendar (which was used in Russia before 1917,
  269. * Britain & colonies before 1752, anywhere else before 1582,
  270. * and is still in use by some communities) leave out the
  271. * -year/100+year/400 terms, and add 10.]
  272. *
  273. * This algorithm was first published by Gauss (I think).
  274. *
  275. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  276. * machines where long is 32-bit! (However, as time_t is signed, we
  277. * will already get problems at other places on 2038-01-19 03:14:08)
  278. */
  279. unsigned long
  280. mktime(const unsigned int year0, const unsigned int mon0,
  281. const unsigned int day, const unsigned int hour,
  282. const unsigned int min, const unsigned int sec)
  283. {
  284. unsigned int mon = mon0, year = year0;
  285. /* 1..12 -> 11,12,1..10 */
  286. if (0 >= (int) (mon -= 2)) {
  287. mon += 12; /* Puts Feb last since it has leap day */
  288. year -= 1;
  289. }
  290. return ((((unsigned long)
  291. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  292. year*365 - 719499
  293. )*24 + hour /* now have hours */
  294. )*60 + min /* now have minutes */
  295. )*60 + sec; /* finally seconds */
  296. }
  297. EXPORT_SYMBOL(mktime);
  298. /**
  299. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  300. *
  301. * @ts: pointer to timespec variable to be set
  302. * @sec: seconds to set
  303. * @nsec: nanoseconds to set
  304. *
  305. * Set seconds and nanoseconds field of a timespec variable and
  306. * normalize to the timespec storage format
  307. *
  308. * Note: The tv_nsec part is always in the range of
  309. * 0 <= tv_nsec < NSEC_PER_SEC
  310. * For negative values only the tv_sec field is negative !
  311. */
  312. void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
  313. {
  314. while (nsec >= NSEC_PER_SEC) {
  315. /*
  316. * The following asm() prevents the compiler from
  317. * optimising this loop into a modulo operation. See
  318. * also __iter_div_u64_rem() in include/linux/time.h
  319. */
  320. asm("" : "+rm"(nsec));
  321. nsec -= NSEC_PER_SEC;
  322. ++sec;
  323. }
  324. while (nsec < 0) {
  325. asm("" : "+rm"(nsec));
  326. nsec += NSEC_PER_SEC;
  327. --sec;
  328. }
  329. ts->tv_sec = sec;
  330. ts->tv_nsec = nsec;
  331. }
  332. EXPORT_SYMBOL(set_normalized_timespec);
  333. /**
  334. * ns_to_timespec - Convert nanoseconds to timespec
  335. * @nsec: the nanoseconds value to be converted
  336. *
  337. * Returns the timespec representation of the nsec parameter.
  338. */
  339. struct timespec ns_to_timespec(const s64 nsec)
  340. {
  341. struct timespec ts;
  342. s32 rem;
  343. if (!nsec)
  344. return (struct timespec) {0, 0};
  345. ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
  346. if (unlikely(rem < 0)) {
  347. ts.tv_sec--;
  348. rem += NSEC_PER_SEC;
  349. }
  350. ts.tv_nsec = rem;
  351. return ts;
  352. }
  353. EXPORT_SYMBOL(ns_to_timespec);
  354. /**
  355. * ns_to_timeval - Convert nanoseconds to timeval
  356. * @nsec: the nanoseconds value to be converted
  357. *
  358. * Returns the timeval representation of the nsec parameter.
  359. */
  360. struct timeval ns_to_timeval(const s64 nsec)
  361. {
  362. struct timespec ts = ns_to_timespec(nsec);
  363. struct timeval tv;
  364. tv.tv_sec = ts.tv_sec;
  365. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  366. return tv;
  367. }
  368. EXPORT_SYMBOL(ns_to_timeval);
  369. /*
  370. * When we convert to jiffies then we interpret incoming values
  371. * the following way:
  372. *
  373. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  374. *
  375. * - 'too large' values [that would result in larger than
  376. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  377. *
  378. * - all other values are converted to jiffies by either multiplying
  379. * the input value by a factor or dividing it with a factor
  380. *
  381. * We must also be careful about 32-bit overflows.
  382. */
  383. unsigned long msecs_to_jiffies(const unsigned int m)
  384. {
  385. /*
  386. * Negative value, means infinite timeout:
  387. */
  388. if ((int)m < 0)
  389. return MAX_JIFFY_OFFSET;
  390. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  391. /*
  392. * HZ is equal to or smaller than 1000, and 1000 is a nice
  393. * round multiple of HZ, divide with the factor between them,
  394. * but round upwards:
  395. */
  396. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  397. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  398. /*
  399. * HZ is larger than 1000, and HZ is a nice round multiple of
  400. * 1000 - simply multiply with the factor between them.
  401. *
  402. * But first make sure the multiplication result cannot
  403. * overflow:
  404. */
  405. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  406. return MAX_JIFFY_OFFSET;
  407. return m * (HZ / MSEC_PER_SEC);
  408. #else
  409. /*
  410. * Generic case - multiply, round and divide. But first
  411. * check that if we are doing a net multiplication, that
  412. * we wouldn't overflow:
  413. */
  414. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  415. return MAX_JIFFY_OFFSET;
  416. return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
  417. >> MSEC_TO_HZ_SHR32;
  418. #endif
  419. }
  420. EXPORT_SYMBOL(msecs_to_jiffies);
  421. unsigned long usecs_to_jiffies(const unsigned int u)
  422. {
  423. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  424. return MAX_JIFFY_OFFSET;
  425. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  426. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  427. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  428. return u * (HZ / USEC_PER_SEC);
  429. #else
  430. return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
  431. >> USEC_TO_HZ_SHR32;
  432. #endif
  433. }
  434. EXPORT_SYMBOL(usecs_to_jiffies);
  435. /*
  436. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  437. * that a remainder subtract here would not do the right thing as the
  438. * resolution values don't fall on second boundries. I.e. the line:
  439. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  440. *
  441. * Rather, we just shift the bits off the right.
  442. *
  443. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  444. * value to a scaled second value.
  445. */
  446. unsigned long
  447. timespec_to_jiffies(const struct timespec *value)
  448. {
  449. unsigned long sec = value->tv_sec;
  450. long nsec = value->tv_nsec + TICK_NSEC - 1;
  451. if (sec >= MAX_SEC_IN_JIFFIES){
  452. sec = MAX_SEC_IN_JIFFIES;
  453. nsec = 0;
  454. }
  455. return (((u64)sec * SEC_CONVERSION) +
  456. (((u64)nsec * NSEC_CONVERSION) >>
  457. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  458. }
  459. EXPORT_SYMBOL(timespec_to_jiffies);
  460. void
  461. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  462. {
  463. /*
  464. * Convert jiffies to nanoseconds and separate with
  465. * one divide.
  466. */
  467. u32 rem;
  468. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  469. NSEC_PER_SEC, &rem);
  470. value->tv_nsec = rem;
  471. }
  472. EXPORT_SYMBOL(jiffies_to_timespec);
  473. /* Same for "timeval"
  474. *
  475. * Well, almost. The problem here is that the real system resolution is
  476. * in nanoseconds and the value being converted is in micro seconds.
  477. * Also for some machines (those that use HZ = 1024, in-particular),
  478. * there is a LARGE error in the tick size in microseconds.
  479. * The solution we use is to do the rounding AFTER we convert the
  480. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  481. * Instruction wise, this should cost only an additional add with carry
  482. * instruction above the way it was done above.
  483. */
  484. unsigned long
  485. timeval_to_jiffies(const struct timeval *value)
  486. {
  487. unsigned long sec = value->tv_sec;
  488. long usec = value->tv_usec;
  489. if (sec >= MAX_SEC_IN_JIFFIES){
  490. sec = MAX_SEC_IN_JIFFIES;
  491. usec = 0;
  492. }
  493. return (((u64)sec * SEC_CONVERSION) +
  494. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  495. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  496. }
  497. EXPORT_SYMBOL(timeval_to_jiffies);
  498. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  499. {
  500. /*
  501. * Convert jiffies to nanoseconds and separate with
  502. * one divide.
  503. */
  504. u32 rem;
  505. value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
  506. NSEC_PER_SEC, &rem);
  507. value->tv_usec = rem / NSEC_PER_USEC;
  508. }
  509. EXPORT_SYMBOL(jiffies_to_timeval);
  510. /*
  511. * Convert jiffies/jiffies_64 to clock_t and back.
  512. */
  513. clock_t jiffies_to_clock_t(unsigned long x)
  514. {
  515. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  516. # if HZ < USER_HZ
  517. return x * (USER_HZ / HZ);
  518. # else
  519. return x / (HZ / USER_HZ);
  520. # endif
  521. #else
  522. return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
  523. #endif
  524. }
  525. EXPORT_SYMBOL(jiffies_to_clock_t);
  526. unsigned long clock_t_to_jiffies(unsigned long x)
  527. {
  528. #if (HZ % USER_HZ)==0
  529. if (x >= ~0UL / (HZ / USER_HZ))
  530. return ~0UL;
  531. return x * (HZ / USER_HZ);
  532. #else
  533. /* Don't worry about loss of precision here .. */
  534. if (x >= ~0UL / HZ * USER_HZ)
  535. return ~0UL;
  536. /* .. but do try to contain it here */
  537. return div_u64((u64)x * HZ, USER_HZ);
  538. #endif
  539. }
  540. EXPORT_SYMBOL(clock_t_to_jiffies);
  541. u64 jiffies_64_to_clock_t(u64 x)
  542. {
  543. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  544. # if HZ < USER_HZ
  545. x = div_u64(x * USER_HZ, HZ);
  546. # elif HZ > USER_HZ
  547. x = div_u64(x, HZ / USER_HZ);
  548. # else
  549. /* Nothing to do */
  550. # endif
  551. #else
  552. /*
  553. * There are better ways that don't overflow early,
  554. * but even this doesn't overflow in hundreds of years
  555. * in 64 bits, so..
  556. */
  557. x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
  558. #endif
  559. return x;
  560. }
  561. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  562. u64 nsec_to_clock_t(u64 x)
  563. {
  564. #if (NSEC_PER_SEC % USER_HZ) == 0
  565. return div_u64(x, NSEC_PER_SEC / USER_HZ);
  566. #elif (USER_HZ % 512) == 0
  567. return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
  568. #else
  569. /*
  570. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  571. * overflow after 64.99 years.
  572. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  573. */
  574. return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
  575. #endif
  576. }
  577. /**
  578. * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
  579. *
  580. * @n: nsecs in u64
  581. *
  582. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  583. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  584. * for scheduler, not for use in device drivers to calculate timeout value.
  585. *
  586. * note:
  587. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  588. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  589. */
  590. u64 nsecs_to_jiffies64(u64 n)
  591. {
  592. #if (NSEC_PER_SEC % HZ) == 0
  593. /* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
  594. return div_u64(n, NSEC_PER_SEC / HZ);
  595. #elif (HZ % 512) == 0
  596. /* overflow after 292 years if HZ = 1024 */
  597. return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
  598. #else
  599. /*
  600. * Generic case - optimized for cases where HZ is a multiple of 3.
  601. * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
  602. */
  603. return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
  604. #endif
  605. }
  606. /**
  607. * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
  608. *
  609. * @n: nsecs in u64
  610. *
  611. * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
  612. * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
  613. * for scheduler, not for use in device drivers to calculate timeout value.
  614. *
  615. * note:
  616. * NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
  617. * ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
  618. */
  619. unsigned long nsecs_to_jiffies(u64 n)
  620. {
  621. return (unsigned long)nsecs_to_jiffies64(n);
  622. }
  623. /*
  624. * Add two timespec values and do a safety check for overflow.
  625. * It's assumed that both values are valid (>= 0)
  626. */
  627. struct timespec timespec_add_safe(const struct timespec lhs,
  628. const struct timespec rhs)
  629. {
  630. struct timespec res;
  631. set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
  632. lhs.tv_nsec + rhs.tv_nsec);
  633. if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
  634. res.tv_sec = TIME_T_MAX;
  635. return res;
  636. }