fair.c 133 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <trace/events/sched.h>
  29. #include "sched.h"
  30. /*
  31. * Targeted preemption latency for CPU-bound tasks:
  32. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  33. *
  34. * NOTE: this latency value is not the same as the concept of
  35. * 'timeslice length' - timeslices in CFS are of variable length
  36. * and have no persistent notion like in traditional, time-slice
  37. * based scheduling concepts.
  38. *
  39. * (to see the precise effective timeslice length of your workload,
  40. * run vmstat and monitor the context-switches (cs) field)
  41. */
  42. unsigned int sysctl_sched_latency = 6000000ULL;
  43. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  44. /*
  45. * The initial- and re-scaling of tunables is configurable
  46. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  47. *
  48. * Options are:
  49. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  50. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  51. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  52. */
  53. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  54. = SCHED_TUNABLESCALING_LOG;
  55. /*
  56. * Minimal preemption granularity for CPU-bound tasks:
  57. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58. */
  59. unsigned int sysctl_sched_min_granularity = 750000ULL;
  60. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  61. /*
  62. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  63. */
  64. static unsigned int sched_nr_latency = 8;
  65. /*
  66. * After fork, child runs first. If set to 0 (default) then
  67. * parent will (try to) run first.
  68. */
  69. unsigned int sysctl_sched_child_runs_first __read_mostly;
  70. /*
  71. * SCHED_OTHER wake-up granularity.
  72. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  73. *
  74. * This option delays the preemption effects of decoupled workloads
  75. * and reduces their over-scheduling. Synchronous workloads will still
  76. * have immediate wakeup/sleep latencies.
  77. */
  78. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  79. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  80. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  81. /*
  82. * The exponential sliding window over which load is averaged for shares
  83. * distribution.
  84. * (default: 10msec)
  85. */
  86. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  87. #ifdef CONFIG_CFS_BANDWIDTH
  88. /*
  89. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  90. * each time a cfs_rq requests quota.
  91. *
  92. * Note: in the case that the slice exceeds the runtime remaining (either due
  93. * to consumption or the quota being specified to be smaller than the slice)
  94. * we will always only issue the remaining available time.
  95. *
  96. * default: 5 msec, units: microseconds
  97. */
  98. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  99. #endif
  100. /*
  101. * Increase the granularity value when there are more CPUs,
  102. * because with more CPUs the 'effective latency' as visible
  103. * to users decreases. But the relationship is not linear,
  104. * so pick a second-best guess by going with the log2 of the
  105. * number of CPUs.
  106. *
  107. * This idea comes from the SD scheduler of Con Kolivas:
  108. */
  109. static int get_update_sysctl_factor(void)
  110. {
  111. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  112. unsigned int factor;
  113. switch (sysctl_sched_tunable_scaling) {
  114. case SCHED_TUNABLESCALING_NONE:
  115. factor = 1;
  116. break;
  117. case SCHED_TUNABLESCALING_LINEAR:
  118. factor = cpus;
  119. break;
  120. case SCHED_TUNABLESCALING_LOG:
  121. default:
  122. factor = 1 + ilog2(cpus);
  123. break;
  124. }
  125. return factor;
  126. }
  127. static void update_sysctl(void)
  128. {
  129. unsigned int factor = get_update_sysctl_factor();
  130. #define SET_SYSCTL(name) \
  131. (sysctl_##name = (factor) * normalized_sysctl_##name)
  132. SET_SYSCTL(sched_min_granularity);
  133. SET_SYSCTL(sched_latency);
  134. SET_SYSCTL(sched_wakeup_granularity);
  135. #undef SET_SYSCTL
  136. }
  137. void sched_init_granularity(void)
  138. {
  139. update_sysctl();
  140. }
  141. #if BITS_PER_LONG == 32
  142. # define WMULT_CONST (~0UL)
  143. #else
  144. # define WMULT_CONST (1UL << 32)
  145. #endif
  146. #define WMULT_SHIFT 32
  147. /*
  148. * Shift right and round:
  149. */
  150. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  151. /*
  152. * delta *= weight / lw
  153. */
  154. static unsigned long
  155. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  156. struct load_weight *lw)
  157. {
  158. u64 tmp;
  159. /*
  160. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  161. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  162. * 2^SCHED_LOAD_RESOLUTION.
  163. */
  164. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  165. tmp = (u64)delta_exec * scale_load_down(weight);
  166. else
  167. tmp = (u64)delta_exec;
  168. if (!lw->inv_weight) {
  169. unsigned long w = scale_load_down(lw->weight);
  170. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  171. lw->inv_weight = 1;
  172. else if (unlikely(!w))
  173. lw->inv_weight = WMULT_CONST;
  174. else
  175. lw->inv_weight = WMULT_CONST / w;
  176. }
  177. /*
  178. * Check whether we'd overflow the 64-bit multiplication:
  179. */
  180. if (unlikely(tmp > WMULT_CONST))
  181. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  182. WMULT_SHIFT/2);
  183. else
  184. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  185. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  186. }
  187. const struct sched_class fair_sched_class;
  188. /**************************************************************
  189. * CFS operations on generic schedulable entities:
  190. */
  191. #ifdef CONFIG_FAIR_GROUP_SCHED
  192. /* cpu runqueue to which this cfs_rq is attached */
  193. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  194. {
  195. return cfs_rq->rq;
  196. }
  197. /* An entity is a task if it doesn't "own" a runqueue */
  198. #define entity_is_task(se) (!se->my_q)
  199. static inline struct task_struct *task_of(struct sched_entity *se)
  200. {
  201. #ifdef CONFIG_SCHED_DEBUG
  202. WARN_ON_ONCE(!entity_is_task(se));
  203. #endif
  204. return container_of(se, struct task_struct, se);
  205. }
  206. /* Walk up scheduling entities hierarchy */
  207. #define for_each_sched_entity(se) \
  208. for (; se; se = se->parent)
  209. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  210. {
  211. return p->se.cfs_rq;
  212. }
  213. /* runqueue on which this entity is (to be) queued */
  214. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  215. {
  216. return se->cfs_rq;
  217. }
  218. /* runqueue "owned" by this group */
  219. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  220. {
  221. return grp->my_q;
  222. }
  223. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  224. {
  225. if (!cfs_rq->on_list) {
  226. /*
  227. * Ensure we either appear before our parent (if already
  228. * enqueued) or force our parent to appear after us when it is
  229. * enqueued. The fact that we always enqueue bottom-up
  230. * reduces this to two cases.
  231. */
  232. if (cfs_rq->tg->parent &&
  233. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  234. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  235. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  236. } else {
  237. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  238. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  239. }
  240. cfs_rq->on_list = 1;
  241. }
  242. }
  243. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  244. {
  245. if (cfs_rq->on_list) {
  246. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  247. cfs_rq->on_list = 0;
  248. }
  249. }
  250. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  251. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  252. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  253. /* Do the two (enqueued) entities belong to the same group ? */
  254. static inline int
  255. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  256. {
  257. if (se->cfs_rq == pse->cfs_rq)
  258. return 1;
  259. return 0;
  260. }
  261. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  262. {
  263. return se->parent;
  264. }
  265. /* return depth at which a sched entity is present in the hierarchy */
  266. static inline int depth_se(struct sched_entity *se)
  267. {
  268. int depth = 0;
  269. for_each_sched_entity(se)
  270. depth++;
  271. return depth;
  272. }
  273. static void
  274. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  275. {
  276. int se_depth, pse_depth;
  277. /*
  278. * preemption test can be made between sibling entities who are in the
  279. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  280. * both tasks until we find their ancestors who are siblings of common
  281. * parent.
  282. */
  283. /* First walk up until both entities are at same depth */
  284. se_depth = depth_se(*se);
  285. pse_depth = depth_se(*pse);
  286. while (se_depth > pse_depth) {
  287. se_depth--;
  288. *se = parent_entity(*se);
  289. }
  290. while (pse_depth > se_depth) {
  291. pse_depth--;
  292. *pse = parent_entity(*pse);
  293. }
  294. while (!is_same_group(*se, *pse)) {
  295. *se = parent_entity(*se);
  296. *pse = parent_entity(*pse);
  297. }
  298. }
  299. #else /* !CONFIG_FAIR_GROUP_SCHED */
  300. static inline struct task_struct *task_of(struct sched_entity *se)
  301. {
  302. return container_of(se, struct task_struct, se);
  303. }
  304. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  305. {
  306. return container_of(cfs_rq, struct rq, cfs);
  307. }
  308. #define entity_is_task(se) 1
  309. #define for_each_sched_entity(se) \
  310. for (; se; se = NULL)
  311. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  312. {
  313. return &task_rq(p)->cfs;
  314. }
  315. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  316. {
  317. struct task_struct *p = task_of(se);
  318. struct rq *rq = task_rq(p);
  319. return &rq->cfs;
  320. }
  321. /* runqueue "owned" by this group */
  322. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  323. {
  324. return NULL;
  325. }
  326. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  327. {
  328. }
  329. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  330. {
  331. }
  332. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  333. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  334. static inline int
  335. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  336. {
  337. return 1;
  338. }
  339. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  340. {
  341. return NULL;
  342. }
  343. static inline void
  344. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  345. {
  346. }
  347. #endif /* CONFIG_FAIR_GROUP_SCHED */
  348. static __always_inline
  349. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
  350. /**************************************************************
  351. * Scheduling class tree data structure manipulation methods:
  352. */
  353. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  354. {
  355. s64 delta = (s64)(vruntime - min_vruntime);
  356. if (delta > 0)
  357. min_vruntime = vruntime;
  358. return min_vruntime;
  359. }
  360. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  361. {
  362. s64 delta = (s64)(vruntime - min_vruntime);
  363. if (delta < 0)
  364. min_vruntime = vruntime;
  365. return min_vruntime;
  366. }
  367. static inline int entity_before(struct sched_entity *a,
  368. struct sched_entity *b)
  369. {
  370. return (s64)(a->vruntime - b->vruntime) < 0;
  371. }
  372. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  373. {
  374. u64 vruntime = cfs_rq->min_vruntime;
  375. if (cfs_rq->curr)
  376. vruntime = cfs_rq->curr->vruntime;
  377. if (cfs_rq->rb_leftmost) {
  378. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  379. struct sched_entity,
  380. run_node);
  381. if (!cfs_rq->curr)
  382. vruntime = se->vruntime;
  383. else
  384. vruntime = min_vruntime(vruntime, se->vruntime);
  385. }
  386. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  387. #ifndef CONFIG_64BIT
  388. smp_wmb();
  389. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  390. #endif
  391. }
  392. /*
  393. * Enqueue an entity into the rb-tree:
  394. */
  395. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  396. {
  397. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  398. struct rb_node *parent = NULL;
  399. struct sched_entity *entry;
  400. int leftmost = 1;
  401. /*
  402. * Find the right place in the rbtree:
  403. */
  404. while (*link) {
  405. parent = *link;
  406. entry = rb_entry(parent, struct sched_entity, run_node);
  407. /*
  408. * We dont care about collisions. Nodes with
  409. * the same key stay together.
  410. */
  411. if (entity_before(se, entry)) {
  412. link = &parent->rb_left;
  413. } else {
  414. link = &parent->rb_right;
  415. leftmost = 0;
  416. }
  417. }
  418. /*
  419. * Maintain a cache of leftmost tree entries (it is frequently
  420. * used):
  421. */
  422. if (leftmost)
  423. cfs_rq->rb_leftmost = &se->run_node;
  424. rb_link_node(&se->run_node, parent, link);
  425. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  426. }
  427. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  428. {
  429. if (cfs_rq->rb_leftmost == &se->run_node) {
  430. struct rb_node *next_node;
  431. next_node = rb_next(&se->run_node);
  432. cfs_rq->rb_leftmost = next_node;
  433. }
  434. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  435. }
  436. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  437. {
  438. struct rb_node *left = cfs_rq->rb_leftmost;
  439. if (!left)
  440. return NULL;
  441. return rb_entry(left, struct sched_entity, run_node);
  442. }
  443. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  444. {
  445. struct rb_node *next = rb_next(&se->run_node);
  446. if (!next)
  447. return NULL;
  448. return rb_entry(next, struct sched_entity, run_node);
  449. }
  450. #ifdef CONFIG_SCHED_DEBUG
  451. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  452. {
  453. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  454. if (!last)
  455. return NULL;
  456. return rb_entry(last, struct sched_entity, run_node);
  457. }
  458. /**************************************************************
  459. * Scheduling class statistics methods:
  460. */
  461. int sched_proc_update_handler(struct ctl_table *table, int write,
  462. void __user *buffer, size_t *lenp,
  463. loff_t *ppos)
  464. {
  465. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  466. int factor = get_update_sysctl_factor();
  467. if (ret || !write)
  468. return ret;
  469. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  470. sysctl_sched_min_granularity);
  471. #define WRT_SYSCTL(name) \
  472. (normalized_sysctl_##name = sysctl_##name / (factor))
  473. WRT_SYSCTL(sched_min_granularity);
  474. WRT_SYSCTL(sched_latency);
  475. WRT_SYSCTL(sched_wakeup_granularity);
  476. #undef WRT_SYSCTL
  477. return 0;
  478. }
  479. #endif
  480. /*
  481. * delta /= w
  482. */
  483. static inline unsigned long
  484. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  485. {
  486. if (unlikely(se->load.weight != NICE_0_LOAD))
  487. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  488. return delta;
  489. }
  490. /*
  491. * The idea is to set a period in which each task runs once.
  492. *
  493. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  494. * this period because otherwise the slices get too small.
  495. *
  496. * p = (nr <= nl) ? l : l*nr/nl
  497. */
  498. static u64 __sched_period(unsigned long nr_running)
  499. {
  500. u64 period = sysctl_sched_latency;
  501. unsigned long nr_latency = sched_nr_latency;
  502. if (unlikely(nr_running > nr_latency)) {
  503. period = sysctl_sched_min_granularity;
  504. period *= nr_running;
  505. }
  506. return period;
  507. }
  508. /*
  509. * We calculate the wall-time slice from the period by taking a part
  510. * proportional to the weight.
  511. *
  512. * s = p*P[w/rw]
  513. */
  514. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  515. {
  516. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  517. for_each_sched_entity(se) {
  518. struct load_weight *load;
  519. struct load_weight lw;
  520. cfs_rq = cfs_rq_of(se);
  521. load = &cfs_rq->load;
  522. if (unlikely(!se->on_rq)) {
  523. lw = cfs_rq->load;
  524. update_load_add(&lw, se->load.weight);
  525. load = &lw;
  526. }
  527. slice = calc_delta_mine(slice, se->load.weight, load);
  528. }
  529. return slice;
  530. }
  531. /*
  532. * We calculate the vruntime slice of a to be inserted task
  533. *
  534. * vs = s/w
  535. */
  536. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  537. {
  538. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  539. }
  540. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  541. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  542. /*
  543. * Update the current task's runtime statistics. Skip current tasks that
  544. * are not in our scheduling class.
  545. */
  546. static inline void
  547. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  548. unsigned long delta_exec)
  549. {
  550. unsigned long delta_exec_weighted;
  551. schedstat_set(curr->statistics.exec_max,
  552. max((u64)delta_exec, curr->statistics.exec_max));
  553. curr->sum_exec_runtime += delta_exec;
  554. schedstat_add(cfs_rq, exec_clock, delta_exec);
  555. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  556. curr->vruntime += delta_exec_weighted;
  557. update_min_vruntime(cfs_rq);
  558. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  559. cfs_rq->load_unacc_exec_time += delta_exec;
  560. #endif
  561. }
  562. static void update_curr(struct cfs_rq *cfs_rq)
  563. {
  564. struct sched_entity *curr = cfs_rq->curr;
  565. u64 now = rq_of(cfs_rq)->clock_task;
  566. unsigned long delta_exec;
  567. if (unlikely(!curr))
  568. return;
  569. /*
  570. * Get the amount of time the current task was running
  571. * since the last time we changed load (this cannot
  572. * overflow on 32 bits):
  573. */
  574. delta_exec = (unsigned long)(now - curr->exec_start);
  575. if (!delta_exec)
  576. return;
  577. __update_curr(cfs_rq, curr, delta_exec);
  578. curr->exec_start = now;
  579. if (entity_is_task(curr)) {
  580. struct task_struct *curtask = task_of(curr);
  581. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  582. cpuacct_charge(curtask, delta_exec);
  583. account_group_exec_runtime(curtask, delta_exec);
  584. }
  585. account_cfs_rq_runtime(cfs_rq, delta_exec);
  586. }
  587. static inline void
  588. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  589. {
  590. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  591. }
  592. /*
  593. * Task is being enqueued - update stats:
  594. */
  595. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  596. {
  597. /*
  598. * Are we enqueueing a waiting task? (for current tasks
  599. * a dequeue/enqueue event is a NOP)
  600. */
  601. if (se != cfs_rq->curr)
  602. update_stats_wait_start(cfs_rq, se);
  603. }
  604. static void
  605. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  606. {
  607. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  608. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  609. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  610. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  611. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  612. #ifdef CONFIG_SCHEDSTATS
  613. if (entity_is_task(se)) {
  614. trace_sched_stat_wait(task_of(se),
  615. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  616. }
  617. #endif
  618. schedstat_set(se->statistics.wait_start, 0);
  619. }
  620. static inline void
  621. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  622. {
  623. /*
  624. * Mark the end of the wait period if dequeueing a
  625. * waiting task:
  626. */
  627. if (se != cfs_rq->curr)
  628. update_stats_wait_end(cfs_rq, se);
  629. }
  630. /*
  631. * We are picking a new current task - update its stats:
  632. */
  633. static inline void
  634. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  635. {
  636. /*
  637. * We are starting a new run period:
  638. */
  639. se->exec_start = rq_of(cfs_rq)->clock_task;
  640. }
  641. /**************************************************
  642. * Scheduling class queueing methods:
  643. */
  644. static void
  645. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  646. {
  647. update_load_add(&cfs_rq->load, se->load.weight);
  648. if (!parent_entity(se))
  649. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  650. #ifdef CONFIG_SMP
  651. if (entity_is_task(se))
  652. list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
  653. #endif
  654. cfs_rq->nr_running++;
  655. }
  656. static void
  657. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. update_load_sub(&cfs_rq->load, se->load.weight);
  660. if (!parent_entity(se))
  661. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  662. if (entity_is_task(se))
  663. list_del_init(&se->group_node);
  664. cfs_rq->nr_running--;
  665. }
  666. #ifdef CONFIG_FAIR_GROUP_SCHED
  667. /* we need this in update_cfs_load and load-balance functions below */
  668. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  669. # ifdef CONFIG_SMP
  670. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  671. int global_update)
  672. {
  673. struct task_group *tg = cfs_rq->tg;
  674. long load_avg;
  675. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  676. load_avg -= cfs_rq->load_contribution;
  677. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  678. atomic_add(load_avg, &tg->load_weight);
  679. cfs_rq->load_contribution += load_avg;
  680. }
  681. }
  682. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  683. {
  684. u64 period = sysctl_sched_shares_window;
  685. u64 now, delta;
  686. unsigned long load = cfs_rq->load.weight;
  687. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  688. return;
  689. now = rq_of(cfs_rq)->clock_task;
  690. delta = now - cfs_rq->load_stamp;
  691. /* truncate load history at 4 idle periods */
  692. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  693. now - cfs_rq->load_last > 4 * period) {
  694. cfs_rq->load_period = 0;
  695. cfs_rq->load_avg = 0;
  696. delta = period - 1;
  697. }
  698. cfs_rq->load_stamp = now;
  699. cfs_rq->load_unacc_exec_time = 0;
  700. cfs_rq->load_period += delta;
  701. if (load) {
  702. cfs_rq->load_last = now;
  703. cfs_rq->load_avg += delta * load;
  704. }
  705. /* consider updating load contribution on each fold or truncate */
  706. if (global_update || cfs_rq->load_period > period
  707. || !cfs_rq->load_period)
  708. update_cfs_rq_load_contribution(cfs_rq, global_update);
  709. while (cfs_rq->load_period > period) {
  710. /*
  711. * Inline assembly required to prevent the compiler
  712. * optimising this loop into a divmod call.
  713. * See __iter_div_u64_rem() for another example of this.
  714. */
  715. asm("" : "+rm" (cfs_rq->load_period));
  716. cfs_rq->load_period /= 2;
  717. cfs_rq->load_avg /= 2;
  718. }
  719. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  720. list_del_leaf_cfs_rq(cfs_rq);
  721. }
  722. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  723. {
  724. long tg_weight;
  725. /*
  726. * Use this CPU's actual weight instead of the last load_contribution
  727. * to gain a more accurate current total weight. See
  728. * update_cfs_rq_load_contribution().
  729. */
  730. tg_weight = atomic_read(&tg->load_weight);
  731. tg_weight -= cfs_rq->load_contribution;
  732. tg_weight += cfs_rq->load.weight;
  733. return tg_weight;
  734. }
  735. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  736. {
  737. long tg_weight, load, shares;
  738. tg_weight = calc_tg_weight(tg, cfs_rq);
  739. load = cfs_rq->load.weight;
  740. shares = (tg->shares * load);
  741. if (tg_weight)
  742. shares /= tg_weight;
  743. if (shares < MIN_SHARES)
  744. shares = MIN_SHARES;
  745. if (shares > tg->shares)
  746. shares = tg->shares;
  747. return shares;
  748. }
  749. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  750. {
  751. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  752. update_cfs_load(cfs_rq, 0);
  753. update_cfs_shares(cfs_rq);
  754. }
  755. }
  756. # else /* CONFIG_SMP */
  757. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  758. {
  759. }
  760. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  761. {
  762. return tg->shares;
  763. }
  764. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  765. {
  766. }
  767. # endif /* CONFIG_SMP */
  768. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  769. unsigned long weight)
  770. {
  771. if (se->on_rq) {
  772. /* commit outstanding execution time */
  773. if (cfs_rq->curr == se)
  774. update_curr(cfs_rq);
  775. account_entity_dequeue(cfs_rq, se);
  776. }
  777. update_load_set(&se->load, weight);
  778. if (se->on_rq)
  779. account_entity_enqueue(cfs_rq, se);
  780. }
  781. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  782. {
  783. struct task_group *tg;
  784. struct sched_entity *se;
  785. long shares;
  786. tg = cfs_rq->tg;
  787. se = tg->se[cpu_of(rq_of(cfs_rq))];
  788. if (!se || throttled_hierarchy(cfs_rq))
  789. return;
  790. #ifndef CONFIG_SMP
  791. if (likely(se->load.weight == tg->shares))
  792. return;
  793. #endif
  794. shares = calc_cfs_shares(cfs_rq, tg);
  795. reweight_entity(cfs_rq_of(se), se, shares);
  796. }
  797. #else /* CONFIG_FAIR_GROUP_SCHED */
  798. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  799. {
  800. }
  801. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  802. {
  803. }
  804. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  805. {
  806. }
  807. #endif /* CONFIG_FAIR_GROUP_SCHED */
  808. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  809. {
  810. #ifdef CONFIG_SCHEDSTATS
  811. struct task_struct *tsk = NULL;
  812. if (entity_is_task(se))
  813. tsk = task_of(se);
  814. if (se->statistics.sleep_start) {
  815. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  816. if ((s64)delta < 0)
  817. delta = 0;
  818. if (unlikely(delta > se->statistics.sleep_max))
  819. se->statistics.sleep_max = delta;
  820. se->statistics.sleep_start = 0;
  821. se->statistics.sum_sleep_runtime += delta;
  822. if (tsk) {
  823. account_scheduler_latency(tsk, delta >> 10, 1);
  824. trace_sched_stat_sleep(tsk, delta);
  825. }
  826. }
  827. if (se->statistics.block_start) {
  828. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  829. if ((s64)delta < 0)
  830. delta = 0;
  831. if (unlikely(delta > se->statistics.block_max))
  832. se->statistics.block_max = delta;
  833. se->statistics.block_start = 0;
  834. se->statistics.sum_sleep_runtime += delta;
  835. if (tsk) {
  836. if (tsk->in_iowait) {
  837. se->statistics.iowait_sum += delta;
  838. se->statistics.iowait_count++;
  839. trace_sched_stat_iowait(tsk, delta);
  840. }
  841. trace_sched_stat_blocked(tsk, delta);
  842. /*
  843. * Blocking time is in units of nanosecs, so shift by
  844. * 20 to get a milliseconds-range estimation of the
  845. * amount of time that the task spent sleeping:
  846. */
  847. if (unlikely(prof_on == SLEEP_PROFILING)) {
  848. profile_hits(SLEEP_PROFILING,
  849. (void *)get_wchan(tsk),
  850. delta >> 20);
  851. }
  852. account_scheduler_latency(tsk, delta >> 10, 0);
  853. }
  854. }
  855. #endif
  856. }
  857. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  858. {
  859. #ifdef CONFIG_SCHED_DEBUG
  860. s64 d = se->vruntime - cfs_rq->min_vruntime;
  861. if (d < 0)
  862. d = -d;
  863. if (d > 3*sysctl_sched_latency)
  864. schedstat_inc(cfs_rq, nr_spread_over);
  865. #endif
  866. }
  867. static void
  868. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  869. {
  870. u64 vruntime = cfs_rq->min_vruntime;
  871. /*
  872. * The 'current' period is already promised to the current tasks,
  873. * however the extra weight of the new task will slow them down a
  874. * little, place the new task so that it fits in the slot that
  875. * stays open at the end.
  876. */
  877. if (initial && sched_feat(START_DEBIT))
  878. vruntime += sched_vslice(cfs_rq, se);
  879. /* sleeps up to a single latency don't count. */
  880. if (!initial) {
  881. unsigned long thresh = sysctl_sched_latency;
  882. /*
  883. * Halve their sleep time's effect, to allow
  884. * for a gentler effect of sleepers:
  885. */
  886. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  887. thresh >>= 1;
  888. vruntime -= thresh;
  889. }
  890. /* ensure we never gain time by being placed backwards. */
  891. vruntime = max_vruntime(se->vruntime, vruntime);
  892. se->vruntime = vruntime;
  893. }
  894. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  895. static void
  896. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  897. {
  898. /*
  899. * Update the normalized vruntime before updating min_vruntime
  900. * through callig update_curr().
  901. */
  902. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  903. se->vruntime += cfs_rq->min_vruntime;
  904. /*
  905. * Update run-time statistics of the 'current'.
  906. */
  907. update_curr(cfs_rq);
  908. update_cfs_load(cfs_rq, 0);
  909. account_entity_enqueue(cfs_rq, se);
  910. update_cfs_shares(cfs_rq);
  911. if (flags & ENQUEUE_WAKEUP) {
  912. place_entity(cfs_rq, se, 0);
  913. enqueue_sleeper(cfs_rq, se);
  914. }
  915. update_stats_enqueue(cfs_rq, se);
  916. check_spread(cfs_rq, se);
  917. if (se != cfs_rq->curr)
  918. __enqueue_entity(cfs_rq, se);
  919. se->on_rq = 1;
  920. if (cfs_rq->nr_running == 1) {
  921. list_add_leaf_cfs_rq(cfs_rq);
  922. check_enqueue_throttle(cfs_rq);
  923. }
  924. }
  925. static void __clear_buddies_last(struct sched_entity *se)
  926. {
  927. for_each_sched_entity(se) {
  928. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  929. if (cfs_rq->last == se)
  930. cfs_rq->last = NULL;
  931. else
  932. break;
  933. }
  934. }
  935. static void __clear_buddies_next(struct sched_entity *se)
  936. {
  937. for_each_sched_entity(se) {
  938. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  939. if (cfs_rq->next == se)
  940. cfs_rq->next = NULL;
  941. else
  942. break;
  943. }
  944. }
  945. static void __clear_buddies_skip(struct sched_entity *se)
  946. {
  947. for_each_sched_entity(se) {
  948. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  949. if (cfs_rq->skip == se)
  950. cfs_rq->skip = NULL;
  951. else
  952. break;
  953. }
  954. }
  955. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  956. {
  957. if (cfs_rq->last == se)
  958. __clear_buddies_last(se);
  959. if (cfs_rq->next == se)
  960. __clear_buddies_next(se);
  961. if (cfs_rq->skip == se)
  962. __clear_buddies_skip(se);
  963. }
  964. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  965. static void
  966. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  967. {
  968. /*
  969. * Update run-time statistics of the 'current'.
  970. */
  971. update_curr(cfs_rq);
  972. update_stats_dequeue(cfs_rq, se);
  973. if (flags & DEQUEUE_SLEEP) {
  974. #ifdef CONFIG_SCHEDSTATS
  975. if (entity_is_task(se)) {
  976. struct task_struct *tsk = task_of(se);
  977. if (tsk->state & TASK_INTERRUPTIBLE)
  978. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  979. if (tsk->state & TASK_UNINTERRUPTIBLE)
  980. se->statistics.block_start = rq_of(cfs_rq)->clock;
  981. }
  982. #endif
  983. }
  984. clear_buddies(cfs_rq, se);
  985. if (se != cfs_rq->curr)
  986. __dequeue_entity(cfs_rq, se);
  987. se->on_rq = 0;
  988. update_cfs_load(cfs_rq, 0);
  989. account_entity_dequeue(cfs_rq, se);
  990. /*
  991. * Normalize the entity after updating the min_vruntime because the
  992. * update can refer to the ->curr item and we need to reflect this
  993. * movement in our normalized position.
  994. */
  995. if (!(flags & DEQUEUE_SLEEP))
  996. se->vruntime -= cfs_rq->min_vruntime;
  997. /* return excess runtime on last dequeue */
  998. return_cfs_rq_runtime(cfs_rq);
  999. update_min_vruntime(cfs_rq);
  1000. update_cfs_shares(cfs_rq);
  1001. }
  1002. /*
  1003. * Preempt the current task with a newly woken task if needed:
  1004. */
  1005. static void
  1006. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1007. {
  1008. unsigned long ideal_runtime, delta_exec;
  1009. struct sched_entity *se;
  1010. s64 delta;
  1011. ideal_runtime = sched_slice(cfs_rq, curr);
  1012. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1013. if (delta_exec > ideal_runtime) {
  1014. resched_task(rq_of(cfs_rq)->curr);
  1015. /*
  1016. * The current task ran long enough, ensure it doesn't get
  1017. * re-elected due to buddy favours.
  1018. */
  1019. clear_buddies(cfs_rq, curr);
  1020. return;
  1021. }
  1022. /*
  1023. * Ensure that a task that missed wakeup preemption by a
  1024. * narrow margin doesn't have to wait for a full slice.
  1025. * This also mitigates buddy induced latencies under load.
  1026. */
  1027. if (delta_exec < sysctl_sched_min_granularity)
  1028. return;
  1029. se = __pick_first_entity(cfs_rq);
  1030. delta = curr->vruntime - se->vruntime;
  1031. if (delta < 0)
  1032. return;
  1033. if (delta > ideal_runtime)
  1034. resched_task(rq_of(cfs_rq)->curr);
  1035. }
  1036. static void
  1037. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1038. {
  1039. /* 'current' is not kept within the tree. */
  1040. if (se->on_rq) {
  1041. /*
  1042. * Any task has to be enqueued before it get to execute on
  1043. * a CPU. So account for the time it spent waiting on the
  1044. * runqueue.
  1045. */
  1046. update_stats_wait_end(cfs_rq, se);
  1047. __dequeue_entity(cfs_rq, se);
  1048. }
  1049. update_stats_curr_start(cfs_rq, se);
  1050. cfs_rq->curr = se;
  1051. #ifdef CONFIG_SCHEDSTATS
  1052. /*
  1053. * Track our maximum slice length, if the CPU's load is at
  1054. * least twice that of our own weight (i.e. dont track it
  1055. * when there are only lesser-weight tasks around):
  1056. */
  1057. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1058. se->statistics.slice_max = max(se->statistics.slice_max,
  1059. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1060. }
  1061. #endif
  1062. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1063. }
  1064. static int
  1065. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1066. /*
  1067. * Pick the next process, keeping these things in mind, in this order:
  1068. * 1) keep things fair between processes/task groups
  1069. * 2) pick the "next" process, since someone really wants that to run
  1070. * 3) pick the "last" process, for cache locality
  1071. * 4) do not run the "skip" process, if something else is available
  1072. */
  1073. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1074. {
  1075. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1076. struct sched_entity *left = se;
  1077. /*
  1078. * Avoid running the skip buddy, if running something else can
  1079. * be done without getting too unfair.
  1080. */
  1081. if (cfs_rq->skip == se) {
  1082. struct sched_entity *second = __pick_next_entity(se);
  1083. if (second && wakeup_preempt_entity(second, left) < 1)
  1084. se = second;
  1085. }
  1086. /*
  1087. * Prefer last buddy, try to return the CPU to a preempted task.
  1088. */
  1089. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1090. se = cfs_rq->last;
  1091. /*
  1092. * Someone really wants this to run. If it's not unfair, run it.
  1093. */
  1094. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1095. se = cfs_rq->next;
  1096. clear_buddies(cfs_rq, se);
  1097. return se;
  1098. }
  1099. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1100. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1101. {
  1102. /*
  1103. * If still on the runqueue then deactivate_task()
  1104. * was not called and update_curr() has to be done:
  1105. */
  1106. if (prev->on_rq)
  1107. update_curr(cfs_rq);
  1108. /* throttle cfs_rqs exceeding runtime */
  1109. check_cfs_rq_runtime(cfs_rq);
  1110. check_spread(cfs_rq, prev);
  1111. if (prev->on_rq) {
  1112. update_stats_wait_start(cfs_rq, prev);
  1113. /* Put 'current' back into the tree. */
  1114. __enqueue_entity(cfs_rq, prev);
  1115. }
  1116. cfs_rq->curr = NULL;
  1117. }
  1118. static void
  1119. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1120. {
  1121. /*
  1122. * Update run-time statistics of the 'current'.
  1123. */
  1124. update_curr(cfs_rq);
  1125. /*
  1126. * Update share accounting for long-running entities.
  1127. */
  1128. update_entity_shares_tick(cfs_rq);
  1129. #ifdef CONFIG_SCHED_HRTICK
  1130. /*
  1131. * queued ticks are scheduled to match the slice, so don't bother
  1132. * validating it and just reschedule.
  1133. */
  1134. if (queued) {
  1135. resched_task(rq_of(cfs_rq)->curr);
  1136. return;
  1137. }
  1138. /*
  1139. * don't let the period tick interfere with the hrtick preemption
  1140. */
  1141. if (!sched_feat(DOUBLE_TICK) &&
  1142. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1143. return;
  1144. #endif
  1145. if (cfs_rq->nr_running > 1)
  1146. check_preempt_tick(cfs_rq, curr);
  1147. }
  1148. /**************************************************
  1149. * CFS bandwidth control machinery
  1150. */
  1151. #ifdef CONFIG_CFS_BANDWIDTH
  1152. #ifdef HAVE_JUMP_LABEL
  1153. static struct static_key __cfs_bandwidth_used;
  1154. static inline bool cfs_bandwidth_used(void)
  1155. {
  1156. return static_key_false(&__cfs_bandwidth_used);
  1157. }
  1158. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  1159. {
  1160. /* only need to count groups transitioning between enabled/!enabled */
  1161. if (enabled && !was_enabled)
  1162. static_key_slow_inc(&__cfs_bandwidth_used);
  1163. else if (!enabled && was_enabled)
  1164. static_key_slow_dec(&__cfs_bandwidth_used);
  1165. }
  1166. #else /* HAVE_JUMP_LABEL */
  1167. static bool cfs_bandwidth_used(void)
  1168. {
  1169. return true;
  1170. }
  1171. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  1172. #endif /* HAVE_JUMP_LABEL */
  1173. /*
  1174. * default period for cfs group bandwidth.
  1175. * default: 0.1s, units: nanoseconds
  1176. */
  1177. static inline u64 default_cfs_period(void)
  1178. {
  1179. return 100000000ULL;
  1180. }
  1181. static inline u64 sched_cfs_bandwidth_slice(void)
  1182. {
  1183. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1184. }
  1185. /*
  1186. * Replenish runtime according to assigned quota and update expiration time.
  1187. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1188. * additional synchronization around rq->lock.
  1189. *
  1190. * requires cfs_b->lock
  1191. */
  1192. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1193. {
  1194. u64 now;
  1195. if (cfs_b->quota == RUNTIME_INF)
  1196. return;
  1197. now = sched_clock_cpu(smp_processor_id());
  1198. cfs_b->runtime = cfs_b->quota;
  1199. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1200. }
  1201. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1202. {
  1203. return &tg->cfs_bandwidth;
  1204. }
  1205. /* returns 0 on failure to allocate runtime */
  1206. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1207. {
  1208. struct task_group *tg = cfs_rq->tg;
  1209. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1210. u64 amount = 0, min_amount, expires;
  1211. /* note: this is a positive sum as runtime_remaining <= 0 */
  1212. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1213. raw_spin_lock(&cfs_b->lock);
  1214. if (cfs_b->quota == RUNTIME_INF)
  1215. amount = min_amount;
  1216. else {
  1217. /*
  1218. * If the bandwidth pool has become inactive, then at least one
  1219. * period must have elapsed since the last consumption.
  1220. * Refresh the global state and ensure bandwidth timer becomes
  1221. * active.
  1222. */
  1223. if (!cfs_b->timer_active) {
  1224. __refill_cfs_bandwidth_runtime(cfs_b);
  1225. __start_cfs_bandwidth(cfs_b);
  1226. }
  1227. if (cfs_b->runtime > 0) {
  1228. amount = min(cfs_b->runtime, min_amount);
  1229. cfs_b->runtime -= amount;
  1230. cfs_b->idle = 0;
  1231. }
  1232. }
  1233. expires = cfs_b->runtime_expires;
  1234. raw_spin_unlock(&cfs_b->lock);
  1235. cfs_rq->runtime_remaining += amount;
  1236. /*
  1237. * we may have advanced our local expiration to account for allowed
  1238. * spread between our sched_clock and the one on which runtime was
  1239. * issued.
  1240. */
  1241. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1242. cfs_rq->runtime_expires = expires;
  1243. return cfs_rq->runtime_remaining > 0;
  1244. }
  1245. /*
  1246. * Note: This depends on the synchronization provided by sched_clock and the
  1247. * fact that rq->clock snapshots this value.
  1248. */
  1249. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1250. {
  1251. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1252. struct rq *rq = rq_of(cfs_rq);
  1253. /* if the deadline is ahead of our clock, nothing to do */
  1254. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1255. return;
  1256. if (cfs_rq->runtime_remaining < 0)
  1257. return;
  1258. /*
  1259. * If the local deadline has passed we have to consider the
  1260. * possibility that our sched_clock is 'fast' and the global deadline
  1261. * has not truly expired.
  1262. *
  1263. * Fortunately we can check determine whether this the case by checking
  1264. * whether the global deadline has advanced.
  1265. */
  1266. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1267. /* extend local deadline, drift is bounded above by 2 ticks */
  1268. cfs_rq->runtime_expires += TICK_NSEC;
  1269. } else {
  1270. /* global deadline is ahead, expiration has passed */
  1271. cfs_rq->runtime_remaining = 0;
  1272. }
  1273. }
  1274. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1275. unsigned long delta_exec)
  1276. {
  1277. /* dock delta_exec before expiring quota (as it could span periods) */
  1278. cfs_rq->runtime_remaining -= delta_exec;
  1279. expire_cfs_rq_runtime(cfs_rq);
  1280. if (likely(cfs_rq->runtime_remaining > 0))
  1281. return;
  1282. /*
  1283. * if we're unable to extend our runtime we resched so that the active
  1284. * hierarchy can be throttled
  1285. */
  1286. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1287. resched_task(rq_of(cfs_rq)->curr);
  1288. }
  1289. static __always_inline
  1290. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
  1291. {
  1292. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1293. return;
  1294. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1295. }
  1296. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1297. {
  1298. return cfs_bandwidth_used() && cfs_rq->throttled;
  1299. }
  1300. /* check whether cfs_rq, or any parent, is throttled */
  1301. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1302. {
  1303. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1304. }
  1305. /*
  1306. * Ensure that neither of the group entities corresponding to src_cpu or
  1307. * dest_cpu are members of a throttled hierarchy when performing group
  1308. * load-balance operations.
  1309. */
  1310. static inline int throttled_lb_pair(struct task_group *tg,
  1311. int src_cpu, int dest_cpu)
  1312. {
  1313. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1314. src_cfs_rq = tg->cfs_rq[src_cpu];
  1315. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1316. return throttled_hierarchy(src_cfs_rq) ||
  1317. throttled_hierarchy(dest_cfs_rq);
  1318. }
  1319. /* updated child weight may affect parent so we have to do this bottom up */
  1320. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1321. {
  1322. struct rq *rq = data;
  1323. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1324. cfs_rq->throttle_count--;
  1325. #ifdef CONFIG_SMP
  1326. if (!cfs_rq->throttle_count) {
  1327. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1328. /* leaving throttled state, advance shares averaging windows */
  1329. cfs_rq->load_stamp += delta;
  1330. cfs_rq->load_last += delta;
  1331. /* update entity weight now that we are on_rq again */
  1332. update_cfs_shares(cfs_rq);
  1333. }
  1334. #endif
  1335. return 0;
  1336. }
  1337. static int tg_throttle_down(struct task_group *tg, void *data)
  1338. {
  1339. struct rq *rq = data;
  1340. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1341. /* group is entering throttled state, record last load */
  1342. if (!cfs_rq->throttle_count)
  1343. update_cfs_load(cfs_rq, 0);
  1344. cfs_rq->throttle_count++;
  1345. return 0;
  1346. }
  1347. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1348. {
  1349. struct rq *rq = rq_of(cfs_rq);
  1350. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1351. struct sched_entity *se;
  1352. long task_delta, dequeue = 1;
  1353. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1354. /* account load preceding throttle */
  1355. rcu_read_lock();
  1356. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1357. rcu_read_unlock();
  1358. task_delta = cfs_rq->h_nr_running;
  1359. for_each_sched_entity(se) {
  1360. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1361. /* throttled entity or throttle-on-deactivate */
  1362. if (!se->on_rq)
  1363. break;
  1364. if (dequeue)
  1365. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1366. qcfs_rq->h_nr_running -= task_delta;
  1367. if (qcfs_rq->load.weight)
  1368. dequeue = 0;
  1369. }
  1370. if (!se)
  1371. rq->nr_running -= task_delta;
  1372. cfs_rq->throttled = 1;
  1373. cfs_rq->throttled_timestamp = rq->clock;
  1374. raw_spin_lock(&cfs_b->lock);
  1375. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1376. raw_spin_unlock(&cfs_b->lock);
  1377. }
  1378. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1379. {
  1380. struct rq *rq = rq_of(cfs_rq);
  1381. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1382. struct sched_entity *se;
  1383. int enqueue = 1;
  1384. long task_delta;
  1385. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1386. cfs_rq->throttled = 0;
  1387. raw_spin_lock(&cfs_b->lock);
  1388. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1389. list_del_rcu(&cfs_rq->throttled_list);
  1390. raw_spin_unlock(&cfs_b->lock);
  1391. cfs_rq->throttled_timestamp = 0;
  1392. update_rq_clock(rq);
  1393. /* update hierarchical throttle state */
  1394. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1395. if (!cfs_rq->load.weight)
  1396. return;
  1397. task_delta = cfs_rq->h_nr_running;
  1398. for_each_sched_entity(se) {
  1399. if (se->on_rq)
  1400. enqueue = 0;
  1401. cfs_rq = cfs_rq_of(se);
  1402. if (enqueue)
  1403. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1404. cfs_rq->h_nr_running += task_delta;
  1405. if (cfs_rq_throttled(cfs_rq))
  1406. break;
  1407. }
  1408. if (!se)
  1409. rq->nr_running += task_delta;
  1410. /* determine whether we need to wake up potentially idle cpu */
  1411. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1412. resched_task(rq->curr);
  1413. }
  1414. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1415. u64 remaining, u64 expires)
  1416. {
  1417. struct cfs_rq *cfs_rq;
  1418. u64 runtime = remaining;
  1419. rcu_read_lock();
  1420. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1421. throttled_list) {
  1422. struct rq *rq = rq_of(cfs_rq);
  1423. raw_spin_lock(&rq->lock);
  1424. if (!cfs_rq_throttled(cfs_rq))
  1425. goto next;
  1426. runtime = -cfs_rq->runtime_remaining + 1;
  1427. if (runtime > remaining)
  1428. runtime = remaining;
  1429. remaining -= runtime;
  1430. cfs_rq->runtime_remaining += runtime;
  1431. cfs_rq->runtime_expires = expires;
  1432. /* we check whether we're throttled above */
  1433. if (cfs_rq->runtime_remaining > 0)
  1434. unthrottle_cfs_rq(cfs_rq);
  1435. next:
  1436. raw_spin_unlock(&rq->lock);
  1437. if (!remaining)
  1438. break;
  1439. }
  1440. rcu_read_unlock();
  1441. return remaining;
  1442. }
  1443. /*
  1444. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1445. * cfs_rqs as appropriate. If there has been no activity within the last
  1446. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1447. * used to track this state.
  1448. */
  1449. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1450. {
  1451. u64 runtime, runtime_expires;
  1452. int idle = 1, throttled;
  1453. raw_spin_lock(&cfs_b->lock);
  1454. /* no need to continue the timer with no bandwidth constraint */
  1455. if (cfs_b->quota == RUNTIME_INF)
  1456. goto out_unlock;
  1457. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1458. /* idle depends on !throttled (for the case of a large deficit) */
  1459. idle = cfs_b->idle && !throttled;
  1460. cfs_b->nr_periods += overrun;
  1461. /* if we're going inactive then everything else can be deferred */
  1462. if (idle)
  1463. goto out_unlock;
  1464. __refill_cfs_bandwidth_runtime(cfs_b);
  1465. if (!throttled) {
  1466. /* mark as potentially idle for the upcoming period */
  1467. cfs_b->idle = 1;
  1468. goto out_unlock;
  1469. }
  1470. /* account preceding periods in which throttling occurred */
  1471. cfs_b->nr_throttled += overrun;
  1472. /*
  1473. * There are throttled entities so we must first use the new bandwidth
  1474. * to unthrottle them before making it generally available. This
  1475. * ensures that all existing debts will be paid before a new cfs_rq is
  1476. * allowed to run.
  1477. */
  1478. runtime = cfs_b->runtime;
  1479. runtime_expires = cfs_b->runtime_expires;
  1480. cfs_b->runtime = 0;
  1481. /*
  1482. * This check is repeated as we are holding onto the new bandwidth
  1483. * while we unthrottle. This can potentially race with an unthrottled
  1484. * group trying to acquire new bandwidth from the global pool.
  1485. */
  1486. while (throttled && runtime > 0) {
  1487. raw_spin_unlock(&cfs_b->lock);
  1488. /* we can't nest cfs_b->lock while distributing bandwidth */
  1489. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1490. runtime_expires);
  1491. raw_spin_lock(&cfs_b->lock);
  1492. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1493. }
  1494. /* return (any) remaining runtime */
  1495. cfs_b->runtime = runtime;
  1496. /*
  1497. * While we are ensured activity in the period following an
  1498. * unthrottle, this also covers the case in which the new bandwidth is
  1499. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1500. * timer to remain active while there are any throttled entities.)
  1501. */
  1502. cfs_b->idle = 0;
  1503. out_unlock:
  1504. if (idle)
  1505. cfs_b->timer_active = 0;
  1506. raw_spin_unlock(&cfs_b->lock);
  1507. return idle;
  1508. }
  1509. /* a cfs_rq won't donate quota below this amount */
  1510. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1511. /* minimum remaining period time to redistribute slack quota */
  1512. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1513. /* how long we wait to gather additional slack before distributing */
  1514. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1515. /* are we near the end of the current quota period? */
  1516. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1517. {
  1518. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1519. u64 remaining;
  1520. /* if the call-back is running a quota refresh is already occurring */
  1521. if (hrtimer_callback_running(refresh_timer))
  1522. return 1;
  1523. /* is a quota refresh about to occur? */
  1524. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1525. if (remaining < min_expire)
  1526. return 1;
  1527. return 0;
  1528. }
  1529. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1530. {
  1531. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1532. /* if there's a quota refresh soon don't bother with slack */
  1533. if (runtime_refresh_within(cfs_b, min_left))
  1534. return;
  1535. start_bandwidth_timer(&cfs_b->slack_timer,
  1536. ns_to_ktime(cfs_bandwidth_slack_period));
  1537. }
  1538. /* we know any runtime found here is valid as update_curr() precedes return */
  1539. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1540. {
  1541. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1542. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1543. if (slack_runtime <= 0)
  1544. return;
  1545. raw_spin_lock(&cfs_b->lock);
  1546. if (cfs_b->quota != RUNTIME_INF &&
  1547. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1548. cfs_b->runtime += slack_runtime;
  1549. /* we are under rq->lock, defer unthrottling using a timer */
  1550. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1551. !list_empty(&cfs_b->throttled_cfs_rq))
  1552. start_cfs_slack_bandwidth(cfs_b);
  1553. }
  1554. raw_spin_unlock(&cfs_b->lock);
  1555. /* even if it's not valid for return we don't want to try again */
  1556. cfs_rq->runtime_remaining -= slack_runtime;
  1557. }
  1558. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1559. {
  1560. if (!cfs_bandwidth_used())
  1561. return;
  1562. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1563. return;
  1564. __return_cfs_rq_runtime(cfs_rq);
  1565. }
  1566. /*
  1567. * This is done with a timer (instead of inline with bandwidth return) since
  1568. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1569. */
  1570. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1571. {
  1572. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1573. u64 expires;
  1574. /* confirm we're still not at a refresh boundary */
  1575. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  1576. return;
  1577. raw_spin_lock(&cfs_b->lock);
  1578. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1579. runtime = cfs_b->runtime;
  1580. cfs_b->runtime = 0;
  1581. }
  1582. expires = cfs_b->runtime_expires;
  1583. raw_spin_unlock(&cfs_b->lock);
  1584. if (!runtime)
  1585. return;
  1586. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1587. raw_spin_lock(&cfs_b->lock);
  1588. if (expires == cfs_b->runtime_expires)
  1589. cfs_b->runtime = runtime;
  1590. raw_spin_unlock(&cfs_b->lock);
  1591. }
  1592. /*
  1593. * When a group wakes up we want to make sure that its quota is not already
  1594. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1595. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1596. */
  1597. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1598. {
  1599. if (!cfs_bandwidth_used())
  1600. return;
  1601. /* an active group must be handled by the update_curr()->put() path */
  1602. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1603. return;
  1604. /* ensure the group is not already throttled */
  1605. if (cfs_rq_throttled(cfs_rq))
  1606. return;
  1607. /* update runtime allocation */
  1608. account_cfs_rq_runtime(cfs_rq, 0);
  1609. if (cfs_rq->runtime_remaining <= 0)
  1610. throttle_cfs_rq(cfs_rq);
  1611. }
  1612. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1613. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1614. {
  1615. if (!cfs_bandwidth_used())
  1616. return;
  1617. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1618. return;
  1619. /*
  1620. * it's possible for a throttled entity to be forced into a running
  1621. * state (e.g. set_curr_task), in this case we're finished.
  1622. */
  1623. if (cfs_rq_throttled(cfs_rq))
  1624. return;
  1625. throttle_cfs_rq(cfs_rq);
  1626. }
  1627. static inline u64 default_cfs_period(void);
  1628. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  1629. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  1630. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  1631. {
  1632. struct cfs_bandwidth *cfs_b =
  1633. container_of(timer, struct cfs_bandwidth, slack_timer);
  1634. do_sched_cfs_slack_timer(cfs_b);
  1635. return HRTIMER_NORESTART;
  1636. }
  1637. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  1638. {
  1639. struct cfs_bandwidth *cfs_b =
  1640. container_of(timer, struct cfs_bandwidth, period_timer);
  1641. ktime_t now;
  1642. int overrun;
  1643. int idle = 0;
  1644. for (;;) {
  1645. now = hrtimer_cb_get_time(timer);
  1646. overrun = hrtimer_forward(timer, now, cfs_b->period);
  1647. if (!overrun)
  1648. break;
  1649. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  1650. }
  1651. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  1652. }
  1653. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1654. {
  1655. raw_spin_lock_init(&cfs_b->lock);
  1656. cfs_b->runtime = 0;
  1657. cfs_b->quota = RUNTIME_INF;
  1658. cfs_b->period = ns_to_ktime(default_cfs_period());
  1659. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  1660. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1661. cfs_b->period_timer.function = sched_cfs_period_timer;
  1662. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1663. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  1664. }
  1665. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1666. {
  1667. cfs_rq->runtime_enabled = 0;
  1668. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  1669. }
  1670. /* requires cfs_b->lock, may release to reprogram timer */
  1671. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1672. {
  1673. /*
  1674. * The timer may be active because we're trying to set a new bandwidth
  1675. * period or because we're racing with the tear-down path
  1676. * (timer_active==0 becomes visible before the hrtimer call-back
  1677. * terminates). In either case we ensure that it's re-programmed
  1678. */
  1679. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  1680. raw_spin_unlock(&cfs_b->lock);
  1681. /* ensure cfs_b->lock is available while we wait */
  1682. hrtimer_cancel(&cfs_b->period_timer);
  1683. raw_spin_lock(&cfs_b->lock);
  1684. /* if someone else restarted the timer then we're done */
  1685. if (cfs_b->timer_active)
  1686. return;
  1687. }
  1688. cfs_b->timer_active = 1;
  1689. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  1690. }
  1691. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1692. {
  1693. hrtimer_cancel(&cfs_b->period_timer);
  1694. hrtimer_cancel(&cfs_b->slack_timer);
  1695. }
  1696. void unthrottle_offline_cfs_rqs(struct rq *rq)
  1697. {
  1698. struct cfs_rq *cfs_rq;
  1699. for_each_leaf_cfs_rq(rq, cfs_rq) {
  1700. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1701. if (!cfs_rq->runtime_enabled)
  1702. continue;
  1703. /*
  1704. * clock_task is not advancing so we just need to make sure
  1705. * there's some valid quota amount
  1706. */
  1707. cfs_rq->runtime_remaining = cfs_b->quota;
  1708. if (cfs_rq_throttled(cfs_rq))
  1709. unthrottle_cfs_rq(cfs_rq);
  1710. }
  1711. }
  1712. #else /* CONFIG_CFS_BANDWIDTH */
  1713. static __always_inline
  1714. void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec) {}
  1715. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1716. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1717. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1718. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1719. {
  1720. return 0;
  1721. }
  1722. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1723. {
  1724. return 0;
  1725. }
  1726. static inline int throttled_lb_pair(struct task_group *tg,
  1727. int src_cpu, int dest_cpu)
  1728. {
  1729. return 0;
  1730. }
  1731. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1732. #ifdef CONFIG_FAIR_GROUP_SCHED
  1733. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1734. #endif
  1735. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1736. {
  1737. return NULL;
  1738. }
  1739. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1740. void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  1741. #endif /* CONFIG_CFS_BANDWIDTH */
  1742. /**************************************************
  1743. * CFS operations on tasks:
  1744. */
  1745. #ifdef CONFIG_SCHED_HRTICK
  1746. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1747. {
  1748. struct sched_entity *se = &p->se;
  1749. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1750. WARN_ON(task_rq(p) != rq);
  1751. if (cfs_rq->nr_running > 1) {
  1752. u64 slice = sched_slice(cfs_rq, se);
  1753. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1754. s64 delta = slice - ran;
  1755. if (delta < 0) {
  1756. if (rq->curr == p)
  1757. resched_task(p);
  1758. return;
  1759. }
  1760. /*
  1761. * Don't schedule slices shorter than 10000ns, that just
  1762. * doesn't make sense. Rely on vruntime for fairness.
  1763. */
  1764. if (rq->curr != p)
  1765. delta = max_t(s64, 10000LL, delta);
  1766. hrtick_start(rq, delta);
  1767. }
  1768. }
  1769. /*
  1770. * called from enqueue/dequeue and updates the hrtick when the
  1771. * current task is from our class and nr_running is low enough
  1772. * to matter.
  1773. */
  1774. static void hrtick_update(struct rq *rq)
  1775. {
  1776. struct task_struct *curr = rq->curr;
  1777. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  1778. return;
  1779. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1780. hrtick_start_fair(rq, curr);
  1781. }
  1782. #else /* !CONFIG_SCHED_HRTICK */
  1783. static inline void
  1784. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1785. {
  1786. }
  1787. static inline void hrtick_update(struct rq *rq)
  1788. {
  1789. }
  1790. #endif
  1791. /*
  1792. * The enqueue_task method is called before nr_running is
  1793. * increased. Here we update the fair scheduling stats and
  1794. * then put the task into the rbtree:
  1795. */
  1796. static void
  1797. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1798. {
  1799. struct cfs_rq *cfs_rq;
  1800. struct sched_entity *se = &p->se;
  1801. for_each_sched_entity(se) {
  1802. if (se->on_rq)
  1803. break;
  1804. cfs_rq = cfs_rq_of(se);
  1805. enqueue_entity(cfs_rq, se, flags);
  1806. /*
  1807. * end evaluation on encountering a throttled cfs_rq
  1808. *
  1809. * note: in the case of encountering a throttled cfs_rq we will
  1810. * post the final h_nr_running increment below.
  1811. */
  1812. if (cfs_rq_throttled(cfs_rq))
  1813. break;
  1814. cfs_rq->h_nr_running++;
  1815. flags = ENQUEUE_WAKEUP;
  1816. }
  1817. for_each_sched_entity(se) {
  1818. cfs_rq = cfs_rq_of(se);
  1819. cfs_rq->h_nr_running++;
  1820. if (cfs_rq_throttled(cfs_rq))
  1821. break;
  1822. update_cfs_load(cfs_rq, 0);
  1823. update_cfs_shares(cfs_rq);
  1824. }
  1825. if (!se)
  1826. inc_nr_running(rq);
  1827. hrtick_update(rq);
  1828. }
  1829. static void set_next_buddy(struct sched_entity *se);
  1830. /*
  1831. * The dequeue_task method is called before nr_running is
  1832. * decreased. We remove the task from the rbtree and
  1833. * update the fair scheduling stats:
  1834. */
  1835. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1836. {
  1837. struct cfs_rq *cfs_rq;
  1838. struct sched_entity *se = &p->se;
  1839. int task_sleep = flags & DEQUEUE_SLEEP;
  1840. for_each_sched_entity(se) {
  1841. cfs_rq = cfs_rq_of(se);
  1842. dequeue_entity(cfs_rq, se, flags);
  1843. /*
  1844. * end evaluation on encountering a throttled cfs_rq
  1845. *
  1846. * note: in the case of encountering a throttled cfs_rq we will
  1847. * post the final h_nr_running decrement below.
  1848. */
  1849. if (cfs_rq_throttled(cfs_rq))
  1850. break;
  1851. cfs_rq->h_nr_running--;
  1852. /* Don't dequeue parent if it has other entities besides us */
  1853. if (cfs_rq->load.weight) {
  1854. /*
  1855. * Bias pick_next to pick a task from this cfs_rq, as
  1856. * p is sleeping when it is within its sched_slice.
  1857. */
  1858. if (task_sleep && parent_entity(se))
  1859. set_next_buddy(parent_entity(se));
  1860. /* avoid re-evaluating load for this entity */
  1861. se = parent_entity(se);
  1862. break;
  1863. }
  1864. flags |= DEQUEUE_SLEEP;
  1865. }
  1866. for_each_sched_entity(se) {
  1867. cfs_rq = cfs_rq_of(se);
  1868. cfs_rq->h_nr_running--;
  1869. if (cfs_rq_throttled(cfs_rq))
  1870. break;
  1871. update_cfs_load(cfs_rq, 0);
  1872. update_cfs_shares(cfs_rq);
  1873. }
  1874. if (!se)
  1875. dec_nr_running(rq);
  1876. hrtick_update(rq);
  1877. }
  1878. #ifdef CONFIG_SMP
  1879. /* Used instead of source_load when we know the type == 0 */
  1880. static unsigned long weighted_cpuload(const int cpu)
  1881. {
  1882. return cpu_rq(cpu)->load.weight;
  1883. }
  1884. /*
  1885. * Return a low guess at the load of a migration-source cpu weighted
  1886. * according to the scheduling class and "nice" value.
  1887. *
  1888. * We want to under-estimate the load of migration sources, to
  1889. * balance conservatively.
  1890. */
  1891. static unsigned long source_load(int cpu, int type)
  1892. {
  1893. struct rq *rq = cpu_rq(cpu);
  1894. unsigned long total = weighted_cpuload(cpu);
  1895. if (type == 0 || !sched_feat(LB_BIAS))
  1896. return total;
  1897. return min(rq->cpu_load[type-1], total);
  1898. }
  1899. /*
  1900. * Return a high guess at the load of a migration-target cpu weighted
  1901. * according to the scheduling class and "nice" value.
  1902. */
  1903. static unsigned long target_load(int cpu, int type)
  1904. {
  1905. struct rq *rq = cpu_rq(cpu);
  1906. unsigned long total = weighted_cpuload(cpu);
  1907. if (type == 0 || !sched_feat(LB_BIAS))
  1908. return total;
  1909. return max(rq->cpu_load[type-1], total);
  1910. }
  1911. static unsigned long power_of(int cpu)
  1912. {
  1913. return cpu_rq(cpu)->cpu_power;
  1914. }
  1915. static unsigned long cpu_avg_load_per_task(int cpu)
  1916. {
  1917. struct rq *rq = cpu_rq(cpu);
  1918. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1919. if (nr_running)
  1920. return rq->load.weight / nr_running;
  1921. return 0;
  1922. }
  1923. static void task_waking_fair(struct task_struct *p)
  1924. {
  1925. struct sched_entity *se = &p->se;
  1926. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1927. u64 min_vruntime;
  1928. #ifndef CONFIG_64BIT
  1929. u64 min_vruntime_copy;
  1930. do {
  1931. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1932. smp_rmb();
  1933. min_vruntime = cfs_rq->min_vruntime;
  1934. } while (min_vruntime != min_vruntime_copy);
  1935. #else
  1936. min_vruntime = cfs_rq->min_vruntime;
  1937. #endif
  1938. se->vruntime -= min_vruntime;
  1939. }
  1940. #ifdef CONFIG_FAIR_GROUP_SCHED
  1941. /*
  1942. * effective_load() calculates the load change as seen from the root_task_group
  1943. *
  1944. * Adding load to a group doesn't make a group heavier, but can cause movement
  1945. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1946. * can calculate the shift in shares.
  1947. *
  1948. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  1949. * on this @cpu and results in a total addition (subtraction) of @wg to the
  1950. * total group weight.
  1951. *
  1952. * Given a runqueue weight distribution (rw_i) we can compute a shares
  1953. * distribution (s_i) using:
  1954. *
  1955. * s_i = rw_i / \Sum rw_j (1)
  1956. *
  1957. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  1958. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  1959. * shares distribution (s_i):
  1960. *
  1961. * rw_i = { 2, 4, 1, 0 }
  1962. * s_i = { 2/7, 4/7, 1/7, 0 }
  1963. *
  1964. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  1965. * task used to run on and the CPU the waker is running on), we need to
  1966. * compute the effect of waking a task on either CPU and, in case of a sync
  1967. * wakeup, compute the effect of the current task going to sleep.
  1968. *
  1969. * So for a change of @wl to the local @cpu with an overall group weight change
  1970. * of @wl we can compute the new shares distribution (s'_i) using:
  1971. *
  1972. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  1973. *
  1974. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  1975. * differences in waking a task to CPU 0. The additional task changes the
  1976. * weight and shares distributions like:
  1977. *
  1978. * rw'_i = { 3, 4, 1, 0 }
  1979. * s'_i = { 3/8, 4/8, 1/8, 0 }
  1980. *
  1981. * We can then compute the difference in effective weight by using:
  1982. *
  1983. * dw_i = S * (s'_i - s_i) (3)
  1984. *
  1985. * Where 'S' is the group weight as seen by its parent.
  1986. *
  1987. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  1988. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  1989. * 4/7) times the weight of the group.
  1990. */
  1991. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1992. {
  1993. struct sched_entity *se = tg->se[cpu];
  1994. if (!tg->parent) /* the trivial, non-cgroup case */
  1995. return wl;
  1996. for_each_sched_entity(se) {
  1997. long w, W;
  1998. tg = se->my_q->tg;
  1999. /*
  2000. * W = @wg + \Sum rw_j
  2001. */
  2002. W = wg + calc_tg_weight(tg, se->my_q);
  2003. /*
  2004. * w = rw_i + @wl
  2005. */
  2006. w = se->my_q->load.weight + wl;
  2007. /*
  2008. * wl = S * s'_i; see (2)
  2009. */
  2010. if (W > 0 && w < W)
  2011. wl = (w * tg->shares) / W;
  2012. else
  2013. wl = tg->shares;
  2014. /*
  2015. * Per the above, wl is the new se->load.weight value; since
  2016. * those are clipped to [MIN_SHARES, ...) do so now. See
  2017. * calc_cfs_shares().
  2018. */
  2019. if (wl < MIN_SHARES)
  2020. wl = MIN_SHARES;
  2021. /*
  2022. * wl = dw_i = S * (s'_i - s_i); see (3)
  2023. */
  2024. wl -= se->load.weight;
  2025. /*
  2026. * Recursively apply this logic to all parent groups to compute
  2027. * the final effective load change on the root group. Since
  2028. * only the @tg group gets extra weight, all parent groups can
  2029. * only redistribute existing shares. @wl is the shift in shares
  2030. * resulting from this level per the above.
  2031. */
  2032. wg = 0;
  2033. }
  2034. return wl;
  2035. }
  2036. #else
  2037. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2038. unsigned long wl, unsigned long wg)
  2039. {
  2040. return wl;
  2041. }
  2042. #endif
  2043. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2044. {
  2045. s64 this_load, load;
  2046. int idx, this_cpu, prev_cpu;
  2047. unsigned long tl_per_task;
  2048. struct task_group *tg;
  2049. unsigned long weight;
  2050. int balanced;
  2051. idx = sd->wake_idx;
  2052. this_cpu = smp_processor_id();
  2053. prev_cpu = task_cpu(p);
  2054. load = source_load(prev_cpu, idx);
  2055. this_load = target_load(this_cpu, idx);
  2056. /*
  2057. * If sync wakeup then subtract the (maximum possible)
  2058. * effect of the currently running task from the load
  2059. * of the current CPU:
  2060. */
  2061. if (sync) {
  2062. tg = task_group(current);
  2063. weight = current->se.load.weight;
  2064. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2065. load += effective_load(tg, prev_cpu, 0, -weight);
  2066. }
  2067. tg = task_group(p);
  2068. weight = p->se.load.weight;
  2069. /*
  2070. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2071. * due to the sync cause above having dropped this_load to 0, we'll
  2072. * always have an imbalance, but there's really nothing you can do
  2073. * about that, so that's good too.
  2074. *
  2075. * Otherwise check if either cpus are near enough in load to allow this
  2076. * task to be woken on this_cpu.
  2077. */
  2078. if (this_load > 0) {
  2079. s64 this_eff_load, prev_eff_load;
  2080. this_eff_load = 100;
  2081. this_eff_load *= power_of(prev_cpu);
  2082. this_eff_load *= this_load +
  2083. effective_load(tg, this_cpu, weight, weight);
  2084. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2085. prev_eff_load *= power_of(this_cpu);
  2086. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2087. balanced = this_eff_load <= prev_eff_load;
  2088. } else
  2089. balanced = true;
  2090. /*
  2091. * If the currently running task will sleep within
  2092. * a reasonable amount of time then attract this newly
  2093. * woken task:
  2094. */
  2095. if (sync && balanced)
  2096. return 1;
  2097. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2098. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2099. if (balanced ||
  2100. (this_load <= load &&
  2101. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2102. /*
  2103. * This domain has SD_WAKE_AFFINE and
  2104. * p is cache cold in this domain, and
  2105. * there is no bad imbalance.
  2106. */
  2107. schedstat_inc(sd, ttwu_move_affine);
  2108. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2109. return 1;
  2110. }
  2111. return 0;
  2112. }
  2113. /*
  2114. * find_idlest_group finds and returns the least busy CPU group within the
  2115. * domain.
  2116. */
  2117. static struct sched_group *
  2118. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2119. int this_cpu, int load_idx)
  2120. {
  2121. struct sched_group *idlest = NULL, *group = sd->groups;
  2122. unsigned long min_load = ULONG_MAX, this_load = 0;
  2123. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2124. do {
  2125. unsigned long load, avg_load;
  2126. int local_group;
  2127. int i;
  2128. /* Skip over this group if it has no CPUs allowed */
  2129. if (!cpumask_intersects(sched_group_cpus(group),
  2130. tsk_cpus_allowed(p)))
  2131. continue;
  2132. local_group = cpumask_test_cpu(this_cpu,
  2133. sched_group_cpus(group));
  2134. /* Tally up the load of all CPUs in the group */
  2135. avg_load = 0;
  2136. for_each_cpu(i, sched_group_cpus(group)) {
  2137. /* Bias balancing toward cpus of our domain */
  2138. if (local_group)
  2139. load = source_load(i, load_idx);
  2140. else
  2141. load = target_load(i, load_idx);
  2142. avg_load += load;
  2143. }
  2144. /* Adjust by relative CPU power of the group */
  2145. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2146. if (local_group) {
  2147. this_load = avg_load;
  2148. } else if (avg_load < min_load) {
  2149. min_load = avg_load;
  2150. idlest = group;
  2151. }
  2152. } while (group = group->next, group != sd->groups);
  2153. if (!idlest || 100*this_load < imbalance*min_load)
  2154. return NULL;
  2155. return idlest;
  2156. }
  2157. /*
  2158. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2159. */
  2160. static int
  2161. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2162. {
  2163. unsigned long load, min_load = ULONG_MAX;
  2164. int idlest = -1;
  2165. int i;
  2166. /* Traverse only the allowed CPUs */
  2167. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2168. load = weighted_cpuload(i);
  2169. if (load < min_load || (load == min_load && i == this_cpu)) {
  2170. min_load = load;
  2171. idlest = i;
  2172. }
  2173. }
  2174. return idlest;
  2175. }
  2176. /*
  2177. * Try and locate an idle CPU in the sched_domain.
  2178. */
  2179. static int select_idle_sibling(struct task_struct *p, int target)
  2180. {
  2181. int cpu = smp_processor_id();
  2182. int prev_cpu = task_cpu(p);
  2183. struct sched_domain *sd;
  2184. /*
  2185. * If the task is going to be woken-up on this cpu and if it is
  2186. * already idle, then it is the right target.
  2187. */
  2188. if (target == cpu && idle_cpu(cpu))
  2189. return cpu;
  2190. /*
  2191. * If the task is going to be woken-up on the cpu where it previously
  2192. * ran and if it is currently idle, then it the right target.
  2193. */
  2194. if (target == prev_cpu && idle_cpu(prev_cpu))
  2195. return prev_cpu;
  2196. /*
  2197. * Otherwise, check assigned siblings to find an elegible idle cpu.
  2198. */
  2199. sd = rcu_dereference(per_cpu(sd_llc, target));
  2200. for_each_lower_domain(sd) {
  2201. if (!cpumask_test_cpu(sd->idle_buddy, tsk_cpus_allowed(p)))
  2202. continue;
  2203. if (idle_cpu(sd->idle_buddy))
  2204. return sd->idle_buddy;
  2205. }
  2206. return target;
  2207. }
  2208. /*
  2209. * sched_balance_self: balance the current task (running on cpu) in domains
  2210. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2211. * SD_BALANCE_EXEC.
  2212. *
  2213. * Balance, ie. select the least loaded group.
  2214. *
  2215. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2216. *
  2217. * preempt must be disabled.
  2218. */
  2219. static int
  2220. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2221. {
  2222. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2223. int cpu = smp_processor_id();
  2224. int prev_cpu = task_cpu(p);
  2225. int new_cpu = cpu;
  2226. int want_affine = 0;
  2227. int want_sd = 1;
  2228. int sync = wake_flags & WF_SYNC;
  2229. if (p->nr_cpus_allowed == 1)
  2230. return prev_cpu;
  2231. if (sd_flag & SD_BALANCE_WAKE) {
  2232. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2233. want_affine = 1;
  2234. new_cpu = prev_cpu;
  2235. }
  2236. rcu_read_lock();
  2237. for_each_domain(cpu, tmp) {
  2238. if (!(tmp->flags & SD_LOAD_BALANCE))
  2239. continue;
  2240. /*
  2241. * If power savings logic is enabled for a domain, see if we
  2242. * are not overloaded, if so, don't balance wider.
  2243. */
  2244. if (tmp->flags & (SD_PREFER_LOCAL)) {
  2245. unsigned long power = 0;
  2246. unsigned long nr_running = 0;
  2247. unsigned long capacity;
  2248. int i;
  2249. for_each_cpu(i, sched_domain_span(tmp)) {
  2250. power += power_of(i);
  2251. nr_running += cpu_rq(i)->cfs.nr_running;
  2252. }
  2253. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  2254. if (nr_running < capacity)
  2255. want_sd = 0;
  2256. }
  2257. /*
  2258. * If both cpu and prev_cpu are part of this domain,
  2259. * cpu is a valid SD_WAKE_AFFINE target.
  2260. */
  2261. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2262. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2263. affine_sd = tmp;
  2264. want_affine = 0;
  2265. }
  2266. if (!want_sd && !want_affine)
  2267. break;
  2268. if (!(tmp->flags & sd_flag))
  2269. continue;
  2270. if (want_sd)
  2271. sd = tmp;
  2272. }
  2273. if (affine_sd) {
  2274. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  2275. prev_cpu = cpu;
  2276. new_cpu = select_idle_sibling(p, prev_cpu);
  2277. goto unlock;
  2278. }
  2279. while (sd) {
  2280. int load_idx = sd->forkexec_idx;
  2281. struct sched_group *group;
  2282. int weight;
  2283. if (!(sd->flags & sd_flag)) {
  2284. sd = sd->child;
  2285. continue;
  2286. }
  2287. if (sd_flag & SD_BALANCE_WAKE)
  2288. load_idx = sd->wake_idx;
  2289. group = find_idlest_group(sd, p, cpu, load_idx);
  2290. if (!group) {
  2291. sd = sd->child;
  2292. continue;
  2293. }
  2294. new_cpu = find_idlest_cpu(group, p, cpu);
  2295. if (new_cpu == -1 || new_cpu == cpu) {
  2296. /* Now try balancing at a lower domain level of cpu */
  2297. sd = sd->child;
  2298. continue;
  2299. }
  2300. /* Now try balancing at a lower domain level of new_cpu */
  2301. cpu = new_cpu;
  2302. weight = sd->span_weight;
  2303. sd = NULL;
  2304. for_each_domain(cpu, tmp) {
  2305. if (weight <= tmp->span_weight)
  2306. break;
  2307. if (tmp->flags & sd_flag)
  2308. sd = tmp;
  2309. }
  2310. /* while loop will break here if sd == NULL */
  2311. }
  2312. unlock:
  2313. rcu_read_unlock();
  2314. return new_cpu;
  2315. }
  2316. #endif /* CONFIG_SMP */
  2317. static unsigned long
  2318. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2319. {
  2320. unsigned long gran = sysctl_sched_wakeup_granularity;
  2321. /*
  2322. * Since its curr running now, convert the gran from real-time
  2323. * to virtual-time in his units.
  2324. *
  2325. * By using 'se' instead of 'curr' we penalize light tasks, so
  2326. * they get preempted easier. That is, if 'se' < 'curr' then
  2327. * the resulting gran will be larger, therefore penalizing the
  2328. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2329. * be smaller, again penalizing the lighter task.
  2330. *
  2331. * This is especially important for buddies when the leftmost
  2332. * task is higher priority than the buddy.
  2333. */
  2334. return calc_delta_fair(gran, se);
  2335. }
  2336. /*
  2337. * Should 'se' preempt 'curr'.
  2338. *
  2339. * |s1
  2340. * |s2
  2341. * |s3
  2342. * g
  2343. * |<--->|c
  2344. *
  2345. * w(c, s1) = -1
  2346. * w(c, s2) = 0
  2347. * w(c, s3) = 1
  2348. *
  2349. */
  2350. static int
  2351. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2352. {
  2353. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2354. if (vdiff <= 0)
  2355. return -1;
  2356. gran = wakeup_gran(curr, se);
  2357. if (vdiff > gran)
  2358. return 1;
  2359. return 0;
  2360. }
  2361. static void set_last_buddy(struct sched_entity *se)
  2362. {
  2363. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2364. return;
  2365. for_each_sched_entity(se)
  2366. cfs_rq_of(se)->last = se;
  2367. }
  2368. static void set_next_buddy(struct sched_entity *se)
  2369. {
  2370. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2371. return;
  2372. for_each_sched_entity(se)
  2373. cfs_rq_of(se)->next = se;
  2374. }
  2375. static void set_skip_buddy(struct sched_entity *se)
  2376. {
  2377. for_each_sched_entity(se)
  2378. cfs_rq_of(se)->skip = se;
  2379. }
  2380. /*
  2381. * Preempt the current task with a newly woken task if needed:
  2382. */
  2383. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2384. {
  2385. struct task_struct *curr = rq->curr;
  2386. struct sched_entity *se = &curr->se, *pse = &p->se;
  2387. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2388. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2389. int next_buddy_marked = 0;
  2390. if (unlikely(se == pse))
  2391. return;
  2392. /*
  2393. * This is possible from callers such as move_task(), in which we
  2394. * unconditionally check_prempt_curr() after an enqueue (which may have
  2395. * lead to a throttle). This both saves work and prevents false
  2396. * next-buddy nomination below.
  2397. */
  2398. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2399. return;
  2400. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2401. set_next_buddy(pse);
  2402. next_buddy_marked = 1;
  2403. }
  2404. /*
  2405. * We can come here with TIF_NEED_RESCHED already set from new task
  2406. * wake up path.
  2407. *
  2408. * Note: this also catches the edge-case of curr being in a throttled
  2409. * group (e.g. via set_curr_task), since update_curr() (in the
  2410. * enqueue of curr) will have resulted in resched being set. This
  2411. * prevents us from potentially nominating it as a false LAST_BUDDY
  2412. * below.
  2413. */
  2414. if (test_tsk_need_resched(curr))
  2415. return;
  2416. /* Idle tasks are by definition preempted by non-idle tasks. */
  2417. if (unlikely(curr->policy == SCHED_IDLE) &&
  2418. likely(p->policy != SCHED_IDLE))
  2419. goto preempt;
  2420. /*
  2421. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2422. * is driven by the tick):
  2423. */
  2424. if (unlikely(p->policy != SCHED_NORMAL))
  2425. return;
  2426. find_matching_se(&se, &pse);
  2427. update_curr(cfs_rq_of(se));
  2428. BUG_ON(!pse);
  2429. if (wakeup_preempt_entity(se, pse) == 1) {
  2430. /*
  2431. * Bias pick_next to pick the sched entity that is
  2432. * triggering this preemption.
  2433. */
  2434. if (!next_buddy_marked)
  2435. set_next_buddy(pse);
  2436. goto preempt;
  2437. }
  2438. return;
  2439. preempt:
  2440. resched_task(curr);
  2441. /*
  2442. * Only set the backward buddy when the current task is still
  2443. * on the rq. This can happen when a wakeup gets interleaved
  2444. * with schedule on the ->pre_schedule() or idle_balance()
  2445. * point, either of which can * drop the rq lock.
  2446. *
  2447. * Also, during early boot the idle thread is in the fair class,
  2448. * for obvious reasons its a bad idea to schedule back to it.
  2449. */
  2450. if (unlikely(!se->on_rq || curr == rq->idle))
  2451. return;
  2452. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2453. set_last_buddy(se);
  2454. }
  2455. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2456. {
  2457. struct task_struct *p;
  2458. struct cfs_rq *cfs_rq = &rq->cfs;
  2459. struct sched_entity *se;
  2460. if (!cfs_rq->nr_running)
  2461. return NULL;
  2462. do {
  2463. se = pick_next_entity(cfs_rq);
  2464. set_next_entity(cfs_rq, se);
  2465. cfs_rq = group_cfs_rq(se);
  2466. } while (cfs_rq);
  2467. p = task_of(se);
  2468. if (hrtick_enabled(rq))
  2469. hrtick_start_fair(rq, p);
  2470. return p;
  2471. }
  2472. /*
  2473. * Account for a descheduled task:
  2474. */
  2475. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2476. {
  2477. struct sched_entity *se = &prev->se;
  2478. struct cfs_rq *cfs_rq;
  2479. for_each_sched_entity(se) {
  2480. cfs_rq = cfs_rq_of(se);
  2481. put_prev_entity(cfs_rq, se);
  2482. }
  2483. }
  2484. /*
  2485. * sched_yield() is very simple
  2486. *
  2487. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2488. */
  2489. static void yield_task_fair(struct rq *rq)
  2490. {
  2491. struct task_struct *curr = rq->curr;
  2492. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2493. struct sched_entity *se = &curr->se;
  2494. /*
  2495. * Are we the only task in the tree?
  2496. */
  2497. if (unlikely(rq->nr_running == 1))
  2498. return;
  2499. clear_buddies(cfs_rq, se);
  2500. if (curr->policy != SCHED_BATCH) {
  2501. update_rq_clock(rq);
  2502. /*
  2503. * Update run-time statistics of the 'current'.
  2504. */
  2505. update_curr(cfs_rq);
  2506. /*
  2507. * Tell update_rq_clock() that we've just updated,
  2508. * so we don't do microscopic update in schedule()
  2509. * and double the fastpath cost.
  2510. */
  2511. rq->skip_clock_update = 1;
  2512. }
  2513. set_skip_buddy(se);
  2514. }
  2515. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2516. {
  2517. struct sched_entity *se = &p->se;
  2518. /* throttled hierarchies are not runnable */
  2519. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2520. return false;
  2521. /* Tell the scheduler that we'd really like pse to run next. */
  2522. set_next_buddy(se);
  2523. yield_task_fair(rq);
  2524. return true;
  2525. }
  2526. #ifdef CONFIG_SMP
  2527. /**************************************************
  2528. * Fair scheduling class load-balancing methods:
  2529. */
  2530. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  2531. #define LBF_ALL_PINNED 0x01
  2532. #define LBF_NEED_BREAK 0x02
  2533. #define LBF_SOME_PINNED 0x04
  2534. struct lb_env {
  2535. struct sched_domain *sd;
  2536. struct rq *src_rq;
  2537. int src_cpu;
  2538. int dst_cpu;
  2539. struct rq *dst_rq;
  2540. struct cpumask *dst_grpmask;
  2541. int new_dst_cpu;
  2542. enum cpu_idle_type idle;
  2543. long imbalance;
  2544. unsigned int flags;
  2545. unsigned int loop;
  2546. unsigned int loop_break;
  2547. unsigned int loop_max;
  2548. };
  2549. /*
  2550. * move_task - move a task from one runqueue to another runqueue.
  2551. * Both runqueues must be locked.
  2552. */
  2553. static void move_task(struct task_struct *p, struct lb_env *env)
  2554. {
  2555. deactivate_task(env->src_rq, p, 0);
  2556. set_task_cpu(p, env->dst_cpu);
  2557. activate_task(env->dst_rq, p, 0);
  2558. check_preempt_curr(env->dst_rq, p, 0);
  2559. }
  2560. /*
  2561. * Is this task likely cache-hot:
  2562. */
  2563. static int
  2564. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  2565. {
  2566. s64 delta;
  2567. if (p->sched_class != &fair_sched_class)
  2568. return 0;
  2569. if (unlikely(p->policy == SCHED_IDLE))
  2570. return 0;
  2571. /*
  2572. * Buddy candidates are cache hot:
  2573. */
  2574. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  2575. (&p->se == cfs_rq_of(&p->se)->next ||
  2576. &p->se == cfs_rq_of(&p->se)->last))
  2577. return 1;
  2578. if (sysctl_sched_migration_cost == -1)
  2579. return 1;
  2580. if (sysctl_sched_migration_cost == 0)
  2581. return 0;
  2582. delta = now - p->se.exec_start;
  2583. return delta < (s64)sysctl_sched_migration_cost;
  2584. }
  2585. /*
  2586. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2587. */
  2588. static
  2589. int can_migrate_task(struct task_struct *p, struct lb_env *env)
  2590. {
  2591. int tsk_cache_hot = 0;
  2592. /*
  2593. * We do not migrate tasks that are:
  2594. * 1) running (obviously), or
  2595. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2596. * 3) are cache-hot on their current CPU.
  2597. */
  2598. if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
  2599. int new_dst_cpu;
  2600. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2601. /*
  2602. * Remember if this task can be migrated to any other cpu in
  2603. * our sched_group. We may want to revisit it if we couldn't
  2604. * meet load balance goals by pulling other tasks on src_cpu.
  2605. *
  2606. * Also avoid computing new_dst_cpu if we have already computed
  2607. * one in current iteration.
  2608. */
  2609. if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
  2610. return 0;
  2611. new_dst_cpu = cpumask_first_and(env->dst_grpmask,
  2612. tsk_cpus_allowed(p));
  2613. if (new_dst_cpu < nr_cpu_ids) {
  2614. env->flags |= LBF_SOME_PINNED;
  2615. env->new_dst_cpu = new_dst_cpu;
  2616. }
  2617. return 0;
  2618. }
  2619. /* Record that we found atleast one task that could run on dst_cpu */
  2620. env->flags &= ~LBF_ALL_PINNED;
  2621. if (task_running(env->src_rq, p)) {
  2622. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2623. return 0;
  2624. }
  2625. /*
  2626. * Aggressive migration if:
  2627. * 1) task is cache cold, or
  2628. * 2) too many balance attempts have failed.
  2629. */
  2630. tsk_cache_hot = task_hot(p, env->src_rq->clock_task, env->sd);
  2631. if (!tsk_cache_hot ||
  2632. env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
  2633. #ifdef CONFIG_SCHEDSTATS
  2634. if (tsk_cache_hot) {
  2635. schedstat_inc(env->sd, lb_hot_gained[env->idle]);
  2636. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2637. }
  2638. #endif
  2639. return 1;
  2640. }
  2641. if (tsk_cache_hot) {
  2642. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2643. return 0;
  2644. }
  2645. return 1;
  2646. }
  2647. /*
  2648. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2649. * part of active balancing operations within "domain".
  2650. * Returns 1 if successful and 0 otherwise.
  2651. *
  2652. * Called with both runqueues locked.
  2653. */
  2654. static int move_one_task(struct lb_env *env)
  2655. {
  2656. struct task_struct *p, *n;
  2657. list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
  2658. if (throttled_lb_pair(task_group(p), env->src_rq->cpu, env->dst_cpu))
  2659. continue;
  2660. if (!can_migrate_task(p, env))
  2661. continue;
  2662. move_task(p, env);
  2663. /*
  2664. * Right now, this is only the second place move_task()
  2665. * is called, so we can safely collect move_task()
  2666. * stats here rather than inside move_task().
  2667. */
  2668. schedstat_inc(env->sd, lb_gained[env->idle]);
  2669. return 1;
  2670. }
  2671. return 0;
  2672. }
  2673. static unsigned long task_h_load(struct task_struct *p);
  2674. static const unsigned int sched_nr_migrate_break = 32;
  2675. /*
  2676. * move_tasks tries to move up to imbalance weighted load from busiest to
  2677. * this_rq, as part of a balancing operation within domain "sd".
  2678. * Returns 1 if successful and 0 otherwise.
  2679. *
  2680. * Called with both runqueues locked.
  2681. */
  2682. static int move_tasks(struct lb_env *env)
  2683. {
  2684. struct list_head *tasks = &env->src_rq->cfs_tasks;
  2685. struct task_struct *p;
  2686. unsigned long load;
  2687. int pulled = 0;
  2688. if (env->imbalance <= 0)
  2689. return 0;
  2690. while (!list_empty(tasks)) {
  2691. p = list_first_entry(tasks, struct task_struct, se.group_node);
  2692. env->loop++;
  2693. /* We've more or less seen every task there is, call it quits */
  2694. if (env->loop > env->loop_max)
  2695. break;
  2696. /* take a breather every nr_migrate tasks */
  2697. if (env->loop > env->loop_break) {
  2698. env->loop_break += sched_nr_migrate_break;
  2699. env->flags |= LBF_NEED_BREAK;
  2700. break;
  2701. }
  2702. if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
  2703. goto next;
  2704. load = task_h_load(p);
  2705. if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
  2706. goto next;
  2707. if ((load / 2) > env->imbalance)
  2708. goto next;
  2709. if (!can_migrate_task(p, env))
  2710. goto next;
  2711. move_task(p, env);
  2712. pulled++;
  2713. env->imbalance -= load;
  2714. #ifdef CONFIG_PREEMPT
  2715. /*
  2716. * NEWIDLE balancing is a source of latency, so preemptible
  2717. * kernels will stop after the first task is pulled to minimize
  2718. * the critical section.
  2719. */
  2720. if (env->idle == CPU_NEWLY_IDLE)
  2721. break;
  2722. #endif
  2723. /*
  2724. * We only want to steal up to the prescribed amount of
  2725. * weighted load.
  2726. */
  2727. if (env->imbalance <= 0)
  2728. break;
  2729. continue;
  2730. next:
  2731. list_move_tail(&p->se.group_node, tasks);
  2732. }
  2733. /*
  2734. * Right now, this is one of only two places move_task() is called,
  2735. * so we can safely collect move_task() stats here rather than
  2736. * inside move_task().
  2737. */
  2738. schedstat_add(env->sd, lb_gained[env->idle], pulled);
  2739. return pulled;
  2740. }
  2741. #ifdef CONFIG_FAIR_GROUP_SCHED
  2742. /*
  2743. * update tg->load_weight by folding this cpu's load_avg
  2744. */
  2745. static int update_shares_cpu(struct task_group *tg, int cpu)
  2746. {
  2747. struct cfs_rq *cfs_rq;
  2748. unsigned long flags;
  2749. struct rq *rq;
  2750. if (!tg->se[cpu])
  2751. return 0;
  2752. rq = cpu_rq(cpu);
  2753. cfs_rq = tg->cfs_rq[cpu];
  2754. raw_spin_lock_irqsave(&rq->lock, flags);
  2755. update_rq_clock(rq);
  2756. update_cfs_load(cfs_rq, 1);
  2757. /*
  2758. * We need to update shares after updating tg->load_weight in
  2759. * order to adjust the weight of groups with long running tasks.
  2760. */
  2761. update_cfs_shares(cfs_rq);
  2762. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2763. return 0;
  2764. }
  2765. static void update_shares(int cpu)
  2766. {
  2767. struct cfs_rq *cfs_rq;
  2768. struct rq *rq = cpu_rq(cpu);
  2769. rcu_read_lock();
  2770. /*
  2771. * Iterates the task_group tree in a bottom up fashion, see
  2772. * list_add_leaf_cfs_rq() for details.
  2773. */
  2774. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2775. /* throttled entities do not contribute to load */
  2776. if (throttled_hierarchy(cfs_rq))
  2777. continue;
  2778. update_shares_cpu(cfs_rq->tg, cpu);
  2779. }
  2780. rcu_read_unlock();
  2781. }
  2782. /*
  2783. * Compute the cpu's hierarchical load factor for each task group.
  2784. * This needs to be done in a top-down fashion because the load of a child
  2785. * group is a fraction of its parents load.
  2786. */
  2787. static int tg_load_down(struct task_group *tg, void *data)
  2788. {
  2789. unsigned long load;
  2790. long cpu = (long)data;
  2791. if (!tg->parent) {
  2792. load = cpu_rq(cpu)->load.weight;
  2793. } else {
  2794. load = tg->parent->cfs_rq[cpu]->h_load;
  2795. load *= tg->se[cpu]->load.weight;
  2796. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2797. }
  2798. tg->cfs_rq[cpu]->h_load = load;
  2799. return 0;
  2800. }
  2801. static void update_h_load(long cpu)
  2802. {
  2803. rcu_read_lock();
  2804. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2805. rcu_read_unlock();
  2806. }
  2807. static unsigned long task_h_load(struct task_struct *p)
  2808. {
  2809. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  2810. unsigned long load;
  2811. load = p->se.load.weight;
  2812. load = div_u64(load * cfs_rq->h_load, cfs_rq->load.weight + 1);
  2813. return load;
  2814. }
  2815. #else
  2816. static inline void update_shares(int cpu)
  2817. {
  2818. }
  2819. static inline void update_h_load(long cpu)
  2820. {
  2821. }
  2822. static unsigned long task_h_load(struct task_struct *p)
  2823. {
  2824. return p->se.load.weight;
  2825. }
  2826. #endif
  2827. /********** Helpers for find_busiest_group ************************/
  2828. /*
  2829. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2830. * during load balancing.
  2831. */
  2832. struct sd_lb_stats {
  2833. struct sched_group *busiest; /* Busiest group in this sd */
  2834. struct sched_group *this; /* Local group in this sd */
  2835. unsigned long total_load; /* Total load of all groups in sd */
  2836. unsigned long total_pwr; /* Total power of all groups in sd */
  2837. unsigned long avg_load; /* Average load across all groups in sd */
  2838. /** Statistics of this group */
  2839. unsigned long this_load;
  2840. unsigned long this_load_per_task;
  2841. unsigned long this_nr_running;
  2842. unsigned long this_has_capacity;
  2843. unsigned int this_idle_cpus;
  2844. /* Statistics of the busiest group */
  2845. unsigned int busiest_idle_cpus;
  2846. unsigned long max_load;
  2847. unsigned long busiest_load_per_task;
  2848. unsigned long busiest_nr_running;
  2849. unsigned long busiest_group_capacity;
  2850. unsigned long busiest_has_capacity;
  2851. unsigned int busiest_group_weight;
  2852. int group_imb; /* Is there imbalance in this sd */
  2853. };
  2854. /*
  2855. * sg_lb_stats - stats of a sched_group required for load_balancing
  2856. */
  2857. struct sg_lb_stats {
  2858. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2859. unsigned long group_load; /* Total load over the CPUs of the group */
  2860. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2861. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2862. unsigned long group_capacity;
  2863. unsigned long idle_cpus;
  2864. unsigned long group_weight;
  2865. int group_imb; /* Is there an imbalance in the group ? */
  2866. int group_has_capacity; /* Is there extra capacity in the group? */
  2867. };
  2868. /**
  2869. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2870. * @sd: The sched_domain whose load_idx is to be obtained.
  2871. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2872. */
  2873. static inline int get_sd_load_idx(struct sched_domain *sd,
  2874. enum cpu_idle_type idle)
  2875. {
  2876. int load_idx;
  2877. switch (idle) {
  2878. case CPU_NOT_IDLE:
  2879. load_idx = sd->busy_idx;
  2880. break;
  2881. case CPU_NEWLY_IDLE:
  2882. load_idx = sd->newidle_idx;
  2883. break;
  2884. default:
  2885. load_idx = sd->idle_idx;
  2886. break;
  2887. }
  2888. return load_idx;
  2889. }
  2890. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2891. {
  2892. return SCHED_POWER_SCALE;
  2893. }
  2894. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2895. {
  2896. return default_scale_freq_power(sd, cpu);
  2897. }
  2898. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2899. {
  2900. unsigned long weight = sd->span_weight;
  2901. unsigned long smt_gain = sd->smt_gain;
  2902. smt_gain /= weight;
  2903. return smt_gain;
  2904. }
  2905. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2906. {
  2907. return default_scale_smt_power(sd, cpu);
  2908. }
  2909. unsigned long scale_rt_power(int cpu)
  2910. {
  2911. struct rq *rq = cpu_rq(cpu);
  2912. u64 total, available, age_stamp, avg;
  2913. /*
  2914. * Since we're reading these variables without serialization make sure
  2915. * we read them once before doing sanity checks on them.
  2916. */
  2917. age_stamp = ACCESS_ONCE(rq->age_stamp);
  2918. avg = ACCESS_ONCE(rq->rt_avg);
  2919. total = sched_avg_period() + (rq->clock - age_stamp);
  2920. if (unlikely(total < avg)) {
  2921. /* Ensures that power won't end up being negative */
  2922. available = 0;
  2923. } else {
  2924. available = total - avg;
  2925. }
  2926. if (unlikely((s64)total < SCHED_POWER_SCALE))
  2927. total = SCHED_POWER_SCALE;
  2928. total >>= SCHED_POWER_SHIFT;
  2929. return div_u64(available, total);
  2930. }
  2931. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2932. {
  2933. unsigned long weight = sd->span_weight;
  2934. unsigned long power = SCHED_POWER_SCALE;
  2935. struct sched_group *sdg = sd->groups;
  2936. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2937. if (sched_feat(ARCH_POWER))
  2938. power *= arch_scale_smt_power(sd, cpu);
  2939. else
  2940. power *= default_scale_smt_power(sd, cpu);
  2941. power >>= SCHED_POWER_SHIFT;
  2942. }
  2943. sdg->sgp->power_orig = power;
  2944. if (sched_feat(ARCH_POWER))
  2945. power *= arch_scale_freq_power(sd, cpu);
  2946. else
  2947. power *= default_scale_freq_power(sd, cpu);
  2948. power >>= SCHED_POWER_SHIFT;
  2949. power *= scale_rt_power(cpu);
  2950. power >>= SCHED_POWER_SHIFT;
  2951. if (!power)
  2952. power = 1;
  2953. cpu_rq(cpu)->cpu_power = power;
  2954. sdg->sgp->power = power;
  2955. }
  2956. void update_group_power(struct sched_domain *sd, int cpu)
  2957. {
  2958. struct sched_domain *child = sd->child;
  2959. struct sched_group *group, *sdg = sd->groups;
  2960. unsigned long power;
  2961. unsigned long interval;
  2962. interval = msecs_to_jiffies(sd->balance_interval);
  2963. interval = clamp(interval, 1UL, max_load_balance_interval);
  2964. sdg->sgp->next_update = jiffies + interval;
  2965. if (!child) {
  2966. update_cpu_power(sd, cpu);
  2967. return;
  2968. }
  2969. power = 0;
  2970. if (child->flags & SD_OVERLAP) {
  2971. /*
  2972. * SD_OVERLAP domains cannot assume that child groups
  2973. * span the current group.
  2974. */
  2975. for_each_cpu(cpu, sched_group_cpus(sdg))
  2976. power += power_of(cpu);
  2977. } else {
  2978. /*
  2979. * !SD_OVERLAP domains can assume that child groups
  2980. * span the current group.
  2981. */
  2982. group = child->groups;
  2983. do {
  2984. power += group->sgp->power;
  2985. group = group->next;
  2986. } while (group != child->groups);
  2987. }
  2988. sdg->sgp->power_orig = sdg->sgp->power = power;
  2989. }
  2990. /*
  2991. * Try and fix up capacity for tiny siblings, this is needed when
  2992. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2993. * which on its own isn't powerful enough.
  2994. *
  2995. * See update_sd_pick_busiest() and check_asym_packing().
  2996. */
  2997. static inline int
  2998. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2999. {
  3000. /*
  3001. * Only siblings can have significantly less than SCHED_POWER_SCALE
  3002. */
  3003. if (!(sd->flags & SD_SHARE_CPUPOWER))
  3004. return 0;
  3005. /*
  3006. * If ~90% of the cpu_power is still there, we're good.
  3007. */
  3008. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3009. return 1;
  3010. return 0;
  3011. }
  3012. /**
  3013. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3014. * @env: The load balancing environment.
  3015. * @group: sched_group whose statistics are to be updated.
  3016. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3017. * @local_group: Does group contain this_cpu.
  3018. * @cpus: Set of cpus considered for load balancing.
  3019. * @balance: Should we balance.
  3020. * @sgs: variable to hold the statistics for this group.
  3021. */
  3022. static inline void update_sg_lb_stats(struct lb_env *env,
  3023. struct sched_group *group, int load_idx,
  3024. int local_group, const struct cpumask *cpus,
  3025. int *balance, struct sg_lb_stats *sgs)
  3026. {
  3027. unsigned long nr_running, max_nr_running, min_nr_running;
  3028. unsigned long load, max_cpu_load, min_cpu_load;
  3029. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3030. unsigned long avg_load_per_task = 0;
  3031. int i;
  3032. if (local_group)
  3033. balance_cpu = group_balance_cpu(group);
  3034. /* Tally up the load of all CPUs in the group */
  3035. max_cpu_load = 0;
  3036. min_cpu_load = ~0UL;
  3037. max_nr_running = 0;
  3038. min_nr_running = ~0UL;
  3039. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3040. struct rq *rq = cpu_rq(i);
  3041. nr_running = rq->nr_running;
  3042. /* Bias balancing toward cpus of our domain */
  3043. if (local_group) {
  3044. if (idle_cpu(i) && !first_idle_cpu &&
  3045. cpumask_test_cpu(i, sched_group_mask(group))) {
  3046. first_idle_cpu = 1;
  3047. balance_cpu = i;
  3048. }
  3049. load = target_load(i, load_idx);
  3050. } else {
  3051. load = source_load(i, load_idx);
  3052. if (load > max_cpu_load)
  3053. max_cpu_load = load;
  3054. if (min_cpu_load > load)
  3055. min_cpu_load = load;
  3056. if (nr_running > max_nr_running)
  3057. max_nr_running = nr_running;
  3058. if (min_nr_running > nr_running)
  3059. min_nr_running = nr_running;
  3060. }
  3061. sgs->group_load += load;
  3062. sgs->sum_nr_running += nr_running;
  3063. sgs->sum_weighted_load += weighted_cpuload(i);
  3064. if (idle_cpu(i))
  3065. sgs->idle_cpus++;
  3066. }
  3067. /*
  3068. * First idle cpu or the first cpu(busiest) in this sched group
  3069. * is eligible for doing load balancing at this and above
  3070. * domains. In the newly idle case, we will allow all the cpu's
  3071. * to do the newly idle load balance.
  3072. */
  3073. if (local_group) {
  3074. if (env->idle != CPU_NEWLY_IDLE) {
  3075. if (balance_cpu != env->dst_cpu) {
  3076. *balance = 0;
  3077. return;
  3078. }
  3079. update_group_power(env->sd, env->dst_cpu);
  3080. } else if (time_after_eq(jiffies, group->sgp->next_update))
  3081. update_group_power(env->sd, env->dst_cpu);
  3082. }
  3083. /* Adjust by relative CPU power of the group */
  3084. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3085. /*
  3086. * Consider the group unbalanced when the imbalance is larger
  3087. * than the average weight of a task.
  3088. *
  3089. * APZ: with cgroup the avg task weight can vary wildly and
  3090. * might not be a suitable number - should we keep a
  3091. * normalized nr_running number somewhere that negates
  3092. * the hierarchy?
  3093. */
  3094. if (sgs->sum_nr_running)
  3095. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3096. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task &&
  3097. (max_nr_running - min_nr_running) > 1)
  3098. sgs->group_imb = 1;
  3099. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3100. SCHED_POWER_SCALE);
  3101. if (!sgs->group_capacity)
  3102. sgs->group_capacity = fix_small_capacity(env->sd, group);
  3103. sgs->group_weight = group->group_weight;
  3104. if (sgs->group_capacity > sgs->sum_nr_running)
  3105. sgs->group_has_capacity = 1;
  3106. }
  3107. /**
  3108. * update_sd_pick_busiest - return 1 on busiest group
  3109. * @env: The load balancing environment.
  3110. * @sds: sched_domain statistics
  3111. * @sg: sched_group candidate to be checked for being the busiest
  3112. * @sgs: sched_group statistics
  3113. *
  3114. * Determine if @sg is a busier group than the previously selected
  3115. * busiest group.
  3116. */
  3117. static bool update_sd_pick_busiest(struct lb_env *env,
  3118. struct sd_lb_stats *sds,
  3119. struct sched_group *sg,
  3120. struct sg_lb_stats *sgs)
  3121. {
  3122. if (sgs->avg_load <= sds->max_load)
  3123. return false;
  3124. if (sgs->sum_nr_running > sgs->group_capacity)
  3125. return true;
  3126. if (sgs->group_imb)
  3127. return true;
  3128. /*
  3129. * ASYM_PACKING needs to move all the work to the lowest
  3130. * numbered CPUs in the group, therefore mark all groups
  3131. * higher than ourself as busy.
  3132. */
  3133. if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3134. env->dst_cpu < group_first_cpu(sg)) {
  3135. if (!sds->busiest)
  3136. return true;
  3137. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3138. return true;
  3139. }
  3140. return false;
  3141. }
  3142. /**
  3143. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3144. * @env: The load balancing environment.
  3145. * @cpus: Set of cpus considered for load balancing.
  3146. * @balance: Should we balance.
  3147. * @sds: variable to hold the statistics for this sched_domain.
  3148. */
  3149. static inline void update_sd_lb_stats(struct lb_env *env,
  3150. const struct cpumask *cpus,
  3151. int *balance, struct sd_lb_stats *sds)
  3152. {
  3153. struct sched_domain *child = env->sd->child;
  3154. struct sched_group *sg = env->sd->groups;
  3155. struct sg_lb_stats sgs;
  3156. int load_idx, prefer_sibling = 0;
  3157. if (child && child->flags & SD_PREFER_SIBLING)
  3158. prefer_sibling = 1;
  3159. load_idx = get_sd_load_idx(env->sd, env->idle);
  3160. do {
  3161. int local_group;
  3162. local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
  3163. memset(&sgs, 0, sizeof(sgs));
  3164. update_sg_lb_stats(env, sg, load_idx, local_group,
  3165. cpus, balance, &sgs);
  3166. if (local_group && !(*balance))
  3167. return;
  3168. sds->total_load += sgs.group_load;
  3169. sds->total_pwr += sg->sgp->power;
  3170. /*
  3171. * In case the child domain prefers tasks go to siblings
  3172. * first, lower the sg capacity to one so that we'll try
  3173. * and move all the excess tasks away. We lower the capacity
  3174. * of a group only if the local group has the capacity to fit
  3175. * these excess tasks, i.e. nr_running < group_capacity. The
  3176. * extra check prevents the case where you always pull from the
  3177. * heaviest group when it is already under-utilized (possible
  3178. * with a large weight task outweighs the tasks on the system).
  3179. */
  3180. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3181. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3182. if (local_group) {
  3183. sds->this_load = sgs.avg_load;
  3184. sds->this = sg;
  3185. sds->this_nr_running = sgs.sum_nr_running;
  3186. sds->this_load_per_task = sgs.sum_weighted_load;
  3187. sds->this_has_capacity = sgs.group_has_capacity;
  3188. sds->this_idle_cpus = sgs.idle_cpus;
  3189. } else if (update_sd_pick_busiest(env, sds, sg, &sgs)) {
  3190. sds->max_load = sgs.avg_load;
  3191. sds->busiest = sg;
  3192. sds->busiest_nr_running = sgs.sum_nr_running;
  3193. sds->busiest_idle_cpus = sgs.idle_cpus;
  3194. sds->busiest_group_capacity = sgs.group_capacity;
  3195. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3196. sds->busiest_has_capacity = sgs.group_has_capacity;
  3197. sds->busiest_group_weight = sgs.group_weight;
  3198. sds->group_imb = sgs.group_imb;
  3199. }
  3200. sg = sg->next;
  3201. } while (sg != env->sd->groups);
  3202. }
  3203. /**
  3204. * check_asym_packing - Check to see if the group is packed into the
  3205. * sched doman.
  3206. *
  3207. * This is primarily intended to used at the sibling level. Some
  3208. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3209. * case of POWER7, it can move to lower SMT modes only when higher
  3210. * threads are idle. When in lower SMT modes, the threads will
  3211. * perform better since they share less core resources. Hence when we
  3212. * have idle threads, we want them to be the higher ones.
  3213. *
  3214. * This packing function is run on idle threads. It checks to see if
  3215. * the busiest CPU in this domain (core in the P7 case) has a higher
  3216. * CPU number than the packing function is being run on. Here we are
  3217. * assuming lower CPU number will be equivalent to lower a SMT thread
  3218. * number.
  3219. *
  3220. * Returns 1 when packing is required and a task should be moved to
  3221. * this CPU. The amount of the imbalance is returned in *imbalance.
  3222. *
  3223. * @env: The load balancing environment.
  3224. * @sds: Statistics of the sched_domain which is to be packed
  3225. */
  3226. static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
  3227. {
  3228. int busiest_cpu;
  3229. if (!(env->sd->flags & SD_ASYM_PACKING))
  3230. return 0;
  3231. if (!sds->busiest)
  3232. return 0;
  3233. busiest_cpu = group_first_cpu(sds->busiest);
  3234. if (env->dst_cpu > busiest_cpu)
  3235. return 0;
  3236. env->imbalance = DIV_ROUND_CLOSEST(
  3237. sds->max_load * sds->busiest->sgp->power, SCHED_POWER_SCALE);
  3238. return 1;
  3239. }
  3240. /**
  3241. * fix_small_imbalance - Calculate the minor imbalance that exists
  3242. * amongst the groups of a sched_domain, during
  3243. * load balancing.
  3244. * @env: The load balancing environment.
  3245. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3246. */
  3247. static inline
  3248. void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3249. {
  3250. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3251. unsigned int imbn = 2;
  3252. unsigned long scaled_busy_load_per_task;
  3253. if (sds->this_nr_running) {
  3254. sds->this_load_per_task /= sds->this_nr_running;
  3255. if (sds->busiest_load_per_task >
  3256. sds->this_load_per_task)
  3257. imbn = 1;
  3258. } else {
  3259. sds->this_load_per_task =
  3260. cpu_avg_load_per_task(env->dst_cpu);
  3261. }
  3262. scaled_busy_load_per_task = sds->busiest_load_per_task
  3263. * SCHED_POWER_SCALE;
  3264. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3265. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3266. (scaled_busy_load_per_task * imbn)) {
  3267. env->imbalance = sds->busiest_load_per_task;
  3268. return;
  3269. }
  3270. /*
  3271. * OK, we don't have enough imbalance to justify moving tasks,
  3272. * however we may be able to increase total CPU power used by
  3273. * moving them.
  3274. */
  3275. pwr_now += sds->busiest->sgp->power *
  3276. min(sds->busiest_load_per_task, sds->max_load);
  3277. pwr_now += sds->this->sgp->power *
  3278. min(sds->this_load_per_task, sds->this_load);
  3279. pwr_now /= SCHED_POWER_SCALE;
  3280. /* Amount of load we'd subtract */
  3281. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3282. sds->busiest->sgp->power;
  3283. if (sds->max_load > tmp)
  3284. pwr_move += sds->busiest->sgp->power *
  3285. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3286. /* Amount of load we'd add */
  3287. if (sds->max_load * sds->busiest->sgp->power <
  3288. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3289. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3290. sds->this->sgp->power;
  3291. else
  3292. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3293. sds->this->sgp->power;
  3294. pwr_move += sds->this->sgp->power *
  3295. min(sds->this_load_per_task, sds->this_load + tmp);
  3296. pwr_move /= SCHED_POWER_SCALE;
  3297. /* Move if we gain throughput */
  3298. if (pwr_move > pwr_now)
  3299. env->imbalance = sds->busiest_load_per_task;
  3300. }
  3301. /**
  3302. * calculate_imbalance - Calculate the amount of imbalance present within the
  3303. * groups of a given sched_domain during load balance.
  3304. * @env: load balance environment
  3305. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3306. */
  3307. static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
  3308. {
  3309. unsigned long max_pull, load_above_capacity = ~0UL;
  3310. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3311. if (sds->group_imb) {
  3312. sds->busiest_load_per_task =
  3313. min(sds->busiest_load_per_task, sds->avg_load);
  3314. }
  3315. /*
  3316. * In the presence of smp nice balancing, certain scenarios can have
  3317. * max load less than avg load(as we skip the groups at or below
  3318. * its cpu_power, while calculating max_load..)
  3319. */
  3320. if (sds->max_load < sds->avg_load) {
  3321. env->imbalance = 0;
  3322. return fix_small_imbalance(env, sds);
  3323. }
  3324. if (!sds->group_imb) {
  3325. /*
  3326. * Don't want to pull so many tasks that a group would go idle.
  3327. */
  3328. load_above_capacity = (sds->busiest_nr_running -
  3329. sds->busiest_group_capacity);
  3330. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3331. load_above_capacity /= sds->busiest->sgp->power;
  3332. }
  3333. /*
  3334. * We're trying to get all the cpus to the average_load, so we don't
  3335. * want to push ourselves above the average load, nor do we wish to
  3336. * reduce the max loaded cpu below the average load. At the same time,
  3337. * we also don't want to reduce the group load below the group capacity
  3338. * (so that we can implement power-savings policies etc). Thus we look
  3339. * for the minimum possible imbalance.
  3340. * Be careful of negative numbers as they'll appear as very large values
  3341. * with unsigned longs.
  3342. */
  3343. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3344. /* How much load to actually move to equalise the imbalance */
  3345. env->imbalance = min(max_pull * sds->busiest->sgp->power,
  3346. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3347. / SCHED_POWER_SCALE;
  3348. /*
  3349. * if *imbalance is less than the average load per runnable task
  3350. * there is no guarantee that any tasks will be moved so we'll have
  3351. * a think about bumping its value to force at least one task to be
  3352. * moved
  3353. */
  3354. if (env->imbalance < sds->busiest_load_per_task)
  3355. return fix_small_imbalance(env, sds);
  3356. }
  3357. /******* find_busiest_group() helpers end here *********************/
  3358. /**
  3359. * find_busiest_group - Returns the busiest group within the sched_domain
  3360. * if there is an imbalance. If there isn't an imbalance, and
  3361. * the user has opted for power-savings, it returns a group whose
  3362. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3363. * such a group exists.
  3364. *
  3365. * Also calculates the amount of weighted load which should be moved
  3366. * to restore balance.
  3367. *
  3368. * @env: The load balancing environment.
  3369. * @cpus: The set of CPUs under consideration for load-balancing.
  3370. * @balance: Pointer to a variable indicating if this_cpu
  3371. * is the appropriate cpu to perform load balancing at this_level.
  3372. *
  3373. * Returns: - the busiest group if imbalance exists.
  3374. * - If no imbalance and user has opted for power-savings balance,
  3375. * return the least loaded group whose CPUs can be
  3376. * put to idle by rebalancing its tasks onto our group.
  3377. */
  3378. static struct sched_group *
  3379. find_busiest_group(struct lb_env *env, const struct cpumask *cpus, int *balance)
  3380. {
  3381. struct sd_lb_stats sds;
  3382. memset(&sds, 0, sizeof(sds));
  3383. /*
  3384. * Compute the various statistics relavent for load balancing at
  3385. * this level.
  3386. */
  3387. update_sd_lb_stats(env, cpus, balance, &sds);
  3388. /*
  3389. * this_cpu is not the appropriate cpu to perform load balancing at
  3390. * this level.
  3391. */
  3392. if (!(*balance))
  3393. goto ret;
  3394. if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
  3395. check_asym_packing(env, &sds))
  3396. return sds.busiest;
  3397. /* There is no busy sibling group to pull tasks from */
  3398. if (!sds.busiest || sds.busiest_nr_running == 0)
  3399. goto out_balanced;
  3400. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3401. /*
  3402. * If the busiest group is imbalanced the below checks don't
  3403. * work because they assumes all things are equal, which typically
  3404. * isn't true due to cpus_allowed constraints and the like.
  3405. */
  3406. if (sds.group_imb)
  3407. goto force_balance;
  3408. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3409. if (env->idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3410. !sds.busiest_has_capacity)
  3411. goto force_balance;
  3412. /*
  3413. * If the local group is more busy than the selected busiest group
  3414. * don't try and pull any tasks.
  3415. */
  3416. if (sds.this_load >= sds.max_load)
  3417. goto out_balanced;
  3418. /*
  3419. * Don't pull any tasks if this group is already above the domain
  3420. * average load.
  3421. */
  3422. if (sds.this_load >= sds.avg_load)
  3423. goto out_balanced;
  3424. if (env->idle == CPU_IDLE) {
  3425. /*
  3426. * This cpu is idle. If the busiest group load doesn't
  3427. * have more tasks than the number of available cpu's and
  3428. * there is no imbalance between this and busiest group
  3429. * wrt to idle cpu's, it is balanced.
  3430. */
  3431. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3432. sds.busiest_nr_running <= sds.busiest_group_weight)
  3433. goto out_balanced;
  3434. } else {
  3435. /*
  3436. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3437. * imbalance_pct to be conservative.
  3438. */
  3439. if (100 * sds.max_load <= env->sd->imbalance_pct * sds.this_load)
  3440. goto out_balanced;
  3441. }
  3442. force_balance:
  3443. /* Looks like there is an imbalance. Compute it */
  3444. calculate_imbalance(env, &sds);
  3445. return sds.busiest;
  3446. out_balanced:
  3447. ret:
  3448. env->imbalance = 0;
  3449. return NULL;
  3450. }
  3451. /*
  3452. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3453. */
  3454. static struct rq *find_busiest_queue(struct lb_env *env,
  3455. struct sched_group *group,
  3456. const struct cpumask *cpus)
  3457. {
  3458. struct rq *busiest = NULL, *rq;
  3459. unsigned long max_load = 0;
  3460. int i;
  3461. for_each_cpu(i, sched_group_cpus(group)) {
  3462. unsigned long power = power_of(i);
  3463. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3464. SCHED_POWER_SCALE);
  3465. unsigned long wl;
  3466. if (!capacity)
  3467. capacity = fix_small_capacity(env->sd, group);
  3468. if (!cpumask_test_cpu(i, cpus))
  3469. continue;
  3470. rq = cpu_rq(i);
  3471. wl = weighted_cpuload(i);
  3472. /*
  3473. * When comparing with imbalance, use weighted_cpuload()
  3474. * which is not scaled with the cpu power.
  3475. */
  3476. if (capacity && rq->nr_running == 1 && wl > env->imbalance)
  3477. continue;
  3478. /*
  3479. * For the load comparisons with the other cpu's, consider
  3480. * the weighted_cpuload() scaled with the cpu power, so that
  3481. * the load can be moved away from the cpu that is potentially
  3482. * running at a lower capacity.
  3483. */
  3484. wl = (wl * SCHED_POWER_SCALE) / power;
  3485. if (wl > max_load) {
  3486. max_load = wl;
  3487. busiest = rq;
  3488. }
  3489. }
  3490. return busiest;
  3491. }
  3492. /*
  3493. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3494. * so long as it is large enough.
  3495. */
  3496. #define MAX_PINNED_INTERVAL 512
  3497. /* Working cpumask for load_balance and load_balance_newidle. */
  3498. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3499. static int need_active_balance(struct lb_env *env)
  3500. {
  3501. struct sched_domain *sd = env->sd;
  3502. if (env->idle == CPU_NEWLY_IDLE) {
  3503. /*
  3504. * ASYM_PACKING needs to force migrate tasks from busy but
  3505. * higher numbered CPUs in order to pack all tasks in the
  3506. * lowest numbered CPUs.
  3507. */
  3508. if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
  3509. return 1;
  3510. }
  3511. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3512. }
  3513. static int active_load_balance_cpu_stop(void *data);
  3514. /*
  3515. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3516. * tasks if there is an imbalance.
  3517. */
  3518. static int load_balance(int this_cpu, struct rq *this_rq,
  3519. struct sched_domain *sd, enum cpu_idle_type idle,
  3520. int *balance)
  3521. {
  3522. int ld_moved, cur_ld_moved, active_balance = 0;
  3523. int lb_iterations, max_lb_iterations;
  3524. struct sched_group *group;
  3525. struct rq *busiest;
  3526. unsigned long flags;
  3527. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3528. struct lb_env env = {
  3529. .sd = sd,
  3530. .dst_cpu = this_cpu,
  3531. .dst_rq = this_rq,
  3532. .dst_grpmask = sched_group_cpus(sd->groups),
  3533. .idle = idle,
  3534. .loop_break = sched_nr_migrate_break,
  3535. };
  3536. cpumask_copy(cpus, cpu_active_mask);
  3537. max_lb_iterations = cpumask_weight(env.dst_grpmask);
  3538. schedstat_inc(sd, lb_count[idle]);
  3539. redo:
  3540. group = find_busiest_group(&env, cpus, balance);
  3541. if (*balance == 0)
  3542. goto out_balanced;
  3543. if (!group) {
  3544. schedstat_inc(sd, lb_nobusyg[idle]);
  3545. goto out_balanced;
  3546. }
  3547. busiest = find_busiest_queue(&env, group, cpus);
  3548. if (!busiest) {
  3549. schedstat_inc(sd, lb_nobusyq[idle]);
  3550. goto out_balanced;
  3551. }
  3552. BUG_ON(busiest == this_rq);
  3553. schedstat_add(sd, lb_imbalance[idle], env.imbalance);
  3554. ld_moved = 0;
  3555. lb_iterations = 1;
  3556. if (busiest->nr_running > 1) {
  3557. /*
  3558. * Attempt to move tasks. If find_busiest_group has found
  3559. * an imbalance but busiest->nr_running <= 1, the group is
  3560. * still unbalanced. ld_moved simply stays zero, so it is
  3561. * correctly treated as an imbalance.
  3562. */
  3563. env.flags |= LBF_ALL_PINNED;
  3564. env.src_cpu = busiest->cpu;
  3565. env.src_rq = busiest;
  3566. env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
  3567. more_balance:
  3568. local_irq_save(flags);
  3569. double_rq_lock(this_rq, busiest);
  3570. if (!env.loop)
  3571. update_h_load(env.src_cpu);
  3572. /*
  3573. * cur_ld_moved - load moved in current iteration
  3574. * ld_moved - cumulative load moved across iterations
  3575. */
  3576. cur_ld_moved = move_tasks(&env);
  3577. ld_moved += cur_ld_moved;
  3578. double_rq_unlock(this_rq, busiest);
  3579. local_irq_restore(flags);
  3580. if (env.flags & LBF_NEED_BREAK) {
  3581. env.flags &= ~LBF_NEED_BREAK;
  3582. goto more_balance;
  3583. }
  3584. /*
  3585. * some other cpu did the load balance for us.
  3586. */
  3587. if (cur_ld_moved && env.dst_cpu != smp_processor_id())
  3588. resched_cpu(env.dst_cpu);
  3589. /*
  3590. * Revisit (affine) tasks on src_cpu that couldn't be moved to
  3591. * us and move them to an alternate dst_cpu in our sched_group
  3592. * where they can run. The upper limit on how many times we
  3593. * iterate on same src_cpu is dependent on number of cpus in our
  3594. * sched_group.
  3595. *
  3596. * This changes load balance semantics a bit on who can move
  3597. * load to a given_cpu. In addition to the given_cpu itself
  3598. * (or a ilb_cpu acting on its behalf where given_cpu is
  3599. * nohz-idle), we now have balance_cpu in a position to move
  3600. * load to given_cpu. In rare situations, this may cause
  3601. * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
  3602. * _independently_ and at _same_ time to move some load to
  3603. * given_cpu) causing exceess load to be moved to given_cpu.
  3604. * This however should not happen so much in practice and
  3605. * moreover subsequent load balance cycles should correct the
  3606. * excess load moved.
  3607. */
  3608. if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
  3609. lb_iterations++ < max_lb_iterations) {
  3610. this_rq = cpu_rq(env.new_dst_cpu);
  3611. env.dst_rq = this_rq;
  3612. env.dst_cpu = env.new_dst_cpu;
  3613. env.flags &= ~LBF_SOME_PINNED;
  3614. env.loop = 0;
  3615. env.loop_break = sched_nr_migrate_break;
  3616. /*
  3617. * Go back to "more_balance" rather than "redo" since we
  3618. * need to continue with same src_cpu.
  3619. */
  3620. goto more_balance;
  3621. }
  3622. /* All tasks on this runqueue were pinned by CPU affinity */
  3623. if (unlikely(env.flags & LBF_ALL_PINNED)) {
  3624. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3625. if (!cpumask_empty(cpus)) {
  3626. env.loop = 0;
  3627. env.loop_break = sched_nr_migrate_break;
  3628. goto redo;
  3629. }
  3630. goto out_balanced;
  3631. }
  3632. }
  3633. if (!ld_moved) {
  3634. schedstat_inc(sd, lb_failed[idle]);
  3635. /*
  3636. * Increment the failure counter only on periodic balance.
  3637. * We do not want newidle balance, which can be very
  3638. * frequent, pollute the failure counter causing
  3639. * excessive cache_hot migrations and active balances.
  3640. */
  3641. if (idle != CPU_NEWLY_IDLE)
  3642. sd->nr_balance_failed++;
  3643. if (need_active_balance(&env)) {
  3644. raw_spin_lock_irqsave(&busiest->lock, flags);
  3645. /* don't kick the active_load_balance_cpu_stop,
  3646. * if the curr task on busiest cpu can't be
  3647. * moved to this_cpu
  3648. */
  3649. if (!cpumask_test_cpu(this_cpu,
  3650. tsk_cpus_allowed(busiest->curr))) {
  3651. raw_spin_unlock_irqrestore(&busiest->lock,
  3652. flags);
  3653. env.flags |= LBF_ALL_PINNED;
  3654. goto out_one_pinned;
  3655. }
  3656. /*
  3657. * ->active_balance synchronizes accesses to
  3658. * ->active_balance_work. Once set, it's cleared
  3659. * only after active load balance is finished.
  3660. */
  3661. if (!busiest->active_balance) {
  3662. busiest->active_balance = 1;
  3663. busiest->push_cpu = this_cpu;
  3664. active_balance = 1;
  3665. }
  3666. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3667. if (active_balance) {
  3668. stop_one_cpu_nowait(cpu_of(busiest),
  3669. active_load_balance_cpu_stop, busiest,
  3670. &busiest->active_balance_work);
  3671. }
  3672. /*
  3673. * We've kicked active balancing, reset the failure
  3674. * counter.
  3675. */
  3676. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3677. }
  3678. } else
  3679. sd->nr_balance_failed = 0;
  3680. if (likely(!active_balance)) {
  3681. /* We were unbalanced, so reset the balancing interval */
  3682. sd->balance_interval = sd->min_interval;
  3683. } else {
  3684. /*
  3685. * If we've begun active balancing, start to back off. This
  3686. * case may not be covered by the all_pinned logic if there
  3687. * is only 1 task on the busy runqueue (because we don't call
  3688. * move_tasks).
  3689. */
  3690. if (sd->balance_interval < sd->max_interval)
  3691. sd->balance_interval *= 2;
  3692. }
  3693. goto out;
  3694. out_balanced:
  3695. schedstat_inc(sd, lb_balanced[idle]);
  3696. sd->nr_balance_failed = 0;
  3697. out_one_pinned:
  3698. /* tune up the balancing interval */
  3699. if (((env.flags & LBF_ALL_PINNED) &&
  3700. sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3701. (sd->balance_interval < sd->max_interval))
  3702. sd->balance_interval *= 2;
  3703. ld_moved = 0;
  3704. out:
  3705. return ld_moved;
  3706. }
  3707. /*
  3708. * idle_balance is called by schedule() if this_cpu is about to become
  3709. * idle. Attempts to pull tasks from other CPUs.
  3710. */
  3711. void idle_balance(int this_cpu, struct rq *this_rq)
  3712. {
  3713. struct sched_domain *sd;
  3714. int pulled_task = 0;
  3715. unsigned long next_balance = jiffies + HZ;
  3716. this_rq->idle_stamp = this_rq->clock;
  3717. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3718. return;
  3719. /*
  3720. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3721. */
  3722. raw_spin_unlock(&this_rq->lock);
  3723. update_shares(this_cpu);
  3724. rcu_read_lock();
  3725. for_each_domain(this_cpu, sd) {
  3726. unsigned long interval;
  3727. int balance = 1;
  3728. if (!(sd->flags & SD_LOAD_BALANCE))
  3729. continue;
  3730. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3731. /* If we've pulled tasks over stop searching: */
  3732. pulled_task = load_balance(this_cpu, this_rq,
  3733. sd, CPU_NEWLY_IDLE, &balance);
  3734. }
  3735. interval = msecs_to_jiffies(sd->balance_interval);
  3736. if (time_after(next_balance, sd->last_balance + interval))
  3737. next_balance = sd->last_balance + interval;
  3738. if (pulled_task) {
  3739. this_rq->idle_stamp = 0;
  3740. break;
  3741. }
  3742. }
  3743. rcu_read_unlock();
  3744. raw_spin_lock(&this_rq->lock);
  3745. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3746. /*
  3747. * We are going idle. next_balance may be set based on
  3748. * a busy processor. So reset next_balance.
  3749. */
  3750. this_rq->next_balance = next_balance;
  3751. }
  3752. }
  3753. /*
  3754. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3755. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3756. * least 1 task to be running on each physical CPU where possible, and
  3757. * avoids physical / logical imbalances.
  3758. */
  3759. static int active_load_balance_cpu_stop(void *data)
  3760. {
  3761. struct rq *busiest_rq = data;
  3762. int busiest_cpu = cpu_of(busiest_rq);
  3763. int target_cpu = busiest_rq->push_cpu;
  3764. struct rq *target_rq = cpu_rq(target_cpu);
  3765. struct sched_domain *sd;
  3766. raw_spin_lock_irq(&busiest_rq->lock);
  3767. /* make sure the requested cpu hasn't gone down in the meantime */
  3768. if (unlikely(busiest_cpu != smp_processor_id() ||
  3769. !busiest_rq->active_balance))
  3770. goto out_unlock;
  3771. /* Is there any task to move? */
  3772. if (busiest_rq->nr_running <= 1)
  3773. goto out_unlock;
  3774. /*
  3775. * This condition is "impossible", if it occurs
  3776. * we need to fix it. Originally reported by
  3777. * Bjorn Helgaas on a 128-cpu setup.
  3778. */
  3779. BUG_ON(busiest_rq == target_rq);
  3780. /* move a task from busiest_rq to target_rq */
  3781. double_lock_balance(busiest_rq, target_rq);
  3782. /* Search for an sd spanning us and the target CPU. */
  3783. rcu_read_lock();
  3784. for_each_domain(target_cpu, sd) {
  3785. if ((sd->flags & SD_LOAD_BALANCE) &&
  3786. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3787. break;
  3788. }
  3789. if (likely(sd)) {
  3790. struct lb_env env = {
  3791. .sd = sd,
  3792. .dst_cpu = target_cpu,
  3793. .dst_rq = target_rq,
  3794. .src_cpu = busiest_rq->cpu,
  3795. .src_rq = busiest_rq,
  3796. .idle = CPU_IDLE,
  3797. };
  3798. schedstat_inc(sd, alb_count);
  3799. if (move_one_task(&env))
  3800. schedstat_inc(sd, alb_pushed);
  3801. else
  3802. schedstat_inc(sd, alb_failed);
  3803. }
  3804. rcu_read_unlock();
  3805. double_unlock_balance(busiest_rq, target_rq);
  3806. out_unlock:
  3807. busiest_rq->active_balance = 0;
  3808. raw_spin_unlock_irq(&busiest_rq->lock);
  3809. return 0;
  3810. }
  3811. #ifdef CONFIG_NO_HZ
  3812. /*
  3813. * idle load balancing details
  3814. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3815. * needed, they will kick the idle load balancer, which then does idle
  3816. * load balancing for all the idle CPUs.
  3817. */
  3818. static struct {
  3819. cpumask_var_t idle_cpus_mask;
  3820. atomic_t nr_cpus;
  3821. unsigned long next_balance; /* in jiffy units */
  3822. } nohz ____cacheline_aligned;
  3823. static inline int find_new_ilb(int call_cpu)
  3824. {
  3825. int ilb = cpumask_first(nohz.idle_cpus_mask);
  3826. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  3827. return ilb;
  3828. return nr_cpu_ids;
  3829. }
  3830. /*
  3831. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3832. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3833. * CPU (if there is one).
  3834. */
  3835. static void nohz_balancer_kick(int cpu)
  3836. {
  3837. int ilb_cpu;
  3838. nohz.next_balance++;
  3839. ilb_cpu = find_new_ilb(cpu);
  3840. if (ilb_cpu >= nr_cpu_ids)
  3841. return;
  3842. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  3843. return;
  3844. /*
  3845. * Use smp_send_reschedule() instead of resched_cpu().
  3846. * This way we generate a sched IPI on the target cpu which
  3847. * is idle. And the softirq performing nohz idle load balance
  3848. * will be run before returning from the IPI.
  3849. */
  3850. smp_send_reschedule(ilb_cpu);
  3851. return;
  3852. }
  3853. static inline void clear_nohz_tick_stopped(int cpu)
  3854. {
  3855. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  3856. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3857. atomic_dec(&nohz.nr_cpus);
  3858. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  3859. }
  3860. }
  3861. static inline void set_cpu_sd_state_busy(void)
  3862. {
  3863. struct sched_domain *sd;
  3864. int cpu = smp_processor_id();
  3865. if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  3866. return;
  3867. clear_bit(NOHZ_IDLE, nohz_flags(cpu));
  3868. rcu_read_lock();
  3869. for_each_domain(cpu, sd)
  3870. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  3871. rcu_read_unlock();
  3872. }
  3873. void set_cpu_sd_state_idle(void)
  3874. {
  3875. struct sched_domain *sd;
  3876. int cpu = smp_processor_id();
  3877. if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  3878. return;
  3879. set_bit(NOHZ_IDLE, nohz_flags(cpu));
  3880. rcu_read_lock();
  3881. for_each_domain(cpu, sd)
  3882. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  3883. rcu_read_unlock();
  3884. }
  3885. /*
  3886. * This routine will record that this cpu is going idle with tick stopped.
  3887. * This info will be used in performing idle load balancing in the future.
  3888. */
  3889. void select_nohz_load_balancer(int stop_tick)
  3890. {
  3891. int cpu = smp_processor_id();
  3892. /*
  3893. * If this cpu is going down, then nothing needs to be done.
  3894. */
  3895. if (!cpu_active(cpu))
  3896. return;
  3897. if (stop_tick) {
  3898. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  3899. return;
  3900. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3901. atomic_inc(&nohz.nr_cpus);
  3902. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  3903. }
  3904. return;
  3905. }
  3906. static int __cpuinit sched_ilb_notifier(struct notifier_block *nfb,
  3907. unsigned long action, void *hcpu)
  3908. {
  3909. switch (action & ~CPU_TASKS_FROZEN) {
  3910. case CPU_DYING:
  3911. clear_nohz_tick_stopped(smp_processor_id());
  3912. return NOTIFY_OK;
  3913. default:
  3914. return NOTIFY_DONE;
  3915. }
  3916. }
  3917. #endif
  3918. static DEFINE_SPINLOCK(balancing);
  3919. /*
  3920. * Scale the max load_balance interval with the number of CPUs in the system.
  3921. * This trades load-balance latency on larger machines for less cross talk.
  3922. */
  3923. void update_max_interval(void)
  3924. {
  3925. max_load_balance_interval = HZ*num_online_cpus()/10;
  3926. }
  3927. /*
  3928. * It checks each scheduling domain to see if it is due to be balanced,
  3929. * and initiates a balancing operation if so.
  3930. *
  3931. * Balancing parameters are set up in arch_init_sched_domains.
  3932. */
  3933. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3934. {
  3935. int balance = 1;
  3936. struct rq *rq = cpu_rq(cpu);
  3937. unsigned long interval;
  3938. struct sched_domain *sd;
  3939. /* Earliest time when we have to do rebalance again */
  3940. unsigned long next_balance = jiffies + 60*HZ;
  3941. int update_next_balance = 0;
  3942. int need_serialize;
  3943. update_shares(cpu);
  3944. rcu_read_lock();
  3945. for_each_domain(cpu, sd) {
  3946. if (!(sd->flags & SD_LOAD_BALANCE))
  3947. continue;
  3948. interval = sd->balance_interval;
  3949. if (idle != CPU_IDLE)
  3950. interval *= sd->busy_factor;
  3951. /* scale ms to jiffies */
  3952. interval = msecs_to_jiffies(interval);
  3953. interval = clamp(interval, 1UL, max_load_balance_interval);
  3954. need_serialize = sd->flags & SD_SERIALIZE;
  3955. if (need_serialize) {
  3956. if (!spin_trylock(&balancing))
  3957. goto out;
  3958. }
  3959. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3960. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3961. /*
  3962. * We've pulled tasks over so either we're no
  3963. * longer idle.
  3964. */
  3965. idle = CPU_NOT_IDLE;
  3966. }
  3967. sd->last_balance = jiffies;
  3968. }
  3969. if (need_serialize)
  3970. spin_unlock(&balancing);
  3971. out:
  3972. if (time_after(next_balance, sd->last_balance + interval)) {
  3973. next_balance = sd->last_balance + interval;
  3974. update_next_balance = 1;
  3975. }
  3976. /*
  3977. * Stop the load balance at this level. There is another
  3978. * CPU in our sched group which is doing load balancing more
  3979. * actively.
  3980. */
  3981. if (!balance)
  3982. break;
  3983. }
  3984. rcu_read_unlock();
  3985. /*
  3986. * next_balance will be updated only when there is a need.
  3987. * When the cpu is attached to null domain for ex, it will not be
  3988. * updated.
  3989. */
  3990. if (likely(update_next_balance))
  3991. rq->next_balance = next_balance;
  3992. }
  3993. #ifdef CONFIG_NO_HZ
  3994. /*
  3995. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3996. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3997. */
  3998. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3999. {
  4000. struct rq *this_rq = cpu_rq(this_cpu);
  4001. struct rq *rq;
  4002. int balance_cpu;
  4003. if (idle != CPU_IDLE ||
  4004. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  4005. goto end;
  4006. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  4007. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  4008. continue;
  4009. /*
  4010. * If this cpu gets work to do, stop the load balancing
  4011. * work being done for other cpus. Next load
  4012. * balancing owner will pick it up.
  4013. */
  4014. if (need_resched())
  4015. break;
  4016. raw_spin_lock_irq(&this_rq->lock);
  4017. update_rq_clock(this_rq);
  4018. update_idle_cpu_load(this_rq);
  4019. raw_spin_unlock_irq(&this_rq->lock);
  4020. rebalance_domains(balance_cpu, CPU_IDLE);
  4021. rq = cpu_rq(balance_cpu);
  4022. if (time_after(this_rq->next_balance, rq->next_balance))
  4023. this_rq->next_balance = rq->next_balance;
  4024. }
  4025. nohz.next_balance = this_rq->next_balance;
  4026. end:
  4027. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  4028. }
  4029. /*
  4030. * Current heuristic for kicking the idle load balancer in the presence
  4031. * of an idle cpu is the system.
  4032. * - This rq has more than one task.
  4033. * - At any scheduler domain level, this cpu's scheduler group has multiple
  4034. * busy cpu's exceeding the group's power.
  4035. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  4036. * domain span are idle.
  4037. */
  4038. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4039. {
  4040. unsigned long now = jiffies;
  4041. struct sched_domain *sd;
  4042. if (unlikely(idle_cpu(cpu)))
  4043. return 0;
  4044. /*
  4045. * We may be recently in ticked or tickless idle mode. At the first
  4046. * busy tick after returning from idle, we will update the busy stats.
  4047. */
  4048. set_cpu_sd_state_busy();
  4049. clear_nohz_tick_stopped(cpu);
  4050. /*
  4051. * None are in tickless mode and hence no need for NOHZ idle load
  4052. * balancing.
  4053. */
  4054. if (likely(!atomic_read(&nohz.nr_cpus)))
  4055. return 0;
  4056. if (time_before(now, nohz.next_balance))
  4057. return 0;
  4058. if (rq->nr_running >= 2)
  4059. goto need_kick;
  4060. rcu_read_lock();
  4061. for_each_domain(cpu, sd) {
  4062. struct sched_group *sg = sd->groups;
  4063. struct sched_group_power *sgp = sg->sgp;
  4064. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  4065. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  4066. goto need_kick_unlock;
  4067. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  4068. && (cpumask_first_and(nohz.idle_cpus_mask,
  4069. sched_domain_span(sd)) < cpu))
  4070. goto need_kick_unlock;
  4071. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  4072. break;
  4073. }
  4074. rcu_read_unlock();
  4075. return 0;
  4076. need_kick_unlock:
  4077. rcu_read_unlock();
  4078. need_kick:
  4079. return 1;
  4080. }
  4081. #else
  4082. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4083. #endif
  4084. /*
  4085. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4086. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4087. */
  4088. static void run_rebalance_domains(struct softirq_action *h)
  4089. {
  4090. int this_cpu = smp_processor_id();
  4091. struct rq *this_rq = cpu_rq(this_cpu);
  4092. enum cpu_idle_type idle = this_rq->idle_balance ?
  4093. CPU_IDLE : CPU_NOT_IDLE;
  4094. rebalance_domains(this_cpu, idle);
  4095. /*
  4096. * If this cpu has a pending nohz_balance_kick, then do the
  4097. * balancing on behalf of the other idle cpus whose ticks are
  4098. * stopped.
  4099. */
  4100. nohz_idle_balance(this_cpu, idle);
  4101. }
  4102. static inline int on_null_domain(int cpu)
  4103. {
  4104. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4105. }
  4106. /*
  4107. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4108. */
  4109. void trigger_load_balance(struct rq *rq, int cpu)
  4110. {
  4111. /* Don't need to rebalance while attached to NULL domain */
  4112. if (time_after_eq(jiffies, rq->next_balance) &&
  4113. likely(!on_null_domain(cpu)))
  4114. raise_softirq(SCHED_SOFTIRQ);
  4115. #ifdef CONFIG_NO_HZ
  4116. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4117. nohz_balancer_kick(cpu);
  4118. #endif
  4119. }
  4120. static void rq_online_fair(struct rq *rq)
  4121. {
  4122. update_sysctl();
  4123. }
  4124. static void rq_offline_fair(struct rq *rq)
  4125. {
  4126. update_sysctl();
  4127. }
  4128. #endif /* CONFIG_SMP */
  4129. /*
  4130. * scheduler tick hitting a task of our scheduling class:
  4131. */
  4132. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4133. {
  4134. struct cfs_rq *cfs_rq;
  4135. struct sched_entity *se = &curr->se;
  4136. for_each_sched_entity(se) {
  4137. cfs_rq = cfs_rq_of(se);
  4138. entity_tick(cfs_rq, se, queued);
  4139. }
  4140. }
  4141. /*
  4142. * called on fork with the child task as argument from the parent's context
  4143. * - child not yet on the tasklist
  4144. * - preemption disabled
  4145. */
  4146. static void task_fork_fair(struct task_struct *p)
  4147. {
  4148. struct cfs_rq *cfs_rq;
  4149. struct sched_entity *se = &p->se, *curr;
  4150. int this_cpu = smp_processor_id();
  4151. struct rq *rq = this_rq();
  4152. unsigned long flags;
  4153. raw_spin_lock_irqsave(&rq->lock, flags);
  4154. update_rq_clock(rq);
  4155. cfs_rq = task_cfs_rq(current);
  4156. curr = cfs_rq->curr;
  4157. if (unlikely(task_cpu(p) != this_cpu)) {
  4158. rcu_read_lock();
  4159. __set_task_cpu(p, this_cpu);
  4160. rcu_read_unlock();
  4161. }
  4162. update_curr(cfs_rq);
  4163. if (curr)
  4164. se->vruntime = curr->vruntime;
  4165. place_entity(cfs_rq, se, 1);
  4166. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4167. /*
  4168. * Upon rescheduling, sched_class::put_prev_task() will place
  4169. * 'current' within the tree based on its new key value.
  4170. */
  4171. swap(curr->vruntime, se->vruntime);
  4172. resched_task(rq->curr);
  4173. }
  4174. se->vruntime -= cfs_rq->min_vruntime;
  4175. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4176. }
  4177. /*
  4178. * Priority of the task has changed. Check to see if we preempt
  4179. * the current task.
  4180. */
  4181. static void
  4182. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4183. {
  4184. if (!p->se.on_rq)
  4185. return;
  4186. /*
  4187. * Reschedule if we are currently running on this runqueue and
  4188. * our priority decreased, or if we are not currently running on
  4189. * this runqueue and our priority is higher than the current's
  4190. */
  4191. if (rq->curr == p) {
  4192. if (p->prio > oldprio)
  4193. resched_task(rq->curr);
  4194. } else
  4195. check_preempt_curr(rq, p, 0);
  4196. }
  4197. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4198. {
  4199. struct sched_entity *se = &p->se;
  4200. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4201. /*
  4202. * Ensure the task's vruntime is normalized, so that when its
  4203. * switched back to the fair class the enqueue_entity(.flags=0) will
  4204. * do the right thing.
  4205. *
  4206. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4207. * have normalized the vruntime, if it was !on_rq, then only when
  4208. * the task is sleeping will it still have non-normalized vruntime.
  4209. */
  4210. if (!se->on_rq && p->state != TASK_RUNNING) {
  4211. /*
  4212. * Fix up our vruntime so that the current sleep doesn't
  4213. * cause 'unlimited' sleep bonus.
  4214. */
  4215. place_entity(cfs_rq, se, 0);
  4216. se->vruntime -= cfs_rq->min_vruntime;
  4217. }
  4218. }
  4219. /*
  4220. * We switched to the sched_fair class.
  4221. */
  4222. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4223. {
  4224. if (!p->se.on_rq)
  4225. return;
  4226. /*
  4227. * We were most likely switched from sched_rt, so
  4228. * kick off the schedule if running, otherwise just see
  4229. * if we can still preempt the current task.
  4230. */
  4231. if (rq->curr == p)
  4232. resched_task(rq->curr);
  4233. else
  4234. check_preempt_curr(rq, p, 0);
  4235. }
  4236. /* Account for a task changing its policy or group.
  4237. *
  4238. * This routine is mostly called to set cfs_rq->curr field when a task
  4239. * migrates between groups/classes.
  4240. */
  4241. static void set_curr_task_fair(struct rq *rq)
  4242. {
  4243. struct sched_entity *se = &rq->curr->se;
  4244. for_each_sched_entity(se) {
  4245. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4246. set_next_entity(cfs_rq, se);
  4247. /* ensure bandwidth has been allocated on our new cfs_rq */
  4248. account_cfs_rq_runtime(cfs_rq, 0);
  4249. }
  4250. }
  4251. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4252. {
  4253. cfs_rq->tasks_timeline = RB_ROOT;
  4254. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4255. #ifndef CONFIG_64BIT
  4256. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4257. #endif
  4258. }
  4259. #ifdef CONFIG_FAIR_GROUP_SCHED
  4260. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4261. {
  4262. /*
  4263. * If the task was not on the rq at the time of this cgroup movement
  4264. * it must have been asleep, sleeping tasks keep their ->vruntime
  4265. * absolute on their old rq until wakeup (needed for the fair sleeper
  4266. * bonus in place_entity()).
  4267. *
  4268. * If it was on the rq, we've just 'preempted' it, which does convert
  4269. * ->vruntime to a relative base.
  4270. *
  4271. * Make sure both cases convert their relative position when migrating
  4272. * to another cgroup's rq. This does somewhat interfere with the
  4273. * fair sleeper stuff for the first placement, but who cares.
  4274. */
  4275. /*
  4276. * When !on_rq, vruntime of the task has usually NOT been normalized.
  4277. * But there are some cases where it has already been normalized:
  4278. *
  4279. * - Moving a forked child which is waiting for being woken up by
  4280. * wake_up_new_task().
  4281. * - Moving a task which has been woken up by try_to_wake_up() and
  4282. * waiting for actually being woken up by sched_ttwu_pending().
  4283. *
  4284. * To prevent boost or penalty in the new cfs_rq caused by delta
  4285. * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
  4286. */
  4287. if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
  4288. on_rq = 1;
  4289. if (!on_rq)
  4290. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4291. set_task_rq(p, task_cpu(p));
  4292. if (!on_rq)
  4293. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4294. }
  4295. void free_fair_sched_group(struct task_group *tg)
  4296. {
  4297. int i;
  4298. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4299. for_each_possible_cpu(i) {
  4300. if (tg->cfs_rq)
  4301. kfree(tg->cfs_rq[i]);
  4302. if (tg->se)
  4303. kfree(tg->se[i]);
  4304. }
  4305. kfree(tg->cfs_rq);
  4306. kfree(tg->se);
  4307. }
  4308. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4309. {
  4310. struct cfs_rq *cfs_rq;
  4311. struct sched_entity *se;
  4312. int i;
  4313. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  4314. if (!tg->cfs_rq)
  4315. goto err;
  4316. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  4317. if (!tg->se)
  4318. goto err;
  4319. tg->shares = NICE_0_LOAD;
  4320. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4321. for_each_possible_cpu(i) {
  4322. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  4323. GFP_KERNEL, cpu_to_node(i));
  4324. if (!cfs_rq)
  4325. goto err;
  4326. se = kzalloc_node(sizeof(struct sched_entity),
  4327. GFP_KERNEL, cpu_to_node(i));
  4328. if (!se)
  4329. goto err_free_rq;
  4330. init_cfs_rq(cfs_rq);
  4331. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  4332. }
  4333. return 1;
  4334. err_free_rq:
  4335. kfree(cfs_rq);
  4336. err:
  4337. return 0;
  4338. }
  4339. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  4340. {
  4341. struct rq *rq = cpu_rq(cpu);
  4342. unsigned long flags;
  4343. /*
  4344. * Only empty task groups can be destroyed; so we can speculatively
  4345. * check on_list without danger of it being re-added.
  4346. */
  4347. if (!tg->cfs_rq[cpu]->on_list)
  4348. return;
  4349. raw_spin_lock_irqsave(&rq->lock, flags);
  4350. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  4351. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4352. }
  4353. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  4354. struct sched_entity *se, int cpu,
  4355. struct sched_entity *parent)
  4356. {
  4357. struct rq *rq = cpu_rq(cpu);
  4358. cfs_rq->tg = tg;
  4359. cfs_rq->rq = rq;
  4360. #ifdef CONFIG_SMP
  4361. /* allow initial update_cfs_load() to truncate */
  4362. cfs_rq->load_stamp = 1;
  4363. #endif
  4364. init_cfs_rq_runtime(cfs_rq);
  4365. tg->cfs_rq[cpu] = cfs_rq;
  4366. tg->se[cpu] = se;
  4367. /* se could be NULL for root_task_group */
  4368. if (!se)
  4369. return;
  4370. if (!parent)
  4371. se->cfs_rq = &rq->cfs;
  4372. else
  4373. se->cfs_rq = parent->my_q;
  4374. se->my_q = cfs_rq;
  4375. update_load_set(&se->load, 0);
  4376. se->parent = parent;
  4377. }
  4378. static DEFINE_MUTEX(shares_mutex);
  4379. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  4380. {
  4381. int i;
  4382. unsigned long flags;
  4383. /*
  4384. * We can't change the weight of the root cgroup.
  4385. */
  4386. if (!tg->se[0])
  4387. return -EINVAL;
  4388. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  4389. mutex_lock(&shares_mutex);
  4390. if (tg->shares == shares)
  4391. goto done;
  4392. tg->shares = shares;
  4393. for_each_possible_cpu(i) {
  4394. struct rq *rq = cpu_rq(i);
  4395. struct sched_entity *se;
  4396. se = tg->se[i];
  4397. /* Propagate contribution to hierarchy */
  4398. raw_spin_lock_irqsave(&rq->lock, flags);
  4399. for_each_sched_entity(se)
  4400. update_cfs_shares(group_cfs_rq(se));
  4401. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4402. }
  4403. done:
  4404. mutex_unlock(&shares_mutex);
  4405. return 0;
  4406. }
  4407. #else /* CONFIG_FAIR_GROUP_SCHED */
  4408. void free_fair_sched_group(struct task_group *tg) { }
  4409. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4410. {
  4411. return 1;
  4412. }
  4413. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  4414. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4415. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4416. {
  4417. struct sched_entity *se = &task->se;
  4418. unsigned int rr_interval = 0;
  4419. /*
  4420. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4421. * idle runqueue:
  4422. */
  4423. if (rq->cfs.load.weight)
  4424. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4425. return rr_interval;
  4426. }
  4427. /*
  4428. * All the scheduling class methods:
  4429. */
  4430. const struct sched_class fair_sched_class = {
  4431. .next = &idle_sched_class,
  4432. .enqueue_task = enqueue_task_fair,
  4433. .dequeue_task = dequeue_task_fair,
  4434. .yield_task = yield_task_fair,
  4435. .yield_to_task = yield_to_task_fair,
  4436. .check_preempt_curr = check_preempt_wakeup,
  4437. .pick_next_task = pick_next_task_fair,
  4438. .put_prev_task = put_prev_task_fair,
  4439. #ifdef CONFIG_SMP
  4440. .select_task_rq = select_task_rq_fair,
  4441. .rq_online = rq_online_fair,
  4442. .rq_offline = rq_offline_fair,
  4443. .task_waking = task_waking_fair,
  4444. #endif
  4445. .set_curr_task = set_curr_task_fair,
  4446. .task_tick = task_tick_fair,
  4447. .task_fork = task_fork_fair,
  4448. .prio_changed = prio_changed_fair,
  4449. .switched_from = switched_from_fair,
  4450. .switched_to = switched_to_fair,
  4451. .get_rr_interval = get_rr_interval_fair,
  4452. #ifdef CONFIG_FAIR_GROUP_SCHED
  4453. .task_move_group = task_move_group_fair,
  4454. #endif
  4455. };
  4456. #ifdef CONFIG_SCHED_DEBUG
  4457. void print_cfs_stats(struct seq_file *m, int cpu)
  4458. {
  4459. struct cfs_rq *cfs_rq;
  4460. rcu_read_lock();
  4461. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4462. print_cfs_rq(m, cpu, cfs_rq);
  4463. rcu_read_unlock();
  4464. }
  4465. #endif
  4466. __init void init_sched_fair_class(void)
  4467. {
  4468. #ifdef CONFIG_SMP
  4469. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  4470. #ifdef CONFIG_NO_HZ
  4471. nohz.next_balance = jiffies;
  4472. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  4473. cpu_notifier(sched_ilb_notifier, 0);
  4474. #endif
  4475. #endif /* SMP */
  4476. }