pid.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 William Irwin, IBM
  5. * (C) 2004 William Irwin, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/export.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/rculist.h>
  33. #include <linux/bootmem.h>
  34. #include <linux/hash.h>
  35. #include <linux/pid_namespace.h>
  36. #include <linux/init_task.h>
  37. #include <linux/syscalls.h>
  38. #define pid_hashfn(nr, ns) \
  39. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  40. static struct hlist_head *pid_hash;
  41. static unsigned int pidhash_shift = 4;
  42. struct pid init_struct_pid = INIT_STRUCT_PID;
  43. int pid_max = PID_MAX_DEFAULT;
  44. #define RESERVED_PIDS 300
  45. int pid_max_min = RESERVED_PIDS + 1;
  46. int pid_max_max = PID_MAX_LIMIT;
  47. #define BITS_PER_PAGE (PAGE_SIZE*8)
  48. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  49. static inline int mk_pid(struct pid_namespace *pid_ns,
  50. struct pidmap *map, int off)
  51. {
  52. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  53. }
  54. #define find_next_offset(map, off) \
  55. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  56. /*
  57. * PID-map pages start out as NULL, they get allocated upon
  58. * first use and are never deallocated. This way a low pid_max
  59. * value does not cause lots of bitmaps to be allocated, but
  60. * the scheme scales to up to 4 million PIDs, runtime.
  61. */
  62. struct pid_namespace init_pid_ns = {
  63. .kref = {
  64. .refcount = ATOMIC_INIT(2),
  65. },
  66. .pidmap = {
  67. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  68. },
  69. .last_pid = 0,
  70. .level = 0,
  71. .child_reaper = &init_task,
  72. };
  73. EXPORT_SYMBOL_GPL(init_pid_ns);
  74. int is_container_init(struct task_struct *tsk)
  75. {
  76. int ret = 0;
  77. struct pid *pid;
  78. rcu_read_lock();
  79. pid = task_pid(tsk);
  80. if (pid != NULL && pid->numbers[pid->level].nr == 1)
  81. ret = 1;
  82. rcu_read_unlock();
  83. return ret;
  84. }
  85. EXPORT_SYMBOL(is_container_init);
  86. /*
  87. * Note: disable interrupts while the pidmap_lock is held as an
  88. * interrupt might come in and do read_lock(&tasklist_lock).
  89. *
  90. * If we don't disable interrupts there is a nasty deadlock between
  91. * detach_pid()->free_pid() and another cpu that does
  92. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  93. * read_lock(&tasklist_lock);
  94. *
  95. * After we clean up the tasklist_lock and know there are no
  96. * irq handlers that take it we can leave the interrupts enabled.
  97. * For now it is easier to be safe than to prove it can't happen.
  98. */
  99. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  100. static void free_pidmap(struct upid *upid)
  101. {
  102. int nr = upid->nr;
  103. struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
  104. int offset = nr & BITS_PER_PAGE_MASK;
  105. clear_bit(offset, map->page);
  106. atomic_inc(&map->nr_free);
  107. }
  108. /*
  109. * If we started walking pids at 'base', is 'a' seen before 'b'?
  110. */
  111. static int pid_before(int base, int a, int b)
  112. {
  113. /*
  114. * This is the same as saying
  115. *
  116. * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
  117. * and that mapping orders 'a' and 'b' with respect to 'base'.
  118. */
  119. return (unsigned)(a - base) < (unsigned)(b - base);
  120. }
  121. /*
  122. * We might be racing with someone else trying to set pid_ns->last_pid
  123. * at the pid allocation time (there's also a sysctl for this, but racing
  124. * with this one is OK, see comment in kernel/pid_namespace.c about it).
  125. * We want the winner to have the "later" value, because if the
  126. * "earlier" value prevails, then a pid may get reused immediately.
  127. *
  128. * Since pids rollover, it is not sufficient to just pick the bigger
  129. * value. We have to consider where we started counting from.
  130. *
  131. * 'base' is the value of pid_ns->last_pid that we observed when
  132. * we started looking for a pid.
  133. *
  134. * 'pid' is the pid that we eventually found.
  135. */
  136. static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
  137. {
  138. int prev;
  139. int last_write = base;
  140. do {
  141. prev = last_write;
  142. last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
  143. } while ((prev != last_write) && (pid_before(base, last_write, pid)));
  144. }
  145. static int alloc_pidmap(struct pid_namespace *pid_ns)
  146. {
  147. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  148. struct pidmap *map;
  149. pid = last + 1;
  150. if (pid >= pid_max)
  151. pid = RESERVED_PIDS;
  152. offset = pid & BITS_PER_PAGE_MASK;
  153. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  154. /*
  155. * If last_pid points into the middle of the map->page we
  156. * want to scan this bitmap block twice, the second time
  157. * we start with offset == 0 (or RESERVED_PIDS).
  158. */
  159. max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
  160. for (i = 0; i <= max_scan; ++i) {
  161. if (unlikely(!map->page)) {
  162. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  163. /*
  164. * Free the page if someone raced with us
  165. * installing it:
  166. */
  167. spin_lock_irq(&pidmap_lock);
  168. if (!map->page) {
  169. map->page = page;
  170. page = NULL;
  171. }
  172. spin_unlock_irq(&pidmap_lock);
  173. kfree(page);
  174. if (unlikely(!map->page))
  175. break;
  176. }
  177. if (likely(atomic_read(&map->nr_free))) {
  178. do {
  179. if (!test_and_set_bit(offset, map->page)) {
  180. atomic_dec(&map->nr_free);
  181. set_last_pid(pid_ns, last, pid);
  182. return pid;
  183. }
  184. offset = find_next_offset(map, offset);
  185. pid = mk_pid(pid_ns, map, offset);
  186. } while (offset < BITS_PER_PAGE && pid < pid_max);
  187. }
  188. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  189. ++map;
  190. offset = 0;
  191. } else {
  192. map = &pid_ns->pidmap[0];
  193. offset = RESERVED_PIDS;
  194. if (unlikely(last == offset))
  195. break;
  196. }
  197. pid = mk_pid(pid_ns, map, offset);
  198. }
  199. return -1;
  200. }
  201. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
  202. {
  203. int offset;
  204. struct pidmap *map, *end;
  205. if (last >= PID_MAX_LIMIT)
  206. return -1;
  207. offset = (last + 1) & BITS_PER_PAGE_MASK;
  208. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  209. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  210. for (; map < end; map++, offset = 0) {
  211. if (unlikely(!map->page))
  212. continue;
  213. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  214. if (offset < BITS_PER_PAGE)
  215. return mk_pid(pid_ns, map, offset);
  216. }
  217. return -1;
  218. }
  219. void put_pid(struct pid *pid)
  220. {
  221. struct pid_namespace *ns;
  222. if (!pid)
  223. return;
  224. ns = pid->numbers[pid->level].ns;
  225. if ((atomic_read(&pid->count) == 1) ||
  226. atomic_dec_and_test(&pid->count)) {
  227. kmem_cache_free(ns->pid_cachep, pid);
  228. put_pid_ns(ns);
  229. }
  230. }
  231. EXPORT_SYMBOL_GPL(put_pid);
  232. static void delayed_put_pid(struct rcu_head *rhp)
  233. {
  234. struct pid *pid = container_of(rhp, struct pid, rcu);
  235. put_pid(pid);
  236. }
  237. void free_pid(struct pid *pid)
  238. {
  239. /* We can be called with write_lock_irq(&tasklist_lock) held */
  240. int i;
  241. unsigned long flags;
  242. spin_lock_irqsave(&pidmap_lock, flags);
  243. for (i = 0; i <= pid->level; i++)
  244. hlist_del_rcu(&pid->numbers[i].pid_chain);
  245. spin_unlock_irqrestore(&pidmap_lock, flags);
  246. for (i = 0; i <= pid->level; i++)
  247. free_pidmap(pid->numbers + i);
  248. call_rcu(&pid->rcu, delayed_put_pid);
  249. }
  250. struct pid *alloc_pid(struct pid_namespace *ns)
  251. {
  252. struct pid *pid;
  253. enum pid_type type;
  254. int i, nr;
  255. struct pid_namespace *tmp;
  256. struct upid *upid;
  257. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  258. if (!pid)
  259. goto out;
  260. tmp = ns;
  261. for (i = ns->level; i >= 0; i--) {
  262. nr = alloc_pidmap(tmp);
  263. if (nr < 0)
  264. goto out_free;
  265. pid->numbers[i].nr = nr;
  266. pid->numbers[i].ns = tmp;
  267. tmp = tmp->parent;
  268. }
  269. get_pid_ns(ns);
  270. pid->level = ns->level;
  271. atomic_set(&pid->count, 1);
  272. for (type = 0; type < PIDTYPE_MAX; ++type)
  273. INIT_HLIST_HEAD(&pid->tasks[type]);
  274. upid = pid->numbers + ns->level;
  275. spin_lock_irq(&pidmap_lock);
  276. for ( ; upid >= pid->numbers; --upid)
  277. hlist_add_head_rcu(&upid->pid_chain,
  278. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  279. spin_unlock_irq(&pidmap_lock);
  280. out:
  281. return pid;
  282. out_free:
  283. while (++i <= ns->level)
  284. free_pidmap(pid->numbers + i);
  285. kmem_cache_free(ns->pid_cachep, pid);
  286. pid = NULL;
  287. goto out;
  288. }
  289. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  290. {
  291. struct hlist_node *elem;
  292. struct upid *pnr;
  293. hlist_for_each_entry_rcu(pnr, elem,
  294. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  295. if (pnr->nr == nr && pnr->ns == ns)
  296. return container_of(pnr, struct pid,
  297. numbers[ns->level]);
  298. return NULL;
  299. }
  300. EXPORT_SYMBOL_GPL(find_pid_ns);
  301. struct pid *find_vpid(int nr)
  302. {
  303. return find_pid_ns(nr, current->nsproxy->pid_ns);
  304. }
  305. EXPORT_SYMBOL_GPL(find_vpid);
  306. /*
  307. * attach_pid() must be called with the tasklist_lock write-held.
  308. */
  309. void attach_pid(struct task_struct *task, enum pid_type type,
  310. struct pid *pid)
  311. {
  312. struct pid_link *link;
  313. link = &task->pids[type];
  314. link->pid = pid;
  315. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  316. }
  317. static void __change_pid(struct task_struct *task, enum pid_type type,
  318. struct pid *new)
  319. {
  320. struct pid_link *link;
  321. struct pid *pid;
  322. int tmp;
  323. link = &task->pids[type];
  324. pid = link->pid;
  325. hlist_del_rcu(&link->node);
  326. link->pid = new;
  327. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  328. if (!hlist_empty(&pid->tasks[tmp]))
  329. return;
  330. free_pid(pid);
  331. }
  332. void detach_pid(struct task_struct *task, enum pid_type type)
  333. {
  334. __change_pid(task, type, NULL);
  335. }
  336. void change_pid(struct task_struct *task, enum pid_type type,
  337. struct pid *pid)
  338. {
  339. __change_pid(task, type, pid);
  340. attach_pid(task, type, pid);
  341. }
  342. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  343. void transfer_pid(struct task_struct *old, struct task_struct *new,
  344. enum pid_type type)
  345. {
  346. new->pids[type].pid = old->pids[type].pid;
  347. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  348. }
  349. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  350. {
  351. struct task_struct *result = NULL;
  352. if (pid) {
  353. struct hlist_node *first;
  354. first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
  355. lockdep_tasklist_lock_is_held());
  356. if (first)
  357. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  358. }
  359. return result;
  360. }
  361. EXPORT_SYMBOL(pid_task);
  362. /*
  363. * Must be called under rcu_read_lock().
  364. */
  365. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  366. {
  367. rcu_lockdep_assert(rcu_read_lock_held(),
  368. "find_task_by_pid_ns() needs rcu_read_lock()"
  369. " protection");
  370. return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
  371. }
  372. struct task_struct *find_task_by_vpid(pid_t vnr)
  373. {
  374. return find_task_by_pid_ns(vnr, current->nsproxy->pid_ns);
  375. }
  376. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  377. {
  378. struct pid *pid;
  379. rcu_read_lock();
  380. if (type != PIDTYPE_PID)
  381. task = task->group_leader;
  382. pid = get_pid(task->pids[type].pid);
  383. rcu_read_unlock();
  384. return pid;
  385. }
  386. EXPORT_SYMBOL_GPL(get_task_pid);
  387. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  388. {
  389. struct task_struct *result;
  390. rcu_read_lock();
  391. result = pid_task(pid, type);
  392. if (result)
  393. get_task_struct(result);
  394. rcu_read_unlock();
  395. return result;
  396. }
  397. EXPORT_SYMBOL_GPL(get_pid_task);
  398. struct pid *find_get_pid(pid_t nr)
  399. {
  400. struct pid *pid;
  401. rcu_read_lock();
  402. pid = get_pid(find_vpid(nr));
  403. rcu_read_unlock();
  404. return pid;
  405. }
  406. EXPORT_SYMBOL_GPL(find_get_pid);
  407. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  408. {
  409. struct upid *upid;
  410. pid_t nr = 0;
  411. if (pid && ns->level <= pid->level) {
  412. upid = &pid->numbers[ns->level];
  413. if (upid->ns == ns)
  414. nr = upid->nr;
  415. }
  416. return nr;
  417. }
  418. pid_t pid_vnr(struct pid *pid)
  419. {
  420. return pid_nr_ns(pid, current->nsproxy->pid_ns);
  421. }
  422. EXPORT_SYMBOL_GPL(pid_vnr);
  423. pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
  424. struct pid_namespace *ns)
  425. {
  426. pid_t nr = 0;
  427. rcu_read_lock();
  428. if (!ns)
  429. ns = current->nsproxy->pid_ns;
  430. if (likely(pid_alive(task))) {
  431. if (type != PIDTYPE_PID)
  432. task = task->group_leader;
  433. nr = pid_nr_ns(task->pids[type].pid, ns);
  434. }
  435. rcu_read_unlock();
  436. return nr;
  437. }
  438. EXPORT_SYMBOL(__task_pid_nr_ns);
  439. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  440. {
  441. return pid_nr_ns(task_tgid(tsk), ns);
  442. }
  443. EXPORT_SYMBOL(task_tgid_nr_ns);
  444. struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
  445. {
  446. return ns_of_pid(task_pid(tsk));
  447. }
  448. EXPORT_SYMBOL_GPL(task_active_pid_ns);
  449. /*
  450. * Used by proc to find the first pid that is greater than or equal to nr.
  451. *
  452. * If there is a pid at nr this function is exactly the same as find_pid_ns.
  453. */
  454. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  455. {
  456. struct pid *pid;
  457. do {
  458. pid = find_pid_ns(nr, ns);
  459. if (pid)
  460. break;
  461. nr = next_pidmap(ns, nr);
  462. } while (nr > 0);
  463. return pid;
  464. }
  465. /*
  466. * The pid hash table is scaled according to the amount of memory in the
  467. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  468. * more.
  469. */
  470. void __init pidhash_init(void)
  471. {
  472. unsigned int i, pidhash_size;
  473. pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
  474. HASH_EARLY | HASH_SMALL,
  475. &pidhash_shift, NULL,
  476. 0, 4096);
  477. pidhash_size = 1U << pidhash_shift;
  478. for (i = 0; i < pidhash_size; i++)
  479. INIT_HLIST_HEAD(&pid_hash[i]);
  480. }
  481. void __init pidmap_init(void)
  482. {
  483. /* bump default and minimum pid_max based on number of cpus */
  484. pid_max = min(pid_max_max, max_t(int, pid_max,
  485. PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
  486. pid_max_min = max_t(int, pid_max_min,
  487. PIDS_PER_CPU_MIN * num_possible_cpus());
  488. pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
  489. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  490. /* Reserve PID 0. We never call free_pidmap(0) */
  491. set_bit(0, init_pid_ns.pidmap[0].page);
  492. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  493. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  494. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  495. }