xfs_log_recover.c 105 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_error.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_dinode.h"
  33. #include "xfs_inode.h"
  34. #include "xfs_inode_item.h"
  35. #include "xfs_alloc.h"
  36. #include "xfs_ialloc.h"
  37. #include "xfs_log_priv.h"
  38. #include "xfs_buf_item.h"
  39. #include "xfs_log_recover.h"
  40. #include "xfs_extfree_item.h"
  41. #include "xfs_trans_priv.h"
  42. #include "xfs_quota.h"
  43. #include "xfs_utils.h"
  44. #include "xfs_trace.h"
  45. STATIC int
  46. xlog_find_zeroed(
  47. struct xlog *,
  48. xfs_daddr_t *);
  49. STATIC int
  50. xlog_clear_stale_blocks(
  51. struct xlog *,
  52. xfs_lsn_t);
  53. #if defined(DEBUG)
  54. STATIC void
  55. xlog_recover_check_summary(
  56. struct xlog *);
  57. #else
  58. #define xlog_recover_check_summary(log)
  59. #endif
  60. /*
  61. * This structure is used during recovery to record the buf log items which
  62. * have been canceled and should not be replayed.
  63. */
  64. struct xfs_buf_cancel {
  65. xfs_daddr_t bc_blkno;
  66. uint bc_len;
  67. int bc_refcount;
  68. struct list_head bc_list;
  69. };
  70. /*
  71. * Sector aligned buffer routines for buffer create/read/write/access
  72. */
  73. /*
  74. * Verify the given count of basic blocks is valid number of blocks
  75. * to specify for an operation involving the given XFS log buffer.
  76. * Returns nonzero if the count is valid, 0 otherwise.
  77. */
  78. static inline int
  79. xlog_buf_bbcount_valid(
  80. struct xlog *log,
  81. int bbcount)
  82. {
  83. return bbcount > 0 && bbcount <= log->l_logBBsize;
  84. }
  85. /*
  86. * Allocate a buffer to hold log data. The buffer needs to be able
  87. * to map to a range of nbblks basic blocks at any valid (basic
  88. * block) offset within the log.
  89. */
  90. STATIC xfs_buf_t *
  91. xlog_get_bp(
  92. struct xlog *log,
  93. int nbblks)
  94. {
  95. struct xfs_buf *bp;
  96. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  97. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  98. nbblks);
  99. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  100. return NULL;
  101. }
  102. /*
  103. * We do log I/O in units of log sectors (a power-of-2
  104. * multiple of the basic block size), so we round up the
  105. * requested size to accommodate the basic blocks required
  106. * for complete log sectors.
  107. *
  108. * In addition, the buffer may be used for a non-sector-
  109. * aligned block offset, in which case an I/O of the
  110. * requested size could extend beyond the end of the
  111. * buffer. If the requested size is only 1 basic block it
  112. * will never straddle a sector boundary, so this won't be
  113. * an issue. Nor will this be a problem if the log I/O is
  114. * done in basic blocks (sector size 1). But otherwise we
  115. * extend the buffer by one extra log sector to ensure
  116. * there's space to accommodate this possibility.
  117. */
  118. if (nbblks > 1 && log->l_sectBBsize > 1)
  119. nbblks += log->l_sectBBsize;
  120. nbblks = round_up(nbblks, log->l_sectBBsize);
  121. bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
  122. if (bp)
  123. xfs_buf_unlock(bp);
  124. return bp;
  125. }
  126. STATIC void
  127. xlog_put_bp(
  128. xfs_buf_t *bp)
  129. {
  130. xfs_buf_free(bp);
  131. }
  132. /*
  133. * Return the address of the start of the given block number's data
  134. * in a log buffer. The buffer covers a log sector-aligned region.
  135. */
  136. STATIC xfs_caddr_t
  137. xlog_align(
  138. struct xlog *log,
  139. xfs_daddr_t blk_no,
  140. int nbblks,
  141. struct xfs_buf *bp)
  142. {
  143. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  144. ASSERT(offset + nbblks <= bp->b_length);
  145. return bp->b_addr + BBTOB(offset);
  146. }
  147. /*
  148. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  149. */
  150. STATIC int
  151. xlog_bread_noalign(
  152. struct xlog *log,
  153. xfs_daddr_t blk_no,
  154. int nbblks,
  155. struct xfs_buf *bp)
  156. {
  157. int error;
  158. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  159. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  160. nbblks);
  161. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  162. return EFSCORRUPTED;
  163. }
  164. blk_no = round_down(blk_no, log->l_sectBBsize);
  165. nbblks = round_up(nbblks, log->l_sectBBsize);
  166. ASSERT(nbblks > 0);
  167. ASSERT(nbblks <= bp->b_length);
  168. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  169. XFS_BUF_READ(bp);
  170. bp->b_io_length = nbblks;
  171. bp->b_error = 0;
  172. xfsbdstrat(log->l_mp, bp);
  173. error = xfs_buf_iowait(bp);
  174. if (error)
  175. xfs_buf_ioerror_alert(bp, __func__);
  176. return error;
  177. }
  178. STATIC int
  179. xlog_bread(
  180. struct xlog *log,
  181. xfs_daddr_t blk_no,
  182. int nbblks,
  183. struct xfs_buf *bp,
  184. xfs_caddr_t *offset)
  185. {
  186. int error;
  187. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  188. if (error)
  189. return error;
  190. *offset = xlog_align(log, blk_no, nbblks, bp);
  191. return 0;
  192. }
  193. /*
  194. * Read at an offset into the buffer. Returns with the buffer in it's original
  195. * state regardless of the result of the read.
  196. */
  197. STATIC int
  198. xlog_bread_offset(
  199. struct xlog *log,
  200. xfs_daddr_t blk_no, /* block to read from */
  201. int nbblks, /* blocks to read */
  202. struct xfs_buf *bp,
  203. xfs_caddr_t offset)
  204. {
  205. xfs_caddr_t orig_offset = bp->b_addr;
  206. int orig_len = BBTOB(bp->b_length);
  207. int error, error2;
  208. error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
  209. if (error)
  210. return error;
  211. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  212. /* must reset buffer pointer even on error */
  213. error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
  214. if (error)
  215. return error;
  216. return error2;
  217. }
  218. /*
  219. * Write out the buffer at the given block for the given number of blocks.
  220. * The buffer is kept locked across the write and is returned locked.
  221. * This can only be used for synchronous log writes.
  222. */
  223. STATIC int
  224. xlog_bwrite(
  225. struct xlog *log,
  226. xfs_daddr_t blk_no,
  227. int nbblks,
  228. struct xfs_buf *bp)
  229. {
  230. int error;
  231. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  232. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  233. nbblks);
  234. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  235. return EFSCORRUPTED;
  236. }
  237. blk_no = round_down(blk_no, log->l_sectBBsize);
  238. nbblks = round_up(nbblks, log->l_sectBBsize);
  239. ASSERT(nbblks > 0);
  240. ASSERT(nbblks <= bp->b_length);
  241. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  242. XFS_BUF_ZEROFLAGS(bp);
  243. xfs_buf_hold(bp);
  244. xfs_buf_lock(bp);
  245. bp->b_io_length = nbblks;
  246. bp->b_error = 0;
  247. error = xfs_bwrite(bp);
  248. if (error)
  249. xfs_buf_ioerror_alert(bp, __func__);
  250. xfs_buf_relse(bp);
  251. return error;
  252. }
  253. #ifdef DEBUG
  254. /*
  255. * dump debug superblock and log record information
  256. */
  257. STATIC void
  258. xlog_header_check_dump(
  259. xfs_mount_t *mp,
  260. xlog_rec_header_t *head)
  261. {
  262. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
  263. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  264. xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
  265. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  266. }
  267. #else
  268. #define xlog_header_check_dump(mp, head)
  269. #endif
  270. /*
  271. * check log record header for recovery
  272. */
  273. STATIC int
  274. xlog_header_check_recover(
  275. xfs_mount_t *mp,
  276. xlog_rec_header_t *head)
  277. {
  278. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  279. /*
  280. * IRIX doesn't write the h_fmt field and leaves it zeroed
  281. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  282. * a dirty log created in IRIX.
  283. */
  284. if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
  285. xfs_warn(mp,
  286. "dirty log written in incompatible format - can't recover");
  287. xlog_header_check_dump(mp, head);
  288. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  289. XFS_ERRLEVEL_HIGH, mp);
  290. return XFS_ERROR(EFSCORRUPTED);
  291. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  292. xfs_warn(mp,
  293. "dirty log entry has mismatched uuid - can't recover");
  294. xlog_header_check_dump(mp, head);
  295. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  296. XFS_ERRLEVEL_HIGH, mp);
  297. return XFS_ERROR(EFSCORRUPTED);
  298. }
  299. return 0;
  300. }
  301. /*
  302. * read the head block of the log and check the header
  303. */
  304. STATIC int
  305. xlog_header_check_mount(
  306. xfs_mount_t *mp,
  307. xlog_rec_header_t *head)
  308. {
  309. ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
  310. if (uuid_is_nil(&head->h_fs_uuid)) {
  311. /*
  312. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  313. * h_fs_uuid is nil, we assume this log was last mounted
  314. * by IRIX and continue.
  315. */
  316. xfs_warn(mp, "nil uuid in log - IRIX style log");
  317. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  318. xfs_warn(mp, "log has mismatched uuid - can't recover");
  319. xlog_header_check_dump(mp, head);
  320. XFS_ERROR_REPORT("xlog_header_check_mount",
  321. XFS_ERRLEVEL_HIGH, mp);
  322. return XFS_ERROR(EFSCORRUPTED);
  323. }
  324. return 0;
  325. }
  326. STATIC void
  327. xlog_recover_iodone(
  328. struct xfs_buf *bp)
  329. {
  330. if (bp->b_error) {
  331. /*
  332. * We're not going to bother about retrying
  333. * this during recovery. One strike!
  334. */
  335. xfs_buf_ioerror_alert(bp, __func__);
  336. xfs_force_shutdown(bp->b_target->bt_mount,
  337. SHUTDOWN_META_IO_ERROR);
  338. }
  339. bp->b_iodone = NULL;
  340. xfs_buf_ioend(bp, 0);
  341. }
  342. /*
  343. * This routine finds (to an approximation) the first block in the physical
  344. * log which contains the given cycle. It uses a binary search algorithm.
  345. * Note that the algorithm can not be perfect because the disk will not
  346. * necessarily be perfect.
  347. */
  348. STATIC int
  349. xlog_find_cycle_start(
  350. struct xlog *log,
  351. struct xfs_buf *bp,
  352. xfs_daddr_t first_blk,
  353. xfs_daddr_t *last_blk,
  354. uint cycle)
  355. {
  356. xfs_caddr_t offset;
  357. xfs_daddr_t mid_blk;
  358. xfs_daddr_t end_blk;
  359. uint mid_cycle;
  360. int error;
  361. end_blk = *last_blk;
  362. mid_blk = BLK_AVG(first_blk, end_blk);
  363. while (mid_blk != first_blk && mid_blk != end_blk) {
  364. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  365. if (error)
  366. return error;
  367. mid_cycle = xlog_get_cycle(offset);
  368. if (mid_cycle == cycle)
  369. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  370. else
  371. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  372. mid_blk = BLK_AVG(first_blk, end_blk);
  373. }
  374. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  375. (mid_blk == end_blk && mid_blk-1 == first_blk));
  376. *last_blk = end_blk;
  377. return 0;
  378. }
  379. /*
  380. * Check that a range of blocks does not contain stop_on_cycle_no.
  381. * Fill in *new_blk with the block offset where such a block is
  382. * found, or with -1 (an invalid block number) if there is no such
  383. * block in the range. The scan needs to occur from front to back
  384. * and the pointer into the region must be updated since a later
  385. * routine will need to perform another test.
  386. */
  387. STATIC int
  388. xlog_find_verify_cycle(
  389. struct xlog *log,
  390. xfs_daddr_t start_blk,
  391. int nbblks,
  392. uint stop_on_cycle_no,
  393. xfs_daddr_t *new_blk)
  394. {
  395. xfs_daddr_t i, j;
  396. uint cycle;
  397. xfs_buf_t *bp;
  398. xfs_daddr_t bufblks;
  399. xfs_caddr_t buf = NULL;
  400. int error = 0;
  401. /*
  402. * Greedily allocate a buffer big enough to handle the full
  403. * range of basic blocks we'll be examining. If that fails,
  404. * try a smaller size. We need to be able to read at least
  405. * a log sector, or we're out of luck.
  406. */
  407. bufblks = 1 << ffs(nbblks);
  408. while (bufblks > log->l_logBBsize)
  409. bufblks >>= 1;
  410. while (!(bp = xlog_get_bp(log, bufblks))) {
  411. bufblks >>= 1;
  412. if (bufblks < log->l_sectBBsize)
  413. return ENOMEM;
  414. }
  415. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  416. int bcount;
  417. bcount = min(bufblks, (start_blk + nbblks - i));
  418. error = xlog_bread(log, i, bcount, bp, &buf);
  419. if (error)
  420. goto out;
  421. for (j = 0; j < bcount; j++) {
  422. cycle = xlog_get_cycle(buf);
  423. if (cycle == stop_on_cycle_no) {
  424. *new_blk = i+j;
  425. goto out;
  426. }
  427. buf += BBSIZE;
  428. }
  429. }
  430. *new_blk = -1;
  431. out:
  432. xlog_put_bp(bp);
  433. return error;
  434. }
  435. /*
  436. * Potentially backup over partial log record write.
  437. *
  438. * In the typical case, last_blk is the number of the block directly after
  439. * a good log record. Therefore, we subtract one to get the block number
  440. * of the last block in the given buffer. extra_bblks contains the number
  441. * of blocks we would have read on a previous read. This happens when the
  442. * last log record is split over the end of the physical log.
  443. *
  444. * extra_bblks is the number of blocks potentially verified on a previous
  445. * call to this routine.
  446. */
  447. STATIC int
  448. xlog_find_verify_log_record(
  449. struct xlog *log,
  450. xfs_daddr_t start_blk,
  451. xfs_daddr_t *last_blk,
  452. int extra_bblks)
  453. {
  454. xfs_daddr_t i;
  455. xfs_buf_t *bp;
  456. xfs_caddr_t offset = NULL;
  457. xlog_rec_header_t *head = NULL;
  458. int error = 0;
  459. int smallmem = 0;
  460. int num_blks = *last_blk - start_blk;
  461. int xhdrs;
  462. ASSERT(start_blk != 0 || *last_blk != start_blk);
  463. if (!(bp = xlog_get_bp(log, num_blks))) {
  464. if (!(bp = xlog_get_bp(log, 1)))
  465. return ENOMEM;
  466. smallmem = 1;
  467. } else {
  468. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  469. if (error)
  470. goto out;
  471. offset += ((num_blks - 1) << BBSHIFT);
  472. }
  473. for (i = (*last_blk) - 1; i >= 0; i--) {
  474. if (i < start_blk) {
  475. /* valid log record not found */
  476. xfs_warn(log->l_mp,
  477. "Log inconsistent (didn't find previous header)");
  478. ASSERT(0);
  479. error = XFS_ERROR(EIO);
  480. goto out;
  481. }
  482. if (smallmem) {
  483. error = xlog_bread(log, i, 1, bp, &offset);
  484. if (error)
  485. goto out;
  486. }
  487. head = (xlog_rec_header_t *)offset;
  488. if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
  489. break;
  490. if (!smallmem)
  491. offset -= BBSIZE;
  492. }
  493. /*
  494. * We hit the beginning of the physical log & still no header. Return
  495. * to caller. If caller can handle a return of -1, then this routine
  496. * will be called again for the end of the physical log.
  497. */
  498. if (i == -1) {
  499. error = -1;
  500. goto out;
  501. }
  502. /*
  503. * We have the final block of the good log (the first block
  504. * of the log record _before_ the head. So we check the uuid.
  505. */
  506. if ((error = xlog_header_check_mount(log->l_mp, head)))
  507. goto out;
  508. /*
  509. * We may have found a log record header before we expected one.
  510. * last_blk will be the 1st block # with a given cycle #. We may end
  511. * up reading an entire log record. In this case, we don't want to
  512. * reset last_blk. Only when last_blk points in the middle of a log
  513. * record do we update last_blk.
  514. */
  515. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  516. uint h_size = be32_to_cpu(head->h_size);
  517. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  518. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  519. xhdrs++;
  520. } else {
  521. xhdrs = 1;
  522. }
  523. if (*last_blk - i + extra_bblks !=
  524. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  525. *last_blk = i;
  526. out:
  527. xlog_put_bp(bp);
  528. return error;
  529. }
  530. /*
  531. * Head is defined to be the point of the log where the next log write
  532. * write could go. This means that incomplete LR writes at the end are
  533. * eliminated when calculating the head. We aren't guaranteed that previous
  534. * LR have complete transactions. We only know that a cycle number of
  535. * current cycle number -1 won't be present in the log if we start writing
  536. * from our current block number.
  537. *
  538. * last_blk contains the block number of the first block with a given
  539. * cycle number.
  540. *
  541. * Return: zero if normal, non-zero if error.
  542. */
  543. STATIC int
  544. xlog_find_head(
  545. struct xlog *log,
  546. xfs_daddr_t *return_head_blk)
  547. {
  548. xfs_buf_t *bp;
  549. xfs_caddr_t offset;
  550. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  551. int num_scan_bblks;
  552. uint first_half_cycle, last_half_cycle;
  553. uint stop_on_cycle;
  554. int error, log_bbnum = log->l_logBBsize;
  555. /* Is the end of the log device zeroed? */
  556. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  557. *return_head_blk = first_blk;
  558. /* Is the whole lot zeroed? */
  559. if (!first_blk) {
  560. /* Linux XFS shouldn't generate totally zeroed logs -
  561. * mkfs etc write a dummy unmount record to a fresh
  562. * log so we can store the uuid in there
  563. */
  564. xfs_warn(log->l_mp, "totally zeroed log");
  565. }
  566. return 0;
  567. } else if (error) {
  568. xfs_warn(log->l_mp, "empty log check failed");
  569. return error;
  570. }
  571. first_blk = 0; /* get cycle # of 1st block */
  572. bp = xlog_get_bp(log, 1);
  573. if (!bp)
  574. return ENOMEM;
  575. error = xlog_bread(log, 0, 1, bp, &offset);
  576. if (error)
  577. goto bp_err;
  578. first_half_cycle = xlog_get_cycle(offset);
  579. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  580. error = xlog_bread(log, last_blk, 1, bp, &offset);
  581. if (error)
  582. goto bp_err;
  583. last_half_cycle = xlog_get_cycle(offset);
  584. ASSERT(last_half_cycle != 0);
  585. /*
  586. * If the 1st half cycle number is equal to the last half cycle number,
  587. * then the entire log is stamped with the same cycle number. In this
  588. * case, head_blk can't be set to zero (which makes sense). The below
  589. * math doesn't work out properly with head_blk equal to zero. Instead,
  590. * we set it to log_bbnum which is an invalid block number, but this
  591. * value makes the math correct. If head_blk doesn't changed through
  592. * all the tests below, *head_blk is set to zero at the very end rather
  593. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  594. * in a circular file.
  595. */
  596. if (first_half_cycle == last_half_cycle) {
  597. /*
  598. * In this case we believe that the entire log should have
  599. * cycle number last_half_cycle. We need to scan backwards
  600. * from the end verifying that there are no holes still
  601. * containing last_half_cycle - 1. If we find such a hole,
  602. * then the start of that hole will be the new head. The
  603. * simple case looks like
  604. * x | x ... | x - 1 | x
  605. * Another case that fits this picture would be
  606. * x | x + 1 | x ... | x
  607. * In this case the head really is somewhere at the end of the
  608. * log, as one of the latest writes at the beginning was
  609. * incomplete.
  610. * One more case is
  611. * x | x + 1 | x ... | x - 1 | x
  612. * This is really the combination of the above two cases, and
  613. * the head has to end up at the start of the x-1 hole at the
  614. * end of the log.
  615. *
  616. * In the 256k log case, we will read from the beginning to the
  617. * end of the log and search for cycle numbers equal to x-1.
  618. * We don't worry about the x+1 blocks that we encounter,
  619. * because we know that they cannot be the head since the log
  620. * started with x.
  621. */
  622. head_blk = log_bbnum;
  623. stop_on_cycle = last_half_cycle - 1;
  624. } else {
  625. /*
  626. * In this case we want to find the first block with cycle
  627. * number matching last_half_cycle. We expect the log to be
  628. * some variation on
  629. * x + 1 ... | x ... | x
  630. * The first block with cycle number x (last_half_cycle) will
  631. * be where the new head belongs. First we do a binary search
  632. * for the first occurrence of last_half_cycle. The binary
  633. * search may not be totally accurate, so then we scan back
  634. * from there looking for occurrences of last_half_cycle before
  635. * us. If that backwards scan wraps around the beginning of
  636. * the log, then we look for occurrences of last_half_cycle - 1
  637. * at the end of the log. The cases we're looking for look
  638. * like
  639. * v binary search stopped here
  640. * x + 1 ... | x | x + 1 | x ... | x
  641. * ^ but we want to locate this spot
  642. * or
  643. * <---------> less than scan distance
  644. * x + 1 ... | x ... | x - 1 | x
  645. * ^ we want to locate this spot
  646. */
  647. stop_on_cycle = last_half_cycle;
  648. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  649. &head_blk, last_half_cycle)))
  650. goto bp_err;
  651. }
  652. /*
  653. * Now validate the answer. Scan back some number of maximum possible
  654. * blocks and make sure each one has the expected cycle number. The
  655. * maximum is determined by the total possible amount of buffering
  656. * in the in-core log. The following number can be made tighter if
  657. * we actually look at the block size of the filesystem.
  658. */
  659. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  660. if (head_blk >= num_scan_bblks) {
  661. /*
  662. * We are guaranteed that the entire check can be performed
  663. * in one buffer.
  664. */
  665. start_blk = head_blk - num_scan_bblks;
  666. if ((error = xlog_find_verify_cycle(log,
  667. start_blk, num_scan_bblks,
  668. stop_on_cycle, &new_blk)))
  669. goto bp_err;
  670. if (new_blk != -1)
  671. head_blk = new_blk;
  672. } else { /* need to read 2 parts of log */
  673. /*
  674. * We are going to scan backwards in the log in two parts.
  675. * First we scan the physical end of the log. In this part
  676. * of the log, we are looking for blocks with cycle number
  677. * last_half_cycle - 1.
  678. * If we find one, then we know that the log starts there, as
  679. * we've found a hole that didn't get written in going around
  680. * the end of the physical log. The simple case for this is
  681. * x + 1 ... | x ... | x - 1 | x
  682. * <---------> less than scan distance
  683. * If all of the blocks at the end of the log have cycle number
  684. * last_half_cycle, then we check the blocks at the start of
  685. * the log looking for occurrences of last_half_cycle. If we
  686. * find one, then our current estimate for the location of the
  687. * first occurrence of last_half_cycle is wrong and we move
  688. * back to the hole we've found. This case looks like
  689. * x + 1 ... | x | x + 1 | x ...
  690. * ^ binary search stopped here
  691. * Another case we need to handle that only occurs in 256k
  692. * logs is
  693. * x + 1 ... | x ... | x+1 | x ...
  694. * ^ binary search stops here
  695. * In a 256k log, the scan at the end of the log will see the
  696. * x + 1 blocks. We need to skip past those since that is
  697. * certainly not the head of the log. By searching for
  698. * last_half_cycle-1 we accomplish that.
  699. */
  700. ASSERT(head_blk <= INT_MAX &&
  701. (xfs_daddr_t) num_scan_bblks >= head_blk);
  702. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  703. if ((error = xlog_find_verify_cycle(log, start_blk,
  704. num_scan_bblks - (int)head_blk,
  705. (stop_on_cycle - 1), &new_blk)))
  706. goto bp_err;
  707. if (new_blk != -1) {
  708. head_blk = new_blk;
  709. goto validate_head;
  710. }
  711. /*
  712. * Scan beginning of log now. The last part of the physical
  713. * log is good. This scan needs to verify that it doesn't find
  714. * the last_half_cycle.
  715. */
  716. start_blk = 0;
  717. ASSERT(head_blk <= INT_MAX);
  718. if ((error = xlog_find_verify_cycle(log,
  719. start_blk, (int)head_blk,
  720. stop_on_cycle, &new_blk)))
  721. goto bp_err;
  722. if (new_blk != -1)
  723. head_blk = new_blk;
  724. }
  725. validate_head:
  726. /*
  727. * Now we need to make sure head_blk is not pointing to a block in
  728. * the middle of a log record.
  729. */
  730. num_scan_bblks = XLOG_REC_SHIFT(log);
  731. if (head_blk >= num_scan_bblks) {
  732. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  733. /* start ptr at last block ptr before head_blk */
  734. if ((error = xlog_find_verify_log_record(log, start_blk,
  735. &head_blk, 0)) == -1) {
  736. error = XFS_ERROR(EIO);
  737. goto bp_err;
  738. } else if (error)
  739. goto bp_err;
  740. } else {
  741. start_blk = 0;
  742. ASSERT(head_blk <= INT_MAX);
  743. if ((error = xlog_find_verify_log_record(log, start_blk,
  744. &head_blk, 0)) == -1) {
  745. /* We hit the beginning of the log during our search */
  746. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  747. new_blk = log_bbnum;
  748. ASSERT(start_blk <= INT_MAX &&
  749. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  750. ASSERT(head_blk <= INT_MAX);
  751. if ((error = xlog_find_verify_log_record(log,
  752. start_blk, &new_blk,
  753. (int)head_blk)) == -1) {
  754. error = XFS_ERROR(EIO);
  755. goto bp_err;
  756. } else if (error)
  757. goto bp_err;
  758. if (new_blk != log_bbnum)
  759. head_blk = new_blk;
  760. } else if (error)
  761. goto bp_err;
  762. }
  763. xlog_put_bp(bp);
  764. if (head_blk == log_bbnum)
  765. *return_head_blk = 0;
  766. else
  767. *return_head_blk = head_blk;
  768. /*
  769. * When returning here, we have a good block number. Bad block
  770. * means that during a previous crash, we didn't have a clean break
  771. * from cycle number N to cycle number N-1. In this case, we need
  772. * to find the first block with cycle number N-1.
  773. */
  774. return 0;
  775. bp_err:
  776. xlog_put_bp(bp);
  777. if (error)
  778. xfs_warn(log->l_mp, "failed to find log head");
  779. return error;
  780. }
  781. /*
  782. * Find the sync block number or the tail of the log.
  783. *
  784. * This will be the block number of the last record to have its
  785. * associated buffers synced to disk. Every log record header has
  786. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  787. * to get a sync block number. The only concern is to figure out which
  788. * log record header to believe.
  789. *
  790. * The following algorithm uses the log record header with the largest
  791. * lsn. The entire log record does not need to be valid. We only care
  792. * that the header is valid.
  793. *
  794. * We could speed up search by using current head_blk buffer, but it is not
  795. * available.
  796. */
  797. STATIC int
  798. xlog_find_tail(
  799. struct xlog *log,
  800. xfs_daddr_t *head_blk,
  801. xfs_daddr_t *tail_blk)
  802. {
  803. xlog_rec_header_t *rhead;
  804. xlog_op_header_t *op_head;
  805. xfs_caddr_t offset = NULL;
  806. xfs_buf_t *bp;
  807. int error, i, found;
  808. xfs_daddr_t umount_data_blk;
  809. xfs_daddr_t after_umount_blk;
  810. xfs_lsn_t tail_lsn;
  811. int hblks;
  812. found = 0;
  813. /*
  814. * Find previous log record
  815. */
  816. if ((error = xlog_find_head(log, head_blk)))
  817. return error;
  818. bp = xlog_get_bp(log, 1);
  819. if (!bp)
  820. return ENOMEM;
  821. if (*head_blk == 0) { /* special case */
  822. error = xlog_bread(log, 0, 1, bp, &offset);
  823. if (error)
  824. goto done;
  825. if (xlog_get_cycle(offset) == 0) {
  826. *tail_blk = 0;
  827. /* leave all other log inited values alone */
  828. goto done;
  829. }
  830. }
  831. /*
  832. * Search backwards looking for log record header block
  833. */
  834. ASSERT(*head_blk < INT_MAX);
  835. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  836. error = xlog_bread(log, i, 1, bp, &offset);
  837. if (error)
  838. goto done;
  839. if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  840. found = 1;
  841. break;
  842. }
  843. }
  844. /*
  845. * If we haven't found the log record header block, start looking
  846. * again from the end of the physical log. XXXmiken: There should be
  847. * a check here to make sure we didn't search more than N blocks in
  848. * the previous code.
  849. */
  850. if (!found) {
  851. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  852. error = xlog_bread(log, i, 1, bp, &offset);
  853. if (error)
  854. goto done;
  855. if (*(__be32 *)offset ==
  856. cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
  857. found = 2;
  858. break;
  859. }
  860. }
  861. }
  862. if (!found) {
  863. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  864. ASSERT(0);
  865. return XFS_ERROR(EIO);
  866. }
  867. /* find blk_no of tail of log */
  868. rhead = (xlog_rec_header_t *)offset;
  869. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  870. /*
  871. * Reset log values according to the state of the log when we
  872. * crashed. In the case where head_blk == 0, we bump curr_cycle
  873. * one because the next write starts a new cycle rather than
  874. * continuing the cycle of the last good log record. At this
  875. * point we have guaranteed that all partial log records have been
  876. * accounted for. Therefore, we know that the last good log record
  877. * written was complete and ended exactly on the end boundary
  878. * of the physical log.
  879. */
  880. log->l_prev_block = i;
  881. log->l_curr_block = (int)*head_blk;
  882. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  883. if (found == 2)
  884. log->l_curr_cycle++;
  885. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  886. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  887. xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
  888. BBTOB(log->l_curr_block));
  889. xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
  890. BBTOB(log->l_curr_block));
  891. /*
  892. * Look for unmount record. If we find it, then we know there
  893. * was a clean unmount. Since 'i' could be the last block in
  894. * the physical log, we convert to a log block before comparing
  895. * to the head_blk.
  896. *
  897. * Save the current tail lsn to use to pass to
  898. * xlog_clear_stale_blocks() below. We won't want to clear the
  899. * unmount record if there is one, so we pass the lsn of the
  900. * unmount record rather than the block after it.
  901. */
  902. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  903. int h_size = be32_to_cpu(rhead->h_size);
  904. int h_version = be32_to_cpu(rhead->h_version);
  905. if ((h_version & XLOG_VERSION_2) &&
  906. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  907. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  908. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  909. hblks++;
  910. } else {
  911. hblks = 1;
  912. }
  913. } else {
  914. hblks = 1;
  915. }
  916. after_umount_blk = (i + hblks + (int)
  917. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  918. tail_lsn = atomic64_read(&log->l_tail_lsn);
  919. if (*head_blk == after_umount_blk &&
  920. be32_to_cpu(rhead->h_num_logops) == 1) {
  921. umount_data_blk = (i + hblks) % log->l_logBBsize;
  922. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  923. if (error)
  924. goto done;
  925. op_head = (xlog_op_header_t *)offset;
  926. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  927. /*
  928. * Set tail and last sync so that newly written
  929. * log records will point recovery to after the
  930. * current unmount record.
  931. */
  932. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  933. log->l_curr_cycle, after_umount_blk);
  934. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  935. log->l_curr_cycle, after_umount_blk);
  936. *tail_blk = after_umount_blk;
  937. /*
  938. * Note that the unmount was clean. If the unmount
  939. * was not clean, we need to know this to rebuild the
  940. * superblock counters from the perag headers if we
  941. * have a filesystem using non-persistent counters.
  942. */
  943. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  944. }
  945. }
  946. /*
  947. * Make sure that there are no blocks in front of the head
  948. * with the same cycle number as the head. This can happen
  949. * because we allow multiple outstanding log writes concurrently,
  950. * and the later writes might make it out before earlier ones.
  951. *
  952. * We use the lsn from before modifying it so that we'll never
  953. * overwrite the unmount record after a clean unmount.
  954. *
  955. * Do this only if we are going to recover the filesystem
  956. *
  957. * NOTE: This used to say "if (!readonly)"
  958. * However on Linux, we can & do recover a read-only filesystem.
  959. * We only skip recovery if NORECOVERY is specified on mount,
  960. * in which case we would not be here.
  961. *
  962. * But... if the -device- itself is readonly, just skip this.
  963. * We can't recover this device anyway, so it won't matter.
  964. */
  965. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  966. error = xlog_clear_stale_blocks(log, tail_lsn);
  967. done:
  968. xlog_put_bp(bp);
  969. if (error)
  970. xfs_warn(log->l_mp, "failed to locate log tail");
  971. return error;
  972. }
  973. /*
  974. * Is the log zeroed at all?
  975. *
  976. * The last binary search should be changed to perform an X block read
  977. * once X becomes small enough. You can then search linearly through
  978. * the X blocks. This will cut down on the number of reads we need to do.
  979. *
  980. * If the log is partially zeroed, this routine will pass back the blkno
  981. * of the first block with cycle number 0. It won't have a complete LR
  982. * preceding it.
  983. *
  984. * Return:
  985. * 0 => the log is completely written to
  986. * -1 => use *blk_no as the first block of the log
  987. * >0 => error has occurred
  988. */
  989. STATIC int
  990. xlog_find_zeroed(
  991. struct xlog *log,
  992. xfs_daddr_t *blk_no)
  993. {
  994. xfs_buf_t *bp;
  995. xfs_caddr_t offset;
  996. uint first_cycle, last_cycle;
  997. xfs_daddr_t new_blk, last_blk, start_blk;
  998. xfs_daddr_t num_scan_bblks;
  999. int error, log_bbnum = log->l_logBBsize;
  1000. *blk_no = 0;
  1001. /* check totally zeroed log */
  1002. bp = xlog_get_bp(log, 1);
  1003. if (!bp)
  1004. return ENOMEM;
  1005. error = xlog_bread(log, 0, 1, bp, &offset);
  1006. if (error)
  1007. goto bp_err;
  1008. first_cycle = xlog_get_cycle(offset);
  1009. if (first_cycle == 0) { /* completely zeroed log */
  1010. *blk_no = 0;
  1011. xlog_put_bp(bp);
  1012. return -1;
  1013. }
  1014. /* check partially zeroed log */
  1015. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  1016. if (error)
  1017. goto bp_err;
  1018. last_cycle = xlog_get_cycle(offset);
  1019. if (last_cycle != 0) { /* log completely written to */
  1020. xlog_put_bp(bp);
  1021. return 0;
  1022. } else if (first_cycle != 1) {
  1023. /*
  1024. * If the cycle of the last block is zero, the cycle of
  1025. * the first block must be 1. If it's not, maybe we're
  1026. * not looking at a log... Bail out.
  1027. */
  1028. xfs_warn(log->l_mp,
  1029. "Log inconsistent or not a log (last==0, first!=1)");
  1030. return XFS_ERROR(EINVAL);
  1031. }
  1032. /* we have a partially zeroed log */
  1033. last_blk = log_bbnum-1;
  1034. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1035. goto bp_err;
  1036. /*
  1037. * Validate the answer. Because there is no way to guarantee that
  1038. * the entire log is made up of log records which are the same size,
  1039. * we scan over the defined maximum blocks. At this point, the maximum
  1040. * is not chosen to mean anything special. XXXmiken
  1041. */
  1042. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1043. ASSERT(num_scan_bblks <= INT_MAX);
  1044. if (last_blk < num_scan_bblks)
  1045. num_scan_bblks = last_blk;
  1046. start_blk = last_blk - num_scan_bblks;
  1047. /*
  1048. * We search for any instances of cycle number 0 that occur before
  1049. * our current estimate of the head. What we're trying to detect is
  1050. * 1 ... | 0 | 1 | 0...
  1051. * ^ binary search ends here
  1052. */
  1053. if ((error = xlog_find_verify_cycle(log, start_blk,
  1054. (int)num_scan_bblks, 0, &new_blk)))
  1055. goto bp_err;
  1056. if (new_blk != -1)
  1057. last_blk = new_blk;
  1058. /*
  1059. * Potentially backup over partial log record write. We don't need
  1060. * to search the end of the log because we know it is zero.
  1061. */
  1062. if ((error = xlog_find_verify_log_record(log, start_blk,
  1063. &last_blk, 0)) == -1) {
  1064. error = XFS_ERROR(EIO);
  1065. goto bp_err;
  1066. } else if (error)
  1067. goto bp_err;
  1068. *blk_no = last_blk;
  1069. bp_err:
  1070. xlog_put_bp(bp);
  1071. if (error)
  1072. return error;
  1073. return -1;
  1074. }
  1075. /*
  1076. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1077. * to initialize a buffer full of empty log record headers and write
  1078. * them into the log.
  1079. */
  1080. STATIC void
  1081. xlog_add_record(
  1082. struct xlog *log,
  1083. xfs_caddr_t buf,
  1084. int cycle,
  1085. int block,
  1086. int tail_cycle,
  1087. int tail_block)
  1088. {
  1089. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1090. memset(buf, 0, BBSIZE);
  1091. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1092. recp->h_cycle = cpu_to_be32(cycle);
  1093. recp->h_version = cpu_to_be32(
  1094. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1095. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1096. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1097. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1098. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1099. }
  1100. STATIC int
  1101. xlog_write_log_records(
  1102. struct xlog *log,
  1103. int cycle,
  1104. int start_block,
  1105. int blocks,
  1106. int tail_cycle,
  1107. int tail_block)
  1108. {
  1109. xfs_caddr_t offset;
  1110. xfs_buf_t *bp;
  1111. int balign, ealign;
  1112. int sectbb = log->l_sectBBsize;
  1113. int end_block = start_block + blocks;
  1114. int bufblks;
  1115. int error = 0;
  1116. int i, j = 0;
  1117. /*
  1118. * Greedily allocate a buffer big enough to handle the full
  1119. * range of basic blocks to be written. If that fails, try
  1120. * a smaller size. We need to be able to write at least a
  1121. * log sector, or we're out of luck.
  1122. */
  1123. bufblks = 1 << ffs(blocks);
  1124. while (bufblks > log->l_logBBsize)
  1125. bufblks >>= 1;
  1126. while (!(bp = xlog_get_bp(log, bufblks))) {
  1127. bufblks >>= 1;
  1128. if (bufblks < sectbb)
  1129. return ENOMEM;
  1130. }
  1131. /* We may need to do a read at the start to fill in part of
  1132. * the buffer in the starting sector not covered by the first
  1133. * write below.
  1134. */
  1135. balign = round_down(start_block, sectbb);
  1136. if (balign != start_block) {
  1137. error = xlog_bread_noalign(log, start_block, 1, bp);
  1138. if (error)
  1139. goto out_put_bp;
  1140. j = start_block - balign;
  1141. }
  1142. for (i = start_block; i < end_block; i += bufblks) {
  1143. int bcount, endcount;
  1144. bcount = min(bufblks, end_block - start_block);
  1145. endcount = bcount - j;
  1146. /* We may need to do a read at the end to fill in part of
  1147. * the buffer in the final sector not covered by the write.
  1148. * If this is the same sector as the above read, skip it.
  1149. */
  1150. ealign = round_down(end_block, sectbb);
  1151. if (j == 0 && (start_block + endcount > ealign)) {
  1152. offset = bp->b_addr + BBTOB(ealign - start_block);
  1153. error = xlog_bread_offset(log, ealign, sectbb,
  1154. bp, offset);
  1155. if (error)
  1156. break;
  1157. }
  1158. offset = xlog_align(log, start_block, endcount, bp);
  1159. for (; j < endcount; j++) {
  1160. xlog_add_record(log, offset, cycle, i+j,
  1161. tail_cycle, tail_block);
  1162. offset += BBSIZE;
  1163. }
  1164. error = xlog_bwrite(log, start_block, endcount, bp);
  1165. if (error)
  1166. break;
  1167. start_block += endcount;
  1168. j = 0;
  1169. }
  1170. out_put_bp:
  1171. xlog_put_bp(bp);
  1172. return error;
  1173. }
  1174. /*
  1175. * This routine is called to blow away any incomplete log writes out
  1176. * in front of the log head. We do this so that we won't become confused
  1177. * if we come up, write only a little bit more, and then crash again.
  1178. * If we leave the partial log records out there, this situation could
  1179. * cause us to think those partial writes are valid blocks since they
  1180. * have the current cycle number. We get rid of them by overwriting them
  1181. * with empty log records with the old cycle number rather than the
  1182. * current one.
  1183. *
  1184. * The tail lsn is passed in rather than taken from
  1185. * the log so that we will not write over the unmount record after a
  1186. * clean unmount in a 512 block log. Doing so would leave the log without
  1187. * any valid log records in it until a new one was written. If we crashed
  1188. * during that time we would not be able to recover.
  1189. */
  1190. STATIC int
  1191. xlog_clear_stale_blocks(
  1192. struct xlog *log,
  1193. xfs_lsn_t tail_lsn)
  1194. {
  1195. int tail_cycle, head_cycle;
  1196. int tail_block, head_block;
  1197. int tail_distance, max_distance;
  1198. int distance;
  1199. int error;
  1200. tail_cycle = CYCLE_LSN(tail_lsn);
  1201. tail_block = BLOCK_LSN(tail_lsn);
  1202. head_cycle = log->l_curr_cycle;
  1203. head_block = log->l_curr_block;
  1204. /*
  1205. * Figure out the distance between the new head of the log
  1206. * and the tail. We want to write over any blocks beyond the
  1207. * head that we may have written just before the crash, but
  1208. * we don't want to overwrite the tail of the log.
  1209. */
  1210. if (head_cycle == tail_cycle) {
  1211. /*
  1212. * The tail is behind the head in the physical log,
  1213. * so the distance from the head to the tail is the
  1214. * distance from the head to the end of the log plus
  1215. * the distance from the beginning of the log to the
  1216. * tail.
  1217. */
  1218. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1219. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1220. XFS_ERRLEVEL_LOW, log->l_mp);
  1221. return XFS_ERROR(EFSCORRUPTED);
  1222. }
  1223. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1224. } else {
  1225. /*
  1226. * The head is behind the tail in the physical log,
  1227. * so the distance from the head to the tail is just
  1228. * the tail block minus the head block.
  1229. */
  1230. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1231. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1232. XFS_ERRLEVEL_LOW, log->l_mp);
  1233. return XFS_ERROR(EFSCORRUPTED);
  1234. }
  1235. tail_distance = tail_block - head_block;
  1236. }
  1237. /*
  1238. * If the head is right up against the tail, we can't clear
  1239. * anything.
  1240. */
  1241. if (tail_distance <= 0) {
  1242. ASSERT(tail_distance == 0);
  1243. return 0;
  1244. }
  1245. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1246. /*
  1247. * Take the smaller of the maximum amount of outstanding I/O
  1248. * we could have and the distance to the tail to clear out.
  1249. * We take the smaller so that we don't overwrite the tail and
  1250. * we don't waste all day writing from the head to the tail
  1251. * for no reason.
  1252. */
  1253. max_distance = MIN(max_distance, tail_distance);
  1254. if ((head_block + max_distance) <= log->l_logBBsize) {
  1255. /*
  1256. * We can stomp all the blocks we need to without
  1257. * wrapping around the end of the log. Just do it
  1258. * in a single write. Use the cycle number of the
  1259. * current cycle minus one so that the log will look like:
  1260. * n ... | n - 1 ...
  1261. */
  1262. error = xlog_write_log_records(log, (head_cycle - 1),
  1263. head_block, max_distance, tail_cycle,
  1264. tail_block);
  1265. if (error)
  1266. return error;
  1267. } else {
  1268. /*
  1269. * We need to wrap around the end of the physical log in
  1270. * order to clear all the blocks. Do it in two separate
  1271. * I/Os. The first write should be from the head to the
  1272. * end of the physical log, and it should use the current
  1273. * cycle number minus one just like above.
  1274. */
  1275. distance = log->l_logBBsize - head_block;
  1276. error = xlog_write_log_records(log, (head_cycle - 1),
  1277. head_block, distance, tail_cycle,
  1278. tail_block);
  1279. if (error)
  1280. return error;
  1281. /*
  1282. * Now write the blocks at the start of the physical log.
  1283. * This writes the remainder of the blocks we want to clear.
  1284. * It uses the current cycle number since we're now on the
  1285. * same cycle as the head so that we get:
  1286. * n ... n ... | n - 1 ...
  1287. * ^^^^^ blocks we're writing
  1288. */
  1289. distance = max_distance - (log->l_logBBsize - head_block);
  1290. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1291. tail_cycle, tail_block);
  1292. if (error)
  1293. return error;
  1294. }
  1295. return 0;
  1296. }
  1297. /******************************************************************************
  1298. *
  1299. * Log recover routines
  1300. *
  1301. ******************************************************************************
  1302. */
  1303. STATIC xlog_recover_t *
  1304. xlog_recover_find_tid(
  1305. struct hlist_head *head,
  1306. xlog_tid_t tid)
  1307. {
  1308. xlog_recover_t *trans;
  1309. struct hlist_node *n;
  1310. hlist_for_each_entry(trans, n, head, r_list) {
  1311. if (trans->r_log_tid == tid)
  1312. return trans;
  1313. }
  1314. return NULL;
  1315. }
  1316. STATIC void
  1317. xlog_recover_new_tid(
  1318. struct hlist_head *head,
  1319. xlog_tid_t tid,
  1320. xfs_lsn_t lsn)
  1321. {
  1322. xlog_recover_t *trans;
  1323. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1324. trans->r_log_tid = tid;
  1325. trans->r_lsn = lsn;
  1326. INIT_LIST_HEAD(&trans->r_itemq);
  1327. INIT_HLIST_NODE(&trans->r_list);
  1328. hlist_add_head(&trans->r_list, head);
  1329. }
  1330. STATIC void
  1331. xlog_recover_add_item(
  1332. struct list_head *head)
  1333. {
  1334. xlog_recover_item_t *item;
  1335. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1336. INIT_LIST_HEAD(&item->ri_list);
  1337. list_add_tail(&item->ri_list, head);
  1338. }
  1339. STATIC int
  1340. xlog_recover_add_to_cont_trans(
  1341. struct xlog *log,
  1342. struct xlog_recover *trans,
  1343. xfs_caddr_t dp,
  1344. int len)
  1345. {
  1346. xlog_recover_item_t *item;
  1347. xfs_caddr_t ptr, old_ptr;
  1348. int old_len;
  1349. if (list_empty(&trans->r_itemq)) {
  1350. /* finish copying rest of trans header */
  1351. xlog_recover_add_item(&trans->r_itemq);
  1352. ptr = (xfs_caddr_t) &trans->r_theader +
  1353. sizeof(xfs_trans_header_t) - len;
  1354. memcpy(ptr, dp, len); /* d, s, l */
  1355. return 0;
  1356. }
  1357. /* take the tail entry */
  1358. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1359. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1360. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1361. ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
  1362. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1363. item->ri_buf[item->ri_cnt-1].i_len += len;
  1364. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1365. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1366. return 0;
  1367. }
  1368. /*
  1369. * The next region to add is the start of a new region. It could be
  1370. * a whole region or it could be the first part of a new region. Because
  1371. * of this, the assumption here is that the type and size fields of all
  1372. * format structures fit into the first 32 bits of the structure.
  1373. *
  1374. * This works because all regions must be 32 bit aligned. Therefore, we
  1375. * either have both fields or we have neither field. In the case we have
  1376. * neither field, the data part of the region is zero length. We only have
  1377. * a log_op_header and can throw away the header since a new one will appear
  1378. * later. If we have at least 4 bytes, then we can determine how many regions
  1379. * will appear in the current log item.
  1380. */
  1381. STATIC int
  1382. xlog_recover_add_to_trans(
  1383. struct xlog *log,
  1384. struct xlog_recover *trans,
  1385. xfs_caddr_t dp,
  1386. int len)
  1387. {
  1388. xfs_inode_log_format_t *in_f; /* any will do */
  1389. xlog_recover_item_t *item;
  1390. xfs_caddr_t ptr;
  1391. if (!len)
  1392. return 0;
  1393. if (list_empty(&trans->r_itemq)) {
  1394. /* we need to catch log corruptions here */
  1395. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1396. xfs_warn(log->l_mp, "%s: bad header magic number",
  1397. __func__);
  1398. ASSERT(0);
  1399. return XFS_ERROR(EIO);
  1400. }
  1401. if (len == sizeof(xfs_trans_header_t))
  1402. xlog_recover_add_item(&trans->r_itemq);
  1403. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1404. return 0;
  1405. }
  1406. ptr = kmem_alloc(len, KM_SLEEP);
  1407. memcpy(ptr, dp, len);
  1408. in_f = (xfs_inode_log_format_t *)ptr;
  1409. /* take the tail entry */
  1410. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1411. if (item->ri_total != 0 &&
  1412. item->ri_total == item->ri_cnt) {
  1413. /* tail item is in use, get a new one */
  1414. xlog_recover_add_item(&trans->r_itemq);
  1415. item = list_entry(trans->r_itemq.prev,
  1416. xlog_recover_item_t, ri_list);
  1417. }
  1418. if (item->ri_total == 0) { /* first region to be added */
  1419. if (in_f->ilf_size == 0 ||
  1420. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1421. xfs_warn(log->l_mp,
  1422. "bad number of regions (%d) in inode log format",
  1423. in_f->ilf_size);
  1424. ASSERT(0);
  1425. return XFS_ERROR(EIO);
  1426. }
  1427. item->ri_total = in_f->ilf_size;
  1428. item->ri_buf =
  1429. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1430. KM_SLEEP);
  1431. }
  1432. ASSERT(item->ri_total > item->ri_cnt);
  1433. /* Description region is ri_buf[0] */
  1434. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1435. item->ri_buf[item->ri_cnt].i_len = len;
  1436. item->ri_cnt++;
  1437. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1438. return 0;
  1439. }
  1440. /*
  1441. * Sort the log items in the transaction. Cancelled buffers need
  1442. * to be put first so they are processed before any items that might
  1443. * modify the buffers. If they are cancelled, then the modifications
  1444. * don't need to be replayed.
  1445. */
  1446. STATIC int
  1447. xlog_recover_reorder_trans(
  1448. struct xlog *log,
  1449. struct xlog_recover *trans,
  1450. int pass)
  1451. {
  1452. xlog_recover_item_t *item, *n;
  1453. LIST_HEAD(sort_list);
  1454. list_splice_init(&trans->r_itemq, &sort_list);
  1455. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1456. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1457. switch (ITEM_TYPE(item)) {
  1458. case XFS_LI_BUF:
  1459. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1460. trace_xfs_log_recover_item_reorder_head(log,
  1461. trans, item, pass);
  1462. list_move(&item->ri_list, &trans->r_itemq);
  1463. break;
  1464. }
  1465. case XFS_LI_INODE:
  1466. case XFS_LI_DQUOT:
  1467. case XFS_LI_QUOTAOFF:
  1468. case XFS_LI_EFD:
  1469. case XFS_LI_EFI:
  1470. trace_xfs_log_recover_item_reorder_tail(log,
  1471. trans, item, pass);
  1472. list_move_tail(&item->ri_list, &trans->r_itemq);
  1473. break;
  1474. default:
  1475. xfs_warn(log->l_mp,
  1476. "%s: unrecognized type of log operation",
  1477. __func__);
  1478. ASSERT(0);
  1479. return XFS_ERROR(EIO);
  1480. }
  1481. }
  1482. ASSERT(list_empty(&sort_list));
  1483. return 0;
  1484. }
  1485. /*
  1486. * Build up the table of buf cancel records so that we don't replay
  1487. * cancelled data in the second pass. For buffer records that are
  1488. * not cancel records, there is nothing to do here so we just return.
  1489. *
  1490. * If we get a cancel record which is already in the table, this indicates
  1491. * that the buffer was cancelled multiple times. In order to ensure
  1492. * that during pass 2 we keep the record in the table until we reach its
  1493. * last occurrence in the log, we keep a reference count in the cancel
  1494. * record in the table to tell us how many times we expect to see this
  1495. * record during the second pass.
  1496. */
  1497. STATIC int
  1498. xlog_recover_buffer_pass1(
  1499. struct xlog *log,
  1500. struct xlog_recover_item *item)
  1501. {
  1502. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1503. struct list_head *bucket;
  1504. struct xfs_buf_cancel *bcp;
  1505. /*
  1506. * If this isn't a cancel buffer item, then just return.
  1507. */
  1508. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1509. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1510. return 0;
  1511. }
  1512. /*
  1513. * Insert an xfs_buf_cancel record into the hash table of them.
  1514. * If there is already an identical record, bump its reference count.
  1515. */
  1516. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1517. list_for_each_entry(bcp, bucket, bc_list) {
  1518. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1519. bcp->bc_len == buf_f->blf_len) {
  1520. bcp->bc_refcount++;
  1521. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1522. return 0;
  1523. }
  1524. }
  1525. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1526. bcp->bc_blkno = buf_f->blf_blkno;
  1527. bcp->bc_len = buf_f->blf_len;
  1528. bcp->bc_refcount = 1;
  1529. list_add_tail(&bcp->bc_list, bucket);
  1530. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1531. return 0;
  1532. }
  1533. /*
  1534. * Check to see whether the buffer being recovered has a corresponding
  1535. * entry in the buffer cancel record table. If it does then return 1
  1536. * so that it will be cancelled, otherwise return 0. If the buffer is
  1537. * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
  1538. * the refcount on the entry in the table and remove it from the table
  1539. * if this is the last reference.
  1540. *
  1541. * We remove the cancel record from the table when we encounter its
  1542. * last occurrence in the log so that if the same buffer is re-used
  1543. * again after its last cancellation we actually replay the changes
  1544. * made at that point.
  1545. */
  1546. STATIC int
  1547. xlog_check_buffer_cancelled(
  1548. struct xlog *log,
  1549. xfs_daddr_t blkno,
  1550. uint len,
  1551. ushort flags)
  1552. {
  1553. struct list_head *bucket;
  1554. struct xfs_buf_cancel *bcp;
  1555. if (log->l_buf_cancel_table == NULL) {
  1556. /*
  1557. * There is nothing in the table built in pass one,
  1558. * so this buffer must not be cancelled.
  1559. */
  1560. ASSERT(!(flags & XFS_BLF_CANCEL));
  1561. return 0;
  1562. }
  1563. /*
  1564. * Search for an entry in the cancel table that matches our buffer.
  1565. */
  1566. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1567. list_for_each_entry(bcp, bucket, bc_list) {
  1568. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1569. goto found;
  1570. }
  1571. /*
  1572. * We didn't find a corresponding entry in the table, so return 0 so
  1573. * that the buffer is NOT cancelled.
  1574. */
  1575. ASSERT(!(flags & XFS_BLF_CANCEL));
  1576. return 0;
  1577. found:
  1578. /*
  1579. * We've go a match, so return 1 so that the recovery of this buffer
  1580. * is cancelled. If this buffer is actually a buffer cancel log
  1581. * item, then decrement the refcount on the one in the table and
  1582. * remove it if this is the last reference.
  1583. */
  1584. if (flags & XFS_BLF_CANCEL) {
  1585. if (--bcp->bc_refcount == 0) {
  1586. list_del(&bcp->bc_list);
  1587. kmem_free(bcp);
  1588. }
  1589. }
  1590. return 1;
  1591. }
  1592. /*
  1593. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1594. * data which should be recovered is that which corresponds to the
  1595. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1596. * data for the inodes is always logged through the inodes themselves rather
  1597. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1598. *
  1599. * The only time when buffers full of inodes are fully recovered is when the
  1600. * buffer is full of newly allocated inodes. In this case the buffer will
  1601. * not be marked as an inode buffer and so will be sent to
  1602. * xlog_recover_do_reg_buffer() below during recovery.
  1603. */
  1604. STATIC int
  1605. xlog_recover_do_inode_buffer(
  1606. struct xfs_mount *mp,
  1607. xlog_recover_item_t *item,
  1608. struct xfs_buf *bp,
  1609. xfs_buf_log_format_t *buf_f)
  1610. {
  1611. int i;
  1612. int item_index = 0;
  1613. int bit = 0;
  1614. int nbits = 0;
  1615. int reg_buf_offset = 0;
  1616. int reg_buf_bytes = 0;
  1617. int next_unlinked_offset;
  1618. int inodes_per_buf;
  1619. xfs_agino_t *logged_nextp;
  1620. xfs_agino_t *buffer_nextp;
  1621. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1622. inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
  1623. for (i = 0; i < inodes_per_buf; i++) {
  1624. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1625. offsetof(xfs_dinode_t, di_next_unlinked);
  1626. while (next_unlinked_offset >=
  1627. (reg_buf_offset + reg_buf_bytes)) {
  1628. /*
  1629. * The next di_next_unlinked field is beyond
  1630. * the current logged region. Find the next
  1631. * logged region that contains or is beyond
  1632. * the current di_next_unlinked field.
  1633. */
  1634. bit += nbits;
  1635. bit = xfs_next_bit(buf_f->blf_data_map,
  1636. buf_f->blf_map_size, bit);
  1637. /*
  1638. * If there are no more logged regions in the
  1639. * buffer, then we're done.
  1640. */
  1641. if (bit == -1)
  1642. return 0;
  1643. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1644. buf_f->blf_map_size, bit);
  1645. ASSERT(nbits > 0);
  1646. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1647. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1648. item_index++;
  1649. }
  1650. /*
  1651. * If the current logged region starts after the current
  1652. * di_next_unlinked field, then move on to the next
  1653. * di_next_unlinked field.
  1654. */
  1655. if (next_unlinked_offset < reg_buf_offset)
  1656. continue;
  1657. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1658. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1659. ASSERT((reg_buf_offset + reg_buf_bytes) <=
  1660. BBTOB(bp->b_io_length));
  1661. /*
  1662. * The current logged region contains a copy of the
  1663. * current di_next_unlinked field. Extract its value
  1664. * and copy it to the buffer copy.
  1665. */
  1666. logged_nextp = item->ri_buf[item_index].i_addr +
  1667. next_unlinked_offset - reg_buf_offset;
  1668. if (unlikely(*logged_nextp == 0)) {
  1669. xfs_alert(mp,
  1670. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1671. "Trying to replay bad (0) inode di_next_unlinked field.",
  1672. item, bp);
  1673. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1674. XFS_ERRLEVEL_LOW, mp);
  1675. return XFS_ERROR(EFSCORRUPTED);
  1676. }
  1677. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1678. next_unlinked_offset);
  1679. *buffer_nextp = *logged_nextp;
  1680. }
  1681. return 0;
  1682. }
  1683. /*
  1684. * Perform a 'normal' buffer recovery. Each logged region of the
  1685. * buffer should be copied over the corresponding region in the
  1686. * given buffer. The bitmap in the buf log format structure indicates
  1687. * where to place the logged data.
  1688. */
  1689. STATIC void
  1690. xlog_recover_do_reg_buffer(
  1691. struct xfs_mount *mp,
  1692. xlog_recover_item_t *item,
  1693. struct xfs_buf *bp,
  1694. xfs_buf_log_format_t *buf_f)
  1695. {
  1696. int i;
  1697. int bit;
  1698. int nbits;
  1699. int error;
  1700. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1701. bit = 0;
  1702. i = 1; /* 0 is the buf format structure */
  1703. while (1) {
  1704. bit = xfs_next_bit(buf_f->blf_data_map,
  1705. buf_f->blf_map_size, bit);
  1706. if (bit == -1)
  1707. break;
  1708. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1709. buf_f->blf_map_size, bit);
  1710. ASSERT(nbits > 0);
  1711. ASSERT(item->ri_buf[i].i_addr != NULL);
  1712. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  1713. ASSERT(BBTOB(bp->b_io_length) >=
  1714. ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
  1715. /*
  1716. * Do a sanity check if this is a dquot buffer. Just checking
  1717. * the first dquot in the buffer should do. XXXThis is
  1718. * probably a good thing to do for other buf types also.
  1719. */
  1720. error = 0;
  1721. if (buf_f->blf_flags &
  1722. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1723. if (item->ri_buf[i].i_addr == NULL) {
  1724. xfs_alert(mp,
  1725. "XFS: NULL dquot in %s.", __func__);
  1726. goto next;
  1727. }
  1728. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1729. xfs_alert(mp,
  1730. "XFS: dquot too small (%d) in %s.",
  1731. item->ri_buf[i].i_len, __func__);
  1732. goto next;
  1733. }
  1734. error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
  1735. -1, 0, XFS_QMOPT_DOWARN,
  1736. "dquot_buf_recover");
  1737. if (error)
  1738. goto next;
  1739. }
  1740. memcpy(xfs_buf_offset(bp,
  1741. (uint)bit << XFS_BLF_SHIFT), /* dest */
  1742. item->ri_buf[i].i_addr, /* source */
  1743. nbits<<XFS_BLF_SHIFT); /* length */
  1744. next:
  1745. i++;
  1746. bit += nbits;
  1747. }
  1748. /* Shouldn't be any more regions */
  1749. ASSERT(i == item->ri_total);
  1750. }
  1751. /*
  1752. * Do some primitive error checking on ondisk dquot data structures.
  1753. */
  1754. int
  1755. xfs_qm_dqcheck(
  1756. struct xfs_mount *mp,
  1757. xfs_disk_dquot_t *ddq,
  1758. xfs_dqid_t id,
  1759. uint type, /* used only when IO_dorepair is true */
  1760. uint flags,
  1761. char *str)
  1762. {
  1763. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1764. int errs = 0;
  1765. /*
  1766. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1767. * 1. If we crash while deleting the quotainode(s), and those blks got
  1768. * used for user data. This is because we take the path of regular
  1769. * file deletion; however, the size field of quotainodes is never
  1770. * updated, so all the tricks that we play in itruncate_finish
  1771. * don't quite matter.
  1772. *
  1773. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1774. * But the allocation will be replayed so we'll end up with an
  1775. * uninitialized quota block.
  1776. *
  1777. * This is all fine; things are still consistent, and we haven't lost
  1778. * any quota information. Just don't complain about bad dquot blks.
  1779. */
  1780. if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
  1781. if (flags & XFS_QMOPT_DOWARN)
  1782. xfs_alert(mp,
  1783. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1784. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1785. errs++;
  1786. }
  1787. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1788. if (flags & XFS_QMOPT_DOWARN)
  1789. xfs_alert(mp,
  1790. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1791. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1792. errs++;
  1793. }
  1794. if (ddq->d_flags != XFS_DQ_USER &&
  1795. ddq->d_flags != XFS_DQ_PROJ &&
  1796. ddq->d_flags != XFS_DQ_GROUP) {
  1797. if (flags & XFS_QMOPT_DOWARN)
  1798. xfs_alert(mp,
  1799. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1800. str, id, ddq->d_flags);
  1801. errs++;
  1802. }
  1803. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1804. if (flags & XFS_QMOPT_DOWARN)
  1805. xfs_alert(mp,
  1806. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1807. "0x%x expected, found id 0x%x",
  1808. str, ddq, id, be32_to_cpu(ddq->d_id));
  1809. errs++;
  1810. }
  1811. if (!errs && ddq->d_id) {
  1812. if (ddq->d_blk_softlimit &&
  1813. be64_to_cpu(ddq->d_bcount) >
  1814. be64_to_cpu(ddq->d_blk_softlimit)) {
  1815. if (!ddq->d_btimer) {
  1816. if (flags & XFS_QMOPT_DOWARN)
  1817. xfs_alert(mp,
  1818. "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
  1819. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1820. errs++;
  1821. }
  1822. }
  1823. if (ddq->d_ino_softlimit &&
  1824. be64_to_cpu(ddq->d_icount) >
  1825. be64_to_cpu(ddq->d_ino_softlimit)) {
  1826. if (!ddq->d_itimer) {
  1827. if (flags & XFS_QMOPT_DOWARN)
  1828. xfs_alert(mp,
  1829. "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
  1830. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1831. errs++;
  1832. }
  1833. }
  1834. if (ddq->d_rtb_softlimit &&
  1835. be64_to_cpu(ddq->d_rtbcount) >
  1836. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1837. if (!ddq->d_rtbtimer) {
  1838. if (flags & XFS_QMOPT_DOWARN)
  1839. xfs_alert(mp,
  1840. "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
  1841. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1842. errs++;
  1843. }
  1844. }
  1845. }
  1846. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1847. return errs;
  1848. if (flags & XFS_QMOPT_DOWARN)
  1849. xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
  1850. /*
  1851. * Typically, a repair is only requested by quotacheck.
  1852. */
  1853. ASSERT(id != -1);
  1854. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1855. memset(d, 0, sizeof(xfs_dqblk_t));
  1856. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1857. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1858. d->dd_diskdq.d_flags = type;
  1859. d->dd_diskdq.d_id = cpu_to_be32(id);
  1860. return errs;
  1861. }
  1862. /*
  1863. * Perform a dquot buffer recovery.
  1864. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1865. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1866. * Else, treat it as a regular buffer and do recovery.
  1867. */
  1868. STATIC void
  1869. xlog_recover_do_dquot_buffer(
  1870. struct xfs_mount *mp,
  1871. struct xlog *log,
  1872. struct xlog_recover_item *item,
  1873. struct xfs_buf *bp,
  1874. struct xfs_buf_log_format *buf_f)
  1875. {
  1876. uint type;
  1877. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  1878. /*
  1879. * Filesystems are required to send in quota flags at mount time.
  1880. */
  1881. if (mp->m_qflags == 0) {
  1882. return;
  1883. }
  1884. type = 0;
  1885. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  1886. type |= XFS_DQ_USER;
  1887. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  1888. type |= XFS_DQ_PROJ;
  1889. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  1890. type |= XFS_DQ_GROUP;
  1891. /*
  1892. * This type of quotas was turned off, so ignore this buffer
  1893. */
  1894. if (log->l_quotaoffs_flag & type)
  1895. return;
  1896. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1897. }
  1898. /*
  1899. * This routine replays a modification made to a buffer at runtime.
  1900. * There are actually two types of buffer, regular and inode, which
  1901. * are handled differently. Inode buffers are handled differently
  1902. * in that we only recover a specific set of data from them, namely
  1903. * the inode di_next_unlinked fields. This is because all other inode
  1904. * data is actually logged via inode records and any data we replay
  1905. * here which overlaps that may be stale.
  1906. *
  1907. * When meta-data buffers are freed at run time we log a buffer item
  1908. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  1909. * of the buffer in the log should not be replayed at recovery time.
  1910. * This is so that if the blocks covered by the buffer are reused for
  1911. * file data before we crash we don't end up replaying old, freed
  1912. * meta-data into a user's file.
  1913. *
  1914. * To handle the cancellation of buffer log items, we make two passes
  1915. * over the log during recovery. During the first we build a table of
  1916. * those buffers which have been cancelled, and during the second we
  1917. * only replay those buffers which do not have corresponding cancel
  1918. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1919. * for more details on the implementation of the table of cancel records.
  1920. */
  1921. STATIC int
  1922. xlog_recover_buffer_pass2(
  1923. struct xlog *log,
  1924. struct list_head *buffer_list,
  1925. struct xlog_recover_item *item)
  1926. {
  1927. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1928. xfs_mount_t *mp = log->l_mp;
  1929. xfs_buf_t *bp;
  1930. int error;
  1931. uint buf_flags;
  1932. /*
  1933. * In this pass we only want to recover all the buffers which have
  1934. * not been cancelled and are not cancellation buffers themselves.
  1935. */
  1936. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  1937. buf_f->blf_len, buf_f->blf_flags)) {
  1938. trace_xfs_log_recover_buf_cancel(log, buf_f);
  1939. return 0;
  1940. }
  1941. trace_xfs_log_recover_buf_recover(log, buf_f);
  1942. buf_flags = 0;
  1943. if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
  1944. buf_flags |= XBF_UNMAPPED;
  1945. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  1946. buf_flags);
  1947. if (!bp)
  1948. return XFS_ERROR(ENOMEM);
  1949. error = bp->b_error;
  1950. if (error) {
  1951. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
  1952. xfs_buf_relse(bp);
  1953. return error;
  1954. }
  1955. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1956. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  1957. } else if (buf_f->blf_flags &
  1958. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1959. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  1960. } else {
  1961. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1962. }
  1963. if (error)
  1964. return XFS_ERROR(error);
  1965. /*
  1966. * Perform delayed write on the buffer. Asynchronous writes will be
  1967. * slower when taking into account all the buffers to be flushed.
  1968. *
  1969. * Also make sure that only inode buffers with good sizes stay in
  1970. * the buffer cache. The kernel moves inodes in buffers of 1 block
  1971. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  1972. * buffers in the log can be a different size if the log was generated
  1973. * by an older kernel using unclustered inode buffers or a newer kernel
  1974. * running with a different inode cluster size. Regardless, if the
  1975. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  1976. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  1977. * the buffer out of the buffer cache so that the buffer won't
  1978. * overlap with future reads of those inodes.
  1979. */
  1980. if (XFS_DINODE_MAGIC ==
  1981. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  1982. (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
  1983. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  1984. xfs_buf_stale(bp);
  1985. error = xfs_bwrite(bp);
  1986. } else {
  1987. ASSERT(bp->b_target->bt_mount == mp);
  1988. bp->b_iodone = xlog_recover_iodone;
  1989. xfs_buf_delwri_queue(bp, buffer_list);
  1990. }
  1991. xfs_buf_relse(bp);
  1992. return error;
  1993. }
  1994. STATIC int
  1995. xlog_recover_inode_pass2(
  1996. struct xlog *log,
  1997. struct list_head *buffer_list,
  1998. struct xlog_recover_item *item)
  1999. {
  2000. xfs_inode_log_format_t *in_f;
  2001. xfs_mount_t *mp = log->l_mp;
  2002. xfs_buf_t *bp;
  2003. xfs_dinode_t *dip;
  2004. int len;
  2005. xfs_caddr_t src;
  2006. xfs_caddr_t dest;
  2007. int error;
  2008. int attr_index;
  2009. uint fields;
  2010. xfs_icdinode_t *dicp;
  2011. int need_free = 0;
  2012. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2013. in_f = item->ri_buf[0].i_addr;
  2014. } else {
  2015. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2016. need_free = 1;
  2017. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2018. if (error)
  2019. goto error;
  2020. }
  2021. /*
  2022. * Inode buffers can be freed, look out for it,
  2023. * and do not replay the inode.
  2024. */
  2025. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  2026. in_f->ilf_len, 0)) {
  2027. error = 0;
  2028. trace_xfs_log_recover_inode_cancel(log, in_f);
  2029. goto error;
  2030. }
  2031. trace_xfs_log_recover_inode_recover(log, in_f);
  2032. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0);
  2033. if (!bp) {
  2034. error = ENOMEM;
  2035. goto error;
  2036. }
  2037. error = bp->b_error;
  2038. if (error) {
  2039. xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
  2040. xfs_buf_relse(bp);
  2041. goto error;
  2042. }
  2043. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2044. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2045. /*
  2046. * Make sure the place we're flushing out to really looks
  2047. * like an inode!
  2048. */
  2049. if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
  2050. xfs_buf_relse(bp);
  2051. xfs_alert(mp,
  2052. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2053. __func__, dip, bp, in_f->ilf_ino);
  2054. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2055. XFS_ERRLEVEL_LOW, mp);
  2056. error = EFSCORRUPTED;
  2057. goto error;
  2058. }
  2059. dicp = item->ri_buf[1].i_addr;
  2060. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2061. xfs_buf_relse(bp);
  2062. xfs_alert(mp,
  2063. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2064. __func__, item, in_f->ilf_ino);
  2065. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2066. XFS_ERRLEVEL_LOW, mp);
  2067. error = EFSCORRUPTED;
  2068. goto error;
  2069. }
  2070. /* Skip replay when the on disk inode is newer than the log one */
  2071. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2072. /*
  2073. * Deal with the wrap case, DI_MAX_FLUSH is less
  2074. * than smaller numbers
  2075. */
  2076. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2077. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2078. /* do nothing */
  2079. } else {
  2080. xfs_buf_relse(bp);
  2081. trace_xfs_log_recover_inode_skip(log, in_f);
  2082. error = 0;
  2083. goto error;
  2084. }
  2085. }
  2086. /* Take the opportunity to reset the flush iteration count */
  2087. dicp->di_flushiter = 0;
  2088. if (unlikely(S_ISREG(dicp->di_mode))) {
  2089. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2090. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2091. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2092. XFS_ERRLEVEL_LOW, mp, dicp);
  2093. xfs_buf_relse(bp);
  2094. xfs_alert(mp,
  2095. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2096. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2097. __func__, item, dip, bp, in_f->ilf_ino);
  2098. error = EFSCORRUPTED;
  2099. goto error;
  2100. }
  2101. } else if (unlikely(S_ISDIR(dicp->di_mode))) {
  2102. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2103. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2104. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2105. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2106. XFS_ERRLEVEL_LOW, mp, dicp);
  2107. xfs_buf_relse(bp);
  2108. xfs_alert(mp,
  2109. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2110. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2111. __func__, item, dip, bp, in_f->ilf_ino);
  2112. error = EFSCORRUPTED;
  2113. goto error;
  2114. }
  2115. }
  2116. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2117. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2118. XFS_ERRLEVEL_LOW, mp, dicp);
  2119. xfs_buf_relse(bp);
  2120. xfs_alert(mp,
  2121. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2122. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2123. __func__, item, dip, bp, in_f->ilf_ino,
  2124. dicp->di_nextents + dicp->di_anextents,
  2125. dicp->di_nblocks);
  2126. error = EFSCORRUPTED;
  2127. goto error;
  2128. }
  2129. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2130. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2131. XFS_ERRLEVEL_LOW, mp, dicp);
  2132. xfs_buf_relse(bp);
  2133. xfs_alert(mp,
  2134. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2135. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2136. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2137. error = EFSCORRUPTED;
  2138. goto error;
  2139. }
  2140. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2141. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2142. XFS_ERRLEVEL_LOW, mp, dicp);
  2143. xfs_buf_relse(bp);
  2144. xfs_alert(mp,
  2145. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2146. __func__, item->ri_buf[1].i_len, item);
  2147. error = EFSCORRUPTED;
  2148. goto error;
  2149. }
  2150. /* The core is in in-core format */
  2151. xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
  2152. /* the rest is in on-disk format */
  2153. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2154. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2155. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2156. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2157. }
  2158. fields = in_f->ilf_fields;
  2159. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2160. case XFS_ILOG_DEV:
  2161. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2162. break;
  2163. case XFS_ILOG_UUID:
  2164. memcpy(XFS_DFORK_DPTR(dip),
  2165. &in_f->ilf_u.ilfu_uuid,
  2166. sizeof(uuid_t));
  2167. break;
  2168. }
  2169. if (in_f->ilf_size == 2)
  2170. goto write_inode_buffer;
  2171. len = item->ri_buf[2].i_len;
  2172. src = item->ri_buf[2].i_addr;
  2173. ASSERT(in_f->ilf_size <= 4);
  2174. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2175. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2176. (len == in_f->ilf_dsize));
  2177. switch (fields & XFS_ILOG_DFORK) {
  2178. case XFS_ILOG_DDATA:
  2179. case XFS_ILOG_DEXT:
  2180. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2181. break;
  2182. case XFS_ILOG_DBROOT:
  2183. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2184. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2185. XFS_DFORK_DSIZE(dip, mp));
  2186. break;
  2187. default:
  2188. /*
  2189. * There are no data fork flags set.
  2190. */
  2191. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2192. break;
  2193. }
  2194. /*
  2195. * If we logged any attribute data, recover it. There may or
  2196. * may not have been any other non-core data logged in this
  2197. * transaction.
  2198. */
  2199. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2200. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2201. attr_index = 3;
  2202. } else {
  2203. attr_index = 2;
  2204. }
  2205. len = item->ri_buf[attr_index].i_len;
  2206. src = item->ri_buf[attr_index].i_addr;
  2207. ASSERT(len == in_f->ilf_asize);
  2208. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2209. case XFS_ILOG_ADATA:
  2210. case XFS_ILOG_AEXT:
  2211. dest = XFS_DFORK_APTR(dip);
  2212. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2213. memcpy(dest, src, len);
  2214. break;
  2215. case XFS_ILOG_ABROOT:
  2216. dest = XFS_DFORK_APTR(dip);
  2217. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2218. len, (xfs_bmdr_block_t*)dest,
  2219. XFS_DFORK_ASIZE(dip, mp));
  2220. break;
  2221. default:
  2222. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2223. ASSERT(0);
  2224. xfs_buf_relse(bp);
  2225. error = EIO;
  2226. goto error;
  2227. }
  2228. }
  2229. write_inode_buffer:
  2230. ASSERT(bp->b_target->bt_mount == mp);
  2231. bp->b_iodone = xlog_recover_iodone;
  2232. xfs_buf_delwri_queue(bp, buffer_list);
  2233. xfs_buf_relse(bp);
  2234. error:
  2235. if (need_free)
  2236. kmem_free(in_f);
  2237. return XFS_ERROR(error);
  2238. }
  2239. /*
  2240. * Recover QUOTAOFF records. We simply make a note of it in the xlog
  2241. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2242. * of that type.
  2243. */
  2244. STATIC int
  2245. xlog_recover_quotaoff_pass1(
  2246. struct xlog *log,
  2247. struct xlog_recover_item *item)
  2248. {
  2249. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2250. ASSERT(qoff_f);
  2251. /*
  2252. * The logitem format's flag tells us if this was user quotaoff,
  2253. * group/project quotaoff or both.
  2254. */
  2255. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2256. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2257. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2258. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2259. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2260. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2261. return (0);
  2262. }
  2263. /*
  2264. * Recover a dquot record
  2265. */
  2266. STATIC int
  2267. xlog_recover_dquot_pass2(
  2268. struct xlog *log,
  2269. struct list_head *buffer_list,
  2270. struct xlog_recover_item *item)
  2271. {
  2272. xfs_mount_t *mp = log->l_mp;
  2273. xfs_buf_t *bp;
  2274. struct xfs_disk_dquot *ddq, *recddq;
  2275. int error;
  2276. xfs_dq_logformat_t *dq_f;
  2277. uint type;
  2278. /*
  2279. * Filesystems are required to send in quota flags at mount time.
  2280. */
  2281. if (mp->m_qflags == 0)
  2282. return (0);
  2283. recddq = item->ri_buf[1].i_addr;
  2284. if (recddq == NULL) {
  2285. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2286. return XFS_ERROR(EIO);
  2287. }
  2288. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2289. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2290. item->ri_buf[1].i_len, __func__);
  2291. return XFS_ERROR(EIO);
  2292. }
  2293. /*
  2294. * This type of quotas was turned off, so ignore this record.
  2295. */
  2296. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2297. ASSERT(type);
  2298. if (log->l_quotaoffs_flag & type)
  2299. return (0);
  2300. /*
  2301. * At this point we know that quota was _not_ turned off.
  2302. * Since the mount flags are not indicating to us otherwise, this
  2303. * must mean that quota is on, and the dquot needs to be replayed.
  2304. * Remember that we may not have fully recovered the superblock yet,
  2305. * so we can't do the usual trick of looking at the SB quota bits.
  2306. *
  2307. * The other possibility, of course, is that the quota subsystem was
  2308. * removed since the last mount - ENOSYS.
  2309. */
  2310. dq_f = item->ri_buf[0].i_addr;
  2311. ASSERT(dq_f);
  2312. error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2313. "xlog_recover_dquot_pass2 (log copy)");
  2314. if (error)
  2315. return XFS_ERROR(EIO);
  2316. ASSERT(dq_f->qlf_len == 1);
  2317. error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
  2318. XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp);
  2319. if (error)
  2320. return error;
  2321. ASSERT(bp);
  2322. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2323. /*
  2324. * At least the magic num portion should be on disk because this
  2325. * was among a chunk of dquots created earlier, and we did some
  2326. * minimal initialization then.
  2327. */
  2328. error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2329. "xlog_recover_dquot_pass2");
  2330. if (error) {
  2331. xfs_buf_relse(bp);
  2332. return XFS_ERROR(EIO);
  2333. }
  2334. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2335. ASSERT(dq_f->qlf_size == 2);
  2336. ASSERT(bp->b_target->bt_mount == mp);
  2337. bp->b_iodone = xlog_recover_iodone;
  2338. xfs_buf_delwri_queue(bp, buffer_list);
  2339. xfs_buf_relse(bp);
  2340. return (0);
  2341. }
  2342. /*
  2343. * This routine is called to create an in-core extent free intent
  2344. * item from the efi format structure which was logged on disk.
  2345. * It allocates an in-core efi, copies the extents from the format
  2346. * structure into it, and adds the efi to the AIL with the given
  2347. * LSN.
  2348. */
  2349. STATIC int
  2350. xlog_recover_efi_pass2(
  2351. struct xlog *log,
  2352. struct xlog_recover_item *item,
  2353. xfs_lsn_t lsn)
  2354. {
  2355. int error;
  2356. xfs_mount_t *mp = log->l_mp;
  2357. xfs_efi_log_item_t *efip;
  2358. xfs_efi_log_format_t *efi_formatp;
  2359. efi_formatp = item->ri_buf[0].i_addr;
  2360. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2361. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2362. &(efip->efi_format)))) {
  2363. xfs_efi_item_free(efip);
  2364. return error;
  2365. }
  2366. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2367. spin_lock(&log->l_ailp->xa_lock);
  2368. /*
  2369. * xfs_trans_ail_update() drops the AIL lock.
  2370. */
  2371. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2372. return 0;
  2373. }
  2374. /*
  2375. * This routine is called when an efd format structure is found in
  2376. * a committed transaction in the log. It's purpose is to cancel
  2377. * the corresponding efi if it was still in the log. To do this
  2378. * it searches the AIL for the efi with an id equal to that in the
  2379. * efd format structure. If we find it, we remove the efi from the
  2380. * AIL and free it.
  2381. */
  2382. STATIC int
  2383. xlog_recover_efd_pass2(
  2384. struct xlog *log,
  2385. struct xlog_recover_item *item)
  2386. {
  2387. xfs_efd_log_format_t *efd_formatp;
  2388. xfs_efi_log_item_t *efip = NULL;
  2389. xfs_log_item_t *lip;
  2390. __uint64_t efi_id;
  2391. struct xfs_ail_cursor cur;
  2392. struct xfs_ail *ailp = log->l_ailp;
  2393. efd_formatp = item->ri_buf[0].i_addr;
  2394. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2395. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2396. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2397. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2398. efi_id = efd_formatp->efd_efi_id;
  2399. /*
  2400. * Search for the efi with the id in the efd format structure
  2401. * in the AIL.
  2402. */
  2403. spin_lock(&ailp->xa_lock);
  2404. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2405. while (lip != NULL) {
  2406. if (lip->li_type == XFS_LI_EFI) {
  2407. efip = (xfs_efi_log_item_t *)lip;
  2408. if (efip->efi_format.efi_id == efi_id) {
  2409. /*
  2410. * xfs_trans_ail_delete() drops the
  2411. * AIL lock.
  2412. */
  2413. xfs_trans_ail_delete(ailp, lip,
  2414. SHUTDOWN_CORRUPT_INCORE);
  2415. xfs_efi_item_free(efip);
  2416. spin_lock(&ailp->xa_lock);
  2417. break;
  2418. }
  2419. }
  2420. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2421. }
  2422. xfs_trans_ail_cursor_done(ailp, &cur);
  2423. spin_unlock(&ailp->xa_lock);
  2424. return 0;
  2425. }
  2426. /*
  2427. * Free up any resources allocated by the transaction
  2428. *
  2429. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2430. */
  2431. STATIC void
  2432. xlog_recover_free_trans(
  2433. struct xlog_recover *trans)
  2434. {
  2435. xlog_recover_item_t *item, *n;
  2436. int i;
  2437. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2438. /* Free the regions in the item. */
  2439. list_del(&item->ri_list);
  2440. for (i = 0; i < item->ri_cnt; i++)
  2441. kmem_free(item->ri_buf[i].i_addr);
  2442. /* Free the item itself */
  2443. kmem_free(item->ri_buf);
  2444. kmem_free(item);
  2445. }
  2446. /* Free the transaction recover structure */
  2447. kmem_free(trans);
  2448. }
  2449. STATIC int
  2450. xlog_recover_commit_pass1(
  2451. struct xlog *log,
  2452. struct xlog_recover *trans,
  2453. struct xlog_recover_item *item)
  2454. {
  2455. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  2456. switch (ITEM_TYPE(item)) {
  2457. case XFS_LI_BUF:
  2458. return xlog_recover_buffer_pass1(log, item);
  2459. case XFS_LI_QUOTAOFF:
  2460. return xlog_recover_quotaoff_pass1(log, item);
  2461. case XFS_LI_INODE:
  2462. case XFS_LI_EFI:
  2463. case XFS_LI_EFD:
  2464. case XFS_LI_DQUOT:
  2465. /* nothing to do in pass 1 */
  2466. return 0;
  2467. default:
  2468. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2469. __func__, ITEM_TYPE(item));
  2470. ASSERT(0);
  2471. return XFS_ERROR(EIO);
  2472. }
  2473. }
  2474. STATIC int
  2475. xlog_recover_commit_pass2(
  2476. struct xlog *log,
  2477. struct xlog_recover *trans,
  2478. struct list_head *buffer_list,
  2479. struct xlog_recover_item *item)
  2480. {
  2481. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  2482. switch (ITEM_TYPE(item)) {
  2483. case XFS_LI_BUF:
  2484. return xlog_recover_buffer_pass2(log, buffer_list, item);
  2485. case XFS_LI_INODE:
  2486. return xlog_recover_inode_pass2(log, buffer_list, item);
  2487. case XFS_LI_EFI:
  2488. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  2489. case XFS_LI_EFD:
  2490. return xlog_recover_efd_pass2(log, item);
  2491. case XFS_LI_DQUOT:
  2492. return xlog_recover_dquot_pass2(log, buffer_list, item);
  2493. case XFS_LI_QUOTAOFF:
  2494. /* nothing to do in pass2 */
  2495. return 0;
  2496. default:
  2497. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2498. __func__, ITEM_TYPE(item));
  2499. ASSERT(0);
  2500. return XFS_ERROR(EIO);
  2501. }
  2502. }
  2503. /*
  2504. * Perform the transaction.
  2505. *
  2506. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2507. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2508. */
  2509. STATIC int
  2510. xlog_recover_commit_trans(
  2511. struct xlog *log,
  2512. struct xlog_recover *trans,
  2513. int pass)
  2514. {
  2515. int error = 0, error2;
  2516. xlog_recover_item_t *item;
  2517. LIST_HEAD (buffer_list);
  2518. hlist_del(&trans->r_list);
  2519. error = xlog_recover_reorder_trans(log, trans, pass);
  2520. if (error)
  2521. return error;
  2522. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2523. switch (pass) {
  2524. case XLOG_RECOVER_PASS1:
  2525. error = xlog_recover_commit_pass1(log, trans, item);
  2526. break;
  2527. case XLOG_RECOVER_PASS2:
  2528. error = xlog_recover_commit_pass2(log, trans,
  2529. &buffer_list, item);
  2530. break;
  2531. default:
  2532. ASSERT(0);
  2533. }
  2534. if (error)
  2535. goto out;
  2536. }
  2537. xlog_recover_free_trans(trans);
  2538. out:
  2539. error2 = xfs_buf_delwri_submit(&buffer_list);
  2540. return error ? error : error2;
  2541. }
  2542. STATIC int
  2543. xlog_recover_unmount_trans(
  2544. struct xlog *log,
  2545. struct xlog_recover *trans)
  2546. {
  2547. /* Do nothing now */
  2548. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  2549. return 0;
  2550. }
  2551. /*
  2552. * There are two valid states of the r_state field. 0 indicates that the
  2553. * transaction structure is in a normal state. We have either seen the
  2554. * start of the transaction or the last operation we added was not a partial
  2555. * operation. If the last operation we added to the transaction was a
  2556. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2557. *
  2558. * NOTE: skip LRs with 0 data length.
  2559. */
  2560. STATIC int
  2561. xlog_recover_process_data(
  2562. struct xlog *log,
  2563. struct hlist_head rhash[],
  2564. struct xlog_rec_header *rhead,
  2565. xfs_caddr_t dp,
  2566. int pass)
  2567. {
  2568. xfs_caddr_t lp;
  2569. int num_logops;
  2570. xlog_op_header_t *ohead;
  2571. xlog_recover_t *trans;
  2572. xlog_tid_t tid;
  2573. int error;
  2574. unsigned long hash;
  2575. uint flags;
  2576. lp = dp + be32_to_cpu(rhead->h_len);
  2577. num_logops = be32_to_cpu(rhead->h_num_logops);
  2578. /* check the log format matches our own - else we can't recover */
  2579. if (xlog_header_check_recover(log->l_mp, rhead))
  2580. return (XFS_ERROR(EIO));
  2581. while ((dp < lp) && num_logops) {
  2582. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2583. ohead = (xlog_op_header_t *)dp;
  2584. dp += sizeof(xlog_op_header_t);
  2585. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2586. ohead->oh_clientid != XFS_LOG) {
  2587. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  2588. __func__, ohead->oh_clientid);
  2589. ASSERT(0);
  2590. return (XFS_ERROR(EIO));
  2591. }
  2592. tid = be32_to_cpu(ohead->oh_tid);
  2593. hash = XLOG_RHASH(tid);
  2594. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2595. if (trans == NULL) { /* not found; add new tid */
  2596. if (ohead->oh_flags & XLOG_START_TRANS)
  2597. xlog_recover_new_tid(&rhash[hash], tid,
  2598. be64_to_cpu(rhead->h_lsn));
  2599. } else {
  2600. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2601. xfs_warn(log->l_mp, "%s: bad length 0x%x",
  2602. __func__, be32_to_cpu(ohead->oh_len));
  2603. WARN_ON(1);
  2604. return (XFS_ERROR(EIO));
  2605. }
  2606. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2607. if (flags & XLOG_WAS_CONT_TRANS)
  2608. flags &= ~XLOG_CONTINUE_TRANS;
  2609. switch (flags) {
  2610. case XLOG_COMMIT_TRANS:
  2611. error = xlog_recover_commit_trans(log,
  2612. trans, pass);
  2613. break;
  2614. case XLOG_UNMOUNT_TRANS:
  2615. error = xlog_recover_unmount_trans(log, trans);
  2616. break;
  2617. case XLOG_WAS_CONT_TRANS:
  2618. error = xlog_recover_add_to_cont_trans(log,
  2619. trans, dp,
  2620. be32_to_cpu(ohead->oh_len));
  2621. break;
  2622. case XLOG_START_TRANS:
  2623. xfs_warn(log->l_mp, "%s: bad transaction",
  2624. __func__);
  2625. ASSERT(0);
  2626. error = XFS_ERROR(EIO);
  2627. break;
  2628. case 0:
  2629. case XLOG_CONTINUE_TRANS:
  2630. error = xlog_recover_add_to_trans(log, trans,
  2631. dp, be32_to_cpu(ohead->oh_len));
  2632. break;
  2633. default:
  2634. xfs_warn(log->l_mp, "%s: bad flag 0x%x",
  2635. __func__, flags);
  2636. ASSERT(0);
  2637. error = XFS_ERROR(EIO);
  2638. break;
  2639. }
  2640. if (error)
  2641. return error;
  2642. }
  2643. dp += be32_to_cpu(ohead->oh_len);
  2644. num_logops--;
  2645. }
  2646. return 0;
  2647. }
  2648. /*
  2649. * Process an extent free intent item that was recovered from
  2650. * the log. We need to free the extents that it describes.
  2651. */
  2652. STATIC int
  2653. xlog_recover_process_efi(
  2654. xfs_mount_t *mp,
  2655. xfs_efi_log_item_t *efip)
  2656. {
  2657. xfs_efd_log_item_t *efdp;
  2658. xfs_trans_t *tp;
  2659. int i;
  2660. int error = 0;
  2661. xfs_extent_t *extp;
  2662. xfs_fsblock_t startblock_fsb;
  2663. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  2664. /*
  2665. * First check the validity of the extents described by the
  2666. * EFI. If any are bad, then assume that all are bad and
  2667. * just toss the EFI.
  2668. */
  2669. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2670. extp = &(efip->efi_format.efi_extents[i]);
  2671. startblock_fsb = XFS_BB_TO_FSB(mp,
  2672. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2673. if ((startblock_fsb == 0) ||
  2674. (extp->ext_len == 0) ||
  2675. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2676. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2677. /*
  2678. * This will pull the EFI from the AIL and
  2679. * free the memory associated with it.
  2680. */
  2681. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2682. return XFS_ERROR(EIO);
  2683. }
  2684. }
  2685. tp = xfs_trans_alloc(mp, 0);
  2686. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2687. if (error)
  2688. goto abort_error;
  2689. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2690. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2691. extp = &(efip->efi_format.efi_extents[i]);
  2692. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2693. if (error)
  2694. goto abort_error;
  2695. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2696. extp->ext_len);
  2697. }
  2698. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  2699. error = xfs_trans_commit(tp, 0);
  2700. return error;
  2701. abort_error:
  2702. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2703. return error;
  2704. }
  2705. /*
  2706. * When this is called, all of the EFIs which did not have
  2707. * corresponding EFDs should be in the AIL. What we do now
  2708. * is free the extents associated with each one.
  2709. *
  2710. * Since we process the EFIs in normal transactions, they
  2711. * will be removed at some point after the commit. This prevents
  2712. * us from just walking down the list processing each one.
  2713. * We'll use a flag in the EFI to skip those that we've already
  2714. * processed and use the AIL iteration mechanism's generation
  2715. * count to try to speed this up at least a bit.
  2716. *
  2717. * When we start, we know that the EFIs are the only things in
  2718. * the AIL. As we process them, however, other items are added
  2719. * to the AIL. Since everything added to the AIL must come after
  2720. * everything already in the AIL, we stop processing as soon as
  2721. * we see something other than an EFI in the AIL.
  2722. */
  2723. STATIC int
  2724. xlog_recover_process_efis(
  2725. struct xlog *log)
  2726. {
  2727. xfs_log_item_t *lip;
  2728. xfs_efi_log_item_t *efip;
  2729. int error = 0;
  2730. struct xfs_ail_cursor cur;
  2731. struct xfs_ail *ailp;
  2732. ailp = log->l_ailp;
  2733. spin_lock(&ailp->xa_lock);
  2734. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2735. while (lip != NULL) {
  2736. /*
  2737. * We're done when we see something other than an EFI.
  2738. * There should be no EFIs left in the AIL now.
  2739. */
  2740. if (lip->li_type != XFS_LI_EFI) {
  2741. #ifdef DEBUG
  2742. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2743. ASSERT(lip->li_type != XFS_LI_EFI);
  2744. #endif
  2745. break;
  2746. }
  2747. /*
  2748. * Skip EFIs that we've already processed.
  2749. */
  2750. efip = (xfs_efi_log_item_t *)lip;
  2751. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  2752. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2753. continue;
  2754. }
  2755. spin_unlock(&ailp->xa_lock);
  2756. error = xlog_recover_process_efi(log->l_mp, efip);
  2757. spin_lock(&ailp->xa_lock);
  2758. if (error)
  2759. goto out;
  2760. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2761. }
  2762. out:
  2763. xfs_trans_ail_cursor_done(ailp, &cur);
  2764. spin_unlock(&ailp->xa_lock);
  2765. return error;
  2766. }
  2767. /*
  2768. * This routine performs a transaction to null out a bad inode pointer
  2769. * in an agi unlinked inode hash bucket.
  2770. */
  2771. STATIC void
  2772. xlog_recover_clear_agi_bucket(
  2773. xfs_mount_t *mp,
  2774. xfs_agnumber_t agno,
  2775. int bucket)
  2776. {
  2777. xfs_trans_t *tp;
  2778. xfs_agi_t *agi;
  2779. xfs_buf_t *agibp;
  2780. int offset;
  2781. int error;
  2782. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2783. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2784. 0, 0, 0);
  2785. if (error)
  2786. goto out_abort;
  2787. error = xfs_read_agi(mp, tp, agno, &agibp);
  2788. if (error)
  2789. goto out_abort;
  2790. agi = XFS_BUF_TO_AGI(agibp);
  2791. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2792. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2793. (sizeof(xfs_agino_t) * bucket);
  2794. xfs_trans_log_buf(tp, agibp, offset,
  2795. (offset + sizeof(xfs_agino_t) - 1));
  2796. error = xfs_trans_commit(tp, 0);
  2797. if (error)
  2798. goto out_error;
  2799. return;
  2800. out_abort:
  2801. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2802. out_error:
  2803. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  2804. return;
  2805. }
  2806. STATIC xfs_agino_t
  2807. xlog_recover_process_one_iunlink(
  2808. struct xfs_mount *mp,
  2809. xfs_agnumber_t agno,
  2810. xfs_agino_t agino,
  2811. int bucket)
  2812. {
  2813. struct xfs_buf *ibp;
  2814. struct xfs_dinode *dip;
  2815. struct xfs_inode *ip;
  2816. xfs_ino_t ino;
  2817. int error;
  2818. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2819. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  2820. if (error)
  2821. goto fail;
  2822. /*
  2823. * Get the on disk inode to find the next inode in the bucket.
  2824. */
  2825. error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
  2826. if (error)
  2827. goto fail_iput;
  2828. ASSERT(ip->i_d.di_nlink == 0);
  2829. ASSERT(ip->i_d.di_mode != 0);
  2830. /* setup for the next pass */
  2831. agino = be32_to_cpu(dip->di_next_unlinked);
  2832. xfs_buf_relse(ibp);
  2833. /*
  2834. * Prevent any DMAPI event from being sent when the reference on
  2835. * the inode is dropped.
  2836. */
  2837. ip->i_d.di_dmevmask = 0;
  2838. IRELE(ip);
  2839. return agino;
  2840. fail_iput:
  2841. IRELE(ip);
  2842. fail:
  2843. /*
  2844. * We can't read in the inode this bucket points to, or this inode
  2845. * is messed up. Just ditch this bucket of inodes. We will lose
  2846. * some inodes and space, but at least we won't hang.
  2847. *
  2848. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2849. * clear the inode pointer in the bucket.
  2850. */
  2851. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2852. return NULLAGINO;
  2853. }
  2854. /*
  2855. * xlog_iunlink_recover
  2856. *
  2857. * This is called during recovery to process any inodes which
  2858. * we unlinked but not freed when the system crashed. These
  2859. * inodes will be on the lists in the AGI blocks. What we do
  2860. * here is scan all the AGIs and fully truncate and free any
  2861. * inodes found on the lists. Each inode is removed from the
  2862. * lists when it has been fully truncated and is freed. The
  2863. * freeing of the inode and its removal from the list must be
  2864. * atomic.
  2865. */
  2866. STATIC void
  2867. xlog_recover_process_iunlinks(
  2868. struct xlog *log)
  2869. {
  2870. xfs_mount_t *mp;
  2871. xfs_agnumber_t agno;
  2872. xfs_agi_t *agi;
  2873. xfs_buf_t *agibp;
  2874. xfs_agino_t agino;
  2875. int bucket;
  2876. int error;
  2877. uint mp_dmevmask;
  2878. mp = log->l_mp;
  2879. /*
  2880. * Prevent any DMAPI event from being sent while in this function.
  2881. */
  2882. mp_dmevmask = mp->m_dmevmask;
  2883. mp->m_dmevmask = 0;
  2884. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2885. /*
  2886. * Find the agi for this ag.
  2887. */
  2888. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2889. if (error) {
  2890. /*
  2891. * AGI is b0rked. Don't process it.
  2892. *
  2893. * We should probably mark the filesystem as corrupt
  2894. * after we've recovered all the ag's we can....
  2895. */
  2896. continue;
  2897. }
  2898. /*
  2899. * Unlock the buffer so that it can be acquired in the normal
  2900. * course of the transaction to truncate and free each inode.
  2901. * Because we are not racing with anyone else here for the AGI
  2902. * buffer, we don't even need to hold it locked to read the
  2903. * initial unlinked bucket entries out of the buffer. We keep
  2904. * buffer reference though, so that it stays pinned in memory
  2905. * while we need the buffer.
  2906. */
  2907. agi = XFS_BUF_TO_AGI(agibp);
  2908. xfs_buf_unlock(agibp);
  2909. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2910. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2911. while (agino != NULLAGINO) {
  2912. agino = xlog_recover_process_one_iunlink(mp,
  2913. agno, agino, bucket);
  2914. }
  2915. }
  2916. xfs_buf_rele(agibp);
  2917. }
  2918. mp->m_dmevmask = mp_dmevmask;
  2919. }
  2920. #ifdef DEBUG
  2921. STATIC void
  2922. xlog_pack_data_checksum(
  2923. struct xlog *log,
  2924. struct xlog_in_core *iclog,
  2925. int size)
  2926. {
  2927. int i;
  2928. __be32 *up;
  2929. uint chksum = 0;
  2930. up = (__be32 *)iclog->ic_datap;
  2931. /* divide length by 4 to get # words */
  2932. for (i = 0; i < (size >> 2); i++) {
  2933. chksum ^= be32_to_cpu(*up);
  2934. up++;
  2935. }
  2936. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  2937. }
  2938. #else
  2939. #define xlog_pack_data_checksum(log, iclog, size)
  2940. #endif
  2941. /*
  2942. * Stamp cycle number in every block
  2943. */
  2944. void
  2945. xlog_pack_data(
  2946. struct xlog *log,
  2947. struct xlog_in_core *iclog,
  2948. int roundoff)
  2949. {
  2950. int i, j, k;
  2951. int size = iclog->ic_offset + roundoff;
  2952. __be32 cycle_lsn;
  2953. xfs_caddr_t dp;
  2954. xlog_pack_data_checksum(log, iclog, size);
  2955. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  2956. dp = iclog->ic_datap;
  2957. for (i = 0; i < BTOBB(size) &&
  2958. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2959. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  2960. *(__be32 *)dp = cycle_lsn;
  2961. dp += BBSIZE;
  2962. }
  2963. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2964. xlog_in_core_2_t *xhdr = iclog->ic_data;
  2965. for ( ; i < BTOBB(size); i++) {
  2966. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2967. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2968. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  2969. *(__be32 *)dp = cycle_lsn;
  2970. dp += BBSIZE;
  2971. }
  2972. for (i = 1; i < log->l_iclog_heads; i++) {
  2973. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  2974. }
  2975. }
  2976. }
  2977. STATIC void
  2978. xlog_unpack_data(
  2979. struct xlog_rec_header *rhead,
  2980. xfs_caddr_t dp,
  2981. struct xlog *log)
  2982. {
  2983. int i, j, k;
  2984. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  2985. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2986. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  2987. dp += BBSIZE;
  2988. }
  2989. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2990. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  2991. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  2992. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2993. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2994. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  2995. dp += BBSIZE;
  2996. }
  2997. }
  2998. }
  2999. STATIC int
  3000. xlog_valid_rec_header(
  3001. struct xlog *log,
  3002. struct xlog_rec_header *rhead,
  3003. xfs_daddr_t blkno)
  3004. {
  3005. int hlen;
  3006. if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
  3007. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3008. XFS_ERRLEVEL_LOW, log->l_mp);
  3009. return XFS_ERROR(EFSCORRUPTED);
  3010. }
  3011. if (unlikely(
  3012. (!rhead->h_version ||
  3013. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3014. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  3015. __func__, be32_to_cpu(rhead->h_version));
  3016. return XFS_ERROR(EIO);
  3017. }
  3018. /* LR body must have data or it wouldn't have been written */
  3019. hlen = be32_to_cpu(rhead->h_len);
  3020. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3021. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3022. XFS_ERRLEVEL_LOW, log->l_mp);
  3023. return XFS_ERROR(EFSCORRUPTED);
  3024. }
  3025. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3026. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3027. XFS_ERRLEVEL_LOW, log->l_mp);
  3028. return XFS_ERROR(EFSCORRUPTED);
  3029. }
  3030. return 0;
  3031. }
  3032. /*
  3033. * Read the log from tail to head and process the log records found.
  3034. * Handle the two cases where the tail and head are in the same cycle
  3035. * and where the active portion of the log wraps around the end of
  3036. * the physical log separately. The pass parameter is passed through
  3037. * to the routines called to process the data and is not looked at
  3038. * here.
  3039. */
  3040. STATIC int
  3041. xlog_do_recovery_pass(
  3042. struct xlog *log,
  3043. xfs_daddr_t head_blk,
  3044. xfs_daddr_t tail_blk,
  3045. int pass)
  3046. {
  3047. xlog_rec_header_t *rhead;
  3048. xfs_daddr_t blk_no;
  3049. xfs_caddr_t offset;
  3050. xfs_buf_t *hbp, *dbp;
  3051. int error = 0, h_size;
  3052. int bblks, split_bblks;
  3053. int hblks, split_hblks, wrapped_hblks;
  3054. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3055. ASSERT(head_blk != tail_blk);
  3056. /*
  3057. * Read the header of the tail block and get the iclog buffer size from
  3058. * h_size. Use this to tell how many sectors make up the log header.
  3059. */
  3060. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3061. /*
  3062. * When using variable length iclogs, read first sector of
  3063. * iclog header and extract the header size from it. Get a
  3064. * new hbp that is the correct size.
  3065. */
  3066. hbp = xlog_get_bp(log, 1);
  3067. if (!hbp)
  3068. return ENOMEM;
  3069. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3070. if (error)
  3071. goto bread_err1;
  3072. rhead = (xlog_rec_header_t *)offset;
  3073. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3074. if (error)
  3075. goto bread_err1;
  3076. h_size = be32_to_cpu(rhead->h_size);
  3077. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3078. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3079. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3080. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3081. hblks++;
  3082. xlog_put_bp(hbp);
  3083. hbp = xlog_get_bp(log, hblks);
  3084. } else {
  3085. hblks = 1;
  3086. }
  3087. } else {
  3088. ASSERT(log->l_sectBBsize == 1);
  3089. hblks = 1;
  3090. hbp = xlog_get_bp(log, 1);
  3091. h_size = XLOG_BIG_RECORD_BSIZE;
  3092. }
  3093. if (!hbp)
  3094. return ENOMEM;
  3095. dbp = xlog_get_bp(log, BTOBB(h_size));
  3096. if (!dbp) {
  3097. xlog_put_bp(hbp);
  3098. return ENOMEM;
  3099. }
  3100. memset(rhash, 0, sizeof(rhash));
  3101. if (tail_blk <= head_blk) {
  3102. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3103. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3104. if (error)
  3105. goto bread_err2;
  3106. rhead = (xlog_rec_header_t *)offset;
  3107. error = xlog_valid_rec_header(log, rhead, blk_no);
  3108. if (error)
  3109. goto bread_err2;
  3110. /* blocks in data section */
  3111. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3112. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3113. &offset);
  3114. if (error)
  3115. goto bread_err2;
  3116. xlog_unpack_data(rhead, offset, log);
  3117. if ((error = xlog_recover_process_data(log,
  3118. rhash, rhead, offset, pass)))
  3119. goto bread_err2;
  3120. blk_no += bblks + hblks;
  3121. }
  3122. } else {
  3123. /*
  3124. * Perform recovery around the end of the physical log.
  3125. * When the head is not on the same cycle number as the tail,
  3126. * we can't do a sequential recovery as above.
  3127. */
  3128. blk_no = tail_blk;
  3129. while (blk_no < log->l_logBBsize) {
  3130. /*
  3131. * Check for header wrapping around physical end-of-log
  3132. */
  3133. offset = hbp->b_addr;
  3134. split_hblks = 0;
  3135. wrapped_hblks = 0;
  3136. if (blk_no + hblks <= log->l_logBBsize) {
  3137. /* Read header in one read */
  3138. error = xlog_bread(log, blk_no, hblks, hbp,
  3139. &offset);
  3140. if (error)
  3141. goto bread_err2;
  3142. } else {
  3143. /* This LR is split across physical log end */
  3144. if (blk_no != log->l_logBBsize) {
  3145. /* some data before physical log end */
  3146. ASSERT(blk_no <= INT_MAX);
  3147. split_hblks = log->l_logBBsize - (int)blk_no;
  3148. ASSERT(split_hblks > 0);
  3149. error = xlog_bread(log, blk_no,
  3150. split_hblks, hbp,
  3151. &offset);
  3152. if (error)
  3153. goto bread_err2;
  3154. }
  3155. /*
  3156. * Note: this black magic still works with
  3157. * large sector sizes (non-512) only because:
  3158. * - we increased the buffer size originally
  3159. * by 1 sector giving us enough extra space
  3160. * for the second read;
  3161. * - the log start is guaranteed to be sector
  3162. * aligned;
  3163. * - we read the log end (LR header start)
  3164. * _first_, then the log start (LR header end)
  3165. * - order is important.
  3166. */
  3167. wrapped_hblks = hblks - split_hblks;
  3168. error = xlog_bread_offset(log, 0,
  3169. wrapped_hblks, hbp,
  3170. offset + BBTOB(split_hblks));
  3171. if (error)
  3172. goto bread_err2;
  3173. }
  3174. rhead = (xlog_rec_header_t *)offset;
  3175. error = xlog_valid_rec_header(log, rhead,
  3176. split_hblks ? blk_no : 0);
  3177. if (error)
  3178. goto bread_err2;
  3179. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3180. blk_no += hblks;
  3181. /* Read in data for log record */
  3182. if (blk_no + bblks <= log->l_logBBsize) {
  3183. error = xlog_bread(log, blk_no, bblks, dbp,
  3184. &offset);
  3185. if (error)
  3186. goto bread_err2;
  3187. } else {
  3188. /* This log record is split across the
  3189. * physical end of log */
  3190. offset = dbp->b_addr;
  3191. split_bblks = 0;
  3192. if (blk_no != log->l_logBBsize) {
  3193. /* some data is before the physical
  3194. * end of log */
  3195. ASSERT(!wrapped_hblks);
  3196. ASSERT(blk_no <= INT_MAX);
  3197. split_bblks =
  3198. log->l_logBBsize - (int)blk_no;
  3199. ASSERT(split_bblks > 0);
  3200. error = xlog_bread(log, blk_no,
  3201. split_bblks, dbp,
  3202. &offset);
  3203. if (error)
  3204. goto bread_err2;
  3205. }
  3206. /*
  3207. * Note: this black magic still works with
  3208. * large sector sizes (non-512) only because:
  3209. * - we increased the buffer size originally
  3210. * by 1 sector giving us enough extra space
  3211. * for the second read;
  3212. * - the log start is guaranteed to be sector
  3213. * aligned;
  3214. * - we read the log end (LR header start)
  3215. * _first_, then the log start (LR header end)
  3216. * - order is important.
  3217. */
  3218. error = xlog_bread_offset(log, 0,
  3219. bblks - split_bblks, hbp,
  3220. offset + BBTOB(split_bblks));
  3221. if (error)
  3222. goto bread_err2;
  3223. }
  3224. xlog_unpack_data(rhead, offset, log);
  3225. if ((error = xlog_recover_process_data(log, rhash,
  3226. rhead, offset, pass)))
  3227. goto bread_err2;
  3228. blk_no += bblks;
  3229. }
  3230. ASSERT(blk_no >= log->l_logBBsize);
  3231. blk_no -= log->l_logBBsize;
  3232. /* read first part of physical log */
  3233. while (blk_no < head_blk) {
  3234. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3235. if (error)
  3236. goto bread_err2;
  3237. rhead = (xlog_rec_header_t *)offset;
  3238. error = xlog_valid_rec_header(log, rhead, blk_no);
  3239. if (error)
  3240. goto bread_err2;
  3241. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3242. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3243. &offset);
  3244. if (error)
  3245. goto bread_err2;
  3246. xlog_unpack_data(rhead, offset, log);
  3247. if ((error = xlog_recover_process_data(log, rhash,
  3248. rhead, offset, pass)))
  3249. goto bread_err2;
  3250. blk_no += bblks + hblks;
  3251. }
  3252. }
  3253. bread_err2:
  3254. xlog_put_bp(dbp);
  3255. bread_err1:
  3256. xlog_put_bp(hbp);
  3257. return error;
  3258. }
  3259. /*
  3260. * Do the recovery of the log. We actually do this in two phases.
  3261. * The two passes are necessary in order to implement the function
  3262. * of cancelling a record written into the log. The first pass
  3263. * determines those things which have been cancelled, and the
  3264. * second pass replays log items normally except for those which
  3265. * have been cancelled. The handling of the replay and cancellations
  3266. * takes place in the log item type specific routines.
  3267. *
  3268. * The table of items which have cancel records in the log is allocated
  3269. * and freed at this level, since only here do we know when all of
  3270. * the log recovery has been completed.
  3271. */
  3272. STATIC int
  3273. xlog_do_log_recovery(
  3274. struct xlog *log,
  3275. xfs_daddr_t head_blk,
  3276. xfs_daddr_t tail_blk)
  3277. {
  3278. int error, i;
  3279. ASSERT(head_blk != tail_blk);
  3280. /*
  3281. * First do a pass to find all of the cancelled buf log items.
  3282. * Store them in the buf_cancel_table for use in the second pass.
  3283. */
  3284. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3285. sizeof(struct list_head),
  3286. KM_SLEEP);
  3287. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3288. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3289. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3290. XLOG_RECOVER_PASS1);
  3291. if (error != 0) {
  3292. kmem_free(log->l_buf_cancel_table);
  3293. log->l_buf_cancel_table = NULL;
  3294. return error;
  3295. }
  3296. /*
  3297. * Then do a second pass to actually recover the items in the log.
  3298. * When it is complete free the table of buf cancel items.
  3299. */
  3300. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3301. XLOG_RECOVER_PASS2);
  3302. #ifdef DEBUG
  3303. if (!error) {
  3304. int i;
  3305. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3306. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3307. }
  3308. #endif /* DEBUG */
  3309. kmem_free(log->l_buf_cancel_table);
  3310. log->l_buf_cancel_table = NULL;
  3311. return error;
  3312. }
  3313. /*
  3314. * Do the actual recovery
  3315. */
  3316. STATIC int
  3317. xlog_do_recover(
  3318. struct xlog *log,
  3319. xfs_daddr_t head_blk,
  3320. xfs_daddr_t tail_blk)
  3321. {
  3322. int error;
  3323. xfs_buf_t *bp;
  3324. xfs_sb_t *sbp;
  3325. /*
  3326. * First replay the images in the log.
  3327. */
  3328. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3329. if (error)
  3330. return error;
  3331. /*
  3332. * If IO errors happened during recovery, bail out.
  3333. */
  3334. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3335. return (EIO);
  3336. }
  3337. /*
  3338. * We now update the tail_lsn since much of the recovery has completed
  3339. * and there may be space available to use. If there were no extent
  3340. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3341. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3342. * lsn of the last known good LR on disk. If there are extent frees
  3343. * or iunlinks they will have some entries in the AIL; so we look at
  3344. * the AIL to determine how to set the tail_lsn.
  3345. */
  3346. xlog_assign_tail_lsn(log->l_mp);
  3347. /*
  3348. * Now that we've finished replaying all buffer and inode
  3349. * updates, re-read in the superblock.
  3350. */
  3351. bp = xfs_getsb(log->l_mp, 0);
  3352. XFS_BUF_UNDONE(bp);
  3353. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3354. XFS_BUF_READ(bp);
  3355. XFS_BUF_UNASYNC(bp);
  3356. xfsbdstrat(log->l_mp, bp);
  3357. error = xfs_buf_iowait(bp);
  3358. if (error) {
  3359. xfs_buf_ioerror_alert(bp, __func__);
  3360. ASSERT(0);
  3361. xfs_buf_relse(bp);
  3362. return error;
  3363. }
  3364. /* Convert superblock from on-disk format */
  3365. sbp = &log->l_mp->m_sb;
  3366. xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp));
  3367. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3368. ASSERT(xfs_sb_good_version(sbp));
  3369. xfs_buf_relse(bp);
  3370. /* We've re-read the superblock so re-initialize per-cpu counters */
  3371. xfs_icsb_reinit_counters(log->l_mp);
  3372. xlog_recover_check_summary(log);
  3373. /* Normal transactions can now occur */
  3374. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3375. return 0;
  3376. }
  3377. /*
  3378. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3379. *
  3380. * Return error or zero.
  3381. */
  3382. int
  3383. xlog_recover(
  3384. struct xlog *log)
  3385. {
  3386. xfs_daddr_t head_blk, tail_blk;
  3387. int error;
  3388. /* find the tail of the log */
  3389. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3390. return error;
  3391. if (tail_blk != head_blk) {
  3392. /* There used to be a comment here:
  3393. *
  3394. * disallow recovery on read-only mounts. note -- mount
  3395. * checks for ENOSPC and turns it into an intelligent
  3396. * error message.
  3397. * ...but this is no longer true. Now, unless you specify
  3398. * NORECOVERY (in which case this function would never be
  3399. * called), we just go ahead and recover. We do this all
  3400. * under the vfs layer, so we can get away with it unless
  3401. * the device itself is read-only, in which case we fail.
  3402. */
  3403. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3404. return error;
  3405. }
  3406. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  3407. log->l_mp->m_logname ? log->l_mp->m_logname
  3408. : "internal");
  3409. error = xlog_do_recover(log, head_blk, tail_blk);
  3410. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3411. }
  3412. return error;
  3413. }
  3414. /*
  3415. * In the first part of recovery we replay inodes and buffers and build
  3416. * up the list of extent free items which need to be processed. Here
  3417. * we process the extent free items and clean up the on disk unlinked
  3418. * inode lists. This is separated from the first part of recovery so
  3419. * that the root and real-time bitmap inodes can be read in from disk in
  3420. * between the two stages. This is necessary so that we can free space
  3421. * in the real-time portion of the file system.
  3422. */
  3423. int
  3424. xlog_recover_finish(
  3425. struct xlog *log)
  3426. {
  3427. /*
  3428. * Now we're ready to do the transactions needed for the
  3429. * rest of recovery. Start with completing all the extent
  3430. * free intent records and then process the unlinked inode
  3431. * lists. At this point, we essentially run in normal mode
  3432. * except that we're still performing recovery actions
  3433. * rather than accepting new requests.
  3434. */
  3435. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3436. int error;
  3437. error = xlog_recover_process_efis(log);
  3438. if (error) {
  3439. xfs_alert(log->l_mp, "Failed to recover EFIs");
  3440. return error;
  3441. }
  3442. /*
  3443. * Sync the log to get all the EFIs out of the AIL.
  3444. * This isn't absolutely necessary, but it helps in
  3445. * case the unlink transactions would have problems
  3446. * pushing the EFIs out of the way.
  3447. */
  3448. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3449. xlog_recover_process_iunlinks(log);
  3450. xlog_recover_check_summary(log);
  3451. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  3452. log->l_mp->m_logname ? log->l_mp->m_logname
  3453. : "internal");
  3454. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3455. } else {
  3456. xfs_info(log->l_mp, "Ending clean mount");
  3457. }
  3458. return 0;
  3459. }
  3460. #if defined(DEBUG)
  3461. /*
  3462. * Read all of the agf and agi counters and check that they
  3463. * are consistent with the superblock counters.
  3464. */
  3465. void
  3466. xlog_recover_check_summary(
  3467. struct xlog *log)
  3468. {
  3469. xfs_mount_t *mp;
  3470. xfs_agf_t *agfp;
  3471. xfs_buf_t *agfbp;
  3472. xfs_buf_t *agibp;
  3473. xfs_agnumber_t agno;
  3474. __uint64_t freeblks;
  3475. __uint64_t itotal;
  3476. __uint64_t ifree;
  3477. int error;
  3478. mp = log->l_mp;
  3479. freeblks = 0LL;
  3480. itotal = 0LL;
  3481. ifree = 0LL;
  3482. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3483. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3484. if (error) {
  3485. xfs_alert(mp, "%s agf read failed agno %d error %d",
  3486. __func__, agno, error);
  3487. } else {
  3488. agfp = XFS_BUF_TO_AGF(agfbp);
  3489. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3490. be32_to_cpu(agfp->agf_flcount);
  3491. xfs_buf_relse(agfbp);
  3492. }
  3493. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3494. if (error) {
  3495. xfs_alert(mp, "%s agi read failed agno %d error %d",
  3496. __func__, agno, error);
  3497. } else {
  3498. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3499. itotal += be32_to_cpu(agi->agi_count);
  3500. ifree += be32_to_cpu(agi->agi_freecount);
  3501. xfs_buf_relse(agibp);
  3502. }
  3503. }
  3504. }
  3505. #endif /* DEBUG */