task_nommu.c 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318
  1. #include <linux/mm.h>
  2. #include <linux/file.h>
  3. #include <linux/fdtable.h>
  4. #include <linux/fs_struct.h>
  5. #include <linux/mount.h>
  6. #include <linux/ptrace.h>
  7. #include <linux/slab.h>
  8. #include <linux/seq_file.h>
  9. #include "internal.h"
  10. /*
  11. * Logic: we've got two memory sums for each process, "shared", and
  12. * "non-shared". Shared memory may get counted more than once, for
  13. * each process that owns it. Non-shared memory is counted
  14. * accurately.
  15. */
  16. void task_mem(struct seq_file *m, struct mm_struct *mm)
  17. {
  18. struct vm_area_struct *vma;
  19. struct vm_region *region;
  20. struct rb_node *p;
  21. unsigned long bytes = 0, sbytes = 0, slack = 0, size;
  22. down_read(&mm->mmap_sem);
  23. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  24. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  25. bytes += kobjsize(vma);
  26. region = vma->vm_region;
  27. if (region) {
  28. size = kobjsize(region);
  29. size += region->vm_end - region->vm_start;
  30. } else {
  31. size = vma->vm_end - vma->vm_start;
  32. }
  33. if (atomic_read(&mm->mm_count) > 1 ||
  34. vma->vm_flags & VM_MAYSHARE) {
  35. sbytes += size;
  36. } else {
  37. bytes += size;
  38. if (region)
  39. slack = region->vm_end - vma->vm_end;
  40. }
  41. }
  42. if (atomic_read(&mm->mm_count) > 1)
  43. sbytes += kobjsize(mm);
  44. else
  45. bytes += kobjsize(mm);
  46. if (current->fs && current->fs->users > 1)
  47. sbytes += kobjsize(current->fs);
  48. else
  49. bytes += kobjsize(current->fs);
  50. if (current->files && atomic_read(&current->files->count) > 1)
  51. sbytes += kobjsize(current->files);
  52. else
  53. bytes += kobjsize(current->files);
  54. if (current->sighand && atomic_read(&current->sighand->count) > 1)
  55. sbytes += kobjsize(current->sighand);
  56. else
  57. bytes += kobjsize(current->sighand);
  58. bytes += kobjsize(current); /* includes kernel stack */
  59. seq_printf(m,
  60. "Mem:\t%8lu bytes\n"
  61. "Slack:\t%8lu bytes\n"
  62. "Shared:\t%8lu bytes\n",
  63. bytes, slack, sbytes);
  64. up_read(&mm->mmap_sem);
  65. }
  66. unsigned long task_vsize(struct mm_struct *mm)
  67. {
  68. struct vm_area_struct *vma;
  69. struct rb_node *p;
  70. unsigned long vsize = 0;
  71. down_read(&mm->mmap_sem);
  72. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  73. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  74. vsize += vma->vm_end - vma->vm_start;
  75. }
  76. up_read(&mm->mmap_sem);
  77. return vsize;
  78. }
  79. unsigned long task_statm(struct mm_struct *mm,
  80. unsigned long *shared, unsigned long *text,
  81. unsigned long *data, unsigned long *resident)
  82. {
  83. struct vm_area_struct *vma;
  84. struct vm_region *region;
  85. struct rb_node *p;
  86. unsigned long size = kobjsize(mm);
  87. down_read(&mm->mmap_sem);
  88. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p)) {
  89. vma = rb_entry(p, struct vm_area_struct, vm_rb);
  90. size += kobjsize(vma);
  91. region = vma->vm_region;
  92. if (region) {
  93. size += kobjsize(region);
  94. size += region->vm_end - region->vm_start;
  95. }
  96. }
  97. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  98. >> PAGE_SHIFT;
  99. *data = (PAGE_ALIGN(mm->start_stack) - (mm->start_data & PAGE_MASK))
  100. >> PAGE_SHIFT;
  101. up_read(&mm->mmap_sem);
  102. size >>= PAGE_SHIFT;
  103. size += *text + *data;
  104. *resident = size;
  105. return size;
  106. }
  107. static void pad_len_spaces(struct seq_file *m, int len)
  108. {
  109. len = 25 + sizeof(void*) * 6 - len;
  110. if (len < 1)
  111. len = 1;
  112. seq_printf(m, "%*c", len, ' ');
  113. }
  114. /*
  115. * display a single VMA to a sequenced file
  116. */
  117. static int nommu_vma_show(struct seq_file *m, struct vm_area_struct *vma,
  118. int is_pid)
  119. {
  120. struct mm_struct *mm = vma->vm_mm;
  121. struct proc_maps_private *priv = m->private;
  122. unsigned long ino = 0;
  123. struct file *file;
  124. dev_t dev = 0;
  125. int flags, len;
  126. unsigned long long pgoff = 0;
  127. flags = vma->vm_flags;
  128. file = vma->vm_file;
  129. if (file) {
  130. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  131. dev = inode->i_sb->s_dev;
  132. ino = inode->i_ino;
  133. pgoff = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
  134. }
  135. seq_printf(m,
  136. "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  137. vma->vm_start,
  138. vma->vm_end,
  139. flags & VM_READ ? 'r' : '-',
  140. flags & VM_WRITE ? 'w' : '-',
  141. flags & VM_EXEC ? 'x' : '-',
  142. flags & VM_MAYSHARE ? flags & VM_SHARED ? 'S' : 's' : 'p',
  143. pgoff,
  144. MAJOR(dev), MINOR(dev), ino, &len);
  145. if (file) {
  146. pad_len_spaces(m, len);
  147. seq_path(m, &file->f_path, "");
  148. } else if (mm) {
  149. pid_t tid = vm_is_stack(priv->task, vma, is_pid);
  150. if (tid != 0) {
  151. pad_len_spaces(m, len);
  152. /*
  153. * Thread stack in /proc/PID/task/TID/maps or
  154. * the main process stack.
  155. */
  156. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  157. vma->vm_end >= mm->start_stack))
  158. seq_printf(m, "[stack]");
  159. else
  160. seq_printf(m, "[stack:%d]", tid);
  161. }
  162. }
  163. seq_putc(m, '\n');
  164. return 0;
  165. }
  166. /*
  167. * display mapping lines for a particular process's /proc/pid/maps
  168. */
  169. static int show_map(struct seq_file *m, void *_p, int is_pid)
  170. {
  171. struct rb_node *p = _p;
  172. return nommu_vma_show(m, rb_entry(p, struct vm_area_struct, vm_rb),
  173. is_pid);
  174. }
  175. static int show_pid_map(struct seq_file *m, void *_p)
  176. {
  177. return show_map(m, _p, 1);
  178. }
  179. static int show_tid_map(struct seq_file *m, void *_p)
  180. {
  181. return show_map(m, _p, 0);
  182. }
  183. static void *m_start(struct seq_file *m, loff_t *pos)
  184. {
  185. struct proc_maps_private *priv = m->private;
  186. struct mm_struct *mm;
  187. struct rb_node *p;
  188. loff_t n = *pos;
  189. /* pin the task and mm whilst we play with them */
  190. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  191. if (!priv->task)
  192. return ERR_PTR(-ESRCH);
  193. mm = mm_access(priv->task, PTRACE_MODE_READ);
  194. if (!mm || IS_ERR(mm)) {
  195. put_task_struct(priv->task);
  196. priv->task = NULL;
  197. return mm;
  198. }
  199. down_read(&mm->mmap_sem);
  200. /* start from the Nth VMA */
  201. for (p = rb_first(&mm->mm_rb); p; p = rb_next(p))
  202. if (n-- == 0)
  203. return p;
  204. return NULL;
  205. }
  206. static void m_stop(struct seq_file *m, void *_vml)
  207. {
  208. struct proc_maps_private *priv = m->private;
  209. if (priv->task) {
  210. struct mm_struct *mm = priv->task->mm;
  211. up_read(&mm->mmap_sem);
  212. mmput(mm);
  213. put_task_struct(priv->task);
  214. }
  215. }
  216. static void *m_next(struct seq_file *m, void *_p, loff_t *pos)
  217. {
  218. struct rb_node *p = _p;
  219. (*pos)++;
  220. return p ? rb_next(p) : NULL;
  221. }
  222. static const struct seq_operations proc_pid_maps_ops = {
  223. .start = m_start,
  224. .next = m_next,
  225. .stop = m_stop,
  226. .show = show_pid_map
  227. };
  228. static const struct seq_operations proc_tid_maps_ops = {
  229. .start = m_start,
  230. .next = m_next,
  231. .stop = m_stop,
  232. .show = show_tid_map
  233. };
  234. static int maps_open(struct inode *inode, struct file *file,
  235. const struct seq_operations *ops)
  236. {
  237. struct proc_maps_private *priv;
  238. int ret = -ENOMEM;
  239. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  240. if (priv) {
  241. priv->pid = proc_pid(inode);
  242. ret = seq_open(file, ops);
  243. if (!ret) {
  244. struct seq_file *m = file->private_data;
  245. m->private = priv;
  246. } else {
  247. kfree(priv);
  248. }
  249. }
  250. return ret;
  251. }
  252. static int pid_maps_open(struct inode *inode, struct file *file)
  253. {
  254. return maps_open(inode, file, &proc_pid_maps_ops);
  255. }
  256. static int tid_maps_open(struct inode *inode, struct file *file)
  257. {
  258. return maps_open(inode, file, &proc_tid_maps_ops);
  259. }
  260. const struct file_operations proc_pid_maps_operations = {
  261. .open = pid_maps_open,
  262. .read = seq_read,
  263. .llseek = seq_lseek,
  264. .release = seq_release_private,
  265. };
  266. const struct file_operations proc_tid_maps_operations = {
  267. .open = tid_maps_open,
  268. .read = seq_read,
  269. .llseek = seq_lseek,
  270. .release = seq_release_private,
  271. };