task_mmu.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/huge_mm.h>
  4. #include <linux/mount.h>
  5. #include <linux/seq_file.h>
  6. #include <linux/highmem.h>
  7. #include <linux/ptrace.h>
  8. #include <linux/slab.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/mempolicy.h>
  11. #include <linux/rmap.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <asm/elf.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/tlbflush.h>
  17. #include "internal.h"
  18. void task_mem(struct seq_file *m, struct mm_struct *mm)
  19. {
  20. unsigned long data, text, lib, swap;
  21. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  22. /*
  23. * Note: to minimize their overhead, mm maintains hiwater_vm and
  24. * hiwater_rss only when about to *lower* total_vm or rss. Any
  25. * collector of these hiwater stats must therefore get total_vm
  26. * and rss too, which will usually be the higher. Barriers? not
  27. * worth the effort, such snapshots can always be inconsistent.
  28. */
  29. hiwater_vm = total_vm = mm->total_vm;
  30. if (hiwater_vm < mm->hiwater_vm)
  31. hiwater_vm = mm->hiwater_vm;
  32. hiwater_rss = total_rss = get_mm_rss(mm);
  33. if (hiwater_rss < mm->hiwater_rss)
  34. hiwater_rss = mm->hiwater_rss;
  35. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  36. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  37. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  38. swap = get_mm_counter(mm, MM_SWAPENTS);
  39. seq_printf(m,
  40. "VmPeak:\t%8lu kB\n"
  41. "VmSize:\t%8lu kB\n"
  42. "VmLck:\t%8lu kB\n"
  43. "VmPin:\t%8lu kB\n"
  44. "VmHWM:\t%8lu kB\n"
  45. "VmRSS:\t%8lu kB\n"
  46. "VmData:\t%8lu kB\n"
  47. "VmStk:\t%8lu kB\n"
  48. "VmExe:\t%8lu kB\n"
  49. "VmLib:\t%8lu kB\n"
  50. "VmPTE:\t%8lu kB\n"
  51. "VmSwap:\t%8lu kB\n",
  52. hiwater_vm << (PAGE_SHIFT-10),
  53. (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
  54. mm->locked_vm << (PAGE_SHIFT-10),
  55. mm->pinned_vm << (PAGE_SHIFT-10),
  56. hiwater_rss << (PAGE_SHIFT-10),
  57. total_rss << (PAGE_SHIFT-10),
  58. data << (PAGE_SHIFT-10),
  59. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  60. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  61. swap << (PAGE_SHIFT-10));
  62. }
  63. unsigned long task_vsize(struct mm_struct *mm)
  64. {
  65. return PAGE_SIZE * mm->total_vm;
  66. }
  67. unsigned long task_statm(struct mm_struct *mm,
  68. unsigned long *shared, unsigned long *text,
  69. unsigned long *data, unsigned long *resident)
  70. {
  71. *shared = get_mm_counter(mm, MM_FILEPAGES);
  72. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  73. >> PAGE_SHIFT;
  74. *data = mm->total_vm - mm->shared_vm;
  75. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  76. return mm->total_vm;
  77. }
  78. static void pad_len_spaces(struct seq_file *m, int len)
  79. {
  80. len = 25 + sizeof(void*) * 6 - len;
  81. if (len < 1)
  82. len = 1;
  83. seq_printf(m, "%*c", len, ' ');
  84. }
  85. static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  86. {
  87. if (vma && vma != priv->tail_vma) {
  88. struct mm_struct *mm = vma->vm_mm;
  89. up_read(&mm->mmap_sem);
  90. mmput(mm);
  91. }
  92. }
  93. static void *m_start(struct seq_file *m, loff_t *pos)
  94. {
  95. struct proc_maps_private *priv = m->private;
  96. unsigned long last_addr = m->version;
  97. struct mm_struct *mm;
  98. struct vm_area_struct *vma, *tail_vma = NULL;
  99. loff_t l = *pos;
  100. /* Clear the per syscall fields in priv */
  101. priv->task = NULL;
  102. priv->tail_vma = NULL;
  103. /*
  104. * We remember last_addr rather than next_addr to hit with
  105. * mmap_cache most of the time. We have zero last_addr at
  106. * the beginning and also after lseek. We will have -1 last_addr
  107. * after the end of the vmas.
  108. */
  109. if (last_addr == -1UL)
  110. return NULL;
  111. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  112. if (!priv->task)
  113. return ERR_PTR(-ESRCH);
  114. mm = mm_access(priv->task, PTRACE_MODE_READ);
  115. if (!mm || IS_ERR(mm))
  116. return mm;
  117. down_read(&mm->mmap_sem);
  118. tail_vma = get_gate_vma(priv->task->mm);
  119. priv->tail_vma = tail_vma;
  120. /* Start with last addr hint */
  121. vma = find_vma(mm, last_addr);
  122. if (last_addr && vma) {
  123. vma = vma->vm_next;
  124. goto out;
  125. }
  126. /*
  127. * Check the vma index is within the range and do
  128. * sequential scan until m_index.
  129. */
  130. vma = NULL;
  131. if ((unsigned long)l < mm->map_count) {
  132. vma = mm->mmap;
  133. while (l-- && vma)
  134. vma = vma->vm_next;
  135. goto out;
  136. }
  137. if (l != mm->map_count)
  138. tail_vma = NULL; /* After gate vma */
  139. out:
  140. if (vma)
  141. return vma;
  142. /* End of vmas has been reached */
  143. m->version = (tail_vma != NULL)? 0: -1UL;
  144. up_read(&mm->mmap_sem);
  145. mmput(mm);
  146. return tail_vma;
  147. }
  148. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  149. {
  150. struct proc_maps_private *priv = m->private;
  151. struct vm_area_struct *vma = v;
  152. struct vm_area_struct *tail_vma = priv->tail_vma;
  153. (*pos)++;
  154. if (vma && (vma != tail_vma) && vma->vm_next)
  155. return vma->vm_next;
  156. vma_stop(priv, vma);
  157. return (vma != tail_vma)? tail_vma: NULL;
  158. }
  159. static void m_stop(struct seq_file *m, void *v)
  160. {
  161. struct proc_maps_private *priv = m->private;
  162. struct vm_area_struct *vma = v;
  163. if (!IS_ERR(vma))
  164. vma_stop(priv, vma);
  165. if (priv->task)
  166. put_task_struct(priv->task);
  167. }
  168. static int do_maps_open(struct inode *inode, struct file *file,
  169. const struct seq_operations *ops)
  170. {
  171. struct proc_maps_private *priv;
  172. int ret = -ENOMEM;
  173. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  174. if (priv) {
  175. priv->pid = proc_pid(inode);
  176. ret = seq_open(file, ops);
  177. if (!ret) {
  178. struct seq_file *m = file->private_data;
  179. m->private = priv;
  180. } else {
  181. kfree(priv);
  182. }
  183. }
  184. return ret;
  185. }
  186. static void
  187. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  188. {
  189. struct mm_struct *mm = vma->vm_mm;
  190. struct file *file = vma->vm_file;
  191. struct proc_maps_private *priv = m->private;
  192. struct task_struct *task = priv->task;
  193. vm_flags_t flags = vma->vm_flags;
  194. unsigned long ino = 0;
  195. unsigned long long pgoff = 0;
  196. unsigned long start, end;
  197. dev_t dev = 0;
  198. int len;
  199. const char *name = NULL;
  200. if (file) {
  201. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  202. dev = inode->i_sb->s_dev;
  203. ino = inode->i_ino;
  204. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  205. }
  206. /* We don't show the stack guard page in /proc/maps */
  207. start = vma->vm_start;
  208. if (stack_guard_page_start(vma, start))
  209. start += PAGE_SIZE;
  210. end = vma->vm_end;
  211. if (stack_guard_page_end(vma, end))
  212. end -= PAGE_SIZE;
  213. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  214. start,
  215. end,
  216. flags & VM_READ ? 'r' : '-',
  217. flags & VM_WRITE ? 'w' : '-',
  218. flags & VM_EXEC ? 'x' : '-',
  219. flags & VM_MAYSHARE ? 's' : 'p',
  220. pgoff,
  221. MAJOR(dev), MINOR(dev), ino, &len);
  222. /*
  223. * Print the dentry name for named mappings, and a
  224. * special [heap] marker for the heap:
  225. */
  226. if (file) {
  227. pad_len_spaces(m, len);
  228. seq_path(m, &file->f_path, "\n");
  229. goto done;
  230. }
  231. name = arch_vma_name(vma);
  232. if (!name) {
  233. pid_t tid;
  234. if (!mm) {
  235. name = "[vdso]";
  236. goto done;
  237. }
  238. if (vma->vm_start <= mm->brk &&
  239. vma->vm_end >= mm->start_brk) {
  240. name = "[heap]";
  241. goto done;
  242. }
  243. tid = vm_is_stack(task, vma, is_pid);
  244. if (tid != 0) {
  245. /*
  246. * Thread stack in /proc/PID/task/TID/maps or
  247. * the main process stack.
  248. */
  249. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  250. vma->vm_end >= mm->start_stack)) {
  251. name = "[stack]";
  252. } else {
  253. /* Thread stack in /proc/PID/maps */
  254. pad_len_spaces(m, len);
  255. seq_printf(m, "[stack:%d]", tid);
  256. }
  257. }
  258. }
  259. done:
  260. if (name) {
  261. pad_len_spaces(m, len);
  262. seq_puts(m, name);
  263. }
  264. seq_putc(m, '\n');
  265. }
  266. static int show_map(struct seq_file *m, void *v, int is_pid)
  267. {
  268. struct vm_area_struct *vma = v;
  269. struct proc_maps_private *priv = m->private;
  270. struct task_struct *task = priv->task;
  271. show_map_vma(m, vma, is_pid);
  272. if (m->count < m->size) /* vma is copied successfully */
  273. m->version = (vma != get_gate_vma(task->mm))
  274. ? vma->vm_start : 0;
  275. return 0;
  276. }
  277. static int show_pid_map(struct seq_file *m, void *v)
  278. {
  279. return show_map(m, v, 1);
  280. }
  281. static int show_tid_map(struct seq_file *m, void *v)
  282. {
  283. return show_map(m, v, 0);
  284. }
  285. static const struct seq_operations proc_pid_maps_op = {
  286. .start = m_start,
  287. .next = m_next,
  288. .stop = m_stop,
  289. .show = show_pid_map
  290. };
  291. static const struct seq_operations proc_tid_maps_op = {
  292. .start = m_start,
  293. .next = m_next,
  294. .stop = m_stop,
  295. .show = show_tid_map
  296. };
  297. static int pid_maps_open(struct inode *inode, struct file *file)
  298. {
  299. return do_maps_open(inode, file, &proc_pid_maps_op);
  300. }
  301. static int tid_maps_open(struct inode *inode, struct file *file)
  302. {
  303. return do_maps_open(inode, file, &proc_tid_maps_op);
  304. }
  305. const struct file_operations proc_pid_maps_operations = {
  306. .open = pid_maps_open,
  307. .read = seq_read,
  308. .llseek = seq_lseek,
  309. .release = seq_release_private,
  310. };
  311. const struct file_operations proc_tid_maps_operations = {
  312. .open = tid_maps_open,
  313. .read = seq_read,
  314. .llseek = seq_lseek,
  315. .release = seq_release_private,
  316. };
  317. /*
  318. * Proportional Set Size(PSS): my share of RSS.
  319. *
  320. * PSS of a process is the count of pages it has in memory, where each
  321. * page is divided by the number of processes sharing it. So if a
  322. * process has 1000 pages all to itself, and 1000 shared with one other
  323. * process, its PSS will be 1500.
  324. *
  325. * To keep (accumulated) division errors low, we adopt a 64bit
  326. * fixed-point pss counter to minimize division errors. So (pss >>
  327. * PSS_SHIFT) would be the real byte count.
  328. *
  329. * A shift of 12 before division means (assuming 4K page size):
  330. * - 1M 3-user-pages add up to 8KB errors;
  331. * - supports mapcount up to 2^24, or 16M;
  332. * - supports PSS up to 2^52 bytes, or 4PB.
  333. */
  334. #define PSS_SHIFT 12
  335. #ifdef CONFIG_PROC_PAGE_MONITOR
  336. struct mem_size_stats {
  337. struct vm_area_struct *vma;
  338. unsigned long resident;
  339. unsigned long shared_clean;
  340. unsigned long shared_dirty;
  341. unsigned long private_clean;
  342. unsigned long private_dirty;
  343. unsigned long referenced;
  344. unsigned long anonymous;
  345. unsigned long anonymous_thp;
  346. unsigned long swap;
  347. unsigned long nonlinear;
  348. u64 pss;
  349. };
  350. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  351. unsigned long ptent_size, struct mm_walk *walk)
  352. {
  353. struct mem_size_stats *mss = walk->private;
  354. struct vm_area_struct *vma = mss->vma;
  355. pgoff_t pgoff = linear_page_index(vma, addr);
  356. struct page *page = NULL;
  357. int mapcount;
  358. if (pte_present(ptent)) {
  359. page = vm_normal_page(vma, addr, ptent);
  360. } else if (is_swap_pte(ptent)) {
  361. swp_entry_t swpent = pte_to_swp_entry(ptent);
  362. if (!non_swap_entry(swpent))
  363. mss->swap += ptent_size;
  364. else if (is_migration_entry(swpent))
  365. page = migration_entry_to_page(swpent);
  366. } else if (pte_file(ptent)) {
  367. if (pte_to_pgoff(ptent) != pgoff)
  368. mss->nonlinear += ptent_size;
  369. }
  370. if (!page)
  371. return;
  372. if (PageAnon(page))
  373. mss->anonymous += ptent_size;
  374. if (page->index != pgoff)
  375. mss->nonlinear += ptent_size;
  376. mss->resident += ptent_size;
  377. /* Accumulate the size in pages that have been accessed. */
  378. if (pte_young(ptent) || PageReferenced(page))
  379. mss->referenced += ptent_size;
  380. mapcount = page_mapcount(page);
  381. if (mapcount >= 2) {
  382. if (pte_dirty(ptent) || PageDirty(page))
  383. mss->shared_dirty += ptent_size;
  384. else
  385. mss->shared_clean += ptent_size;
  386. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  387. } else {
  388. if (pte_dirty(ptent) || PageDirty(page))
  389. mss->private_dirty += ptent_size;
  390. else
  391. mss->private_clean += ptent_size;
  392. mss->pss += (ptent_size << PSS_SHIFT);
  393. }
  394. }
  395. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  396. struct mm_walk *walk)
  397. {
  398. struct mem_size_stats *mss = walk->private;
  399. struct vm_area_struct *vma = mss->vma;
  400. pte_t *pte;
  401. spinlock_t *ptl;
  402. if (pmd_trans_huge_lock(pmd, vma) == 1) {
  403. smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
  404. spin_unlock(&walk->mm->page_table_lock);
  405. mss->anonymous_thp += HPAGE_PMD_SIZE;
  406. return 0;
  407. }
  408. if (pmd_trans_unstable(pmd))
  409. return 0;
  410. /*
  411. * The mmap_sem held all the way back in m_start() is what
  412. * keeps khugepaged out of here and from collapsing things
  413. * in here.
  414. */
  415. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  416. for (; addr != end; pte++, addr += PAGE_SIZE)
  417. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  418. pte_unmap_unlock(pte - 1, ptl);
  419. cond_resched();
  420. return 0;
  421. }
  422. static int show_smap(struct seq_file *m, void *v, int is_pid)
  423. {
  424. struct proc_maps_private *priv = m->private;
  425. struct task_struct *task = priv->task;
  426. struct vm_area_struct *vma = v;
  427. struct mem_size_stats mss;
  428. struct mm_walk smaps_walk = {
  429. .pmd_entry = smaps_pte_range,
  430. .mm = vma->vm_mm,
  431. .private = &mss,
  432. };
  433. memset(&mss, 0, sizeof mss);
  434. mss.vma = vma;
  435. /* mmap_sem is held in m_start */
  436. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  437. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  438. show_map_vma(m, vma, is_pid);
  439. seq_printf(m,
  440. "Size: %8lu kB\n"
  441. "Rss: %8lu kB\n"
  442. "Pss: %8lu kB\n"
  443. "Shared_Clean: %8lu kB\n"
  444. "Shared_Dirty: %8lu kB\n"
  445. "Private_Clean: %8lu kB\n"
  446. "Private_Dirty: %8lu kB\n"
  447. "Referenced: %8lu kB\n"
  448. "Anonymous: %8lu kB\n"
  449. "AnonHugePages: %8lu kB\n"
  450. "Swap: %8lu kB\n"
  451. "KernelPageSize: %8lu kB\n"
  452. "MMUPageSize: %8lu kB\n"
  453. "Locked: %8lu kB\n",
  454. (vma->vm_end - vma->vm_start) >> 10,
  455. mss.resident >> 10,
  456. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  457. mss.shared_clean >> 10,
  458. mss.shared_dirty >> 10,
  459. mss.private_clean >> 10,
  460. mss.private_dirty >> 10,
  461. mss.referenced >> 10,
  462. mss.anonymous >> 10,
  463. mss.anonymous_thp >> 10,
  464. mss.swap >> 10,
  465. vma_kernel_pagesize(vma) >> 10,
  466. vma_mmu_pagesize(vma) >> 10,
  467. (vma->vm_flags & VM_LOCKED) ?
  468. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  469. if (vma->vm_flags & VM_NONLINEAR)
  470. seq_printf(m, "Nonlinear: %8lu kB\n",
  471. mss.nonlinear >> 10);
  472. if (m->count < m->size) /* vma is copied successfully */
  473. m->version = (vma != get_gate_vma(task->mm))
  474. ? vma->vm_start : 0;
  475. return 0;
  476. }
  477. static int show_pid_smap(struct seq_file *m, void *v)
  478. {
  479. return show_smap(m, v, 1);
  480. }
  481. static int show_tid_smap(struct seq_file *m, void *v)
  482. {
  483. return show_smap(m, v, 0);
  484. }
  485. static const struct seq_operations proc_pid_smaps_op = {
  486. .start = m_start,
  487. .next = m_next,
  488. .stop = m_stop,
  489. .show = show_pid_smap
  490. };
  491. static const struct seq_operations proc_tid_smaps_op = {
  492. .start = m_start,
  493. .next = m_next,
  494. .stop = m_stop,
  495. .show = show_tid_smap
  496. };
  497. static int pid_smaps_open(struct inode *inode, struct file *file)
  498. {
  499. return do_maps_open(inode, file, &proc_pid_smaps_op);
  500. }
  501. static int tid_smaps_open(struct inode *inode, struct file *file)
  502. {
  503. return do_maps_open(inode, file, &proc_tid_smaps_op);
  504. }
  505. const struct file_operations proc_pid_smaps_operations = {
  506. .open = pid_smaps_open,
  507. .read = seq_read,
  508. .llseek = seq_lseek,
  509. .release = seq_release_private,
  510. };
  511. const struct file_operations proc_tid_smaps_operations = {
  512. .open = tid_smaps_open,
  513. .read = seq_read,
  514. .llseek = seq_lseek,
  515. .release = seq_release_private,
  516. };
  517. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  518. unsigned long end, struct mm_walk *walk)
  519. {
  520. struct vm_area_struct *vma = walk->private;
  521. pte_t *pte, ptent;
  522. spinlock_t *ptl;
  523. struct page *page;
  524. split_huge_page_pmd(walk->mm, pmd);
  525. if (pmd_trans_unstable(pmd))
  526. return 0;
  527. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  528. for (; addr != end; pte++, addr += PAGE_SIZE) {
  529. ptent = *pte;
  530. if (!pte_present(ptent))
  531. continue;
  532. page = vm_normal_page(vma, addr, ptent);
  533. if (!page)
  534. continue;
  535. /* Clear accessed and referenced bits. */
  536. ptep_test_and_clear_young(vma, addr, pte);
  537. ClearPageReferenced(page);
  538. }
  539. pte_unmap_unlock(pte - 1, ptl);
  540. cond_resched();
  541. return 0;
  542. }
  543. #define CLEAR_REFS_ALL 1
  544. #define CLEAR_REFS_ANON 2
  545. #define CLEAR_REFS_MAPPED 3
  546. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  547. size_t count, loff_t *ppos)
  548. {
  549. struct task_struct *task;
  550. char buffer[PROC_NUMBUF];
  551. struct mm_struct *mm;
  552. struct vm_area_struct *vma;
  553. int type;
  554. int rv;
  555. memset(buffer, 0, sizeof(buffer));
  556. if (count > sizeof(buffer) - 1)
  557. count = sizeof(buffer) - 1;
  558. if (copy_from_user(buffer, buf, count))
  559. return -EFAULT;
  560. rv = kstrtoint(strstrip(buffer), 10, &type);
  561. if (rv < 0)
  562. return rv;
  563. if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
  564. return -EINVAL;
  565. task = get_proc_task(file->f_path.dentry->d_inode);
  566. if (!task)
  567. return -ESRCH;
  568. mm = get_task_mm(task);
  569. if (mm) {
  570. struct mm_walk clear_refs_walk = {
  571. .pmd_entry = clear_refs_pte_range,
  572. .mm = mm,
  573. };
  574. down_read(&mm->mmap_sem);
  575. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  576. clear_refs_walk.private = vma;
  577. if (is_vm_hugetlb_page(vma))
  578. continue;
  579. /*
  580. * Writing 1 to /proc/pid/clear_refs affects all pages.
  581. *
  582. * Writing 2 to /proc/pid/clear_refs only affects
  583. * Anonymous pages.
  584. *
  585. * Writing 3 to /proc/pid/clear_refs only affects file
  586. * mapped pages.
  587. */
  588. if (type == CLEAR_REFS_ANON && vma->vm_file)
  589. continue;
  590. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  591. continue;
  592. walk_page_range(vma->vm_start, vma->vm_end,
  593. &clear_refs_walk);
  594. }
  595. flush_tlb_mm(mm);
  596. up_read(&mm->mmap_sem);
  597. mmput(mm);
  598. }
  599. put_task_struct(task);
  600. return count;
  601. }
  602. const struct file_operations proc_clear_refs_operations = {
  603. .write = clear_refs_write,
  604. .llseek = noop_llseek,
  605. };
  606. typedef struct {
  607. u64 pme;
  608. } pagemap_entry_t;
  609. struct pagemapread {
  610. int pos, len;
  611. pagemap_entry_t *buffer;
  612. };
  613. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  614. #define PAGEMAP_WALK_MASK (PMD_MASK)
  615. #define PM_ENTRY_BYTES sizeof(u64)
  616. #define PM_STATUS_BITS 3
  617. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  618. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  619. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  620. #define PM_PSHIFT_BITS 6
  621. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  622. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  623. #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  624. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  625. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  626. #define PM_PRESENT PM_STATUS(4LL)
  627. #define PM_SWAP PM_STATUS(2LL)
  628. #define PM_FILE PM_STATUS(1LL)
  629. #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
  630. #define PM_END_OF_BUFFER 1
  631. static inline pagemap_entry_t make_pme(u64 val)
  632. {
  633. return (pagemap_entry_t) { .pme = val };
  634. }
  635. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  636. struct pagemapread *pm)
  637. {
  638. pm->buffer[pm->pos++] = *pme;
  639. if (pm->pos >= pm->len)
  640. return PM_END_OF_BUFFER;
  641. return 0;
  642. }
  643. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  644. struct mm_walk *walk)
  645. {
  646. struct pagemapread *pm = walk->private;
  647. unsigned long addr;
  648. int err = 0;
  649. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
  650. for (addr = start; addr < end; addr += PAGE_SIZE) {
  651. err = add_to_pagemap(addr, &pme, pm);
  652. if (err)
  653. break;
  654. }
  655. return err;
  656. }
  657. static void pte_to_pagemap_entry(pagemap_entry_t *pme,
  658. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  659. {
  660. u64 frame, flags;
  661. struct page *page = NULL;
  662. if (pte_present(pte)) {
  663. frame = pte_pfn(pte);
  664. flags = PM_PRESENT;
  665. page = vm_normal_page(vma, addr, pte);
  666. } else if (is_swap_pte(pte)) {
  667. swp_entry_t entry = pte_to_swp_entry(pte);
  668. frame = swp_type(entry) |
  669. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  670. flags = PM_SWAP;
  671. if (is_migration_entry(entry))
  672. page = migration_entry_to_page(entry);
  673. } else {
  674. *pme = make_pme(PM_NOT_PRESENT);
  675. return;
  676. }
  677. if (page && !PageAnon(page))
  678. flags |= PM_FILE;
  679. *pme = make_pme(PM_PFRAME(frame) | PM_PSHIFT(PAGE_SHIFT) | flags);
  680. }
  681. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  682. static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
  683. pmd_t pmd, int offset)
  684. {
  685. /*
  686. * Currently pmd for thp is always present because thp can not be
  687. * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
  688. * This if-check is just to prepare for future implementation.
  689. */
  690. if (pmd_present(pmd))
  691. *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
  692. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
  693. else
  694. *pme = make_pme(PM_NOT_PRESENT);
  695. }
  696. #else
  697. static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme,
  698. pmd_t pmd, int offset)
  699. {
  700. }
  701. #endif
  702. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  703. struct mm_walk *walk)
  704. {
  705. struct vm_area_struct *vma;
  706. struct pagemapread *pm = walk->private;
  707. pte_t *pte;
  708. int err = 0;
  709. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT);
  710. /* find the first VMA at or above 'addr' */
  711. vma = find_vma(walk->mm, addr);
  712. if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
  713. for (; addr != end; addr += PAGE_SIZE) {
  714. unsigned long offset;
  715. offset = (addr & ~PAGEMAP_WALK_MASK) >>
  716. PAGE_SHIFT;
  717. thp_pmd_to_pagemap_entry(&pme, *pmd, offset);
  718. err = add_to_pagemap(addr, &pme, pm);
  719. if (err)
  720. break;
  721. }
  722. spin_unlock(&walk->mm->page_table_lock);
  723. return err;
  724. }
  725. if (pmd_trans_unstable(pmd))
  726. return 0;
  727. for (; addr != end; addr += PAGE_SIZE) {
  728. /* check to see if we've left 'vma' behind
  729. * and need a new, higher one */
  730. if (vma && (addr >= vma->vm_end)) {
  731. vma = find_vma(walk->mm, addr);
  732. pme = make_pme(PM_NOT_PRESENT);
  733. }
  734. /* check that 'vma' actually covers this address,
  735. * and that it isn't a huge page vma */
  736. if (vma && (vma->vm_start <= addr) &&
  737. !is_vm_hugetlb_page(vma)) {
  738. pte = pte_offset_map(pmd, addr);
  739. pte_to_pagemap_entry(&pme, vma, addr, *pte);
  740. /* unmap before userspace copy */
  741. pte_unmap(pte);
  742. }
  743. err = add_to_pagemap(addr, &pme, pm);
  744. if (err)
  745. return err;
  746. }
  747. cond_resched();
  748. return err;
  749. }
  750. #ifdef CONFIG_HUGETLB_PAGE
  751. static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme,
  752. pte_t pte, int offset)
  753. {
  754. if (pte_present(pte))
  755. *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset)
  756. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT);
  757. else
  758. *pme = make_pme(PM_NOT_PRESENT);
  759. }
  760. /* This function walks within one hugetlb entry in the single call */
  761. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  762. unsigned long addr, unsigned long end,
  763. struct mm_walk *walk)
  764. {
  765. struct pagemapread *pm = walk->private;
  766. int err = 0;
  767. pagemap_entry_t pme;
  768. for (; addr != end; addr += PAGE_SIZE) {
  769. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  770. huge_pte_to_pagemap_entry(&pme, *pte, offset);
  771. err = add_to_pagemap(addr, &pme, pm);
  772. if (err)
  773. return err;
  774. }
  775. cond_resched();
  776. return err;
  777. }
  778. #endif /* HUGETLB_PAGE */
  779. /*
  780. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  781. *
  782. * For each page in the address space, this file contains one 64-bit entry
  783. * consisting of the following:
  784. *
  785. * Bits 0-54 page frame number (PFN) if present
  786. * Bits 0-4 swap type if swapped
  787. * Bits 5-54 swap offset if swapped
  788. * Bits 55-60 page shift (page size = 1<<page shift)
  789. * Bit 61 page is file-page or shared-anon
  790. * Bit 62 page swapped
  791. * Bit 63 page present
  792. *
  793. * If the page is not present but in swap, then the PFN contains an
  794. * encoding of the swap file number and the page's offset into the
  795. * swap. Unmapped pages return a null PFN. This allows determining
  796. * precisely which pages are mapped (or in swap) and comparing mapped
  797. * pages between processes.
  798. *
  799. * Efficient users of this interface will use /proc/pid/maps to
  800. * determine which areas of memory are actually mapped and llseek to
  801. * skip over unmapped regions.
  802. */
  803. static ssize_t pagemap_read(struct file *file, char __user *buf,
  804. size_t count, loff_t *ppos)
  805. {
  806. struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
  807. struct mm_struct *mm;
  808. struct pagemapread pm;
  809. int ret = -ESRCH;
  810. struct mm_walk pagemap_walk = {};
  811. unsigned long src;
  812. unsigned long svpfn;
  813. unsigned long start_vaddr;
  814. unsigned long end_vaddr;
  815. int copied = 0;
  816. if (!task)
  817. goto out;
  818. ret = -EINVAL;
  819. /* file position must be aligned */
  820. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  821. goto out_task;
  822. ret = 0;
  823. if (!count)
  824. goto out_task;
  825. pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  826. pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
  827. ret = -ENOMEM;
  828. if (!pm.buffer)
  829. goto out_task;
  830. mm = mm_access(task, PTRACE_MODE_READ);
  831. ret = PTR_ERR(mm);
  832. if (!mm || IS_ERR(mm))
  833. goto out_free;
  834. pagemap_walk.pmd_entry = pagemap_pte_range;
  835. pagemap_walk.pte_hole = pagemap_pte_hole;
  836. #ifdef CONFIG_HUGETLB_PAGE
  837. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  838. #endif
  839. pagemap_walk.mm = mm;
  840. pagemap_walk.private = &pm;
  841. src = *ppos;
  842. svpfn = src / PM_ENTRY_BYTES;
  843. start_vaddr = svpfn << PAGE_SHIFT;
  844. end_vaddr = TASK_SIZE_OF(task);
  845. /* watch out for wraparound */
  846. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  847. start_vaddr = end_vaddr;
  848. /*
  849. * The odds are that this will stop walking way
  850. * before end_vaddr, because the length of the
  851. * user buffer is tracked in "pm", and the walk
  852. * will stop when we hit the end of the buffer.
  853. */
  854. ret = 0;
  855. while (count && (start_vaddr < end_vaddr)) {
  856. int len;
  857. unsigned long end;
  858. pm.pos = 0;
  859. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  860. /* overflow ? */
  861. if (end < start_vaddr || end > end_vaddr)
  862. end = end_vaddr;
  863. down_read(&mm->mmap_sem);
  864. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  865. up_read(&mm->mmap_sem);
  866. start_vaddr = end;
  867. len = min(count, PM_ENTRY_BYTES * pm.pos);
  868. if (copy_to_user(buf, pm.buffer, len)) {
  869. ret = -EFAULT;
  870. goto out_mm;
  871. }
  872. copied += len;
  873. buf += len;
  874. count -= len;
  875. }
  876. *ppos += copied;
  877. if (!ret || ret == PM_END_OF_BUFFER)
  878. ret = copied;
  879. out_mm:
  880. mmput(mm);
  881. out_free:
  882. kfree(pm.buffer);
  883. out_task:
  884. put_task_struct(task);
  885. out:
  886. return ret;
  887. }
  888. const struct file_operations proc_pagemap_operations = {
  889. .llseek = mem_lseek, /* borrow this */
  890. .read = pagemap_read,
  891. };
  892. #endif /* CONFIG_PROC_PAGE_MONITOR */
  893. #ifdef CONFIG_NUMA
  894. struct numa_maps {
  895. struct vm_area_struct *vma;
  896. unsigned long pages;
  897. unsigned long anon;
  898. unsigned long active;
  899. unsigned long writeback;
  900. unsigned long mapcount_max;
  901. unsigned long dirty;
  902. unsigned long swapcache;
  903. unsigned long node[MAX_NUMNODES];
  904. };
  905. struct numa_maps_private {
  906. struct proc_maps_private proc_maps;
  907. struct numa_maps md;
  908. };
  909. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  910. unsigned long nr_pages)
  911. {
  912. int count = page_mapcount(page);
  913. md->pages += nr_pages;
  914. if (pte_dirty || PageDirty(page))
  915. md->dirty += nr_pages;
  916. if (PageSwapCache(page))
  917. md->swapcache += nr_pages;
  918. if (PageActive(page) || PageUnevictable(page))
  919. md->active += nr_pages;
  920. if (PageWriteback(page))
  921. md->writeback += nr_pages;
  922. if (PageAnon(page))
  923. md->anon += nr_pages;
  924. if (count > md->mapcount_max)
  925. md->mapcount_max = count;
  926. md->node[page_to_nid(page)] += nr_pages;
  927. }
  928. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  929. unsigned long addr)
  930. {
  931. struct page *page;
  932. int nid;
  933. if (!pte_present(pte))
  934. return NULL;
  935. page = vm_normal_page(vma, addr, pte);
  936. if (!page)
  937. return NULL;
  938. if (PageReserved(page))
  939. return NULL;
  940. nid = page_to_nid(page);
  941. if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
  942. return NULL;
  943. return page;
  944. }
  945. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  946. unsigned long end, struct mm_walk *walk)
  947. {
  948. struct numa_maps *md;
  949. spinlock_t *ptl;
  950. pte_t *orig_pte;
  951. pte_t *pte;
  952. md = walk->private;
  953. if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
  954. pte_t huge_pte = *(pte_t *)pmd;
  955. struct page *page;
  956. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  957. if (page)
  958. gather_stats(page, md, pte_dirty(huge_pte),
  959. HPAGE_PMD_SIZE/PAGE_SIZE);
  960. spin_unlock(&walk->mm->page_table_lock);
  961. return 0;
  962. }
  963. if (pmd_trans_unstable(pmd))
  964. return 0;
  965. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  966. do {
  967. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  968. if (!page)
  969. continue;
  970. gather_stats(page, md, pte_dirty(*pte), 1);
  971. } while (pte++, addr += PAGE_SIZE, addr != end);
  972. pte_unmap_unlock(orig_pte, ptl);
  973. return 0;
  974. }
  975. #ifdef CONFIG_HUGETLB_PAGE
  976. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  977. unsigned long addr, unsigned long end, struct mm_walk *walk)
  978. {
  979. struct numa_maps *md;
  980. struct page *page;
  981. if (pte_none(*pte))
  982. return 0;
  983. page = pte_page(*pte);
  984. if (!page)
  985. return 0;
  986. md = walk->private;
  987. gather_stats(page, md, pte_dirty(*pte), 1);
  988. return 0;
  989. }
  990. #else
  991. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  992. unsigned long addr, unsigned long end, struct mm_walk *walk)
  993. {
  994. return 0;
  995. }
  996. #endif
  997. /*
  998. * Display pages allocated per node and memory policy via /proc.
  999. */
  1000. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1001. {
  1002. struct numa_maps_private *numa_priv = m->private;
  1003. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1004. struct vm_area_struct *vma = v;
  1005. struct numa_maps *md = &numa_priv->md;
  1006. struct file *file = vma->vm_file;
  1007. struct mm_struct *mm = vma->vm_mm;
  1008. struct mm_walk walk = {};
  1009. struct mempolicy *pol;
  1010. int n;
  1011. char buffer[50];
  1012. if (!mm)
  1013. return 0;
  1014. /* Ensure we start with an empty set of numa_maps statistics. */
  1015. memset(md, 0, sizeof(*md));
  1016. md->vma = vma;
  1017. walk.hugetlb_entry = gather_hugetbl_stats;
  1018. walk.pmd_entry = gather_pte_stats;
  1019. walk.private = md;
  1020. walk.mm = mm;
  1021. pol = get_vma_policy(proc_priv->task, vma, vma->vm_start);
  1022. mpol_to_str(buffer, sizeof(buffer), pol, 0);
  1023. mpol_cond_put(pol);
  1024. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1025. if (file) {
  1026. seq_printf(m, " file=");
  1027. seq_path(m, &file->f_path, "\n\t= ");
  1028. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1029. seq_printf(m, " heap");
  1030. } else {
  1031. pid_t tid = vm_is_stack(proc_priv->task, vma, is_pid);
  1032. if (tid != 0) {
  1033. /*
  1034. * Thread stack in /proc/PID/task/TID/maps or
  1035. * the main process stack.
  1036. */
  1037. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1038. vma->vm_end >= mm->start_stack))
  1039. seq_printf(m, " stack");
  1040. else
  1041. seq_printf(m, " stack:%d", tid);
  1042. }
  1043. }
  1044. if (is_vm_hugetlb_page(vma))
  1045. seq_printf(m, " huge");
  1046. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  1047. if (!md->pages)
  1048. goto out;
  1049. if (md->anon)
  1050. seq_printf(m, " anon=%lu", md->anon);
  1051. if (md->dirty)
  1052. seq_printf(m, " dirty=%lu", md->dirty);
  1053. if (md->pages != md->anon && md->pages != md->dirty)
  1054. seq_printf(m, " mapped=%lu", md->pages);
  1055. if (md->mapcount_max > 1)
  1056. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1057. if (md->swapcache)
  1058. seq_printf(m, " swapcache=%lu", md->swapcache);
  1059. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1060. seq_printf(m, " active=%lu", md->active);
  1061. if (md->writeback)
  1062. seq_printf(m, " writeback=%lu", md->writeback);
  1063. for_each_node_state(n, N_HIGH_MEMORY)
  1064. if (md->node[n])
  1065. seq_printf(m, " N%d=%lu", n, md->node[n]);
  1066. out:
  1067. seq_putc(m, '\n');
  1068. if (m->count < m->size)
  1069. m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
  1070. return 0;
  1071. }
  1072. static int show_pid_numa_map(struct seq_file *m, void *v)
  1073. {
  1074. return show_numa_map(m, v, 1);
  1075. }
  1076. static int show_tid_numa_map(struct seq_file *m, void *v)
  1077. {
  1078. return show_numa_map(m, v, 0);
  1079. }
  1080. static const struct seq_operations proc_pid_numa_maps_op = {
  1081. .start = m_start,
  1082. .next = m_next,
  1083. .stop = m_stop,
  1084. .show = show_pid_numa_map,
  1085. };
  1086. static const struct seq_operations proc_tid_numa_maps_op = {
  1087. .start = m_start,
  1088. .next = m_next,
  1089. .stop = m_stop,
  1090. .show = show_tid_numa_map,
  1091. };
  1092. static int numa_maps_open(struct inode *inode, struct file *file,
  1093. const struct seq_operations *ops)
  1094. {
  1095. struct numa_maps_private *priv;
  1096. int ret = -ENOMEM;
  1097. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  1098. if (priv) {
  1099. priv->proc_maps.pid = proc_pid(inode);
  1100. ret = seq_open(file, ops);
  1101. if (!ret) {
  1102. struct seq_file *m = file->private_data;
  1103. m->private = priv;
  1104. } else {
  1105. kfree(priv);
  1106. }
  1107. }
  1108. return ret;
  1109. }
  1110. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1111. {
  1112. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1113. }
  1114. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1115. {
  1116. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1117. }
  1118. const struct file_operations proc_pid_numa_maps_operations = {
  1119. .open = pid_numa_maps_open,
  1120. .read = seq_read,
  1121. .llseek = seq_lseek,
  1122. .release = seq_release_private,
  1123. };
  1124. const struct file_operations proc_tid_numa_maps_operations = {
  1125. .open = tid_numa_maps_open,
  1126. .read = seq_read,
  1127. .llseek = seq_lseek,
  1128. .release = seq_release_private,
  1129. };
  1130. #endif /* CONFIG_NUMA */