namespace.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/export.h>
  12. #include <linux/capability.h>
  13. #include <linux/mnt_namespace.h>
  14. #include <linux/namei.h>
  15. #include <linux/security.h>
  16. #include <linux/idr.h>
  17. #include <linux/acct.h> /* acct_auto_close_mnt */
  18. #include <linux/ramfs.h> /* init_rootfs */
  19. #include <linux/fs_struct.h> /* get_fs_root et.al. */
  20. #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
  21. #include <linux/uaccess.h>
  22. #include "pnode.h"
  23. #include "internal.h"
  24. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  25. #define HASH_SIZE (1UL << HASH_SHIFT)
  26. static int event;
  27. static DEFINE_IDA(mnt_id_ida);
  28. static DEFINE_IDA(mnt_group_ida);
  29. static DEFINE_SPINLOCK(mnt_id_lock);
  30. static int mnt_id_start = 0;
  31. static int mnt_group_start = 1;
  32. static struct list_head *mount_hashtable __read_mostly;
  33. static struct kmem_cache *mnt_cache __read_mostly;
  34. static struct rw_semaphore namespace_sem;
  35. /* /sys/fs */
  36. struct kobject *fs_kobj;
  37. EXPORT_SYMBOL_GPL(fs_kobj);
  38. /*
  39. * vfsmount lock may be taken for read to prevent changes to the
  40. * vfsmount hash, ie. during mountpoint lookups or walking back
  41. * up the tree.
  42. *
  43. * It should be taken for write in all cases where the vfsmount
  44. * tree or hash is modified or when a vfsmount structure is modified.
  45. */
  46. DEFINE_BRLOCK(vfsmount_lock);
  47. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  48. {
  49. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  50. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  51. tmp = tmp + (tmp >> HASH_SHIFT);
  52. return tmp & (HASH_SIZE - 1);
  53. }
  54. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  55. /*
  56. * allocation is serialized by namespace_sem, but we need the spinlock to
  57. * serialize with freeing.
  58. */
  59. static int mnt_alloc_id(struct mount *mnt)
  60. {
  61. int res;
  62. retry:
  63. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  64. spin_lock(&mnt_id_lock);
  65. res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
  66. if (!res)
  67. mnt_id_start = mnt->mnt_id + 1;
  68. spin_unlock(&mnt_id_lock);
  69. if (res == -EAGAIN)
  70. goto retry;
  71. return res;
  72. }
  73. static void mnt_free_id(struct mount *mnt)
  74. {
  75. int id = mnt->mnt_id;
  76. spin_lock(&mnt_id_lock);
  77. ida_remove(&mnt_id_ida, id);
  78. if (mnt_id_start > id)
  79. mnt_id_start = id;
  80. spin_unlock(&mnt_id_lock);
  81. }
  82. /*
  83. * Allocate a new peer group ID
  84. *
  85. * mnt_group_ida is protected by namespace_sem
  86. */
  87. static int mnt_alloc_group_id(struct mount *mnt)
  88. {
  89. int res;
  90. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  91. return -ENOMEM;
  92. res = ida_get_new_above(&mnt_group_ida,
  93. mnt_group_start,
  94. &mnt->mnt_group_id);
  95. if (!res)
  96. mnt_group_start = mnt->mnt_group_id + 1;
  97. return res;
  98. }
  99. /*
  100. * Release a peer group ID
  101. */
  102. void mnt_release_group_id(struct mount *mnt)
  103. {
  104. int id = mnt->mnt_group_id;
  105. ida_remove(&mnt_group_ida, id);
  106. if (mnt_group_start > id)
  107. mnt_group_start = id;
  108. mnt->mnt_group_id = 0;
  109. }
  110. /*
  111. * vfsmount lock must be held for read
  112. */
  113. static inline void mnt_add_count(struct mount *mnt, int n)
  114. {
  115. #ifdef CONFIG_SMP
  116. this_cpu_add(mnt->mnt_pcp->mnt_count, n);
  117. #else
  118. preempt_disable();
  119. mnt->mnt_count += n;
  120. preempt_enable();
  121. #endif
  122. }
  123. /*
  124. * vfsmount lock must be held for write
  125. */
  126. unsigned int mnt_get_count(struct mount *mnt)
  127. {
  128. #ifdef CONFIG_SMP
  129. unsigned int count = 0;
  130. int cpu;
  131. for_each_possible_cpu(cpu) {
  132. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
  133. }
  134. return count;
  135. #else
  136. return mnt->mnt_count;
  137. #endif
  138. }
  139. static struct mount *alloc_vfsmnt(const char *name)
  140. {
  141. struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  142. if (mnt) {
  143. int err;
  144. err = mnt_alloc_id(mnt);
  145. if (err)
  146. goto out_free_cache;
  147. if (name) {
  148. mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
  149. if (!mnt->mnt_devname)
  150. goto out_free_id;
  151. }
  152. #ifdef CONFIG_SMP
  153. mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
  154. if (!mnt->mnt_pcp)
  155. goto out_free_devname;
  156. this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
  157. #else
  158. mnt->mnt_count = 1;
  159. mnt->mnt_writers = 0;
  160. #endif
  161. INIT_LIST_HEAD(&mnt->mnt_hash);
  162. INIT_LIST_HEAD(&mnt->mnt_child);
  163. INIT_LIST_HEAD(&mnt->mnt_mounts);
  164. INIT_LIST_HEAD(&mnt->mnt_list);
  165. INIT_LIST_HEAD(&mnt->mnt_expire);
  166. INIT_LIST_HEAD(&mnt->mnt_share);
  167. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  168. INIT_LIST_HEAD(&mnt->mnt_slave);
  169. #ifdef CONFIG_FSNOTIFY
  170. INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
  171. #endif
  172. }
  173. return mnt;
  174. #ifdef CONFIG_SMP
  175. out_free_devname:
  176. kfree(mnt->mnt_devname);
  177. #endif
  178. out_free_id:
  179. mnt_free_id(mnt);
  180. out_free_cache:
  181. kmem_cache_free(mnt_cache, mnt);
  182. return NULL;
  183. }
  184. /*
  185. * Most r/o checks on a fs are for operations that take
  186. * discrete amounts of time, like a write() or unlink().
  187. * We must keep track of when those operations start
  188. * (for permission checks) and when they end, so that
  189. * we can determine when writes are able to occur to
  190. * a filesystem.
  191. */
  192. /*
  193. * __mnt_is_readonly: check whether a mount is read-only
  194. * @mnt: the mount to check for its write status
  195. *
  196. * This shouldn't be used directly ouside of the VFS.
  197. * It does not guarantee that the filesystem will stay
  198. * r/w, just that it is right *now*. This can not and
  199. * should not be used in place of IS_RDONLY(inode).
  200. * mnt_want/drop_write() will _keep_ the filesystem
  201. * r/w.
  202. */
  203. int __mnt_is_readonly(struct vfsmount *mnt)
  204. {
  205. if (mnt->mnt_flags & MNT_READONLY)
  206. return 1;
  207. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  208. return 1;
  209. return 0;
  210. }
  211. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  212. static inline void mnt_inc_writers(struct mount *mnt)
  213. {
  214. #ifdef CONFIG_SMP
  215. this_cpu_inc(mnt->mnt_pcp->mnt_writers);
  216. #else
  217. mnt->mnt_writers++;
  218. #endif
  219. }
  220. static inline void mnt_dec_writers(struct mount *mnt)
  221. {
  222. #ifdef CONFIG_SMP
  223. this_cpu_dec(mnt->mnt_pcp->mnt_writers);
  224. #else
  225. mnt->mnt_writers--;
  226. #endif
  227. }
  228. static unsigned int mnt_get_writers(struct mount *mnt)
  229. {
  230. #ifdef CONFIG_SMP
  231. unsigned int count = 0;
  232. int cpu;
  233. for_each_possible_cpu(cpu) {
  234. count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
  235. }
  236. return count;
  237. #else
  238. return mnt->mnt_writers;
  239. #endif
  240. }
  241. static int mnt_is_readonly(struct vfsmount *mnt)
  242. {
  243. if (mnt->mnt_sb->s_readonly_remount)
  244. return 1;
  245. /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
  246. smp_rmb();
  247. return __mnt_is_readonly(mnt);
  248. }
  249. /*
  250. * Most r/o & frozen checks on a fs are for operations that take discrete
  251. * amounts of time, like a write() or unlink(). We must keep track of when
  252. * those operations start (for permission checks) and when they end, so that we
  253. * can determine when writes are able to occur to a filesystem.
  254. */
  255. /**
  256. * __mnt_want_write - get write access to a mount without freeze protection
  257. * @m: the mount on which to take a write
  258. *
  259. * This tells the low-level filesystem that a write is about to be performed to
  260. * it, and makes sure that writes are allowed (mnt it read-write) before
  261. * returning success. This operation does not protect against filesystem being
  262. * frozen. When the write operation is finished, __mnt_drop_write() must be
  263. * called. This is effectively a refcount.
  264. */
  265. int __mnt_want_write(struct vfsmount *m)
  266. {
  267. struct mount *mnt = real_mount(m);
  268. int ret = 0;
  269. preempt_disable();
  270. mnt_inc_writers(mnt);
  271. /*
  272. * The store to mnt_inc_writers must be visible before we pass
  273. * MNT_WRITE_HOLD loop below, so that the slowpath can see our
  274. * incremented count after it has set MNT_WRITE_HOLD.
  275. */
  276. smp_mb();
  277. while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  278. cpu_relax();
  279. /*
  280. * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
  281. * be set to match its requirements. So we must not load that until
  282. * MNT_WRITE_HOLD is cleared.
  283. */
  284. smp_rmb();
  285. if (mnt_is_readonly(m)) {
  286. mnt_dec_writers(mnt);
  287. ret = -EROFS;
  288. }
  289. preempt_enable();
  290. return ret;
  291. }
  292. /**
  293. * mnt_want_write - get write access to a mount
  294. * @m: the mount on which to take a write
  295. *
  296. * This tells the low-level filesystem that a write is about to be performed to
  297. * it, and makes sure that writes are allowed (mount is read-write, filesystem
  298. * is not frozen) before returning success. When the write operation is
  299. * finished, mnt_drop_write() must be called. This is effectively a refcount.
  300. */
  301. int mnt_want_write(struct vfsmount *m)
  302. {
  303. int ret;
  304. sb_start_write(m->mnt_sb);
  305. ret = __mnt_want_write(m);
  306. if (ret)
  307. sb_end_write(m->mnt_sb);
  308. return ret;
  309. }
  310. EXPORT_SYMBOL_GPL(mnt_want_write);
  311. /**
  312. * mnt_clone_write - get write access to a mount
  313. * @mnt: the mount on which to take a write
  314. *
  315. * This is effectively like mnt_want_write, except
  316. * it must only be used to take an extra write reference
  317. * on a mountpoint that we already know has a write reference
  318. * on it. This allows some optimisation.
  319. *
  320. * After finished, mnt_drop_write must be called as usual to
  321. * drop the reference.
  322. */
  323. int mnt_clone_write(struct vfsmount *mnt)
  324. {
  325. /* superblock may be r/o */
  326. if (__mnt_is_readonly(mnt))
  327. return -EROFS;
  328. preempt_disable();
  329. mnt_inc_writers(real_mount(mnt));
  330. preempt_enable();
  331. return 0;
  332. }
  333. EXPORT_SYMBOL_GPL(mnt_clone_write);
  334. /**
  335. * __mnt_want_write_file - get write access to a file's mount
  336. * @file: the file who's mount on which to take a write
  337. *
  338. * This is like __mnt_want_write, but it takes a file and can
  339. * do some optimisations if the file is open for write already
  340. */
  341. int __mnt_want_write_file(struct file *file)
  342. {
  343. struct inode *inode = file->f_dentry->d_inode;
  344. if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
  345. return __mnt_want_write(file->f_path.mnt);
  346. else
  347. return mnt_clone_write(file->f_path.mnt);
  348. }
  349. /**
  350. * mnt_want_write_file - get write access to a file's mount
  351. * @file: the file who's mount on which to take a write
  352. *
  353. * This is like mnt_want_write, but it takes a file and can
  354. * do some optimisations if the file is open for write already
  355. */
  356. int mnt_want_write_file(struct file *file)
  357. {
  358. int ret;
  359. sb_start_write(file->f_path.mnt->mnt_sb);
  360. ret = __mnt_want_write_file(file);
  361. if (ret)
  362. sb_end_write(file->f_path.mnt->mnt_sb);
  363. return ret;
  364. }
  365. EXPORT_SYMBOL_GPL(mnt_want_write_file);
  366. /**
  367. * __mnt_drop_write - give up write access to a mount
  368. * @mnt: the mount on which to give up write access
  369. *
  370. * Tells the low-level filesystem that we are done
  371. * performing writes to it. Must be matched with
  372. * __mnt_want_write() call above.
  373. */
  374. void __mnt_drop_write(struct vfsmount *mnt)
  375. {
  376. preempt_disable();
  377. mnt_dec_writers(real_mount(mnt));
  378. preempt_enable();
  379. }
  380. /**
  381. * mnt_drop_write - give up write access to a mount
  382. * @mnt: the mount on which to give up write access
  383. *
  384. * Tells the low-level filesystem that we are done performing writes to it and
  385. * also allows filesystem to be frozen again. Must be matched with
  386. * mnt_want_write() call above.
  387. */
  388. void mnt_drop_write(struct vfsmount *mnt)
  389. {
  390. __mnt_drop_write(mnt);
  391. sb_end_write(mnt->mnt_sb);
  392. }
  393. EXPORT_SYMBOL_GPL(mnt_drop_write);
  394. void __mnt_drop_write_file(struct file *file)
  395. {
  396. __mnt_drop_write(file->f_path.mnt);
  397. }
  398. void mnt_drop_write_file(struct file *file)
  399. {
  400. mnt_drop_write(file->f_path.mnt);
  401. }
  402. EXPORT_SYMBOL(mnt_drop_write_file);
  403. static int mnt_make_readonly(struct mount *mnt)
  404. {
  405. int ret = 0;
  406. br_write_lock(&vfsmount_lock);
  407. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  408. /*
  409. * After storing MNT_WRITE_HOLD, we'll read the counters. This store
  410. * should be visible before we do.
  411. */
  412. smp_mb();
  413. /*
  414. * With writers on hold, if this value is zero, then there are
  415. * definitely no active writers (although held writers may subsequently
  416. * increment the count, they'll have to wait, and decrement it after
  417. * seeing MNT_READONLY).
  418. *
  419. * It is OK to have counter incremented on one CPU and decremented on
  420. * another: the sum will add up correctly. The danger would be when we
  421. * sum up each counter, if we read a counter before it is incremented,
  422. * but then read another CPU's count which it has been subsequently
  423. * decremented from -- we would see more decrements than we should.
  424. * MNT_WRITE_HOLD protects against this scenario, because
  425. * mnt_want_write first increments count, then smp_mb, then spins on
  426. * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
  427. * we're counting up here.
  428. */
  429. if (mnt_get_writers(mnt) > 0)
  430. ret = -EBUSY;
  431. else
  432. mnt->mnt.mnt_flags |= MNT_READONLY;
  433. /*
  434. * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
  435. * that become unheld will see MNT_READONLY.
  436. */
  437. smp_wmb();
  438. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  439. br_write_unlock(&vfsmount_lock);
  440. return ret;
  441. }
  442. static void __mnt_unmake_readonly(struct mount *mnt)
  443. {
  444. br_write_lock(&vfsmount_lock);
  445. mnt->mnt.mnt_flags &= ~MNT_READONLY;
  446. br_write_unlock(&vfsmount_lock);
  447. }
  448. int sb_prepare_remount_readonly(struct super_block *sb)
  449. {
  450. struct mount *mnt;
  451. int err = 0;
  452. /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
  453. if (atomic_long_read(&sb->s_remove_count))
  454. return -EBUSY;
  455. br_write_lock(&vfsmount_lock);
  456. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  457. if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
  458. mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
  459. smp_mb();
  460. if (mnt_get_writers(mnt) > 0) {
  461. err = -EBUSY;
  462. break;
  463. }
  464. }
  465. }
  466. if (!err && atomic_long_read(&sb->s_remove_count))
  467. err = -EBUSY;
  468. if (!err) {
  469. sb->s_readonly_remount = 1;
  470. smp_wmb();
  471. }
  472. list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
  473. if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
  474. mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
  475. }
  476. br_write_unlock(&vfsmount_lock);
  477. return err;
  478. }
  479. static void free_vfsmnt(struct mount *mnt)
  480. {
  481. kfree(mnt->mnt_devname);
  482. mnt_free_id(mnt);
  483. #ifdef CONFIG_SMP
  484. free_percpu(mnt->mnt_pcp);
  485. #endif
  486. kmem_cache_free(mnt_cache, mnt);
  487. }
  488. /*
  489. * find the first or last mount at @dentry on vfsmount @mnt depending on
  490. * @dir. If @dir is set return the first mount else return the last mount.
  491. * vfsmount_lock must be held for read or write.
  492. */
  493. struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  494. int dir)
  495. {
  496. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  497. struct list_head *tmp = head;
  498. struct mount *p, *found = NULL;
  499. for (;;) {
  500. tmp = dir ? tmp->next : tmp->prev;
  501. p = NULL;
  502. if (tmp == head)
  503. break;
  504. p = list_entry(tmp, struct mount, mnt_hash);
  505. if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
  506. found = p;
  507. break;
  508. }
  509. }
  510. return found;
  511. }
  512. /*
  513. * lookup_mnt - Return the first child mount mounted at path
  514. *
  515. * "First" means first mounted chronologically. If you create the
  516. * following mounts:
  517. *
  518. * mount /dev/sda1 /mnt
  519. * mount /dev/sda2 /mnt
  520. * mount /dev/sda3 /mnt
  521. *
  522. * Then lookup_mnt() on the base /mnt dentry in the root mount will
  523. * return successively the root dentry and vfsmount of /dev/sda1, then
  524. * /dev/sda2, then /dev/sda3, then NULL.
  525. *
  526. * lookup_mnt takes a reference to the found vfsmount.
  527. */
  528. struct vfsmount *lookup_mnt(struct path *path)
  529. {
  530. struct mount *child_mnt;
  531. br_read_lock(&vfsmount_lock);
  532. child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
  533. if (child_mnt) {
  534. mnt_add_count(child_mnt, 1);
  535. br_read_unlock(&vfsmount_lock);
  536. return &child_mnt->mnt;
  537. } else {
  538. br_read_unlock(&vfsmount_lock);
  539. return NULL;
  540. }
  541. }
  542. static inline int check_mnt(struct mount *mnt)
  543. {
  544. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  545. }
  546. /*
  547. * vfsmount lock must be held for write
  548. */
  549. static void touch_mnt_namespace(struct mnt_namespace *ns)
  550. {
  551. if (ns) {
  552. ns->event = ++event;
  553. wake_up_interruptible(&ns->poll);
  554. }
  555. }
  556. /*
  557. * vfsmount lock must be held for write
  558. */
  559. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  560. {
  561. if (ns && ns->event != event) {
  562. ns->event = event;
  563. wake_up_interruptible(&ns->poll);
  564. }
  565. }
  566. /*
  567. * Clear dentry's mounted state if it has no remaining mounts.
  568. * vfsmount_lock must be held for write.
  569. */
  570. static void dentry_reset_mounted(struct dentry *dentry)
  571. {
  572. unsigned u;
  573. for (u = 0; u < HASH_SIZE; u++) {
  574. struct mount *p;
  575. list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
  576. if (p->mnt_mountpoint == dentry)
  577. return;
  578. }
  579. }
  580. spin_lock(&dentry->d_lock);
  581. dentry->d_flags &= ~DCACHE_MOUNTED;
  582. spin_unlock(&dentry->d_lock);
  583. }
  584. /*
  585. * vfsmount lock must be held for write
  586. */
  587. static void detach_mnt(struct mount *mnt, struct path *old_path)
  588. {
  589. old_path->dentry = mnt->mnt_mountpoint;
  590. old_path->mnt = &mnt->mnt_parent->mnt;
  591. mnt->mnt_parent = mnt;
  592. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  593. list_del_init(&mnt->mnt_child);
  594. list_del_init(&mnt->mnt_hash);
  595. dentry_reset_mounted(old_path->dentry);
  596. }
  597. /*
  598. * vfsmount lock must be held for write
  599. */
  600. void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
  601. struct mount *child_mnt)
  602. {
  603. mnt_add_count(mnt, 1); /* essentially, that's mntget */
  604. child_mnt->mnt_mountpoint = dget(dentry);
  605. child_mnt->mnt_parent = mnt;
  606. spin_lock(&dentry->d_lock);
  607. dentry->d_flags |= DCACHE_MOUNTED;
  608. spin_unlock(&dentry->d_lock);
  609. }
  610. /*
  611. * vfsmount lock must be held for write
  612. */
  613. static void attach_mnt(struct mount *mnt, struct path *path)
  614. {
  615. mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
  616. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  617. hash(path->mnt, path->dentry));
  618. list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
  619. }
  620. /*
  621. * vfsmount lock must be held for write
  622. */
  623. static void commit_tree(struct mount *mnt)
  624. {
  625. struct mount *parent = mnt->mnt_parent;
  626. struct mount *m;
  627. LIST_HEAD(head);
  628. struct mnt_namespace *n = parent->mnt_ns;
  629. BUG_ON(parent == mnt);
  630. list_add_tail(&head, &mnt->mnt_list);
  631. list_for_each_entry(m, &head, mnt_list)
  632. m->mnt_ns = n;
  633. list_splice(&head, n->list.prev);
  634. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  635. hash(&parent->mnt, mnt->mnt_mountpoint));
  636. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  637. touch_mnt_namespace(n);
  638. }
  639. static struct mount *next_mnt(struct mount *p, struct mount *root)
  640. {
  641. struct list_head *next = p->mnt_mounts.next;
  642. if (next == &p->mnt_mounts) {
  643. while (1) {
  644. if (p == root)
  645. return NULL;
  646. next = p->mnt_child.next;
  647. if (next != &p->mnt_parent->mnt_mounts)
  648. break;
  649. p = p->mnt_parent;
  650. }
  651. }
  652. return list_entry(next, struct mount, mnt_child);
  653. }
  654. static struct mount *skip_mnt_tree(struct mount *p)
  655. {
  656. struct list_head *prev = p->mnt_mounts.prev;
  657. while (prev != &p->mnt_mounts) {
  658. p = list_entry(prev, struct mount, mnt_child);
  659. prev = p->mnt_mounts.prev;
  660. }
  661. return p;
  662. }
  663. struct vfsmount *
  664. vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
  665. {
  666. struct mount *mnt;
  667. struct dentry *root;
  668. if (!type)
  669. return ERR_PTR(-ENODEV);
  670. mnt = alloc_vfsmnt(name);
  671. if (!mnt)
  672. return ERR_PTR(-ENOMEM);
  673. if (flags & MS_KERNMOUNT)
  674. mnt->mnt.mnt_flags = MNT_INTERNAL;
  675. root = mount_fs(type, flags, name, data);
  676. if (IS_ERR(root)) {
  677. free_vfsmnt(mnt);
  678. return ERR_CAST(root);
  679. }
  680. mnt->mnt.mnt_root = root;
  681. mnt->mnt.mnt_sb = root->d_sb;
  682. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  683. mnt->mnt_parent = mnt;
  684. br_write_lock(&vfsmount_lock);
  685. list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
  686. br_write_unlock(&vfsmount_lock);
  687. return &mnt->mnt;
  688. }
  689. EXPORT_SYMBOL_GPL(vfs_kern_mount);
  690. static struct mount *clone_mnt(struct mount *old, struct dentry *root,
  691. int flag)
  692. {
  693. struct super_block *sb = old->mnt.mnt_sb;
  694. struct mount *mnt;
  695. int err;
  696. mnt = alloc_vfsmnt(old->mnt_devname);
  697. if (!mnt)
  698. return ERR_PTR(-ENOMEM);
  699. if (flag & (CL_SLAVE | CL_PRIVATE))
  700. mnt->mnt_group_id = 0; /* not a peer of original */
  701. else
  702. mnt->mnt_group_id = old->mnt_group_id;
  703. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  704. err = mnt_alloc_group_id(mnt);
  705. if (err)
  706. goto out_free;
  707. }
  708. mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
  709. atomic_inc(&sb->s_active);
  710. mnt->mnt.mnt_sb = sb;
  711. mnt->mnt.mnt_root = dget(root);
  712. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  713. mnt->mnt_parent = mnt;
  714. br_write_lock(&vfsmount_lock);
  715. list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
  716. br_write_unlock(&vfsmount_lock);
  717. if (flag & CL_SLAVE) {
  718. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  719. mnt->mnt_master = old;
  720. CLEAR_MNT_SHARED(mnt);
  721. } else if (!(flag & CL_PRIVATE)) {
  722. if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
  723. list_add(&mnt->mnt_share, &old->mnt_share);
  724. if (IS_MNT_SLAVE(old))
  725. list_add(&mnt->mnt_slave, &old->mnt_slave);
  726. mnt->mnt_master = old->mnt_master;
  727. }
  728. if (flag & CL_MAKE_SHARED)
  729. set_mnt_shared(mnt);
  730. /* stick the duplicate mount on the same expiry list
  731. * as the original if that was on one */
  732. if (flag & CL_EXPIRE) {
  733. if (!list_empty(&old->mnt_expire))
  734. list_add(&mnt->mnt_expire, &old->mnt_expire);
  735. }
  736. return mnt;
  737. out_free:
  738. free_vfsmnt(mnt);
  739. return ERR_PTR(err);
  740. }
  741. static inline void mntfree(struct mount *mnt)
  742. {
  743. struct vfsmount *m = &mnt->mnt;
  744. struct super_block *sb = m->mnt_sb;
  745. /*
  746. * This probably indicates that somebody messed
  747. * up a mnt_want/drop_write() pair. If this
  748. * happens, the filesystem was probably unable
  749. * to make r/w->r/o transitions.
  750. */
  751. /*
  752. * The locking used to deal with mnt_count decrement provides barriers,
  753. * so mnt_get_writers() below is safe.
  754. */
  755. WARN_ON(mnt_get_writers(mnt));
  756. fsnotify_vfsmount_delete(m);
  757. dput(m->mnt_root);
  758. free_vfsmnt(mnt);
  759. deactivate_super(sb);
  760. }
  761. static void mntput_no_expire(struct mount *mnt)
  762. {
  763. put_again:
  764. #ifdef CONFIG_SMP
  765. br_read_lock(&vfsmount_lock);
  766. if (likely(mnt->mnt_ns)) {
  767. /* shouldn't be the last one */
  768. mnt_add_count(mnt, -1);
  769. br_read_unlock(&vfsmount_lock);
  770. return;
  771. }
  772. br_read_unlock(&vfsmount_lock);
  773. br_write_lock(&vfsmount_lock);
  774. mnt_add_count(mnt, -1);
  775. if (mnt_get_count(mnt)) {
  776. br_write_unlock(&vfsmount_lock);
  777. return;
  778. }
  779. #else
  780. mnt_add_count(mnt, -1);
  781. if (likely(mnt_get_count(mnt)))
  782. return;
  783. br_write_lock(&vfsmount_lock);
  784. #endif
  785. if (unlikely(mnt->mnt_pinned)) {
  786. mnt_add_count(mnt, mnt->mnt_pinned + 1);
  787. mnt->mnt_pinned = 0;
  788. br_write_unlock(&vfsmount_lock);
  789. acct_auto_close_mnt(&mnt->mnt);
  790. goto put_again;
  791. }
  792. list_del(&mnt->mnt_instance);
  793. br_write_unlock(&vfsmount_lock);
  794. mntfree(mnt);
  795. }
  796. void mntput(struct vfsmount *mnt)
  797. {
  798. if (mnt) {
  799. struct mount *m = real_mount(mnt);
  800. /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
  801. if (unlikely(m->mnt_expiry_mark))
  802. m->mnt_expiry_mark = 0;
  803. mntput_no_expire(m);
  804. }
  805. }
  806. EXPORT_SYMBOL(mntput);
  807. struct vfsmount *mntget(struct vfsmount *mnt)
  808. {
  809. if (mnt)
  810. mnt_add_count(real_mount(mnt), 1);
  811. return mnt;
  812. }
  813. EXPORT_SYMBOL(mntget);
  814. void mnt_pin(struct vfsmount *mnt)
  815. {
  816. br_write_lock(&vfsmount_lock);
  817. real_mount(mnt)->mnt_pinned++;
  818. br_write_unlock(&vfsmount_lock);
  819. }
  820. EXPORT_SYMBOL(mnt_pin);
  821. void mnt_unpin(struct vfsmount *m)
  822. {
  823. struct mount *mnt = real_mount(m);
  824. br_write_lock(&vfsmount_lock);
  825. if (mnt->mnt_pinned) {
  826. mnt_add_count(mnt, 1);
  827. mnt->mnt_pinned--;
  828. }
  829. br_write_unlock(&vfsmount_lock);
  830. }
  831. EXPORT_SYMBOL(mnt_unpin);
  832. static inline void mangle(struct seq_file *m, const char *s)
  833. {
  834. seq_escape(m, s, " \t\n\\");
  835. }
  836. /*
  837. * Simple .show_options callback for filesystems which don't want to
  838. * implement more complex mount option showing.
  839. *
  840. * See also save_mount_options().
  841. */
  842. int generic_show_options(struct seq_file *m, struct dentry *root)
  843. {
  844. const char *options;
  845. rcu_read_lock();
  846. options = rcu_dereference(root->d_sb->s_options);
  847. if (options != NULL && options[0]) {
  848. seq_putc(m, ',');
  849. mangle(m, options);
  850. }
  851. rcu_read_unlock();
  852. return 0;
  853. }
  854. EXPORT_SYMBOL(generic_show_options);
  855. /*
  856. * If filesystem uses generic_show_options(), this function should be
  857. * called from the fill_super() callback.
  858. *
  859. * The .remount_fs callback usually needs to be handled in a special
  860. * way, to make sure, that previous options are not overwritten if the
  861. * remount fails.
  862. *
  863. * Also note, that if the filesystem's .remount_fs function doesn't
  864. * reset all options to their default value, but changes only newly
  865. * given options, then the displayed options will not reflect reality
  866. * any more.
  867. */
  868. void save_mount_options(struct super_block *sb, char *options)
  869. {
  870. BUG_ON(sb->s_options);
  871. rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
  872. }
  873. EXPORT_SYMBOL(save_mount_options);
  874. void replace_mount_options(struct super_block *sb, char *options)
  875. {
  876. char *old = sb->s_options;
  877. rcu_assign_pointer(sb->s_options, options);
  878. if (old) {
  879. synchronize_rcu();
  880. kfree(old);
  881. }
  882. }
  883. EXPORT_SYMBOL(replace_mount_options);
  884. #ifdef CONFIG_PROC_FS
  885. /* iterator; we want it to have access to namespace_sem, thus here... */
  886. static void *m_start(struct seq_file *m, loff_t *pos)
  887. {
  888. struct proc_mounts *p = proc_mounts(m);
  889. down_read(&namespace_sem);
  890. return seq_list_start(&p->ns->list, *pos);
  891. }
  892. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  893. {
  894. struct proc_mounts *p = proc_mounts(m);
  895. return seq_list_next(v, &p->ns->list, pos);
  896. }
  897. static void m_stop(struct seq_file *m, void *v)
  898. {
  899. up_read(&namespace_sem);
  900. }
  901. static int m_show(struct seq_file *m, void *v)
  902. {
  903. struct proc_mounts *p = proc_mounts(m);
  904. struct mount *r = list_entry(v, struct mount, mnt_list);
  905. return p->show(m, &r->mnt);
  906. }
  907. const struct seq_operations mounts_op = {
  908. .start = m_start,
  909. .next = m_next,
  910. .stop = m_stop,
  911. .show = m_show,
  912. };
  913. #endif /* CONFIG_PROC_FS */
  914. /**
  915. * may_umount_tree - check if a mount tree is busy
  916. * @mnt: root of mount tree
  917. *
  918. * This is called to check if a tree of mounts has any
  919. * open files, pwds, chroots or sub mounts that are
  920. * busy.
  921. */
  922. int may_umount_tree(struct vfsmount *m)
  923. {
  924. struct mount *mnt = real_mount(m);
  925. int actual_refs = 0;
  926. int minimum_refs = 0;
  927. struct mount *p;
  928. BUG_ON(!m);
  929. /* write lock needed for mnt_get_count */
  930. br_write_lock(&vfsmount_lock);
  931. for (p = mnt; p; p = next_mnt(p, mnt)) {
  932. actual_refs += mnt_get_count(p);
  933. minimum_refs += 2;
  934. }
  935. br_write_unlock(&vfsmount_lock);
  936. if (actual_refs > minimum_refs)
  937. return 0;
  938. return 1;
  939. }
  940. EXPORT_SYMBOL(may_umount_tree);
  941. /**
  942. * may_umount - check if a mount point is busy
  943. * @mnt: root of mount
  944. *
  945. * This is called to check if a mount point has any
  946. * open files, pwds, chroots or sub mounts. If the
  947. * mount has sub mounts this will return busy
  948. * regardless of whether the sub mounts are busy.
  949. *
  950. * Doesn't take quota and stuff into account. IOW, in some cases it will
  951. * give false negatives. The main reason why it's here is that we need
  952. * a non-destructive way to look for easily umountable filesystems.
  953. */
  954. int may_umount(struct vfsmount *mnt)
  955. {
  956. int ret = 1;
  957. down_read(&namespace_sem);
  958. br_write_lock(&vfsmount_lock);
  959. if (propagate_mount_busy(real_mount(mnt), 2))
  960. ret = 0;
  961. br_write_unlock(&vfsmount_lock);
  962. up_read(&namespace_sem);
  963. return ret;
  964. }
  965. EXPORT_SYMBOL(may_umount);
  966. void release_mounts(struct list_head *head)
  967. {
  968. struct mount *mnt;
  969. while (!list_empty(head)) {
  970. mnt = list_first_entry(head, struct mount, mnt_hash);
  971. list_del_init(&mnt->mnt_hash);
  972. if (mnt_has_parent(mnt)) {
  973. struct dentry *dentry;
  974. struct mount *m;
  975. br_write_lock(&vfsmount_lock);
  976. dentry = mnt->mnt_mountpoint;
  977. m = mnt->mnt_parent;
  978. mnt->mnt_mountpoint = mnt->mnt.mnt_root;
  979. mnt->mnt_parent = mnt;
  980. m->mnt_ghosts--;
  981. br_write_unlock(&vfsmount_lock);
  982. dput(dentry);
  983. mntput(&m->mnt);
  984. }
  985. mntput(&mnt->mnt);
  986. }
  987. }
  988. /*
  989. * vfsmount lock must be held for write
  990. * namespace_sem must be held for write
  991. */
  992. void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
  993. {
  994. LIST_HEAD(tmp_list);
  995. struct mount *p;
  996. for (p = mnt; p; p = next_mnt(p, mnt))
  997. list_move(&p->mnt_hash, &tmp_list);
  998. if (propagate)
  999. propagate_umount(&tmp_list);
  1000. list_for_each_entry(p, &tmp_list, mnt_hash) {
  1001. list_del_init(&p->mnt_expire);
  1002. list_del_init(&p->mnt_list);
  1003. __touch_mnt_namespace(p->mnt_ns);
  1004. p->mnt_ns = NULL;
  1005. list_del_init(&p->mnt_child);
  1006. if (mnt_has_parent(p)) {
  1007. p->mnt_parent->mnt_ghosts++;
  1008. dentry_reset_mounted(p->mnt_mountpoint);
  1009. }
  1010. change_mnt_propagation(p, MS_PRIVATE);
  1011. }
  1012. list_splice(&tmp_list, kill);
  1013. }
  1014. static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
  1015. static int do_umount(struct mount *mnt, int flags)
  1016. {
  1017. struct super_block *sb = mnt->mnt.mnt_sb;
  1018. int retval;
  1019. LIST_HEAD(umount_list);
  1020. retval = security_sb_umount(&mnt->mnt, flags);
  1021. if (retval)
  1022. return retval;
  1023. /*
  1024. * Allow userspace to request a mountpoint be expired rather than
  1025. * unmounting unconditionally. Unmount only happens if:
  1026. * (1) the mark is already set (the mark is cleared by mntput())
  1027. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  1028. */
  1029. if (flags & MNT_EXPIRE) {
  1030. if (&mnt->mnt == current->fs->root.mnt ||
  1031. flags & (MNT_FORCE | MNT_DETACH))
  1032. return -EINVAL;
  1033. /*
  1034. * probably don't strictly need the lock here if we examined
  1035. * all race cases, but it's a slowpath.
  1036. */
  1037. br_write_lock(&vfsmount_lock);
  1038. if (mnt_get_count(mnt) != 2) {
  1039. br_write_unlock(&vfsmount_lock);
  1040. return -EBUSY;
  1041. }
  1042. br_write_unlock(&vfsmount_lock);
  1043. if (!xchg(&mnt->mnt_expiry_mark, 1))
  1044. return -EAGAIN;
  1045. }
  1046. /*
  1047. * If we may have to abort operations to get out of this
  1048. * mount, and they will themselves hold resources we must
  1049. * allow the fs to do things. In the Unix tradition of
  1050. * 'Gee thats tricky lets do it in userspace' the umount_begin
  1051. * might fail to complete on the first run through as other tasks
  1052. * must return, and the like. Thats for the mount program to worry
  1053. * about for the moment.
  1054. */
  1055. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  1056. sb->s_op->umount_begin(sb);
  1057. }
  1058. /*
  1059. * No sense to grab the lock for this test, but test itself looks
  1060. * somewhat bogus. Suggestions for better replacement?
  1061. * Ho-hum... In principle, we might treat that as umount + switch
  1062. * to rootfs. GC would eventually take care of the old vfsmount.
  1063. * Actually it makes sense, especially if rootfs would contain a
  1064. * /reboot - static binary that would close all descriptors and
  1065. * call reboot(9). Then init(8) could umount root and exec /reboot.
  1066. */
  1067. if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  1068. /*
  1069. * Special case for "unmounting" root ...
  1070. * we just try to remount it readonly.
  1071. */
  1072. down_write(&sb->s_umount);
  1073. if (!(sb->s_flags & MS_RDONLY))
  1074. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  1075. up_write(&sb->s_umount);
  1076. return retval;
  1077. }
  1078. down_write(&namespace_sem);
  1079. br_write_lock(&vfsmount_lock);
  1080. event++;
  1081. if (!(flags & MNT_DETACH))
  1082. shrink_submounts(mnt, &umount_list);
  1083. retval = -EBUSY;
  1084. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  1085. if (!list_empty(&mnt->mnt_list))
  1086. umount_tree(mnt, 1, &umount_list);
  1087. retval = 0;
  1088. }
  1089. br_write_unlock(&vfsmount_lock);
  1090. up_write(&namespace_sem);
  1091. release_mounts(&umount_list);
  1092. return retval;
  1093. }
  1094. /*
  1095. * Now umount can handle mount points as well as block devices.
  1096. * This is important for filesystems which use unnamed block devices.
  1097. *
  1098. * We now support a flag for forced unmount like the other 'big iron'
  1099. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1100. */
  1101. SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
  1102. {
  1103. struct path path;
  1104. struct mount *mnt;
  1105. int retval;
  1106. int lookup_flags = 0;
  1107. if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
  1108. return -EINVAL;
  1109. if (!(flags & UMOUNT_NOFOLLOW))
  1110. lookup_flags |= LOOKUP_FOLLOW;
  1111. retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
  1112. if (retval)
  1113. goto out;
  1114. mnt = real_mount(path.mnt);
  1115. retval = -EINVAL;
  1116. if (path.dentry != path.mnt->mnt_root)
  1117. goto dput_and_out;
  1118. if (!check_mnt(mnt))
  1119. goto dput_and_out;
  1120. retval = -EPERM;
  1121. if (!capable(CAP_SYS_ADMIN))
  1122. goto dput_and_out;
  1123. retval = do_umount(mnt, flags);
  1124. dput_and_out:
  1125. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1126. dput(path.dentry);
  1127. mntput_no_expire(mnt);
  1128. out:
  1129. return retval;
  1130. }
  1131. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1132. /*
  1133. * The 2.0 compatible umount. No flags.
  1134. */
  1135. SYSCALL_DEFINE1(oldumount, char __user *, name)
  1136. {
  1137. return sys_umount(name, 0);
  1138. }
  1139. #endif
  1140. static int mount_is_safe(struct path *path)
  1141. {
  1142. if (capable(CAP_SYS_ADMIN))
  1143. return 0;
  1144. return -EPERM;
  1145. #ifdef notyet
  1146. if (S_ISLNK(path->dentry->d_inode->i_mode))
  1147. return -EPERM;
  1148. if (path->dentry->d_inode->i_mode & S_ISVTX) {
  1149. if (current_uid() != path->dentry->d_inode->i_uid)
  1150. return -EPERM;
  1151. }
  1152. if (inode_permission(path->dentry->d_inode, MAY_WRITE))
  1153. return -EPERM;
  1154. return 0;
  1155. #endif
  1156. }
  1157. struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
  1158. int flag)
  1159. {
  1160. struct mount *res, *p, *q, *r;
  1161. struct path path;
  1162. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1163. return ERR_PTR(-EINVAL);
  1164. res = q = clone_mnt(mnt, dentry, flag);
  1165. if (IS_ERR(q))
  1166. return q;
  1167. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1168. p = mnt;
  1169. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1170. struct mount *s;
  1171. if (!is_subdir(r->mnt_mountpoint, dentry))
  1172. continue;
  1173. for (s = r; s; s = next_mnt(s, r)) {
  1174. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1175. s = skip_mnt_tree(s);
  1176. continue;
  1177. }
  1178. while (p != s->mnt_parent) {
  1179. p = p->mnt_parent;
  1180. q = q->mnt_parent;
  1181. }
  1182. p = s;
  1183. path.mnt = &q->mnt;
  1184. path.dentry = p->mnt_mountpoint;
  1185. q = clone_mnt(p, p->mnt.mnt_root, flag);
  1186. if (IS_ERR(q))
  1187. goto out;
  1188. br_write_lock(&vfsmount_lock);
  1189. list_add_tail(&q->mnt_list, &res->mnt_list);
  1190. attach_mnt(q, &path);
  1191. br_write_unlock(&vfsmount_lock);
  1192. }
  1193. }
  1194. return res;
  1195. out:
  1196. if (res) {
  1197. LIST_HEAD(umount_list);
  1198. br_write_lock(&vfsmount_lock);
  1199. umount_tree(res, 0, &umount_list);
  1200. br_write_unlock(&vfsmount_lock);
  1201. release_mounts(&umount_list);
  1202. }
  1203. return q;
  1204. }
  1205. /* Caller should check returned pointer for errors */
  1206. struct vfsmount *collect_mounts(struct path *path)
  1207. {
  1208. struct mount *tree;
  1209. down_write(&namespace_sem);
  1210. tree = copy_tree(real_mount(path->mnt), path->dentry,
  1211. CL_COPY_ALL | CL_PRIVATE);
  1212. up_write(&namespace_sem);
  1213. if (IS_ERR(tree))
  1214. return NULL;
  1215. return &tree->mnt;
  1216. }
  1217. void drop_collected_mounts(struct vfsmount *mnt)
  1218. {
  1219. LIST_HEAD(umount_list);
  1220. down_write(&namespace_sem);
  1221. br_write_lock(&vfsmount_lock);
  1222. umount_tree(real_mount(mnt), 0, &umount_list);
  1223. br_write_unlock(&vfsmount_lock);
  1224. up_write(&namespace_sem);
  1225. release_mounts(&umount_list);
  1226. }
  1227. int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
  1228. struct vfsmount *root)
  1229. {
  1230. struct mount *mnt;
  1231. int res = f(root, arg);
  1232. if (res)
  1233. return res;
  1234. list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
  1235. res = f(&mnt->mnt, arg);
  1236. if (res)
  1237. return res;
  1238. }
  1239. return 0;
  1240. }
  1241. static void cleanup_group_ids(struct mount *mnt, struct mount *end)
  1242. {
  1243. struct mount *p;
  1244. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1245. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1246. mnt_release_group_id(p);
  1247. }
  1248. }
  1249. static int invent_group_ids(struct mount *mnt, bool recurse)
  1250. {
  1251. struct mount *p;
  1252. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1253. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1254. int err = mnt_alloc_group_id(p);
  1255. if (err) {
  1256. cleanup_group_ids(mnt, p);
  1257. return err;
  1258. }
  1259. }
  1260. }
  1261. return 0;
  1262. }
  1263. /*
  1264. * @source_mnt : mount tree to be attached
  1265. * @nd : place the mount tree @source_mnt is attached
  1266. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1267. * store the parent mount and mountpoint dentry.
  1268. * (done when source_mnt is moved)
  1269. *
  1270. * NOTE: in the table below explains the semantics when a source mount
  1271. * of a given type is attached to a destination mount of a given type.
  1272. * ---------------------------------------------------------------------------
  1273. * | BIND MOUNT OPERATION |
  1274. * |**************************************************************************
  1275. * | source-->| shared | private | slave | unbindable |
  1276. * | dest | | | | |
  1277. * | | | | | | |
  1278. * | v | | | | |
  1279. * |**************************************************************************
  1280. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1281. * | | | | | |
  1282. * |non-shared| shared (+) | private | slave (*) | invalid |
  1283. * ***************************************************************************
  1284. * A bind operation clones the source mount and mounts the clone on the
  1285. * destination mount.
  1286. *
  1287. * (++) the cloned mount is propagated to all the mounts in the propagation
  1288. * tree of the destination mount and the cloned mount is added to
  1289. * the peer group of the source mount.
  1290. * (+) the cloned mount is created under the destination mount and is marked
  1291. * as shared. The cloned mount is added to the peer group of the source
  1292. * mount.
  1293. * (+++) the mount is propagated to all the mounts in the propagation tree
  1294. * of the destination mount and the cloned mount is made slave
  1295. * of the same master as that of the source mount. The cloned mount
  1296. * is marked as 'shared and slave'.
  1297. * (*) the cloned mount is made a slave of the same master as that of the
  1298. * source mount.
  1299. *
  1300. * ---------------------------------------------------------------------------
  1301. * | MOVE MOUNT OPERATION |
  1302. * |**************************************************************************
  1303. * | source-->| shared | private | slave | unbindable |
  1304. * | dest | | | | |
  1305. * | | | | | | |
  1306. * | v | | | | |
  1307. * |**************************************************************************
  1308. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1309. * | | | | | |
  1310. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1311. * ***************************************************************************
  1312. *
  1313. * (+) the mount is moved to the destination. And is then propagated to
  1314. * all the mounts in the propagation tree of the destination mount.
  1315. * (+*) the mount is moved to the destination.
  1316. * (+++) the mount is moved to the destination and is then propagated to
  1317. * all the mounts belonging to the destination mount's propagation tree.
  1318. * the mount is marked as 'shared and slave'.
  1319. * (*) the mount continues to be a slave at the new location.
  1320. *
  1321. * if the source mount is a tree, the operations explained above is
  1322. * applied to each mount in the tree.
  1323. * Must be called without spinlocks held, since this function can sleep
  1324. * in allocations.
  1325. */
  1326. static int attach_recursive_mnt(struct mount *source_mnt,
  1327. struct path *path, struct path *parent_path)
  1328. {
  1329. LIST_HEAD(tree_list);
  1330. struct mount *dest_mnt = real_mount(path->mnt);
  1331. struct dentry *dest_dentry = path->dentry;
  1332. struct mount *child, *p;
  1333. int err;
  1334. if (IS_MNT_SHARED(dest_mnt)) {
  1335. err = invent_group_ids(source_mnt, true);
  1336. if (err)
  1337. goto out;
  1338. }
  1339. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1340. if (err)
  1341. goto out_cleanup_ids;
  1342. br_write_lock(&vfsmount_lock);
  1343. if (IS_MNT_SHARED(dest_mnt)) {
  1344. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1345. set_mnt_shared(p);
  1346. }
  1347. if (parent_path) {
  1348. detach_mnt(source_mnt, parent_path);
  1349. attach_mnt(source_mnt, path);
  1350. touch_mnt_namespace(source_mnt->mnt_ns);
  1351. } else {
  1352. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1353. commit_tree(source_mnt);
  1354. }
  1355. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1356. list_del_init(&child->mnt_hash);
  1357. commit_tree(child);
  1358. }
  1359. br_write_unlock(&vfsmount_lock);
  1360. return 0;
  1361. out_cleanup_ids:
  1362. if (IS_MNT_SHARED(dest_mnt))
  1363. cleanup_group_ids(source_mnt, NULL);
  1364. out:
  1365. return err;
  1366. }
  1367. static int lock_mount(struct path *path)
  1368. {
  1369. struct vfsmount *mnt;
  1370. retry:
  1371. mutex_lock(&path->dentry->d_inode->i_mutex);
  1372. if (unlikely(cant_mount(path->dentry))) {
  1373. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1374. return -ENOENT;
  1375. }
  1376. down_write(&namespace_sem);
  1377. mnt = lookup_mnt(path);
  1378. if (likely(!mnt))
  1379. return 0;
  1380. up_write(&namespace_sem);
  1381. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1382. path_put(path);
  1383. path->mnt = mnt;
  1384. path->dentry = dget(mnt->mnt_root);
  1385. goto retry;
  1386. }
  1387. static void unlock_mount(struct path *path)
  1388. {
  1389. up_write(&namespace_sem);
  1390. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1391. }
  1392. static int graft_tree(struct mount *mnt, struct path *path)
  1393. {
  1394. if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
  1395. return -EINVAL;
  1396. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1397. S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
  1398. return -ENOTDIR;
  1399. if (d_unlinked(path->dentry))
  1400. return -ENOENT;
  1401. return attach_recursive_mnt(mnt, path, NULL);
  1402. }
  1403. /*
  1404. * Sanity check the flags to change_mnt_propagation.
  1405. */
  1406. static int flags_to_propagation_type(int flags)
  1407. {
  1408. int type = flags & ~(MS_REC | MS_SILENT);
  1409. /* Fail if any non-propagation flags are set */
  1410. if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1411. return 0;
  1412. /* Only one propagation flag should be set */
  1413. if (!is_power_of_2(type))
  1414. return 0;
  1415. return type;
  1416. }
  1417. /*
  1418. * recursively change the type of the mountpoint.
  1419. */
  1420. static int do_change_type(struct path *path, int flag)
  1421. {
  1422. struct mount *m;
  1423. struct mount *mnt = real_mount(path->mnt);
  1424. int recurse = flag & MS_REC;
  1425. int type;
  1426. int err = 0;
  1427. if (!capable(CAP_SYS_ADMIN))
  1428. return -EPERM;
  1429. if (path->dentry != path->mnt->mnt_root)
  1430. return -EINVAL;
  1431. type = flags_to_propagation_type(flag);
  1432. if (!type)
  1433. return -EINVAL;
  1434. down_write(&namespace_sem);
  1435. if (type == MS_SHARED) {
  1436. err = invent_group_ids(mnt, recurse);
  1437. if (err)
  1438. goto out_unlock;
  1439. }
  1440. br_write_lock(&vfsmount_lock);
  1441. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1442. change_mnt_propagation(m, type);
  1443. br_write_unlock(&vfsmount_lock);
  1444. out_unlock:
  1445. up_write(&namespace_sem);
  1446. return err;
  1447. }
  1448. /*
  1449. * do loopback mount.
  1450. */
  1451. static int do_loopback(struct path *path, char *old_name,
  1452. int recurse)
  1453. {
  1454. LIST_HEAD(umount_list);
  1455. struct path old_path;
  1456. struct mount *mnt = NULL, *old;
  1457. int err = mount_is_safe(path);
  1458. if (err)
  1459. return err;
  1460. if (!old_name || !*old_name)
  1461. return -EINVAL;
  1462. err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
  1463. if (err)
  1464. return err;
  1465. err = lock_mount(path);
  1466. if (err)
  1467. goto out;
  1468. old = real_mount(old_path.mnt);
  1469. err = -EINVAL;
  1470. if (IS_MNT_UNBINDABLE(old))
  1471. goto out2;
  1472. if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
  1473. goto out2;
  1474. if (recurse)
  1475. mnt = copy_tree(old, old_path.dentry, 0);
  1476. else
  1477. mnt = clone_mnt(old, old_path.dentry, 0);
  1478. if (IS_ERR(mnt)) {
  1479. err = PTR_ERR(mnt);
  1480. goto out;
  1481. }
  1482. err = graft_tree(mnt, path);
  1483. if (err) {
  1484. br_write_lock(&vfsmount_lock);
  1485. umount_tree(mnt, 0, &umount_list);
  1486. br_write_unlock(&vfsmount_lock);
  1487. }
  1488. out2:
  1489. unlock_mount(path);
  1490. release_mounts(&umount_list);
  1491. out:
  1492. path_put(&old_path);
  1493. return err;
  1494. }
  1495. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1496. {
  1497. int error = 0;
  1498. int readonly_request = 0;
  1499. if (ms_flags & MS_RDONLY)
  1500. readonly_request = 1;
  1501. if (readonly_request == __mnt_is_readonly(mnt))
  1502. return 0;
  1503. if (readonly_request)
  1504. error = mnt_make_readonly(real_mount(mnt));
  1505. else
  1506. __mnt_unmake_readonly(real_mount(mnt));
  1507. return error;
  1508. }
  1509. /*
  1510. * change filesystem flags. dir should be a physical root of filesystem.
  1511. * If you've mounted a non-root directory somewhere and want to do remount
  1512. * on it - tough luck.
  1513. */
  1514. static int do_remount(struct path *path, int flags, int mnt_flags,
  1515. void *data)
  1516. {
  1517. int err;
  1518. struct super_block *sb = path->mnt->mnt_sb;
  1519. struct mount *mnt = real_mount(path->mnt);
  1520. if (!capable(CAP_SYS_ADMIN))
  1521. return -EPERM;
  1522. if (!check_mnt(mnt))
  1523. return -EINVAL;
  1524. if (path->dentry != path->mnt->mnt_root)
  1525. return -EINVAL;
  1526. err = security_sb_remount(sb, data);
  1527. if (err)
  1528. return err;
  1529. down_write(&sb->s_umount);
  1530. if (flags & MS_BIND)
  1531. err = change_mount_flags(path->mnt, flags);
  1532. else
  1533. err = do_remount_sb(sb, flags, data, 0);
  1534. if (!err) {
  1535. br_write_lock(&vfsmount_lock);
  1536. mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
  1537. mnt->mnt.mnt_flags = mnt_flags;
  1538. br_write_unlock(&vfsmount_lock);
  1539. }
  1540. up_write(&sb->s_umount);
  1541. if (!err) {
  1542. br_write_lock(&vfsmount_lock);
  1543. touch_mnt_namespace(mnt->mnt_ns);
  1544. br_write_unlock(&vfsmount_lock);
  1545. }
  1546. return err;
  1547. }
  1548. static inline int tree_contains_unbindable(struct mount *mnt)
  1549. {
  1550. struct mount *p;
  1551. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1552. if (IS_MNT_UNBINDABLE(p))
  1553. return 1;
  1554. }
  1555. return 0;
  1556. }
  1557. static int do_move_mount(struct path *path, char *old_name)
  1558. {
  1559. struct path old_path, parent_path;
  1560. struct mount *p;
  1561. struct mount *old;
  1562. int err = 0;
  1563. if (!capable(CAP_SYS_ADMIN))
  1564. return -EPERM;
  1565. if (!old_name || !*old_name)
  1566. return -EINVAL;
  1567. err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
  1568. if (err)
  1569. return err;
  1570. err = lock_mount(path);
  1571. if (err < 0)
  1572. goto out;
  1573. old = real_mount(old_path.mnt);
  1574. p = real_mount(path->mnt);
  1575. err = -EINVAL;
  1576. if (!check_mnt(p) || !check_mnt(old))
  1577. goto out1;
  1578. if (d_unlinked(path->dentry))
  1579. goto out1;
  1580. err = -EINVAL;
  1581. if (old_path.dentry != old_path.mnt->mnt_root)
  1582. goto out1;
  1583. if (!mnt_has_parent(old))
  1584. goto out1;
  1585. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1586. S_ISDIR(old_path.dentry->d_inode->i_mode))
  1587. goto out1;
  1588. /*
  1589. * Don't move a mount residing in a shared parent.
  1590. */
  1591. if (IS_MNT_SHARED(old->mnt_parent))
  1592. goto out1;
  1593. /*
  1594. * Don't move a mount tree containing unbindable mounts to a destination
  1595. * mount which is shared.
  1596. */
  1597. if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
  1598. goto out1;
  1599. err = -ELOOP;
  1600. for (; mnt_has_parent(p); p = p->mnt_parent)
  1601. if (p == old)
  1602. goto out1;
  1603. err = attach_recursive_mnt(old, path, &parent_path);
  1604. if (err)
  1605. goto out1;
  1606. /* if the mount is moved, it should no longer be expire
  1607. * automatically */
  1608. list_del_init(&old->mnt_expire);
  1609. out1:
  1610. unlock_mount(path);
  1611. out:
  1612. if (!err)
  1613. path_put(&parent_path);
  1614. path_put(&old_path);
  1615. return err;
  1616. }
  1617. static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
  1618. {
  1619. int err;
  1620. const char *subtype = strchr(fstype, '.');
  1621. if (subtype) {
  1622. subtype++;
  1623. err = -EINVAL;
  1624. if (!subtype[0])
  1625. goto err;
  1626. } else
  1627. subtype = "";
  1628. mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
  1629. err = -ENOMEM;
  1630. if (!mnt->mnt_sb->s_subtype)
  1631. goto err;
  1632. return mnt;
  1633. err:
  1634. mntput(mnt);
  1635. return ERR_PTR(err);
  1636. }
  1637. static struct vfsmount *
  1638. do_kern_mount(const char *fstype, int flags, const char *name, void *data)
  1639. {
  1640. struct file_system_type *type = get_fs_type(fstype);
  1641. struct vfsmount *mnt;
  1642. if (!type)
  1643. return ERR_PTR(-ENODEV);
  1644. mnt = vfs_kern_mount(type, flags, name, data);
  1645. if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
  1646. !mnt->mnt_sb->s_subtype)
  1647. mnt = fs_set_subtype(mnt, fstype);
  1648. put_filesystem(type);
  1649. return mnt;
  1650. }
  1651. /*
  1652. * add a mount into a namespace's mount tree
  1653. */
  1654. static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
  1655. {
  1656. int err;
  1657. mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
  1658. err = lock_mount(path);
  1659. if (err)
  1660. return err;
  1661. err = -EINVAL;
  1662. if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
  1663. goto unlock;
  1664. /* Refuse the same filesystem on the same mount point */
  1665. err = -EBUSY;
  1666. if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
  1667. path->mnt->mnt_root == path->dentry)
  1668. goto unlock;
  1669. err = -EINVAL;
  1670. if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
  1671. goto unlock;
  1672. newmnt->mnt.mnt_flags = mnt_flags;
  1673. err = graft_tree(newmnt, path);
  1674. unlock:
  1675. unlock_mount(path);
  1676. return err;
  1677. }
  1678. /*
  1679. * create a new mount for userspace and request it to be added into the
  1680. * namespace's tree
  1681. */
  1682. static int do_new_mount(struct path *path, char *type, int flags,
  1683. int mnt_flags, char *name, void *data)
  1684. {
  1685. struct vfsmount *mnt;
  1686. int err;
  1687. if (!type)
  1688. return -EINVAL;
  1689. /* we need capabilities... */
  1690. if (!capable(CAP_SYS_ADMIN))
  1691. return -EPERM;
  1692. mnt = do_kern_mount(type, flags, name, data);
  1693. if (IS_ERR(mnt))
  1694. return PTR_ERR(mnt);
  1695. err = do_add_mount(real_mount(mnt), path, mnt_flags);
  1696. if (err)
  1697. mntput(mnt);
  1698. return err;
  1699. }
  1700. int finish_automount(struct vfsmount *m, struct path *path)
  1701. {
  1702. struct mount *mnt = real_mount(m);
  1703. int err;
  1704. /* The new mount record should have at least 2 refs to prevent it being
  1705. * expired before we get a chance to add it
  1706. */
  1707. BUG_ON(mnt_get_count(mnt) < 2);
  1708. if (m->mnt_sb == path->mnt->mnt_sb &&
  1709. m->mnt_root == path->dentry) {
  1710. err = -ELOOP;
  1711. goto fail;
  1712. }
  1713. err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
  1714. if (!err)
  1715. return 0;
  1716. fail:
  1717. /* remove m from any expiration list it may be on */
  1718. if (!list_empty(&mnt->mnt_expire)) {
  1719. down_write(&namespace_sem);
  1720. br_write_lock(&vfsmount_lock);
  1721. list_del_init(&mnt->mnt_expire);
  1722. br_write_unlock(&vfsmount_lock);
  1723. up_write(&namespace_sem);
  1724. }
  1725. mntput(m);
  1726. mntput(m);
  1727. return err;
  1728. }
  1729. /**
  1730. * mnt_set_expiry - Put a mount on an expiration list
  1731. * @mnt: The mount to list.
  1732. * @expiry_list: The list to add the mount to.
  1733. */
  1734. void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
  1735. {
  1736. down_write(&namespace_sem);
  1737. br_write_lock(&vfsmount_lock);
  1738. list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
  1739. br_write_unlock(&vfsmount_lock);
  1740. up_write(&namespace_sem);
  1741. }
  1742. EXPORT_SYMBOL(mnt_set_expiry);
  1743. /*
  1744. * process a list of expirable mountpoints with the intent of discarding any
  1745. * mountpoints that aren't in use and haven't been touched since last we came
  1746. * here
  1747. */
  1748. void mark_mounts_for_expiry(struct list_head *mounts)
  1749. {
  1750. struct mount *mnt, *next;
  1751. LIST_HEAD(graveyard);
  1752. LIST_HEAD(umounts);
  1753. if (list_empty(mounts))
  1754. return;
  1755. down_write(&namespace_sem);
  1756. br_write_lock(&vfsmount_lock);
  1757. /* extract from the expiration list every vfsmount that matches the
  1758. * following criteria:
  1759. * - only referenced by its parent vfsmount
  1760. * - still marked for expiry (marked on the last call here; marks are
  1761. * cleared by mntput())
  1762. */
  1763. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1764. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1765. propagate_mount_busy(mnt, 1))
  1766. continue;
  1767. list_move(&mnt->mnt_expire, &graveyard);
  1768. }
  1769. while (!list_empty(&graveyard)) {
  1770. mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
  1771. touch_mnt_namespace(mnt->mnt_ns);
  1772. umount_tree(mnt, 1, &umounts);
  1773. }
  1774. br_write_unlock(&vfsmount_lock);
  1775. up_write(&namespace_sem);
  1776. release_mounts(&umounts);
  1777. }
  1778. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1779. /*
  1780. * Ripoff of 'select_parent()'
  1781. *
  1782. * search the list of submounts for a given mountpoint, and move any
  1783. * shrinkable submounts to the 'graveyard' list.
  1784. */
  1785. static int select_submounts(struct mount *parent, struct list_head *graveyard)
  1786. {
  1787. struct mount *this_parent = parent;
  1788. struct list_head *next;
  1789. int found = 0;
  1790. repeat:
  1791. next = this_parent->mnt_mounts.next;
  1792. resume:
  1793. while (next != &this_parent->mnt_mounts) {
  1794. struct list_head *tmp = next;
  1795. struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
  1796. next = tmp->next;
  1797. if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
  1798. continue;
  1799. /*
  1800. * Descend a level if the d_mounts list is non-empty.
  1801. */
  1802. if (!list_empty(&mnt->mnt_mounts)) {
  1803. this_parent = mnt;
  1804. goto repeat;
  1805. }
  1806. if (!propagate_mount_busy(mnt, 1)) {
  1807. list_move_tail(&mnt->mnt_expire, graveyard);
  1808. found++;
  1809. }
  1810. }
  1811. /*
  1812. * All done at this level ... ascend and resume the search
  1813. */
  1814. if (this_parent != parent) {
  1815. next = this_parent->mnt_child.next;
  1816. this_parent = this_parent->mnt_parent;
  1817. goto resume;
  1818. }
  1819. return found;
  1820. }
  1821. /*
  1822. * process a list of expirable mountpoints with the intent of discarding any
  1823. * submounts of a specific parent mountpoint
  1824. *
  1825. * vfsmount_lock must be held for write
  1826. */
  1827. static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
  1828. {
  1829. LIST_HEAD(graveyard);
  1830. struct mount *m;
  1831. /* extract submounts of 'mountpoint' from the expiration list */
  1832. while (select_submounts(mnt, &graveyard)) {
  1833. while (!list_empty(&graveyard)) {
  1834. m = list_first_entry(&graveyard, struct mount,
  1835. mnt_expire);
  1836. touch_mnt_namespace(m->mnt_ns);
  1837. umount_tree(m, 1, umounts);
  1838. }
  1839. }
  1840. }
  1841. /*
  1842. * Some copy_from_user() implementations do not return the exact number of
  1843. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1844. * Note that this function differs from copy_from_user() in that it will oops
  1845. * on bad values of `to', rather than returning a short copy.
  1846. */
  1847. static long exact_copy_from_user(void *to, const void __user * from,
  1848. unsigned long n)
  1849. {
  1850. char *t = to;
  1851. const char __user *f = from;
  1852. char c;
  1853. if (!access_ok(VERIFY_READ, from, n))
  1854. return n;
  1855. while (n) {
  1856. if (__get_user(c, f)) {
  1857. memset(t, 0, n);
  1858. break;
  1859. }
  1860. *t++ = c;
  1861. f++;
  1862. n--;
  1863. }
  1864. return n;
  1865. }
  1866. int copy_mount_options(const void __user * data, unsigned long *where)
  1867. {
  1868. int i;
  1869. unsigned long page;
  1870. unsigned long size;
  1871. *where = 0;
  1872. if (!data)
  1873. return 0;
  1874. if (!(page = __get_free_page(GFP_KERNEL)))
  1875. return -ENOMEM;
  1876. /* We only care that *some* data at the address the user
  1877. * gave us is valid. Just in case, we'll zero
  1878. * the remainder of the page.
  1879. */
  1880. /* copy_from_user cannot cross TASK_SIZE ! */
  1881. size = TASK_SIZE - (unsigned long)data;
  1882. if (size > PAGE_SIZE)
  1883. size = PAGE_SIZE;
  1884. i = size - exact_copy_from_user((void *)page, data, size);
  1885. if (!i) {
  1886. free_page(page);
  1887. return -EFAULT;
  1888. }
  1889. if (i != PAGE_SIZE)
  1890. memset((char *)page + i, 0, PAGE_SIZE - i);
  1891. *where = page;
  1892. return 0;
  1893. }
  1894. int copy_mount_string(const void __user *data, char **where)
  1895. {
  1896. char *tmp;
  1897. if (!data) {
  1898. *where = NULL;
  1899. return 0;
  1900. }
  1901. tmp = strndup_user(data, PAGE_SIZE);
  1902. if (IS_ERR(tmp))
  1903. return PTR_ERR(tmp);
  1904. *where = tmp;
  1905. return 0;
  1906. }
  1907. /*
  1908. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1909. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1910. *
  1911. * data is a (void *) that can point to any structure up to
  1912. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1913. * information (or be NULL).
  1914. *
  1915. * Pre-0.97 versions of mount() didn't have a flags word.
  1916. * When the flags word was introduced its top half was required
  1917. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1918. * Therefore, if this magic number is present, it carries no information
  1919. * and must be discarded.
  1920. */
  1921. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1922. unsigned long flags, void *data_page)
  1923. {
  1924. struct path path;
  1925. int retval = 0;
  1926. int mnt_flags = 0;
  1927. /* Discard magic */
  1928. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1929. flags &= ~MS_MGC_MSK;
  1930. /* Basic sanity checks */
  1931. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1932. return -EINVAL;
  1933. if (data_page)
  1934. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1935. /* ... and get the mountpoint */
  1936. retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
  1937. if (retval)
  1938. return retval;
  1939. retval = security_sb_mount(dev_name, &path,
  1940. type_page, flags, data_page);
  1941. if (retval)
  1942. goto dput_out;
  1943. /* Default to relatime unless overriden */
  1944. if (!(flags & MS_NOATIME))
  1945. mnt_flags |= MNT_RELATIME;
  1946. /* Separate the per-mountpoint flags */
  1947. if (flags & MS_NOSUID)
  1948. mnt_flags |= MNT_NOSUID;
  1949. if (flags & MS_NODEV)
  1950. mnt_flags |= MNT_NODEV;
  1951. if (flags & MS_NOEXEC)
  1952. mnt_flags |= MNT_NOEXEC;
  1953. if (flags & MS_NOATIME)
  1954. mnt_flags |= MNT_NOATIME;
  1955. if (flags & MS_NODIRATIME)
  1956. mnt_flags |= MNT_NODIRATIME;
  1957. if (flags & MS_STRICTATIME)
  1958. mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
  1959. if (flags & MS_RDONLY)
  1960. mnt_flags |= MNT_READONLY;
  1961. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
  1962. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
  1963. MS_STRICTATIME);
  1964. if (flags & MS_REMOUNT)
  1965. retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
  1966. data_page);
  1967. else if (flags & MS_BIND)
  1968. retval = do_loopback(&path, dev_name, flags & MS_REC);
  1969. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1970. retval = do_change_type(&path, flags);
  1971. else if (flags & MS_MOVE)
  1972. retval = do_move_mount(&path, dev_name);
  1973. else
  1974. retval = do_new_mount(&path, type_page, flags, mnt_flags,
  1975. dev_name, data_page);
  1976. dput_out:
  1977. path_put(&path);
  1978. return retval;
  1979. }
  1980. static struct mnt_namespace *alloc_mnt_ns(void)
  1981. {
  1982. struct mnt_namespace *new_ns;
  1983. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1984. if (!new_ns)
  1985. return ERR_PTR(-ENOMEM);
  1986. atomic_set(&new_ns->count, 1);
  1987. new_ns->root = NULL;
  1988. INIT_LIST_HEAD(&new_ns->list);
  1989. init_waitqueue_head(&new_ns->poll);
  1990. new_ns->event = 0;
  1991. return new_ns;
  1992. }
  1993. /*
  1994. * Allocate a new namespace structure and populate it with contents
  1995. * copied from the namespace of the passed in task structure.
  1996. */
  1997. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1998. struct fs_struct *fs)
  1999. {
  2000. struct mnt_namespace *new_ns;
  2001. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
  2002. struct mount *p, *q;
  2003. struct mount *old = mnt_ns->root;
  2004. struct mount *new;
  2005. new_ns = alloc_mnt_ns();
  2006. if (IS_ERR(new_ns))
  2007. return new_ns;
  2008. down_write(&namespace_sem);
  2009. /* First pass: copy the tree topology */
  2010. new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
  2011. if (IS_ERR(new)) {
  2012. up_write(&namespace_sem);
  2013. kfree(new_ns);
  2014. return ERR_CAST(new);
  2015. }
  2016. new_ns->root = new;
  2017. br_write_lock(&vfsmount_lock);
  2018. list_add_tail(&new_ns->list, &new->mnt_list);
  2019. br_write_unlock(&vfsmount_lock);
  2020. /*
  2021. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  2022. * as belonging to new namespace. We have already acquired a private
  2023. * fs_struct, so tsk->fs->lock is not needed.
  2024. */
  2025. p = old;
  2026. q = new;
  2027. while (p) {
  2028. q->mnt_ns = new_ns;
  2029. if (fs) {
  2030. if (&p->mnt == fs->root.mnt) {
  2031. fs->root.mnt = mntget(&q->mnt);
  2032. rootmnt = &p->mnt;
  2033. }
  2034. if (&p->mnt == fs->pwd.mnt) {
  2035. fs->pwd.mnt = mntget(&q->mnt);
  2036. pwdmnt = &p->mnt;
  2037. }
  2038. }
  2039. p = next_mnt(p, old);
  2040. q = next_mnt(q, new);
  2041. }
  2042. up_write(&namespace_sem);
  2043. if (rootmnt)
  2044. mntput(rootmnt);
  2045. if (pwdmnt)
  2046. mntput(pwdmnt);
  2047. return new_ns;
  2048. }
  2049. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  2050. struct fs_struct *new_fs)
  2051. {
  2052. struct mnt_namespace *new_ns;
  2053. BUG_ON(!ns);
  2054. get_mnt_ns(ns);
  2055. if (!(flags & CLONE_NEWNS))
  2056. return ns;
  2057. new_ns = dup_mnt_ns(ns, new_fs);
  2058. put_mnt_ns(ns);
  2059. return new_ns;
  2060. }
  2061. /**
  2062. * create_mnt_ns - creates a private namespace and adds a root filesystem
  2063. * @mnt: pointer to the new root filesystem mountpoint
  2064. */
  2065. static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
  2066. {
  2067. struct mnt_namespace *new_ns = alloc_mnt_ns();
  2068. if (!IS_ERR(new_ns)) {
  2069. struct mount *mnt = real_mount(m);
  2070. mnt->mnt_ns = new_ns;
  2071. new_ns->root = mnt;
  2072. list_add(&new_ns->list, &mnt->mnt_list);
  2073. } else {
  2074. mntput(m);
  2075. }
  2076. return new_ns;
  2077. }
  2078. struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
  2079. {
  2080. struct mnt_namespace *ns;
  2081. struct super_block *s;
  2082. struct path path;
  2083. int err;
  2084. ns = create_mnt_ns(mnt);
  2085. if (IS_ERR(ns))
  2086. return ERR_CAST(ns);
  2087. err = vfs_path_lookup(mnt->mnt_root, mnt,
  2088. name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
  2089. put_mnt_ns(ns);
  2090. if (err)
  2091. return ERR_PTR(err);
  2092. /* trade a vfsmount reference for active sb one */
  2093. s = path.mnt->mnt_sb;
  2094. atomic_inc(&s->s_active);
  2095. mntput(path.mnt);
  2096. /* lock the sucker */
  2097. down_write(&s->s_umount);
  2098. /* ... and return the root of (sub)tree on it */
  2099. return path.dentry;
  2100. }
  2101. EXPORT_SYMBOL(mount_subtree);
  2102. SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
  2103. char __user *, type, unsigned long, flags, void __user *, data)
  2104. {
  2105. int ret;
  2106. char *kernel_type;
  2107. char *kernel_dir;
  2108. char *kernel_dev;
  2109. unsigned long data_page;
  2110. ret = copy_mount_string(type, &kernel_type);
  2111. if (ret < 0)
  2112. goto out_type;
  2113. kernel_dir = getname(dir_name);
  2114. if (IS_ERR(kernel_dir)) {
  2115. ret = PTR_ERR(kernel_dir);
  2116. goto out_dir;
  2117. }
  2118. ret = copy_mount_string(dev_name, &kernel_dev);
  2119. if (ret < 0)
  2120. goto out_dev;
  2121. ret = copy_mount_options(data, &data_page);
  2122. if (ret < 0)
  2123. goto out_data;
  2124. ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
  2125. (void *) data_page);
  2126. free_page(data_page);
  2127. out_data:
  2128. kfree(kernel_dev);
  2129. out_dev:
  2130. putname(kernel_dir);
  2131. out_dir:
  2132. kfree(kernel_type);
  2133. out_type:
  2134. return ret;
  2135. }
  2136. /*
  2137. * Return true if path is reachable from root
  2138. *
  2139. * namespace_sem or vfsmount_lock is held
  2140. */
  2141. bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
  2142. const struct path *root)
  2143. {
  2144. while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
  2145. dentry = mnt->mnt_mountpoint;
  2146. mnt = mnt->mnt_parent;
  2147. }
  2148. return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
  2149. }
  2150. int path_is_under(struct path *path1, struct path *path2)
  2151. {
  2152. int res;
  2153. br_read_lock(&vfsmount_lock);
  2154. res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
  2155. br_read_unlock(&vfsmount_lock);
  2156. return res;
  2157. }
  2158. EXPORT_SYMBOL(path_is_under);
  2159. /*
  2160. * pivot_root Semantics:
  2161. * Moves the root file system of the current process to the directory put_old,
  2162. * makes new_root as the new root file system of the current process, and sets
  2163. * root/cwd of all processes which had them on the current root to new_root.
  2164. *
  2165. * Restrictions:
  2166. * The new_root and put_old must be directories, and must not be on the
  2167. * same file system as the current process root. The put_old must be
  2168. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  2169. * pointed to by put_old must yield the same directory as new_root. No other
  2170. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  2171. *
  2172. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  2173. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  2174. * in this situation.
  2175. *
  2176. * Notes:
  2177. * - we don't move root/cwd if they are not at the root (reason: if something
  2178. * cared enough to change them, it's probably wrong to force them elsewhere)
  2179. * - it's okay to pick a root that isn't the root of a file system, e.g.
  2180. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  2181. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  2182. * first.
  2183. */
  2184. SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
  2185. const char __user *, put_old)
  2186. {
  2187. struct path new, old, parent_path, root_parent, root;
  2188. struct mount *new_mnt, *root_mnt;
  2189. int error;
  2190. if (!capable(CAP_SYS_ADMIN))
  2191. return -EPERM;
  2192. error = user_path_dir(new_root, &new);
  2193. if (error)
  2194. goto out0;
  2195. error = user_path_dir(put_old, &old);
  2196. if (error)
  2197. goto out1;
  2198. error = security_sb_pivotroot(&old, &new);
  2199. if (error)
  2200. goto out2;
  2201. get_fs_root(current->fs, &root);
  2202. error = lock_mount(&old);
  2203. if (error)
  2204. goto out3;
  2205. error = -EINVAL;
  2206. new_mnt = real_mount(new.mnt);
  2207. root_mnt = real_mount(root.mnt);
  2208. if (IS_MNT_SHARED(real_mount(old.mnt)) ||
  2209. IS_MNT_SHARED(new_mnt->mnt_parent) ||
  2210. IS_MNT_SHARED(root_mnt->mnt_parent))
  2211. goto out4;
  2212. if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
  2213. goto out4;
  2214. error = -ENOENT;
  2215. if (d_unlinked(new.dentry))
  2216. goto out4;
  2217. if (d_unlinked(old.dentry))
  2218. goto out4;
  2219. error = -EBUSY;
  2220. if (new.mnt == root.mnt ||
  2221. old.mnt == root.mnt)
  2222. goto out4; /* loop, on the same file system */
  2223. error = -EINVAL;
  2224. if (root.mnt->mnt_root != root.dentry)
  2225. goto out4; /* not a mountpoint */
  2226. if (!mnt_has_parent(root_mnt))
  2227. goto out4; /* not attached */
  2228. if (new.mnt->mnt_root != new.dentry)
  2229. goto out4; /* not a mountpoint */
  2230. if (!mnt_has_parent(new_mnt))
  2231. goto out4; /* not attached */
  2232. /* make sure we can reach put_old from new_root */
  2233. if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
  2234. goto out4;
  2235. br_write_lock(&vfsmount_lock);
  2236. detach_mnt(new_mnt, &parent_path);
  2237. detach_mnt(root_mnt, &root_parent);
  2238. /* mount old root on put_old */
  2239. attach_mnt(root_mnt, &old);
  2240. /* mount new_root on / */
  2241. attach_mnt(new_mnt, &root_parent);
  2242. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2243. br_write_unlock(&vfsmount_lock);
  2244. chroot_fs_refs(&root, &new);
  2245. error = 0;
  2246. out4:
  2247. unlock_mount(&old);
  2248. if (!error) {
  2249. path_put(&root_parent);
  2250. path_put(&parent_path);
  2251. }
  2252. out3:
  2253. path_put(&root);
  2254. out2:
  2255. path_put(&old);
  2256. out1:
  2257. path_put(&new);
  2258. out0:
  2259. return error;
  2260. }
  2261. static void __init init_mount_tree(void)
  2262. {
  2263. struct vfsmount *mnt;
  2264. struct mnt_namespace *ns;
  2265. struct path root;
  2266. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2267. if (IS_ERR(mnt))
  2268. panic("Can't create rootfs");
  2269. ns = create_mnt_ns(mnt);
  2270. if (IS_ERR(ns))
  2271. panic("Can't allocate initial namespace");
  2272. init_task.nsproxy->mnt_ns = ns;
  2273. get_mnt_ns(ns);
  2274. root.mnt = mnt;
  2275. root.dentry = mnt->mnt_root;
  2276. set_fs_pwd(current->fs, &root);
  2277. set_fs_root(current->fs, &root);
  2278. }
  2279. void __init mnt_init(void)
  2280. {
  2281. unsigned u;
  2282. int err;
  2283. init_rwsem(&namespace_sem);
  2284. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
  2285. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2286. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2287. if (!mount_hashtable)
  2288. panic("Failed to allocate mount hash table\n");
  2289. printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2290. for (u = 0; u < HASH_SIZE; u++)
  2291. INIT_LIST_HEAD(&mount_hashtable[u]);
  2292. br_lock_init(&vfsmount_lock);
  2293. err = sysfs_init();
  2294. if (err)
  2295. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2296. __func__, err);
  2297. fs_kobj = kobject_create_and_add("fs", NULL);
  2298. if (!fs_kobj)
  2299. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2300. init_rootfs();
  2301. init_mount_tree();
  2302. }
  2303. void put_mnt_ns(struct mnt_namespace *ns)
  2304. {
  2305. LIST_HEAD(umount_list);
  2306. if (!atomic_dec_and_test(&ns->count))
  2307. return;
  2308. down_write(&namespace_sem);
  2309. br_write_lock(&vfsmount_lock);
  2310. umount_tree(ns->root, 0, &umount_list);
  2311. br_write_unlock(&vfsmount_lock);
  2312. up_write(&namespace_sem);
  2313. release_mounts(&umount_list);
  2314. kfree(ns);
  2315. }
  2316. struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
  2317. {
  2318. struct vfsmount *mnt;
  2319. mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
  2320. if (!IS_ERR(mnt)) {
  2321. /*
  2322. * it is a longterm mount, don't release mnt until
  2323. * we unmount before file sys is unregistered
  2324. */
  2325. real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
  2326. }
  2327. return mnt;
  2328. }
  2329. EXPORT_SYMBOL_GPL(kern_mount_data);
  2330. void kern_unmount(struct vfsmount *mnt)
  2331. {
  2332. /* release long term mount so mount point can be released */
  2333. if (!IS_ERR_OR_NULL(mnt)) {
  2334. br_write_lock(&vfsmount_lock);
  2335. real_mount(mnt)->mnt_ns = NULL;
  2336. br_write_unlock(&vfsmount_lock);
  2337. mntput(mnt);
  2338. }
  2339. }
  2340. EXPORT_SYMBOL(kern_unmount);
  2341. bool our_mnt(struct vfsmount *mnt)
  2342. {
  2343. return check_mnt(real_mount(mnt));
  2344. }