revoke.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
  1. /*
  2. * linux/fs/jbd2/revoke.c
  3. *
  4. * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
  5. *
  6. * Copyright 2000 Red Hat corp --- All Rights Reserved
  7. *
  8. * This file is part of the Linux kernel and is made available under
  9. * the terms of the GNU General Public License, version 2, or at your
  10. * option, any later version, incorporated herein by reference.
  11. *
  12. * Journal revoke routines for the generic filesystem journaling code;
  13. * part of the ext2fs journaling system.
  14. *
  15. * Revoke is the mechanism used to prevent old log records for deleted
  16. * metadata from being replayed on top of newer data using the same
  17. * blocks. The revoke mechanism is used in two separate places:
  18. *
  19. * + Commit: during commit we write the entire list of the current
  20. * transaction's revoked blocks to the journal
  21. *
  22. * + Recovery: during recovery we record the transaction ID of all
  23. * revoked blocks. If there are multiple revoke records in the log
  24. * for a single block, only the last one counts, and if there is a log
  25. * entry for a block beyond the last revoke, then that log entry still
  26. * gets replayed.
  27. *
  28. * We can get interactions between revokes and new log data within a
  29. * single transaction:
  30. *
  31. * Block is revoked and then journaled:
  32. * The desired end result is the journaling of the new block, so we
  33. * cancel the revoke before the transaction commits.
  34. *
  35. * Block is journaled and then revoked:
  36. * The revoke must take precedence over the write of the block, so we
  37. * need either to cancel the journal entry or to write the revoke
  38. * later in the log than the log block. In this case, we choose the
  39. * latter: journaling a block cancels any revoke record for that block
  40. * in the current transaction, so any revoke for that block in the
  41. * transaction must have happened after the block was journaled and so
  42. * the revoke must take precedence.
  43. *
  44. * Block is revoked and then written as data:
  45. * The data write is allowed to succeed, but the revoke is _not_
  46. * cancelled. We still need to prevent old log records from
  47. * overwriting the new data. We don't even need to clear the revoke
  48. * bit here.
  49. *
  50. * We cache revoke status of a buffer in the current transaction in b_states
  51. * bits. As the name says, revokevalid flag indicates that the cached revoke
  52. * status of a buffer is valid and we can rely on the cached status.
  53. *
  54. * Revoke information on buffers is a tri-state value:
  55. *
  56. * RevokeValid clear: no cached revoke status, need to look it up
  57. * RevokeValid set, Revoked clear:
  58. * buffer has not been revoked, and cancel_revoke
  59. * need do nothing.
  60. * RevokeValid set, Revoked set:
  61. * buffer has been revoked.
  62. *
  63. * Locking rules:
  64. * We keep two hash tables of revoke records. One hashtable belongs to the
  65. * running transaction (is pointed to by journal->j_revoke), the other one
  66. * belongs to the committing transaction. Accesses to the second hash table
  67. * happen only from the kjournald and no other thread touches this table. Also
  68. * journal_switch_revoke_table() which switches which hashtable belongs to the
  69. * running and which to the committing transaction is called only from
  70. * kjournald. Therefore we need no locks when accessing the hashtable belonging
  71. * to the committing transaction.
  72. *
  73. * All users operating on the hash table belonging to the running transaction
  74. * have a handle to the transaction. Therefore they are safe from kjournald
  75. * switching hash tables under them. For operations on the lists of entries in
  76. * the hash table j_revoke_lock is used.
  77. *
  78. * Finally, also replay code uses the hash tables but at this moment no one else
  79. * can touch them (filesystem isn't mounted yet) and hence no locking is
  80. * needed.
  81. */
  82. #ifndef __KERNEL__
  83. #include "jfs_user.h"
  84. #else
  85. #include <linux/time.h>
  86. #include <linux/fs.h>
  87. #include <linux/jbd2.h>
  88. #include <linux/errno.h>
  89. #include <linux/slab.h>
  90. #include <linux/list.h>
  91. #include <linux/init.h>
  92. #include <linux/bio.h>
  93. #endif
  94. #include <linux/log2.h>
  95. static struct kmem_cache *jbd2_revoke_record_cache;
  96. static struct kmem_cache *jbd2_revoke_table_cache;
  97. /* Each revoke record represents one single revoked block. During
  98. journal replay, this involves recording the transaction ID of the
  99. last transaction to revoke this block. */
  100. struct jbd2_revoke_record_s
  101. {
  102. struct list_head hash;
  103. tid_t sequence; /* Used for recovery only */
  104. unsigned long long blocknr;
  105. };
  106. /* The revoke table is just a simple hash table of revoke records. */
  107. struct jbd2_revoke_table_s
  108. {
  109. /* It is conceivable that we might want a larger hash table
  110. * for recovery. Must be a power of two. */
  111. int hash_size;
  112. int hash_shift;
  113. struct list_head *hash_table;
  114. };
  115. #ifdef __KERNEL__
  116. static void write_one_revoke_record(journal_t *, transaction_t *,
  117. struct journal_head **, int *,
  118. struct jbd2_revoke_record_s *, int);
  119. static void flush_descriptor(journal_t *, struct journal_head *, int, int);
  120. #endif
  121. /* Utility functions to maintain the revoke table */
  122. /* Borrowed from buffer.c: this is a tried and tested block hash function */
  123. static inline int hash(journal_t *journal, unsigned long long block)
  124. {
  125. struct jbd2_revoke_table_s *table = journal->j_revoke;
  126. int hash_shift = table->hash_shift;
  127. int hash = (int)block ^ (int)((block >> 31) >> 1);
  128. return ((hash << (hash_shift - 6)) ^
  129. (hash >> 13) ^
  130. (hash << (hash_shift - 12))) & (table->hash_size - 1);
  131. }
  132. static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
  133. tid_t seq)
  134. {
  135. struct list_head *hash_list;
  136. struct jbd2_revoke_record_s *record;
  137. repeat:
  138. record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
  139. if (!record)
  140. goto oom;
  141. record->sequence = seq;
  142. record->blocknr = blocknr;
  143. hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
  144. spin_lock(&journal->j_revoke_lock);
  145. list_add(&record->hash, hash_list);
  146. spin_unlock(&journal->j_revoke_lock);
  147. return 0;
  148. oom:
  149. if (!journal_oom_retry)
  150. return -ENOMEM;
  151. jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
  152. yield();
  153. goto repeat;
  154. }
  155. /* Find a revoke record in the journal's hash table. */
  156. static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
  157. unsigned long long blocknr)
  158. {
  159. struct list_head *hash_list;
  160. struct jbd2_revoke_record_s *record;
  161. hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
  162. spin_lock(&journal->j_revoke_lock);
  163. record = (struct jbd2_revoke_record_s *) hash_list->next;
  164. while (&(record->hash) != hash_list) {
  165. if (record->blocknr == blocknr) {
  166. spin_unlock(&journal->j_revoke_lock);
  167. return record;
  168. }
  169. record = (struct jbd2_revoke_record_s *) record->hash.next;
  170. }
  171. spin_unlock(&journal->j_revoke_lock);
  172. return NULL;
  173. }
  174. void jbd2_journal_destroy_revoke_caches(void)
  175. {
  176. if (jbd2_revoke_record_cache) {
  177. kmem_cache_destroy(jbd2_revoke_record_cache);
  178. jbd2_revoke_record_cache = NULL;
  179. }
  180. if (jbd2_revoke_table_cache) {
  181. kmem_cache_destroy(jbd2_revoke_table_cache);
  182. jbd2_revoke_table_cache = NULL;
  183. }
  184. }
  185. int __init jbd2_journal_init_revoke_caches(void)
  186. {
  187. J_ASSERT(!jbd2_revoke_record_cache);
  188. J_ASSERT(!jbd2_revoke_table_cache);
  189. jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
  190. SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
  191. if (!jbd2_revoke_record_cache)
  192. goto record_cache_failure;
  193. jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
  194. SLAB_TEMPORARY);
  195. if (!jbd2_revoke_table_cache)
  196. goto table_cache_failure;
  197. return 0;
  198. table_cache_failure:
  199. jbd2_journal_destroy_revoke_caches();
  200. record_cache_failure:
  201. return -ENOMEM;
  202. }
  203. static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
  204. {
  205. int shift = 0;
  206. int tmp = hash_size;
  207. struct jbd2_revoke_table_s *table;
  208. table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
  209. if (!table)
  210. goto out;
  211. while((tmp >>= 1UL) != 0UL)
  212. shift++;
  213. table->hash_size = hash_size;
  214. table->hash_shift = shift;
  215. table->hash_table =
  216. kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
  217. if (!table->hash_table) {
  218. kmem_cache_free(jbd2_revoke_table_cache, table);
  219. table = NULL;
  220. goto out;
  221. }
  222. for (tmp = 0; tmp < hash_size; tmp++)
  223. INIT_LIST_HEAD(&table->hash_table[tmp]);
  224. out:
  225. return table;
  226. }
  227. static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
  228. {
  229. int i;
  230. struct list_head *hash_list;
  231. for (i = 0; i < table->hash_size; i++) {
  232. hash_list = &table->hash_table[i];
  233. J_ASSERT(list_empty(hash_list));
  234. }
  235. kfree(table->hash_table);
  236. kmem_cache_free(jbd2_revoke_table_cache, table);
  237. }
  238. /* Initialise the revoke table for a given journal to a given size. */
  239. int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
  240. {
  241. J_ASSERT(journal->j_revoke_table[0] == NULL);
  242. J_ASSERT(is_power_of_2(hash_size));
  243. journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
  244. if (!journal->j_revoke_table[0])
  245. goto fail0;
  246. journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
  247. if (!journal->j_revoke_table[1])
  248. goto fail1;
  249. journal->j_revoke = journal->j_revoke_table[1];
  250. spin_lock_init(&journal->j_revoke_lock);
  251. return 0;
  252. fail1:
  253. jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
  254. fail0:
  255. return -ENOMEM;
  256. }
  257. /* Destroy a journal's revoke table. The table must already be empty! */
  258. void jbd2_journal_destroy_revoke(journal_t *journal)
  259. {
  260. journal->j_revoke = NULL;
  261. if (journal->j_revoke_table[0])
  262. jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
  263. if (journal->j_revoke_table[1])
  264. jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
  265. }
  266. #ifdef __KERNEL__
  267. /*
  268. * jbd2_journal_revoke: revoke a given buffer_head from the journal. This
  269. * prevents the block from being replayed during recovery if we take a
  270. * crash after this current transaction commits. Any subsequent
  271. * metadata writes of the buffer in this transaction cancel the
  272. * revoke.
  273. *
  274. * Note that this call may block --- it is up to the caller to make
  275. * sure that there are no further calls to journal_write_metadata
  276. * before the revoke is complete. In ext3, this implies calling the
  277. * revoke before clearing the block bitmap when we are deleting
  278. * metadata.
  279. *
  280. * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
  281. * parameter, but does _not_ forget the buffer_head if the bh was only
  282. * found implicitly.
  283. *
  284. * bh_in may not be a journalled buffer - it may have come off
  285. * the hash tables without an attached journal_head.
  286. *
  287. * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
  288. * by one.
  289. */
  290. int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
  291. struct buffer_head *bh_in)
  292. {
  293. struct buffer_head *bh = NULL;
  294. journal_t *journal;
  295. struct block_device *bdev;
  296. int err;
  297. might_sleep();
  298. if (bh_in)
  299. BUFFER_TRACE(bh_in, "enter");
  300. journal = handle->h_transaction->t_journal;
  301. if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
  302. J_ASSERT (!"Cannot set revoke feature!");
  303. return -EINVAL;
  304. }
  305. bdev = journal->j_fs_dev;
  306. bh = bh_in;
  307. if (!bh) {
  308. bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
  309. if (bh)
  310. BUFFER_TRACE(bh, "found on hash");
  311. }
  312. #ifdef JBD2_EXPENSIVE_CHECKING
  313. else {
  314. struct buffer_head *bh2;
  315. /* If there is a different buffer_head lying around in
  316. * memory anywhere... */
  317. bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
  318. if (bh2) {
  319. /* ... and it has RevokeValid status... */
  320. if (bh2 != bh && buffer_revokevalid(bh2))
  321. /* ...then it better be revoked too,
  322. * since it's illegal to create a revoke
  323. * record against a buffer_head which is
  324. * not marked revoked --- that would
  325. * risk missing a subsequent revoke
  326. * cancel. */
  327. J_ASSERT_BH(bh2, buffer_revoked(bh2));
  328. put_bh(bh2);
  329. }
  330. }
  331. #endif
  332. /* We really ought not ever to revoke twice in a row without
  333. first having the revoke cancelled: it's illegal to free a
  334. block twice without allocating it in between! */
  335. if (bh) {
  336. if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
  337. "inconsistent data on disk")) {
  338. if (!bh_in)
  339. brelse(bh);
  340. return -EIO;
  341. }
  342. set_buffer_revoked(bh);
  343. set_buffer_revokevalid(bh);
  344. if (bh_in) {
  345. BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
  346. jbd2_journal_forget(handle, bh_in);
  347. } else {
  348. BUFFER_TRACE(bh, "call brelse");
  349. __brelse(bh);
  350. }
  351. }
  352. jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
  353. err = insert_revoke_hash(journal, blocknr,
  354. handle->h_transaction->t_tid);
  355. BUFFER_TRACE(bh_in, "exit");
  356. return err;
  357. }
  358. /*
  359. * Cancel an outstanding revoke. For use only internally by the
  360. * journaling code (called from jbd2_journal_get_write_access).
  361. *
  362. * We trust buffer_revoked() on the buffer if the buffer is already
  363. * being journaled: if there is no revoke pending on the buffer, then we
  364. * don't do anything here.
  365. *
  366. * This would break if it were possible for a buffer to be revoked and
  367. * discarded, and then reallocated within the same transaction. In such
  368. * a case we would have lost the revoked bit, but when we arrived here
  369. * the second time we would still have a pending revoke to cancel. So,
  370. * do not trust the Revoked bit on buffers unless RevokeValid is also
  371. * set.
  372. */
  373. int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
  374. {
  375. struct jbd2_revoke_record_s *record;
  376. journal_t *journal = handle->h_transaction->t_journal;
  377. int need_cancel;
  378. int did_revoke = 0; /* akpm: debug */
  379. struct buffer_head *bh = jh2bh(jh);
  380. jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
  381. /* Is the existing Revoke bit valid? If so, we trust it, and
  382. * only perform the full cancel if the revoke bit is set. If
  383. * not, we can't trust the revoke bit, and we need to do the
  384. * full search for a revoke record. */
  385. if (test_set_buffer_revokevalid(bh)) {
  386. need_cancel = test_clear_buffer_revoked(bh);
  387. } else {
  388. need_cancel = 1;
  389. clear_buffer_revoked(bh);
  390. }
  391. if (need_cancel) {
  392. record = find_revoke_record(journal, bh->b_blocknr);
  393. if (record) {
  394. jbd_debug(4, "cancelled existing revoke on "
  395. "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
  396. spin_lock(&journal->j_revoke_lock);
  397. list_del(&record->hash);
  398. spin_unlock(&journal->j_revoke_lock);
  399. kmem_cache_free(jbd2_revoke_record_cache, record);
  400. did_revoke = 1;
  401. }
  402. }
  403. #ifdef JBD2_EXPENSIVE_CHECKING
  404. /* There better not be one left behind by now! */
  405. record = find_revoke_record(journal, bh->b_blocknr);
  406. J_ASSERT_JH(jh, record == NULL);
  407. #endif
  408. /* Finally, have we just cleared revoke on an unhashed
  409. * buffer_head? If so, we'd better make sure we clear the
  410. * revoked status on any hashed alias too, otherwise the revoke
  411. * state machine will get very upset later on. */
  412. if (need_cancel) {
  413. struct buffer_head *bh2;
  414. bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
  415. if (bh2) {
  416. if (bh2 != bh)
  417. clear_buffer_revoked(bh2);
  418. __brelse(bh2);
  419. }
  420. }
  421. return did_revoke;
  422. }
  423. /*
  424. * journal_clear_revoked_flag clears revoked flag of buffers in
  425. * revoke table to reflect there is no revoked buffers in the next
  426. * transaction which is going to be started.
  427. */
  428. void jbd2_clear_buffer_revoked_flags(journal_t *journal)
  429. {
  430. struct jbd2_revoke_table_s *revoke = journal->j_revoke;
  431. int i = 0;
  432. for (i = 0; i < revoke->hash_size; i++) {
  433. struct list_head *hash_list;
  434. struct list_head *list_entry;
  435. hash_list = &revoke->hash_table[i];
  436. list_for_each(list_entry, hash_list) {
  437. struct jbd2_revoke_record_s *record;
  438. struct buffer_head *bh;
  439. record = (struct jbd2_revoke_record_s *)list_entry;
  440. bh = __find_get_block(journal->j_fs_dev,
  441. record->blocknr,
  442. journal->j_blocksize);
  443. if (bh) {
  444. clear_buffer_revoked(bh);
  445. __brelse(bh);
  446. }
  447. }
  448. }
  449. }
  450. /* journal_switch_revoke table select j_revoke for next transaction
  451. * we do not want to suspend any processing until all revokes are
  452. * written -bzzz
  453. */
  454. void jbd2_journal_switch_revoke_table(journal_t *journal)
  455. {
  456. int i;
  457. if (journal->j_revoke == journal->j_revoke_table[0])
  458. journal->j_revoke = journal->j_revoke_table[1];
  459. else
  460. journal->j_revoke = journal->j_revoke_table[0];
  461. for (i = 0; i < journal->j_revoke->hash_size; i++)
  462. INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
  463. }
  464. /*
  465. * Write revoke records to the journal for all entries in the current
  466. * revoke hash, deleting the entries as we go.
  467. */
  468. void jbd2_journal_write_revoke_records(journal_t *journal,
  469. transaction_t *transaction,
  470. int write_op)
  471. {
  472. struct journal_head *descriptor;
  473. struct jbd2_revoke_record_s *record;
  474. struct jbd2_revoke_table_s *revoke;
  475. struct list_head *hash_list;
  476. int i, offset, count;
  477. descriptor = NULL;
  478. offset = 0;
  479. count = 0;
  480. /* select revoke table for committing transaction */
  481. revoke = journal->j_revoke == journal->j_revoke_table[0] ?
  482. journal->j_revoke_table[1] : journal->j_revoke_table[0];
  483. for (i = 0; i < revoke->hash_size; i++) {
  484. hash_list = &revoke->hash_table[i];
  485. while (!list_empty(hash_list)) {
  486. record = (struct jbd2_revoke_record_s *)
  487. hash_list->next;
  488. write_one_revoke_record(journal, transaction,
  489. &descriptor, &offset,
  490. record, write_op);
  491. count++;
  492. list_del(&record->hash);
  493. kmem_cache_free(jbd2_revoke_record_cache, record);
  494. }
  495. }
  496. if (descriptor)
  497. flush_descriptor(journal, descriptor, offset, write_op);
  498. jbd_debug(1, "Wrote %d revoke records\n", count);
  499. }
  500. /*
  501. * Write out one revoke record. We need to create a new descriptor
  502. * block if the old one is full or if we have not already created one.
  503. */
  504. static void write_one_revoke_record(journal_t *journal,
  505. transaction_t *transaction,
  506. struct journal_head **descriptorp,
  507. int *offsetp,
  508. struct jbd2_revoke_record_s *record,
  509. int write_op)
  510. {
  511. int csum_size = 0;
  512. struct journal_head *descriptor;
  513. int offset;
  514. journal_header_t *header;
  515. /* If we are already aborting, this all becomes a noop. We
  516. still need to go round the loop in
  517. jbd2_journal_write_revoke_records in order to free all of the
  518. revoke records: only the IO to the journal is omitted. */
  519. if (is_journal_aborted(journal))
  520. return;
  521. descriptor = *descriptorp;
  522. offset = *offsetp;
  523. /* Do we need to leave space at the end for a checksum? */
  524. if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_CSUM_V2))
  525. csum_size = sizeof(struct jbd2_journal_revoke_tail);
  526. /* Make sure we have a descriptor with space left for the record */
  527. if (descriptor) {
  528. if (offset >= journal->j_blocksize - csum_size) {
  529. flush_descriptor(journal, descriptor, offset, write_op);
  530. descriptor = NULL;
  531. }
  532. }
  533. if (!descriptor) {
  534. descriptor = jbd2_journal_get_descriptor_buffer(journal);
  535. if (!descriptor)
  536. return;
  537. header = (journal_header_t *) &jh2bh(descriptor)->b_data[0];
  538. header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
  539. header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
  540. header->h_sequence = cpu_to_be32(transaction->t_tid);
  541. /* Record it so that we can wait for IO completion later */
  542. JBUFFER_TRACE(descriptor, "file as BJ_LogCtl");
  543. jbd2_journal_file_buffer(descriptor, transaction, BJ_LogCtl);
  544. offset = sizeof(jbd2_journal_revoke_header_t);
  545. *descriptorp = descriptor;
  546. }
  547. if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
  548. * ((__be64 *)(&jh2bh(descriptor)->b_data[offset])) =
  549. cpu_to_be64(record->blocknr);
  550. offset += 8;
  551. } else {
  552. * ((__be32 *)(&jh2bh(descriptor)->b_data[offset])) =
  553. cpu_to_be32(record->blocknr);
  554. offset += 4;
  555. }
  556. *offsetp = offset;
  557. }
  558. static void jbd2_revoke_csum_set(journal_t *j,
  559. struct journal_head *descriptor)
  560. {
  561. struct jbd2_journal_revoke_tail *tail;
  562. __u32 csum;
  563. if (!JBD2_HAS_INCOMPAT_FEATURE(j, JBD2_FEATURE_INCOMPAT_CSUM_V2))
  564. return;
  565. tail = (struct jbd2_journal_revoke_tail *)
  566. (jh2bh(descriptor)->b_data + j->j_blocksize -
  567. sizeof(struct jbd2_journal_revoke_tail));
  568. tail->r_checksum = 0;
  569. csum = jbd2_chksum(j, j->j_csum_seed, jh2bh(descriptor)->b_data,
  570. j->j_blocksize);
  571. tail->r_checksum = cpu_to_be32(csum);
  572. }
  573. /*
  574. * Flush a revoke descriptor out to the journal. If we are aborting,
  575. * this is a noop; otherwise we are generating a buffer which needs to
  576. * be waited for during commit, so it has to go onto the appropriate
  577. * journal buffer list.
  578. */
  579. static void flush_descriptor(journal_t *journal,
  580. struct journal_head *descriptor,
  581. int offset, int write_op)
  582. {
  583. jbd2_journal_revoke_header_t *header;
  584. struct buffer_head *bh = jh2bh(descriptor);
  585. if (is_journal_aborted(journal)) {
  586. put_bh(bh);
  587. return;
  588. }
  589. header = (jbd2_journal_revoke_header_t *) jh2bh(descriptor)->b_data;
  590. header->r_count = cpu_to_be32(offset);
  591. jbd2_revoke_csum_set(journal, descriptor);
  592. set_buffer_jwrite(bh);
  593. BUFFER_TRACE(bh, "write");
  594. set_buffer_dirty(bh);
  595. write_dirty_buffer(bh, write_op);
  596. }
  597. #endif
  598. /*
  599. * Revoke support for recovery.
  600. *
  601. * Recovery needs to be able to:
  602. *
  603. * record all revoke records, including the tid of the latest instance
  604. * of each revoke in the journal
  605. *
  606. * check whether a given block in a given transaction should be replayed
  607. * (ie. has not been revoked by a revoke record in that or a subsequent
  608. * transaction)
  609. *
  610. * empty the revoke table after recovery.
  611. */
  612. /*
  613. * First, setting revoke records. We create a new revoke record for
  614. * every block ever revoked in the log as we scan it for recovery, and
  615. * we update the existing records if we find multiple revokes for a
  616. * single block.
  617. */
  618. int jbd2_journal_set_revoke(journal_t *journal,
  619. unsigned long long blocknr,
  620. tid_t sequence)
  621. {
  622. struct jbd2_revoke_record_s *record;
  623. record = find_revoke_record(journal, blocknr);
  624. if (record) {
  625. /* If we have multiple occurrences, only record the
  626. * latest sequence number in the hashed record */
  627. if (tid_gt(sequence, record->sequence))
  628. record->sequence = sequence;
  629. return 0;
  630. }
  631. return insert_revoke_hash(journal, blocknr, sequence);
  632. }
  633. /*
  634. * Test revoke records. For a given block referenced in the log, has
  635. * that block been revoked? A revoke record with a given transaction
  636. * sequence number revokes all blocks in that transaction and earlier
  637. * ones, but later transactions still need replayed.
  638. */
  639. int jbd2_journal_test_revoke(journal_t *journal,
  640. unsigned long long blocknr,
  641. tid_t sequence)
  642. {
  643. struct jbd2_revoke_record_s *record;
  644. record = find_revoke_record(journal, blocknr);
  645. if (!record)
  646. return 0;
  647. if (tid_gt(sequence, record->sequence))
  648. return 0;
  649. return 1;
  650. }
  651. /*
  652. * Finally, once recovery is over, we need to clear the revoke table so
  653. * that it can be reused by the running filesystem.
  654. */
  655. void jbd2_journal_clear_revoke(journal_t *journal)
  656. {
  657. int i;
  658. struct list_head *hash_list;
  659. struct jbd2_revoke_record_s *record;
  660. struct jbd2_revoke_table_s *revoke;
  661. revoke = journal->j_revoke;
  662. for (i = 0; i < revoke->hash_size; i++) {
  663. hash_list = &revoke->hash_table[i];
  664. while (!list_empty(hash_list)) {
  665. record = (struct jbd2_revoke_record_s*) hash_list->next;
  666. list_del(&record->hash);
  667. kmem_cache_free(jbd2_revoke_record_cache, record);
  668. }
  669. }
  670. }