fatent.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696
  1. /*
  2. * Copyright (C) 2004, OGAWA Hirofumi
  3. * Released under GPL v2.
  4. */
  5. #include <linux/module.h>
  6. #include <linux/fs.h>
  7. #include <linux/msdos_fs.h>
  8. #include <linux/blkdev.h>
  9. #include "fat.h"
  10. struct fatent_operations {
  11. void (*ent_blocknr)(struct super_block *, int, int *, sector_t *);
  12. void (*ent_set_ptr)(struct fat_entry *, int);
  13. int (*ent_bread)(struct super_block *, struct fat_entry *,
  14. int, sector_t);
  15. int (*ent_get)(struct fat_entry *);
  16. void (*ent_put)(struct fat_entry *, int);
  17. int (*ent_next)(struct fat_entry *);
  18. };
  19. static DEFINE_SPINLOCK(fat12_entry_lock);
  20. static void fat12_ent_blocknr(struct super_block *sb, int entry,
  21. int *offset, sector_t *blocknr)
  22. {
  23. struct msdos_sb_info *sbi = MSDOS_SB(sb);
  24. int bytes = entry + (entry >> 1);
  25. WARN_ON(entry < FAT_START_ENT || sbi->max_cluster <= entry);
  26. *offset = bytes & (sb->s_blocksize - 1);
  27. *blocknr = sbi->fat_start + (bytes >> sb->s_blocksize_bits);
  28. }
  29. static void fat_ent_blocknr(struct super_block *sb, int entry,
  30. int *offset, sector_t *blocknr)
  31. {
  32. struct msdos_sb_info *sbi = MSDOS_SB(sb);
  33. int bytes = (entry << sbi->fatent_shift);
  34. WARN_ON(entry < FAT_START_ENT || sbi->max_cluster <= entry);
  35. *offset = bytes & (sb->s_blocksize - 1);
  36. *blocknr = sbi->fat_start + (bytes >> sb->s_blocksize_bits);
  37. }
  38. static void fat12_ent_set_ptr(struct fat_entry *fatent, int offset)
  39. {
  40. struct buffer_head **bhs = fatent->bhs;
  41. if (fatent->nr_bhs == 1) {
  42. WARN_ON(offset >= (bhs[0]->b_size - 1));
  43. fatent->u.ent12_p[0] = bhs[0]->b_data + offset;
  44. fatent->u.ent12_p[1] = bhs[0]->b_data + (offset + 1);
  45. } else {
  46. WARN_ON(offset != (bhs[0]->b_size - 1));
  47. fatent->u.ent12_p[0] = bhs[0]->b_data + offset;
  48. fatent->u.ent12_p[1] = bhs[1]->b_data;
  49. }
  50. }
  51. static void fat16_ent_set_ptr(struct fat_entry *fatent, int offset)
  52. {
  53. WARN_ON(offset & (2 - 1));
  54. fatent->u.ent16_p = (__le16 *)(fatent->bhs[0]->b_data + offset);
  55. }
  56. static void fat32_ent_set_ptr(struct fat_entry *fatent, int offset)
  57. {
  58. WARN_ON(offset & (4 - 1));
  59. fatent->u.ent32_p = (__le32 *)(fatent->bhs[0]->b_data + offset);
  60. }
  61. static int fat12_ent_bread(struct super_block *sb, struct fat_entry *fatent,
  62. int offset, sector_t blocknr)
  63. {
  64. struct buffer_head **bhs = fatent->bhs;
  65. WARN_ON(blocknr < MSDOS_SB(sb)->fat_start);
  66. fatent->fat_inode = MSDOS_SB(sb)->fat_inode;
  67. bhs[0] = sb_bread(sb, blocknr);
  68. if (!bhs[0])
  69. goto err;
  70. if ((offset + 1) < sb->s_blocksize)
  71. fatent->nr_bhs = 1;
  72. else {
  73. /* This entry is block boundary, it needs the next block */
  74. blocknr++;
  75. bhs[1] = sb_bread(sb, blocknr);
  76. if (!bhs[1])
  77. goto err_brelse;
  78. fatent->nr_bhs = 2;
  79. }
  80. fat12_ent_set_ptr(fatent, offset);
  81. return 0;
  82. err_brelse:
  83. brelse(bhs[0]);
  84. err:
  85. fat_msg(sb, KERN_ERR, "FAT read failed (blocknr %llu)", (llu)blocknr);
  86. return -EIO;
  87. }
  88. static int fat_ent_bread(struct super_block *sb, struct fat_entry *fatent,
  89. int offset, sector_t blocknr)
  90. {
  91. struct fatent_operations *ops = MSDOS_SB(sb)->fatent_ops;
  92. WARN_ON(blocknr < MSDOS_SB(sb)->fat_start);
  93. fatent->fat_inode = MSDOS_SB(sb)->fat_inode;
  94. fatent->bhs[0] = sb_bread(sb, blocknr);
  95. if (!fatent->bhs[0]) {
  96. fat_msg(sb, KERN_ERR, "FAT read failed (blocknr %llu)",
  97. (llu)blocknr);
  98. return -EIO;
  99. }
  100. fatent->nr_bhs = 1;
  101. ops->ent_set_ptr(fatent, offset);
  102. return 0;
  103. }
  104. static int fat12_ent_get(struct fat_entry *fatent)
  105. {
  106. u8 **ent12_p = fatent->u.ent12_p;
  107. int next;
  108. spin_lock(&fat12_entry_lock);
  109. if (fatent->entry & 1)
  110. next = (*ent12_p[0] >> 4) | (*ent12_p[1] << 4);
  111. else
  112. next = (*ent12_p[1] << 8) | *ent12_p[0];
  113. spin_unlock(&fat12_entry_lock);
  114. next &= 0x0fff;
  115. if (next >= BAD_FAT12)
  116. next = FAT_ENT_EOF;
  117. return next;
  118. }
  119. static int fat16_ent_get(struct fat_entry *fatent)
  120. {
  121. int next = le16_to_cpu(*fatent->u.ent16_p);
  122. WARN_ON((unsigned long)fatent->u.ent16_p & (2 - 1));
  123. if (next >= BAD_FAT16)
  124. next = FAT_ENT_EOF;
  125. return next;
  126. }
  127. static int fat32_ent_get(struct fat_entry *fatent)
  128. {
  129. int next = le32_to_cpu(*fatent->u.ent32_p) & 0x0fffffff;
  130. WARN_ON((unsigned long)fatent->u.ent32_p & (4 - 1));
  131. if (next >= BAD_FAT32)
  132. next = FAT_ENT_EOF;
  133. return next;
  134. }
  135. static void fat12_ent_put(struct fat_entry *fatent, int new)
  136. {
  137. u8 **ent12_p = fatent->u.ent12_p;
  138. if (new == FAT_ENT_EOF)
  139. new = EOF_FAT12;
  140. spin_lock(&fat12_entry_lock);
  141. if (fatent->entry & 1) {
  142. *ent12_p[0] = (new << 4) | (*ent12_p[0] & 0x0f);
  143. *ent12_p[1] = new >> 4;
  144. } else {
  145. *ent12_p[0] = new & 0xff;
  146. *ent12_p[1] = (*ent12_p[1] & 0xf0) | (new >> 8);
  147. }
  148. spin_unlock(&fat12_entry_lock);
  149. mark_buffer_dirty_inode(fatent->bhs[0], fatent->fat_inode);
  150. if (fatent->nr_bhs == 2)
  151. mark_buffer_dirty_inode(fatent->bhs[1], fatent->fat_inode);
  152. }
  153. static void fat16_ent_put(struct fat_entry *fatent, int new)
  154. {
  155. if (new == FAT_ENT_EOF)
  156. new = EOF_FAT16;
  157. *fatent->u.ent16_p = cpu_to_le16(new);
  158. mark_buffer_dirty_inode(fatent->bhs[0], fatent->fat_inode);
  159. }
  160. static void fat32_ent_put(struct fat_entry *fatent, int new)
  161. {
  162. if (new == FAT_ENT_EOF)
  163. new = EOF_FAT32;
  164. WARN_ON(new & 0xf0000000);
  165. new |= le32_to_cpu(*fatent->u.ent32_p) & ~0x0fffffff;
  166. *fatent->u.ent32_p = cpu_to_le32(new);
  167. mark_buffer_dirty_inode(fatent->bhs[0], fatent->fat_inode);
  168. }
  169. static int fat12_ent_next(struct fat_entry *fatent)
  170. {
  171. u8 **ent12_p = fatent->u.ent12_p;
  172. struct buffer_head **bhs = fatent->bhs;
  173. u8 *nextp = ent12_p[1] + 1 + (fatent->entry & 1);
  174. fatent->entry++;
  175. if (fatent->nr_bhs == 1) {
  176. WARN_ON(ent12_p[0] > (u8 *)(bhs[0]->b_data + (bhs[0]->b_size - 2)));
  177. WARN_ON(ent12_p[1] > (u8 *)(bhs[0]->b_data + (bhs[0]->b_size - 1)));
  178. if (nextp < (u8 *)(bhs[0]->b_data + (bhs[0]->b_size - 1))) {
  179. ent12_p[0] = nextp - 1;
  180. ent12_p[1] = nextp;
  181. return 1;
  182. }
  183. } else {
  184. WARN_ON(ent12_p[0] != (u8 *)(bhs[0]->b_data + (bhs[0]->b_size - 1)));
  185. WARN_ON(ent12_p[1] != (u8 *)bhs[1]->b_data);
  186. ent12_p[0] = nextp - 1;
  187. ent12_p[1] = nextp;
  188. brelse(bhs[0]);
  189. bhs[0] = bhs[1];
  190. fatent->nr_bhs = 1;
  191. return 1;
  192. }
  193. ent12_p[0] = NULL;
  194. ent12_p[1] = NULL;
  195. return 0;
  196. }
  197. static int fat16_ent_next(struct fat_entry *fatent)
  198. {
  199. const struct buffer_head *bh = fatent->bhs[0];
  200. fatent->entry++;
  201. if (fatent->u.ent16_p < (__le16 *)(bh->b_data + (bh->b_size - 2))) {
  202. fatent->u.ent16_p++;
  203. return 1;
  204. }
  205. fatent->u.ent16_p = NULL;
  206. return 0;
  207. }
  208. static int fat32_ent_next(struct fat_entry *fatent)
  209. {
  210. const struct buffer_head *bh = fatent->bhs[0];
  211. fatent->entry++;
  212. if (fatent->u.ent32_p < (__le32 *)(bh->b_data + (bh->b_size - 4))) {
  213. fatent->u.ent32_p++;
  214. return 1;
  215. }
  216. fatent->u.ent32_p = NULL;
  217. return 0;
  218. }
  219. static struct fatent_operations fat12_ops = {
  220. .ent_blocknr = fat12_ent_blocknr,
  221. .ent_set_ptr = fat12_ent_set_ptr,
  222. .ent_bread = fat12_ent_bread,
  223. .ent_get = fat12_ent_get,
  224. .ent_put = fat12_ent_put,
  225. .ent_next = fat12_ent_next,
  226. };
  227. static struct fatent_operations fat16_ops = {
  228. .ent_blocknr = fat_ent_blocknr,
  229. .ent_set_ptr = fat16_ent_set_ptr,
  230. .ent_bread = fat_ent_bread,
  231. .ent_get = fat16_ent_get,
  232. .ent_put = fat16_ent_put,
  233. .ent_next = fat16_ent_next,
  234. };
  235. static struct fatent_operations fat32_ops = {
  236. .ent_blocknr = fat_ent_blocknr,
  237. .ent_set_ptr = fat32_ent_set_ptr,
  238. .ent_bread = fat_ent_bread,
  239. .ent_get = fat32_ent_get,
  240. .ent_put = fat32_ent_put,
  241. .ent_next = fat32_ent_next,
  242. };
  243. static inline void lock_fat(struct msdos_sb_info *sbi)
  244. {
  245. mutex_lock(&sbi->fat_lock);
  246. }
  247. static inline void unlock_fat(struct msdos_sb_info *sbi)
  248. {
  249. mutex_unlock(&sbi->fat_lock);
  250. }
  251. void fat_ent_access_init(struct super_block *sb)
  252. {
  253. struct msdos_sb_info *sbi = MSDOS_SB(sb);
  254. mutex_init(&sbi->fat_lock);
  255. switch (sbi->fat_bits) {
  256. case 32:
  257. sbi->fatent_shift = 2;
  258. sbi->fatent_ops = &fat32_ops;
  259. break;
  260. case 16:
  261. sbi->fatent_shift = 1;
  262. sbi->fatent_ops = &fat16_ops;
  263. break;
  264. case 12:
  265. sbi->fatent_shift = -1;
  266. sbi->fatent_ops = &fat12_ops;
  267. break;
  268. }
  269. }
  270. static void mark_fsinfo_dirty(struct super_block *sb)
  271. {
  272. struct msdos_sb_info *sbi = MSDOS_SB(sb);
  273. if (sb->s_flags & MS_RDONLY || sbi->fat_bits != 32)
  274. return;
  275. __mark_inode_dirty(sbi->fsinfo_inode, I_DIRTY_SYNC);
  276. }
  277. static inline int fat_ent_update_ptr(struct super_block *sb,
  278. struct fat_entry *fatent,
  279. int offset, sector_t blocknr)
  280. {
  281. struct msdos_sb_info *sbi = MSDOS_SB(sb);
  282. struct fatent_operations *ops = sbi->fatent_ops;
  283. struct buffer_head **bhs = fatent->bhs;
  284. /* Is this fatent's blocks including this entry? */
  285. if (!fatent->nr_bhs || bhs[0]->b_blocknr != blocknr)
  286. return 0;
  287. if (sbi->fat_bits == 12) {
  288. if ((offset + 1) < sb->s_blocksize) {
  289. /* This entry is on bhs[0]. */
  290. if (fatent->nr_bhs == 2) {
  291. brelse(bhs[1]);
  292. fatent->nr_bhs = 1;
  293. }
  294. } else {
  295. /* This entry needs the next block. */
  296. if (fatent->nr_bhs != 2)
  297. return 0;
  298. if (bhs[1]->b_blocknr != (blocknr + 1))
  299. return 0;
  300. }
  301. }
  302. ops->ent_set_ptr(fatent, offset);
  303. return 1;
  304. }
  305. int fat_ent_read(struct inode *inode, struct fat_entry *fatent, int entry)
  306. {
  307. struct super_block *sb = inode->i_sb;
  308. struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
  309. struct fatent_operations *ops = sbi->fatent_ops;
  310. int err, offset;
  311. sector_t blocknr;
  312. if (entry < FAT_START_ENT || sbi->max_cluster <= entry) {
  313. fatent_brelse(fatent);
  314. fat_fs_error(sb, "invalid access to FAT (entry 0x%08x)", entry);
  315. return -EIO;
  316. }
  317. fatent_set_entry(fatent, entry);
  318. ops->ent_blocknr(sb, entry, &offset, &blocknr);
  319. if (!fat_ent_update_ptr(sb, fatent, offset, blocknr)) {
  320. fatent_brelse(fatent);
  321. err = ops->ent_bread(sb, fatent, offset, blocknr);
  322. if (err)
  323. return err;
  324. }
  325. return ops->ent_get(fatent);
  326. }
  327. /* FIXME: We can write the blocks as more big chunk. */
  328. static int fat_mirror_bhs(struct super_block *sb, struct buffer_head **bhs,
  329. int nr_bhs)
  330. {
  331. struct msdos_sb_info *sbi = MSDOS_SB(sb);
  332. struct buffer_head *c_bh;
  333. int err, n, copy;
  334. err = 0;
  335. for (copy = 1; copy < sbi->fats; copy++) {
  336. sector_t backup_fat = sbi->fat_length * copy;
  337. for (n = 0; n < nr_bhs; n++) {
  338. c_bh = sb_getblk(sb, backup_fat + bhs[n]->b_blocknr);
  339. if (!c_bh) {
  340. err = -ENOMEM;
  341. goto error;
  342. }
  343. memcpy(c_bh->b_data, bhs[n]->b_data, sb->s_blocksize);
  344. set_buffer_uptodate(c_bh);
  345. mark_buffer_dirty_inode(c_bh, sbi->fat_inode);
  346. if (sb->s_flags & MS_SYNCHRONOUS)
  347. err = sync_dirty_buffer(c_bh);
  348. brelse(c_bh);
  349. if (err)
  350. goto error;
  351. }
  352. }
  353. error:
  354. return err;
  355. }
  356. int fat_ent_write(struct inode *inode, struct fat_entry *fatent,
  357. int new, int wait)
  358. {
  359. struct super_block *sb = inode->i_sb;
  360. struct fatent_operations *ops = MSDOS_SB(sb)->fatent_ops;
  361. int err;
  362. ops->ent_put(fatent, new);
  363. if (wait) {
  364. err = fat_sync_bhs(fatent->bhs, fatent->nr_bhs);
  365. if (err)
  366. return err;
  367. }
  368. return fat_mirror_bhs(sb, fatent->bhs, fatent->nr_bhs);
  369. }
  370. static inline int fat_ent_next(struct msdos_sb_info *sbi,
  371. struct fat_entry *fatent)
  372. {
  373. if (sbi->fatent_ops->ent_next(fatent)) {
  374. if (fatent->entry < sbi->max_cluster)
  375. return 1;
  376. }
  377. return 0;
  378. }
  379. static inline int fat_ent_read_block(struct super_block *sb,
  380. struct fat_entry *fatent)
  381. {
  382. struct fatent_operations *ops = MSDOS_SB(sb)->fatent_ops;
  383. sector_t blocknr;
  384. int offset;
  385. fatent_brelse(fatent);
  386. ops->ent_blocknr(sb, fatent->entry, &offset, &blocknr);
  387. return ops->ent_bread(sb, fatent, offset, blocknr);
  388. }
  389. static void fat_collect_bhs(struct buffer_head **bhs, int *nr_bhs,
  390. struct fat_entry *fatent)
  391. {
  392. int n, i;
  393. for (n = 0; n < fatent->nr_bhs; n++) {
  394. for (i = 0; i < *nr_bhs; i++) {
  395. if (fatent->bhs[n] == bhs[i])
  396. break;
  397. }
  398. if (i == *nr_bhs) {
  399. get_bh(fatent->bhs[n]);
  400. bhs[i] = fatent->bhs[n];
  401. (*nr_bhs)++;
  402. }
  403. }
  404. }
  405. int fat_alloc_clusters(struct inode *inode, int *cluster, int nr_cluster)
  406. {
  407. struct super_block *sb = inode->i_sb;
  408. struct msdos_sb_info *sbi = MSDOS_SB(sb);
  409. struct fatent_operations *ops = sbi->fatent_ops;
  410. struct fat_entry fatent, prev_ent;
  411. struct buffer_head *bhs[MAX_BUF_PER_PAGE];
  412. int i, count, err, nr_bhs, idx_clus;
  413. BUG_ON(nr_cluster > (MAX_BUF_PER_PAGE / 2)); /* fixed limit */
  414. lock_fat(sbi);
  415. if (sbi->free_clusters != -1 && sbi->free_clus_valid &&
  416. sbi->free_clusters < nr_cluster) {
  417. unlock_fat(sbi);
  418. return -ENOSPC;
  419. }
  420. err = nr_bhs = idx_clus = 0;
  421. count = FAT_START_ENT;
  422. fatent_init(&prev_ent);
  423. fatent_init(&fatent);
  424. fatent_set_entry(&fatent, sbi->prev_free + 1);
  425. while (count < sbi->max_cluster) {
  426. if (fatent.entry >= sbi->max_cluster)
  427. fatent.entry = FAT_START_ENT;
  428. fatent_set_entry(&fatent, fatent.entry);
  429. err = fat_ent_read_block(sb, &fatent);
  430. if (err)
  431. goto out;
  432. /* Find the free entries in a block */
  433. do {
  434. if (ops->ent_get(&fatent) == FAT_ENT_FREE) {
  435. int entry = fatent.entry;
  436. /* make the cluster chain */
  437. ops->ent_put(&fatent, FAT_ENT_EOF);
  438. if (prev_ent.nr_bhs)
  439. ops->ent_put(&prev_ent, entry);
  440. fat_collect_bhs(bhs, &nr_bhs, &fatent);
  441. sbi->prev_free = entry;
  442. if (sbi->free_clusters != -1)
  443. sbi->free_clusters--;
  444. cluster[idx_clus] = entry;
  445. idx_clus++;
  446. if (idx_clus == nr_cluster)
  447. goto out;
  448. /*
  449. * fat_collect_bhs() gets ref-count of bhs,
  450. * so we can still use the prev_ent.
  451. */
  452. prev_ent = fatent;
  453. }
  454. count++;
  455. if (count == sbi->max_cluster)
  456. break;
  457. } while (fat_ent_next(sbi, &fatent));
  458. }
  459. /* Couldn't allocate the free entries */
  460. sbi->free_clusters = 0;
  461. sbi->free_clus_valid = 1;
  462. err = -ENOSPC;
  463. out:
  464. unlock_fat(sbi);
  465. mark_fsinfo_dirty(sb);
  466. fatent_brelse(&fatent);
  467. if (!err) {
  468. if (inode_needs_sync(inode))
  469. err = fat_sync_bhs(bhs, nr_bhs);
  470. if (!err)
  471. err = fat_mirror_bhs(sb, bhs, nr_bhs);
  472. }
  473. for (i = 0; i < nr_bhs; i++)
  474. brelse(bhs[i]);
  475. if (err && idx_clus)
  476. fat_free_clusters(inode, cluster[0]);
  477. return err;
  478. }
  479. int fat_free_clusters(struct inode *inode, int cluster)
  480. {
  481. struct super_block *sb = inode->i_sb;
  482. struct msdos_sb_info *sbi = MSDOS_SB(sb);
  483. struct fatent_operations *ops = sbi->fatent_ops;
  484. struct fat_entry fatent;
  485. struct buffer_head *bhs[MAX_BUF_PER_PAGE];
  486. int i, err, nr_bhs;
  487. int first_cl = cluster, dirty_fsinfo = 0;
  488. nr_bhs = 0;
  489. fatent_init(&fatent);
  490. lock_fat(sbi);
  491. do {
  492. cluster = fat_ent_read(inode, &fatent, cluster);
  493. if (cluster < 0) {
  494. err = cluster;
  495. goto error;
  496. } else if (cluster == FAT_ENT_FREE) {
  497. fat_fs_error(sb, "%s: deleting FAT entry beyond EOF",
  498. __func__);
  499. err = -EIO;
  500. goto error;
  501. }
  502. if (sbi->options.discard) {
  503. /*
  504. * Issue discard for the sectors we no longer
  505. * care about, batching contiguous clusters
  506. * into one request
  507. */
  508. if (cluster != fatent.entry + 1) {
  509. int nr_clus = fatent.entry - first_cl + 1;
  510. sb_issue_discard(sb,
  511. fat_clus_to_blknr(sbi, first_cl),
  512. nr_clus * sbi->sec_per_clus,
  513. GFP_NOFS, 0);
  514. first_cl = cluster;
  515. }
  516. }
  517. ops->ent_put(&fatent, FAT_ENT_FREE);
  518. if (sbi->free_clusters != -1) {
  519. sbi->free_clusters++;
  520. dirty_fsinfo = 1;
  521. }
  522. if (nr_bhs + fatent.nr_bhs > MAX_BUF_PER_PAGE) {
  523. if (sb->s_flags & MS_SYNCHRONOUS) {
  524. err = fat_sync_bhs(bhs, nr_bhs);
  525. if (err)
  526. goto error;
  527. }
  528. err = fat_mirror_bhs(sb, bhs, nr_bhs);
  529. if (err)
  530. goto error;
  531. for (i = 0; i < nr_bhs; i++)
  532. brelse(bhs[i]);
  533. nr_bhs = 0;
  534. }
  535. fat_collect_bhs(bhs, &nr_bhs, &fatent);
  536. } while (cluster != FAT_ENT_EOF);
  537. if (sb->s_flags & MS_SYNCHRONOUS) {
  538. err = fat_sync_bhs(bhs, nr_bhs);
  539. if (err)
  540. goto error;
  541. }
  542. err = fat_mirror_bhs(sb, bhs, nr_bhs);
  543. error:
  544. fatent_brelse(&fatent);
  545. for (i = 0; i < nr_bhs; i++)
  546. brelse(bhs[i]);
  547. unlock_fat(sbi);
  548. if (dirty_fsinfo)
  549. mark_fsinfo_dirty(sb);
  550. return err;
  551. }
  552. EXPORT_SYMBOL_GPL(fat_free_clusters);
  553. /* 128kb is the whole sectors for FAT12 and FAT16 */
  554. #define FAT_READA_SIZE (128 * 1024)
  555. static void fat_ent_reada(struct super_block *sb, struct fat_entry *fatent,
  556. unsigned long reada_blocks)
  557. {
  558. struct fatent_operations *ops = MSDOS_SB(sb)->fatent_ops;
  559. sector_t blocknr;
  560. int i, offset;
  561. ops->ent_blocknr(sb, fatent->entry, &offset, &blocknr);
  562. for (i = 0; i < reada_blocks; i++)
  563. sb_breadahead(sb, blocknr + i);
  564. }
  565. int fat_count_free_clusters(struct super_block *sb)
  566. {
  567. struct msdos_sb_info *sbi = MSDOS_SB(sb);
  568. struct fatent_operations *ops = sbi->fatent_ops;
  569. struct fat_entry fatent;
  570. unsigned long reada_blocks, reada_mask, cur_block;
  571. int err = 0, free;
  572. lock_fat(sbi);
  573. if (sbi->free_clusters != -1 && sbi->free_clus_valid)
  574. goto out;
  575. reada_blocks = FAT_READA_SIZE >> sb->s_blocksize_bits;
  576. reada_mask = reada_blocks - 1;
  577. cur_block = 0;
  578. free = 0;
  579. fatent_init(&fatent);
  580. fatent_set_entry(&fatent, FAT_START_ENT);
  581. while (fatent.entry < sbi->max_cluster) {
  582. /* readahead of fat blocks */
  583. if ((cur_block & reada_mask) == 0) {
  584. unsigned long rest = sbi->fat_length - cur_block;
  585. fat_ent_reada(sb, &fatent, min(reada_blocks, rest));
  586. }
  587. cur_block++;
  588. err = fat_ent_read_block(sb, &fatent);
  589. if (err)
  590. goto out;
  591. do {
  592. if (ops->ent_get(&fatent) == FAT_ENT_FREE)
  593. free++;
  594. } while (fat_ent_next(sbi, &fatent));
  595. }
  596. sbi->free_clusters = free;
  597. sbi->free_clus_valid = 1;
  598. mark_fsinfo_dirty(sb);
  599. fatent_brelse(&fatent);
  600. out:
  601. unlock_fat(sbi);
  602. return err;
  603. }