dcache.c 80 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169
  1. /*
  2. * fs/dcache.c
  3. *
  4. * Complete reimplementation
  5. * (C) 1997 Thomas Schoebel-Theuer,
  6. * with heavy changes by Linus Torvalds
  7. */
  8. /*
  9. * Notes on the allocation strategy:
  10. *
  11. * The dcache is a master of the icache - whenever a dcache entry
  12. * exists, the inode will always exist. "iput()" is done either when
  13. * the dcache entry is deleted or garbage collected.
  14. */
  15. #include <linux/syscalls.h>
  16. #include <linux/string.h>
  17. #include <linux/mm.h>
  18. #include <linux/fs.h>
  19. #include <linux/fsnotify.h>
  20. #include <linux/slab.h>
  21. #include <linux/init.h>
  22. #include <linux/hash.h>
  23. #include <linux/cache.h>
  24. #include <linux/export.h>
  25. #include <linux/mount.h>
  26. #include <linux/file.h>
  27. #include <asm/uaccess.h>
  28. #include <linux/security.h>
  29. #include <linux/seqlock.h>
  30. #include <linux/swap.h>
  31. #include <linux/bootmem.h>
  32. #include <linux/fs_struct.h>
  33. #include <linux/hardirq.h>
  34. #include <linux/bit_spinlock.h>
  35. #include <linux/rculist_bl.h>
  36. #include <linux/prefetch.h>
  37. #include <linux/ratelimit.h>
  38. #include "internal.h"
  39. #include "mount.h"
  40. /*
  41. * Usage:
  42. * dcache->d_inode->i_lock protects:
  43. * - i_dentry, d_alias, d_inode of aliases
  44. * dcache_hash_bucket lock protects:
  45. * - the dcache hash table
  46. * s_anon bl list spinlock protects:
  47. * - the s_anon list (see __d_drop)
  48. * dcache_lru_lock protects:
  49. * - the dcache lru lists and counters
  50. * d_lock protects:
  51. * - d_flags
  52. * - d_name
  53. * - d_lru
  54. * - d_count
  55. * - d_unhashed()
  56. * - d_parent and d_subdirs
  57. * - childrens' d_child and d_parent
  58. * - d_alias, d_inode
  59. *
  60. * Ordering:
  61. * dentry->d_inode->i_lock
  62. * dentry->d_lock
  63. * dcache_lru_lock
  64. * dcache_hash_bucket lock
  65. * s_anon lock
  66. *
  67. * If there is an ancestor relationship:
  68. * dentry->d_parent->...->d_parent->d_lock
  69. * ...
  70. * dentry->d_parent->d_lock
  71. * dentry->d_lock
  72. *
  73. * If no ancestor relationship:
  74. * if (dentry1 < dentry2)
  75. * dentry1->d_lock
  76. * dentry2->d_lock
  77. */
  78. int sysctl_vfs_cache_pressure __read_mostly = 100;
  79. EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
  80. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
  81. __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
  82. EXPORT_SYMBOL(rename_lock);
  83. static struct kmem_cache *dentry_cache __read_mostly;
  84. /*
  85. * This is the single most critical data structure when it comes
  86. * to the dcache: the hashtable for lookups. Somebody should try
  87. * to make this good - I've just made it work.
  88. *
  89. * This hash-function tries to avoid losing too many bits of hash
  90. * information, yet avoid using a prime hash-size or similar.
  91. */
  92. #define D_HASHBITS d_hash_shift
  93. #define D_HASHMASK d_hash_mask
  94. static unsigned int d_hash_mask __read_mostly;
  95. static unsigned int d_hash_shift __read_mostly;
  96. static struct hlist_bl_head *dentry_hashtable __read_mostly;
  97. static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
  98. unsigned int hash)
  99. {
  100. hash += (unsigned long) parent / L1_CACHE_BYTES;
  101. hash = hash + (hash >> D_HASHBITS);
  102. return dentry_hashtable + (hash & D_HASHMASK);
  103. }
  104. /* Statistics gathering. */
  105. struct dentry_stat_t dentry_stat = {
  106. .age_limit = 45,
  107. };
  108. static DEFINE_PER_CPU(unsigned int, nr_dentry);
  109. #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
  110. static int get_nr_dentry(void)
  111. {
  112. int i;
  113. int sum = 0;
  114. for_each_possible_cpu(i)
  115. sum += per_cpu(nr_dentry, i);
  116. return sum < 0 ? 0 : sum;
  117. }
  118. int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
  119. size_t *lenp, loff_t *ppos)
  120. {
  121. dentry_stat.nr_dentry = get_nr_dentry();
  122. return proc_dointvec(table, write, buffer, lenp, ppos);
  123. }
  124. #endif
  125. /*
  126. * Compare 2 name strings, return 0 if they match, otherwise non-zero.
  127. * The strings are both count bytes long, and count is non-zero.
  128. */
  129. #ifdef CONFIG_DCACHE_WORD_ACCESS
  130. #include <asm/word-at-a-time.h>
  131. /*
  132. * NOTE! 'cs' and 'scount' come from a dentry, so it has a
  133. * aligned allocation for this particular component. We don't
  134. * strictly need the load_unaligned_zeropad() safety, but it
  135. * doesn't hurt either.
  136. *
  137. * In contrast, 'ct' and 'tcount' can be from a pathname, and do
  138. * need the careful unaligned handling.
  139. */
  140. static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
  141. {
  142. unsigned long a,b,mask;
  143. for (;;) {
  144. a = *(unsigned long *)cs;
  145. b = load_unaligned_zeropad(ct);
  146. if (tcount < sizeof(unsigned long))
  147. break;
  148. if (unlikely(a != b))
  149. return 1;
  150. cs += sizeof(unsigned long);
  151. ct += sizeof(unsigned long);
  152. tcount -= sizeof(unsigned long);
  153. if (!tcount)
  154. return 0;
  155. }
  156. mask = ~(~0ul << tcount*8);
  157. return unlikely(!!((a ^ b) & mask));
  158. }
  159. #else
  160. static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
  161. {
  162. do {
  163. if (*cs != *ct)
  164. return 1;
  165. cs++;
  166. ct++;
  167. tcount--;
  168. } while (tcount);
  169. return 0;
  170. }
  171. #endif
  172. static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
  173. {
  174. const unsigned char *cs;
  175. /*
  176. * Be careful about RCU walk racing with rename:
  177. * use ACCESS_ONCE to fetch the name pointer.
  178. *
  179. * NOTE! Even if a rename will mean that the length
  180. * was not loaded atomically, we don't care. The
  181. * RCU walk will check the sequence count eventually,
  182. * and catch it. And we won't overrun the buffer,
  183. * because we're reading the name pointer atomically,
  184. * and a dentry name is guaranteed to be properly
  185. * terminated with a NUL byte.
  186. *
  187. * End result: even if 'len' is wrong, we'll exit
  188. * early because the data cannot match (there can
  189. * be no NUL in the ct/tcount data)
  190. */
  191. cs = ACCESS_ONCE(dentry->d_name.name);
  192. smp_read_barrier_depends();
  193. return dentry_string_cmp(cs, ct, tcount);
  194. }
  195. static void __d_free(struct rcu_head *head)
  196. {
  197. struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
  198. WARN_ON(!hlist_unhashed(&dentry->d_alias));
  199. if (dname_external(dentry))
  200. kfree(dentry->d_name.name);
  201. kmem_cache_free(dentry_cache, dentry);
  202. }
  203. /*
  204. * no locks, please.
  205. */
  206. static void d_free(struct dentry *dentry)
  207. {
  208. BUG_ON(dentry->d_count);
  209. this_cpu_dec(nr_dentry);
  210. if (dentry->d_op && dentry->d_op->d_release)
  211. dentry->d_op->d_release(dentry);
  212. /* if dentry was never visible to RCU, immediate free is OK */
  213. if (!(dentry->d_flags & DCACHE_RCUACCESS))
  214. __d_free(&dentry->d_u.d_rcu);
  215. else
  216. call_rcu(&dentry->d_u.d_rcu, __d_free);
  217. }
  218. /**
  219. * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
  220. * @dentry: the target dentry
  221. * After this call, in-progress rcu-walk path lookup will fail. This
  222. * should be called after unhashing, and after changing d_inode (if
  223. * the dentry has not already been unhashed).
  224. */
  225. static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
  226. {
  227. assert_spin_locked(&dentry->d_lock);
  228. /* Go through a barrier */
  229. write_seqcount_barrier(&dentry->d_seq);
  230. }
  231. /*
  232. * Release the dentry's inode, using the filesystem
  233. * d_iput() operation if defined. Dentry has no refcount
  234. * and is unhashed.
  235. */
  236. static void dentry_iput(struct dentry * dentry)
  237. __releases(dentry->d_lock)
  238. __releases(dentry->d_inode->i_lock)
  239. {
  240. struct inode *inode = dentry->d_inode;
  241. if (inode) {
  242. dentry->d_inode = NULL;
  243. hlist_del_init(&dentry->d_alias);
  244. spin_unlock(&dentry->d_lock);
  245. spin_unlock(&inode->i_lock);
  246. if (!inode->i_nlink)
  247. fsnotify_inoderemove(inode);
  248. if (dentry->d_op && dentry->d_op->d_iput)
  249. dentry->d_op->d_iput(dentry, inode);
  250. else
  251. iput(inode);
  252. } else {
  253. spin_unlock(&dentry->d_lock);
  254. }
  255. }
  256. /*
  257. * Release the dentry's inode, using the filesystem
  258. * d_iput() operation if defined. dentry remains in-use.
  259. */
  260. static void dentry_unlink_inode(struct dentry * dentry)
  261. __releases(dentry->d_lock)
  262. __releases(dentry->d_inode->i_lock)
  263. {
  264. struct inode *inode = dentry->d_inode;
  265. dentry->d_inode = NULL;
  266. hlist_del_init(&dentry->d_alias);
  267. dentry_rcuwalk_barrier(dentry);
  268. spin_unlock(&dentry->d_lock);
  269. spin_unlock(&inode->i_lock);
  270. if (!inode->i_nlink)
  271. fsnotify_inoderemove(inode);
  272. if (dentry->d_op && dentry->d_op->d_iput)
  273. dentry->d_op->d_iput(dentry, inode);
  274. else
  275. iput(inode);
  276. }
  277. /*
  278. * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
  279. */
  280. static void dentry_lru_add(struct dentry *dentry)
  281. {
  282. if (list_empty(&dentry->d_lru)) {
  283. spin_lock(&dcache_lru_lock);
  284. list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
  285. dentry->d_sb->s_nr_dentry_unused++;
  286. dentry_stat.nr_unused++;
  287. spin_unlock(&dcache_lru_lock);
  288. }
  289. }
  290. static void __dentry_lru_del(struct dentry *dentry)
  291. {
  292. list_del_init(&dentry->d_lru);
  293. dentry->d_flags &= ~DCACHE_SHRINK_LIST;
  294. dentry->d_sb->s_nr_dentry_unused--;
  295. dentry_stat.nr_unused--;
  296. }
  297. /*
  298. * Remove a dentry with references from the LRU.
  299. */
  300. static void dentry_lru_del(struct dentry *dentry)
  301. {
  302. if (!list_empty(&dentry->d_lru)) {
  303. spin_lock(&dcache_lru_lock);
  304. __dentry_lru_del(dentry);
  305. spin_unlock(&dcache_lru_lock);
  306. }
  307. }
  308. /*
  309. * Remove a dentry that is unreferenced and about to be pruned
  310. * (unhashed and destroyed) from the LRU, and inform the file system.
  311. * This wrapper should be called _prior_ to unhashing a victim dentry.
  312. */
  313. static void dentry_lru_prune(struct dentry *dentry)
  314. {
  315. if (!list_empty(&dentry->d_lru)) {
  316. if (dentry->d_flags & DCACHE_OP_PRUNE)
  317. dentry->d_op->d_prune(dentry);
  318. spin_lock(&dcache_lru_lock);
  319. __dentry_lru_del(dentry);
  320. spin_unlock(&dcache_lru_lock);
  321. }
  322. }
  323. static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
  324. {
  325. spin_lock(&dcache_lru_lock);
  326. if (list_empty(&dentry->d_lru)) {
  327. list_add_tail(&dentry->d_lru, list);
  328. dentry->d_sb->s_nr_dentry_unused++;
  329. dentry_stat.nr_unused++;
  330. } else {
  331. list_move_tail(&dentry->d_lru, list);
  332. }
  333. spin_unlock(&dcache_lru_lock);
  334. }
  335. /**
  336. * d_kill - kill dentry and return parent
  337. * @dentry: dentry to kill
  338. * @parent: parent dentry
  339. *
  340. * The dentry must already be unhashed and removed from the LRU.
  341. *
  342. * If this is the root of the dentry tree, return NULL.
  343. *
  344. * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
  345. * d_kill.
  346. */
  347. static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
  348. __releases(dentry->d_lock)
  349. __releases(parent->d_lock)
  350. __releases(dentry->d_inode->i_lock)
  351. {
  352. list_del(&dentry->d_u.d_child);
  353. /*
  354. * Inform try_to_ascend() that we are no longer attached to the
  355. * dentry tree
  356. */
  357. dentry->d_flags |= DCACHE_DISCONNECTED;
  358. if (parent)
  359. spin_unlock(&parent->d_lock);
  360. dentry_iput(dentry);
  361. /*
  362. * dentry_iput drops the locks, at which point nobody (except
  363. * transient RCU lookups) can reach this dentry.
  364. */
  365. d_free(dentry);
  366. return parent;
  367. }
  368. /*
  369. * Unhash a dentry without inserting an RCU walk barrier or checking that
  370. * dentry->d_lock is locked. The caller must take care of that, if
  371. * appropriate.
  372. */
  373. static void __d_shrink(struct dentry *dentry)
  374. {
  375. if (!d_unhashed(dentry)) {
  376. struct hlist_bl_head *b;
  377. if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
  378. b = &dentry->d_sb->s_anon;
  379. else
  380. b = d_hash(dentry->d_parent, dentry->d_name.hash);
  381. hlist_bl_lock(b);
  382. __hlist_bl_del(&dentry->d_hash);
  383. dentry->d_hash.pprev = NULL;
  384. hlist_bl_unlock(b);
  385. }
  386. }
  387. /**
  388. * d_drop - drop a dentry
  389. * @dentry: dentry to drop
  390. *
  391. * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
  392. * be found through a VFS lookup any more. Note that this is different from
  393. * deleting the dentry - d_delete will try to mark the dentry negative if
  394. * possible, giving a successful _negative_ lookup, while d_drop will
  395. * just make the cache lookup fail.
  396. *
  397. * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
  398. * reason (NFS timeouts or autofs deletes).
  399. *
  400. * __d_drop requires dentry->d_lock.
  401. */
  402. void __d_drop(struct dentry *dentry)
  403. {
  404. if (!d_unhashed(dentry)) {
  405. __d_shrink(dentry);
  406. dentry_rcuwalk_barrier(dentry);
  407. }
  408. }
  409. EXPORT_SYMBOL(__d_drop);
  410. void d_drop(struct dentry *dentry)
  411. {
  412. spin_lock(&dentry->d_lock);
  413. __d_drop(dentry);
  414. spin_unlock(&dentry->d_lock);
  415. }
  416. EXPORT_SYMBOL(d_drop);
  417. /*
  418. * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
  419. * @dentry: dentry to drop
  420. *
  421. * This is called when we do a lookup on a placeholder dentry that needed to be
  422. * looked up. The dentry should have been hashed in order for it to be found by
  423. * the lookup code, but now needs to be unhashed while we do the actual lookup
  424. * and clear the DCACHE_NEED_LOOKUP flag.
  425. */
  426. void d_clear_need_lookup(struct dentry *dentry)
  427. {
  428. spin_lock(&dentry->d_lock);
  429. __d_drop(dentry);
  430. dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
  431. spin_unlock(&dentry->d_lock);
  432. }
  433. EXPORT_SYMBOL(d_clear_need_lookup);
  434. /*
  435. * Finish off a dentry we've decided to kill.
  436. * dentry->d_lock must be held, returns with it unlocked.
  437. * If ref is non-zero, then decrement the refcount too.
  438. * Returns dentry requiring refcount drop, or NULL if we're done.
  439. */
  440. static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
  441. __releases(dentry->d_lock)
  442. {
  443. struct inode *inode;
  444. struct dentry *parent;
  445. inode = dentry->d_inode;
  446. if (inode && !spin_trylock(&inode->i_lock)) {
  447. relock:
  448. spin_unlock(&dentry->d_lock);
  449. cpu_relax();
  450. return dentry; /* try again with same dentry */
  451. }
  452. if (IS_ROOT(dentry))
  453. parent = NULL;
  454. else
  455. parent = dentry->d_parent;
  456. if (parent && !spin_trylock(&parent->d_lock)) {
  457. if (inode)
  458. spin_unlock(&inode->i_lock);
  459. goto relock;
  460. }
  461. if (ref)
  462. dentry->d_count--;
  463. /*
  464. * if dentry was on the d_lru list delete it from there.
  465. * inform the fs via d_prune that this dentry is about to be
  466. * unhashed and destroyed.
  467. */
  468. dentry_lru_prune(dentry);
  469. /* if it was on the hash then remove it */
  470. __d_drop(dentry);
  471. return d_kill(dentry, parent);
  472. }
  473. /*
  474. * This is dput
  475. *
  476. * This is complicated by the fact that we do not want to put
  477. * dentries that are no longer on any hash chain on the unused
  478. * list: we'd much rather just get rid of them immediately.
  479. *
  480. * However, that implies that we have to traverse the dentry
  481. * tree upwards to the parents which might _also_ now be
  482. * scheduled for deletion (it may have been only waiting for
  483. * its last child to go away).
  484. *
  485. * This tail recursion is done by hand as we don't want to depend
  486. * on the compiler to always get this right (gcc generally doesn't).
  487. * Real recursion would eat up our stack space.
  488. */
  489. /*
  490. * dput - release a dentry
  491. * @dentry: dentry to release
  492. *
  493. * Release a dentry. This will drop the usage count and if appropriate
  494. * call the dentry unlink method as well as removing it from the queues and
  495. * releasing its resources. If the parent dentries were scheduled for release
  496. * they too may now get deleted.
  497. */
  498. void dput(struct dentry *dentry)
  499. {
  500. if (!dentry)
  501. return;
  502. repeat:
  503. if (dentry->d_count == 1)
  504. might_sleep();
  505. spin_lock(&dentry->d_lock);
  506. BUG_ON(!dentry->d_count);
  507. if (dentry->d_count > 1) {
  508. dentry->d_count--;
  509. spin_unlock(&dentry->d_lock);
  510. return;
  511. }
  512. if (dentry->d_flags & DCACHE_OP_DELETE) {
  513. if (dentry->d_op->d_delete(dentry))
  514. goto kill_it;
  515. }
  516. /* Unreachable? Get rid of it */
  517. if (d_unhashed(dentry))
  518. goto kill_it;
  519. /*
  520. * If this dentry needs lookup, don't set the referenced flag so that it
  521. * is more likely to be cleaned up by the dcache shrinker in case of
  522. * memory pressure.
  523. */
  524. if (!d_need_lookup(dentry))
  525. dentry->d_flags |= DCACHE_REFERENCED;
  526. dentry_lru_add(dentry);
  527. dentry->d_count--;
  528. spin_unlock(&dentry->d_lock);
  529. return;
  530. kill_it:
  531. dentry = dentry_kill(dentry, 1);
  532. if (dentry)
  533. goto repeat;
  534. }
  535. EXPORT_SYMBOL(dput);
  536. /**
  537. * d_invalidate - invalidate a dentry
  538. * @dentry: dentry to invalidate
  539. *
  540. * Try to invalidate the dentry if it turns out to be
  541. * possible. If there are other dentries that can be
  542. * reached through this one we can't delete it and we
  543. * return -EBUSY. On success we return 0.
  544. *
  545. * no dcache lock.
  546. */
  547. int d_invalidate(struct dentry * dentry)
  548. {
  549. /*
  550. * If it's already been dropped, return OK.
  551. */
  552. spin_lock(&dentry->d_lock);
  553. if (d_unhashed(dentry)) {
  554. spin_unlock(&dentry->d_lock);
  555. return 0;
  556. }
  557. /*
  558. * Check whether to do a partial shrink_dcache
  559. * to get rid of unused child entries.
  560. */
  561. if (!list_empty(&dentry->d_subdirs)) {
  562. spin_unlock(&dentry->d_lock);
  563. shrink_dcache_parent(dentry);
  564. spin_lock(&dentry->d_lock);
  565. }
  566. /*
  567. * Somebody else still using it?
  568. *
  569. * If it's a directory, we can't drop it
  570. * for fear of somebody re-populating it
  571. * with children (even though dropping it
  572. * would make it unreachable from the root,
  573. * we might still populate it if it was a
  574. * working directory or similar).
  575. * We also need to leave mountpoints alone,
  576. * directory or not.
  577. */
  578. if (dentry->d_count > 1 && dentry->d_inode) {
  579. if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
  580. spin_unlock(&dentry->d_lock);
  581. return -EBUSY;
  582. }
  583. }
  584. __d_drop(dentry);
  585. spin_unlock(&dentry->d_lock);
  586. return 0;
  587. }
  588. EXPORT_SYMBOL(d_invalidate);
  589. /* This must be called with d_lock held */
  590. static inline void __dget_dlock(struct dentry *dentry)
  591. {
  592. dentry->d_count++;
  593. }
  594. static inline void __dget(struct dentry *dentry)
  595. {
  596. spin_lock(&dentry->d_lock);
  597. __dget_dlock(dentry);
  598. spin_unlock(&dentry->d_lock);
  599. }
  600. struct dentry *dget_parent(struct dentry *dentry)
  601. {
  602. struct dentry *ret;
  603. repeat:
  604. /*
  605. * Don't need rcu_dereference because we re-check it was correct under
  606. * the lock.
  607. */
  608. rcu_read_lock();
  609. ret = dentry->d_parent;
  610. spin_lock(&ret->d_lock);
  611. if (unlikely(ret != dentry->d_parent)) {
  612. spin_unlock(&ret->d_lock);
  613. rcu_read_unlock();
  614. goto repeat;
  615. }
  616. rcu_read_unlock();
  617. BUG_ON(!ret->d_count);
  618. ret->d_count++;
  619. spin_unlock(&ret->d_lock);
  620. return ret;
  621. }
  622. EXPORT_SYMBOL(dget_parent);
  623. /**
  624. * d_find_alias - grab a hashed alias of inode
  625. * @inode: inode in question
  626. * @want_discon: flag, used by d_splice_alias, to request
  627. * that only a DISCONNECTED alias be returned.
  628. *
  629. * If inode has a hashed alias, or is a directory and has any alias,
  630. * acquire the reference to alias and return it. Otherwise return NULL.
  631. * Notice that if inode is a directory there can be only one alias and
  632. * it can be unhashed only if it has no children, or if it is the root
  633. * of a filesystem.
  634. *
  635. * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
  636. * any other hashed alias over that one unless @want_discon is set,
  637. * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
  638. */
  639. static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
  640. {
  641. struct dentry *alias, *discon_alias;
  642. struct hlist_node *p;
  643. again:
  644. discon_alias = NULL;
  645. hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
  646. spin_lock(&alias->d_lock);
  647. if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
  648. if (IS_ROOT(alias) &&
  649. (alias->d_flags & DCACHE_DISCONNECTED)) {
  650. discon_alias = alias;
  651. } else if (!want_discon) {
  652. __dget_dlock(alias);
  653. spin_unlock(&alias->d_lock);
  654. return alias;
  655. }
  656. }
  657. spin_unlock(&alias->d_lock);
  658. }
  659. if (discon_alias) {
  660. alias = discon_alias;
  661. spin_lock(&alias->d_lock);
  662. if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
  663. if (IS_ROOT(alias) &&
  664. (alias->d_flags & DCACHE_DISCONNECTED)) {
  665. __dget_dlock(alias);
  666. spin_unlock(&alias->d_lock);
  667. return alias;
  668. }
  669. }
  670. spin_unlock(&alias->d_lock);
  671. goto again;
  672. }
  673. return NULL;
  674. }
  675. struct dentry *d_find_alias(struct inode *inode)
  676. {
  677. struct dentry *de = NULL;
  678. if (!hlist_empty(&inode->i_dentry)) {
  679. spin_lock(&inode->i_lock);
  680. de = __d_find_alias(inode, 0);
  681. spin_unlock(&inode->i_lock);
  682. }
  683. return de;
  684. }
  685. EXPORT_SYMBOL(d_find_alias);
  686. /*
  687. * Try to kill dentries associated with this inode.
  688. * WARNING: you must own a reference to inode.
  689. */
  690. void d_prune_aliases(struct inode *inode)
  691. {
  692. struct dentry *dentry;
  693. struct hlist_node *p;
  694. restart:
  695. spin_lock(&inode->i_lock);
  696. hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
  697. spin_lock(&dentry->d_lock);
  698. if (!dentry->d_count) {
  699. __dget_dlock(dentry);
  700. __d_drop(dentry);
  701. spin_unlock(&dentry->d_lock);
  702. spin_unlock(&inode->i_lock);
  703. dput(dentry);
  704. goto restart;
  705. }
  706. spin_unlock(&dentry->d_lock);
  707. }
  708. spin_unlock(&inode->i_lock);
  709. }
  710. EXPORT_SYMBOL(d_prune_aliases);
  711. /*
  712. * Try to throw away a dentry - free the inode, dput the parent.
  713. * Requires dentry->d_lock is held, and dentry->d_count == 0.
  714. * Releases dentry->d_lock.
  715. *
  716. * This may fail if locks cannot be acquired no problem, just try again.
  717. */
  718. static void try_prune_one_dentry(struct dentry *dentry)
  719. __releases(dentry->d_lock)
  720. {
  721. struct dentry *parent;
  722. parent = dentry_kill(dentry, 0);
  723. /*
  724. * If dentry_kill returns NULL, we have nothing more to do.
  725. * if it returns the same dentry, trylocks failed. In either
  726. * case, just loop again.
  727. *
  728. * Otherwise, we need to prune ancestors too. This is necessary
  729. * to prevent quadratic behavior of shrink_dcache_parent(), but
  730. * is also expected to be beneficial in reducing dentry cache
  731. * fragmentation.
  732. */
  733. if (!parent)
  734. return;
  735. if (parent == dentry)
  736. return;
  737. /* Prune ancestors. */
  738. dentry = parent;
  739. while (dentry) {
  740. spin_lock(&dentry->d_lock);
  741. if (dentry->d_count > 1) {
  742. dentry->d_count--;
  743. spin_unlock(&dentry->d_lock);
  744. return;
  745. }
  746. dentry = dentry_kill(dentry, 1);
  747. }
  748. }
  749. static void shrink_dentry_list(struct list_head *list)
  750. {
  751. struct dentry *dentry;
  752. rcu_read_lock();
  753. for (;;) {
  754. dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
  755. if (&dentry->d_lru == list)
  756. break; /* empty */
  757. spin_lock(&dentry->d_lock);
  758. if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
  759. spin_unlock(&dentry->d_lock);
  760. continue;
  761. }
  762. /*
  763. * We found an inuse dentry which was not removed from
  764. * the LRU because of laziness during lookup. Do not free
  765. * it - just keep it off the LRU list.
  766. */
  767. if (dentry->d_count) {
  768. dentry_lru_del(dentry);
  769. spin_unlock(&dentry->d_lock);
  770. continue;
  771. }
  772. rcu_read_unlock();
  773. try_prune_one_dentry(dentry);
  774. rcu_read_lock();
  775. }
  776. rcu_read_unlock();
  777. }
  778. /**
  779. * prune_dcache_sb - shrink the dcache
  780. * @sb: superblock
  781. * @count: number of entries to try to free
  782. *
  783. * Attempt to shrink the superblock dcache LRU by @count entries. This is
  784. * done when we need more memory an called from the superblock shrinker
  785. * function.
  786. *
  787. * This function may fail to free any resources if all the dentries are in
  788. * use.
  789. */
  790. void prune_dcache_sb(struct super_block *sb, int count)
  791. {
  792. struct dentry *dentry;
  793. LIST_HEAD(referenced);
  794. LIST_HEAD(tmp);
  795. relock:
  796. spin_lock(&dcache_lru_lock);
  797. while (!list_empty(&sb->s_dentry_lru)) {
  798. dentry = list_entry(sb->s_dentry_lru.prev,
  799. struct dentry, d_lru);
  800. BUG_ON(dentry->d_sb != sb);
  801. if (!spin_trylock(&dentry->d_lock)) {
  802. spin_unlock(&dcache_lru_lock);
  803. cpu_relax();
  804. goto relock;
  805. }
  806. if (dentry->d_flags & DCACHE_REFERENCED) {
  807. dentry->d_flags &= ~DCACHE_REFERENCED;
  808. list_move(&dentry->d_lru, &referenced);
  809. spin_unlock(&dentry->d_lock);
  810. } else {
  811. list_move_tail(&dentry->d_lru, &tmp);
  812. dentry->d_flags |= DCACHE_SHRINK_LIST;
  813. spin_unlock(&dentry->d_lock);
  814. if (!--count)
  815. break;
  816. }
  817. cond_resched_lock(&dcache_lru_lock);
  818. }
  819. if (!list_empty(&referenced))
  820. list_splice(&referenced, &sb->s_dentry_lru);
  821. spin_unlock(&dcache_lru_lock);
  822. shrink_dentry_list(&tmp);
  823. }
  824. /**
  825. * shrink_dcache_sb - shrink dcache for a superblock
  826. * @sb: superblock
  827. *
  828. * Shrink the dcache for the specified super block. This is used to free
  829. * the dcache before unmounting a file system.
  830. */
  831. void shrink_dcache_sb(struct super_block *sb)
  832. {
  833. LIST_HEAD(tmp);
  834. spin_lock(&dcache_lru_lock);
  835. while (!list_empty(&sb->s_dentry_lru)) {
  836. list_splice_init(&sb->s_dentry_lru, &tmp);
  837. spin_unlock(&dcache_lru_lock);
  838. shrink_dentry_list(&tmp);
  839. spin_lock(&dcache_lru_lock);
  840. }
  841. spin_unlock(&dcache_lru_lock);
  842. }
  843. EXPORT_SYMBOL(shrink_dcache_sb);
  844. /*
  845. * destroy a single subtree of dentries for unmount
  846. * - see the comments on shrink_dcache_for_umount() for a description of the
  847. * locking
  848. */
  849. static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
  850. {
  851. struct dentry *parent;
  852. BUG_ON(!IS_ROOT(dentry));
  853. for (;;) {
  854. /* descend to the first leaf in the current subtree */
  855. while (!list_empty(&dentry->d_subdirs))
  856. dentry = list_entry(dentry->d_subdirs.next,
  857. struct dentry, d_u.d_child);
  858. /* consume the dentries from this leaf up through its parents
  859. * until we find one with children or run out altogether */
  860. do {
  861. struct inode *inode;
  862. /*
  863. * remove the dentry from the lru, and inform
  864. * the fs that this dentry is about to be
  865. * unhashed and destroyed.
  866. */
  867. dentry_lru_prune(dentry);
  868. __d_shrink(dentry);
  869. if (dentry->d_count != 0) {
  870. printk(KERN_ERR
  871. "BUG: Dentry %p{i=%lx,n=%s}"
  872. " still in use (%d)"
  873. " [unmount of %s %s]\n",
  874. dentry,
  875. dentry->d_inode ?
  876. dentry->d_inode->i_ino : 0UL,
  877. dentry->d_name.name,
  878. dentry->d_count,
  879. dentry->d_sb->s_type->name,
  880. dentry->d_sb->s_id);
  881. BUG();
  882. }
  883. if (IS_ROOT(dentry)) {
  884. parent = NULL;
  885. list_del(&dentry->d_u.d_child);
  886. } else {
  887. parent = dentry->d_parent;
  888. parent->d_count--;
  889. list_del(&dentry->d_u.d_child);
  890. }
  891. inode = dentry->d_inode;
  892. if (inode) {
  893. dentry->d_inode = NULL;
  894. hlist_del_init(&dentry->d_alias);
  895. if (dentry->d_op && dentry->d_op->d_iput)
  896. dentry->d_op->d_iput(dentry, inode);
  897. else
  898. iput(inode);
  899. }
  900. d_free(dentry);
  901. /* finished when we fall off the top of the tree,
  902. * otherwise we ascend to the parent and move to the
  903. * next sibling if there is one */
  904. if (!parent)
  905. return;
  906. dentry = parent;
  907. } while (list_empty(&dentry->d_subdirs));
  908. dentry = list_entry(dentry->d_subdirs.next,
  909. struct dentry, d_u.d_child);
  910. }
  911. }
  912. /*
  913. * destroy the dentries attached to a superblock on unmounting
  914. * - we don't need to use dentry->d_lock because:
  915. * - the superblock is detached from all mountings and open files, so the
  916. * dentry trees will not be rearranged by the VFS
  917. * - s_umount is write-locked, so the memory pressure shrinker will ignore
  918. * any dentries belonging to this superblock that it comes across
  919. * - the filesystem itself is no longer permitted to rearrange the dentries
  920. * in this superblock
  921. */
  922. void shrink_dcache_for_umount(struct super_block *sb)
  923. {
  924. struct dentry *dentry;
  925. if (down_read_trylock(&sb->s_umount))
  926. BUG();
  927. dentry = sb->s_root;
  928. sb->s_root = NULL;
  929. dentry->d_count--;
  930. shrink_dcache_for_umount_subtree(dentry);
  931. while (!hlist_bl_empty(&sb->s_anon)) {
  932. dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
  933. shrink_dcache_for_umount_subtree(dentry);
  934. }
  935. }
  936. /*
  937. * This tries to ascend one level of parenthood, but
  938. * we can race with renaming, so we need to re-check
  939. * the parenthood after dropping the lock and check
  940. * that the sequence number still matches.
  941. */
  942. static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
  943. {
  944. struct dentry *new = old->d_parent;
  945. rcu_read_lock();
  946. spin_unlock(&old->d_lock);
  947. spin_lock(&new->d_lock);
  948. /*
  949. * might go back up the wrong parent if we have had a rename
  950. * or deletion
  951. */
  952. if (new != old->d_parent ||
  953. (old->d_flags & DCACHE_DISCONNECTED) ||
  954. (!locked && read_seqretry(&rename_lock, seq))) {
  955. spin_unlock(&new->d_lock);
  956. new = NULL;
  957. }
  958. rcu_read_unlock();
  959. return new;
  960. }
  961. /*
  962. * Search for at least 1 mount point in the dentry's subdirs.
  963. * We descend to the next level whenever the d_subdirs
  964. * list is non-empty and continue searching.
  965. */
  966. /**
  967. * have_submounts - check for mounts over a dentry
  968. * @parent: dentry to check.
  969. *
  970. * Return true if the parent or its subdirectories contain
  971. * a mount point
  972. */
  973. int have_submounts(struct dentry *parent)
  974. {
  975. struct dentry *this_parent;
  976. struct list_head *next;
  977. unsigned seq;
  978. int locked = 0;
  979. seq = read_seqbegin(&rename_lock);
  980. again:
  981. this_parent = parent;
  982. if (d_mountpoint(parent))
  983. goto positive;
  984. spin_lock(&this_parent->d_lock);
  985. repeat:
  986. next = this_parent->d_subdirs.next;
  987. resume:
  988. while (next != &this_parent->d_subdirs) {
  989. struct list_head *tmp = next;
  990. struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
  991. next = tmp->next;
  992. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  993. /* Have we found a mount point ? */
  994. if (d_mountpoint(dentry)) {
  995. spin_unlock(&dentry->d_lock);
  996. spin_unlock(&this_parent->d_lock);
  997. goto positive;
  998. }
  999. if (!list_empty(&dentry->d_subdirs)) {
  1000. spin_unlock(&this_parent->d_lock);
  1001. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  1002. this_parent = dentry;
  1003. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  1004. goto repeat;
  1005. }
  1006. spin_unlock(&dentry->d_lock);
  1007. }
  1008. /*
  1009. * All done at this level ... ascend and resume the search.
  1010. */
  1011. if (this_parent != parent) {
  1012. struct dentry *child = this_parent;
  1013. this_parent = try_to_ascend(this_parent, locked, seq);
  1014. if (!this_parent)
  1015. goto rename_retry;
  1016. next = child->d_u.d_child.next;
  1017. goto resume;
  1018. }
  1019. spin_unlock(&this_parent->d_lock);
  1020. if (!locked && read_seqretry(&rename_lock, seq))
  1021. goto rename_retry;
  1022. if (locked)
  1023. write_sequnlock(&rename_lock);
  1024. return 0; /* No mount points found in tree */
  1025. positive:
  1026. if (!locked && read_seqretry(&rename_lock, seq))
  1027. goto rename_retry;
  1028. if (locked)
  1029. write_sequnlock(&rename_lock);
  1030. return 1;
  1031. rename_retry:
  1032. locked = 1;
  1033. write_seqlock(&rename_lock);
  1034. goto again;
  1035. }
  1036. EXPORT_SYMBOL(have_submounts);
  1037. /*
  1038. * Search the dentry child list for the specified parent,
  1039. * and move any unused dentries to the end of the unused
  1040. * list for prune_dcache(). We descend to the next level
  1041. * whenever the d_subdirs list is non-empty and continue
  1042. * searching.
  1043. *
  1044. * It returns zero iff there are no unused children,
  1045. * otherwise it returns the number of children moved to
  1046. * the end of the unused list. This may not be the total
  1047. * number of unused children, because select_parent can
  1048. * drop the lock and return early due to latency
  1049. * constraints.
  1050. */
  1051. static int select_parent(struct dentry *parent, struct list_head *dispose)
  1052. {
  1053. struct dentry *this_parent;
  1054. struct list_head *next;
  1055. unsigned seq;
  1056. int found = 0;
  1057. int locked = 0;
  1058. seq = read_seqbegin(&rename_lock);
  1059. again:
  1060. this_parent = parent;
  1061. spin_lock(&this_parent->d_lock);
  1062. repeat:
  1063. next = this_parent->d_subdirs.next;
  1064. resume:
  1065. while (next != &this_parent->d_subdirs) {
  1066. struct list_head *tmp = next;
  1067. struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
  1068. next = tmp->next;
  1069. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  1070. /*
  1071. * move only zero ref count dentries to the dispose list.
  1072. *
  1073. * Those which are presently on the shrink list, being processed
  1074. * by shrink_dentry_list(), shouldn't be moved. Otherwise the
  1075. * loop in shrink_dcache_parent() might not make any progress
  1076. * and loop forever.
  1077. */
  1078. if (dentry->d_count) {
  1079. dentry_lru_del(dentry);
  1080. } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
  1081. dentry_lru_move_list(dentry, dispose);
  1082. dentry->d_flags |= DCACHE_SHRINK_LIST;
  1083. found++;
  1084. }
  1085. /*
  1086. * We can return to the caller if we have found some (this
  1087. * ensures forward progress). We'll be coming back to find
  1088. * the rest.
  1089. */
  1090. if (found && need_resched()) {
  1091. spin_unlock(&dentry->d_lock);
  1092. goto out;
  1093. }
  1094. /*
  1095. * Descend a level if the d_subdirs list is non-empty.
  1096. */
  1097. if (!list_empty(&dentry->d_subdirs)) {
  1098. spin_unlock(&this_parent->d_lock);
  1099. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  1100. this_parent = dentry;
  1101. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  1102. goto repeat;
  1103. }
  1104. spin_unlock(&dentry->d_lock);
  1105. }
  1106. /*
  1107. * All done at this level ... ascend and resume the search.
  1108. */
  1109. if (this_parent != parent) {
  1110. struct dentry *child = this_parent;
  1111. this_parent = try_to_ascend(this_parent, locked, seq);
  1112. if (!this_parent)
  1113. goto rename_retry;
  1114. next = child->d_u.d_child.next;
  1115. goto resume;
  1116. }
  1117. out:
  1118. spin_unlock(&this_parent->d_lock);
  1119. if (!locked && read_seqretry(&rename_lock, seq))
  1120. goto rename_retry;
  1121. if (locked)
  1122. write_sequnlock(&rename_lock);
  1123. return found;
  1124. rename_retry:
  1125. if (found)
  1126. return found;
  1127. locked = 1;
  1128. write_seqlock(&rename_lock);
  1129. goto again;
  1130. }
  1131. /**
  1132. * shrink_dcache_parent - prune dcache
  1133. * @parent: parent of entries to prune
  1134. *
  1135. * Prune the dcache to remove unused children of the parent dentry.
  1136. */
  1137. void shrink_dcache_parent(struct dentry * parent)
  1138. {
  1139. LIST_HEAD(dispose);
  1140. int found;
  1141. while ((found = select_parent(parent, &dispose)) != 0)
  1142. shrink_dentry_list(&dispose);
  1143. }
  1144. EXPORT_SYMBOL(shrink_dcache_parent);
  1145. /**
  1146. * __d_alloc - allocate a dcache entry
  1147. * @sb: filesystem it will belong to
  1148. * @name: qstr of the name
  1149. *
  1150. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1151. * available. On a success the dentry is returned. The name passed in is
  1152. * copied and the copy passed in may be reused after this call.
  1153. */
  1154. struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
  1155. {
  1156. struct dentry *dentry;
  1157. char *dname;
  1158. dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
  1159. if (!dentry)
  1160. return NULL;
  1161. /*
  1162. * We guarantee that the inline name is always NUL-terminated.
  1163. * This way the memcpy() done by the name switching in rename
  1164. * will still always have a NUL at the end, even if we might
  1165. * be overwriting an internal NUL character
  1166. */
  1167. dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
  1168. if (name->len > DNAME_INLINE_LEN-1) {
  1169. dname = kmalloc(name->len + 1, GFP_KERNEL);
  1170. if (!dname) {
  1171. kmem_cache_free(dentry_cache, dentry);
  1172. return NULL;
  1173. }
  1174. } else {
  1175. dname = dentry->d_iname;
  1176. }
  1177. dentry->d_name.len = name->len;
  1178. dentry->d_name.hash = name->hash;
  1179. memcpy(dname, name->name, name->len);
  1180. dname[name->len] = 0;
  1181. /* Make sure we always see the terminating NUL character */
  1182. smp_wmb();
  1183. dentry->d_name.name = dname;
  1184. dentry->d_count = 1;
  1185. dentry->d_flags = 0;
  1186. spin_lock_init(&dentry->d_lock);
  1187. seqcount_init(&dentry->d_seq);
  1188. dentry->d_inode = NULL;
  1189. dentry->d_parent = dentry;
  1190. dentry->d_sb = sb;
  1191. dentry->d_op = NULL;
  1192. dentry->d_fsdata = NULL;
  1193. INIT_HLIST_BL_NODE(&dentry->d_hash);
  1194. INIT_LIST_HEAD(&dentry->d_lru);
  1195. INIT_LIST_HEAD(&dentry->d_subdirs);
  1196. INIT_HLIST_NODE(&dentry->d_alias);
  1197. INIT_LIST_HEAD(&dentry->d_u.d_child);
  1198. d_set_d_op(dentry, dentry->d_sb->s_d_op);
  1199. this_cpu_inc(nr_dentry);
  1200. return dentry;
  1201. }
  1202. /**
  1203. * d_alloc - allocate a dcache entry
  1204. * @parent: parent of entry to allocate
  1205. * @name: qstr of the name
  1206. *
  1207. * Allocates a dentry. It returns %NULL if there is insufficient memory
  1208. * available. On a success the dentry is returned. The name passed in is
  1209. * copied and the copy passed in may be reused after this call.
  1210. */
  1211. struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
  1212. {
  1213. struct dentry *dentry = __d_alloc(parent->d_sb, name);
  1214. if (!dentry)
  1215. return NULL;
  1216. spin_lock(&parent->d_lock);
  1217. /*
  1218. * don't need child lock because it is not subject
  1219. * to concurrency here
  1220. */
  1221. __dget_dlock(parent);
  1222. dentry->d_parent = parent;
  1223. list_add(&dentry->d_u.d_child, &parent->d_subdirs);
  1224. spin_unlock(&parent->d_lock);
  1225. return dentry;
  1226. }
  1227. EXPORT_SYMBOL(d_alloc);
  1228. struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
  1229. {
  1230. struct dentry *dentry = __d_alloc(sb, name);
  1231. if (dentry)
  1232. dentry->d_flags |= DCACHE_DISCONNECTED;
  1233. return dentry;
  1234. }
  1235. EXPORT_SYMBOL(d_alloc_pseudo);
  1236. struct dentry *d_alloc_name(struct dentry *parent, const char *name)
  1237. {
  1238. struct qstr q;
  1239. q.name = name;
  1240. q.len = strlen(name);
  1241. q.hash = full_name_hash(q.name, q.len);
  1242. return d_alloc(parent, &q);
  1243. }
  1244. EXPORT_SYMBOL(d_alloc_name);
  1245. void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
  1246. {
  1247. WARN_ON_ONCE(dentry->d_op);
  1248. WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
  1249. DCACHE_OP_COMPARE |
  1250. DCACHE_OP_REVALIDATE |
  1251. DCACHE_OP_DELETE ));
  1252. dentry->d_op = op;
  1253. if (!op)
  1254. return;
  1255. if (op->d_hash)
  1256. dentry->d_flags |= DCACHE_OP_HASH;
  1257. if (op->d_compare)
  1258. dentry->d_flags |= DCACHE_OP_COMPARE;
  1259. if (op->d_revalidate)
  1260. dentry->d_flags |= DCACHE_OP_REVALIDATE;
  1261. if (op->d_delete)
  1262. dentry->d_flags |= DCACHE_OP_DELETE;
  1263. if (op->d_prune)
  1264. dentry->d_flags |= DCACHE_OP_PRUNE;
  1265. }
  1266. EXPORT_SYMBOL(d_set_d_op);
  1267. static void __d_instantiate(struct dentry *dentry, struct inode *inode)
  1268. {
  1269. spin_lock(&dentry->d_lock);
  1270. if (inode) {
  1271. if (unlikely(IS_AUTOMOUNT(inode)))
  1272. dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
  1273. hlist_add_head(&dentry->d_alias, &inode->i_dentry);
  1274. }
  1275. dentry->d_inode = inode;
  1276. dentry_rcuwalk_barrier(dentry);
  1277. spin_unlock(&dentry->d_lock);
  1278. fsnotify_d_instantiate(dentry, inode);
  1279. }
  1280. /**
  1281. * d_instantiate - fill in inode information for a dentry
  1282. * @entry: dentry to complete
  1283. * @inode: inode to attach to this dentry
  1284. *
  1285. * Fill in inode information in the entry.
  1286. *
  1287. * This turns negative dentries into productive full members
  1288. * of society.
  1289. *
  1290. * NOTE! This assumes that the inode count has been incremented
  1291. * (or otherwise set) by the caller to indicate that it is now
  1292. * in use by the dcache.
  1293. */
  1294. void d_instantiate(struct dentry *entry, struct inode * inode)
  1295. {
  1296. BUG_ON(!hlist_unhashed(&entry->d_alias));
  1297. if (inode)
  1298. spin_lock(&inode->i_lock);
  1299. __d_instantiate(entry, inode);
  1300. if (inode)
  1301. spin_unlock(&inode->i_lock);
  1302. security_d_instantiate(entry, inode);
  1303. }
  1304. EXPORT_SYMBOL(d_instantiate);
  1305. /**
  1306. * d_instantiate_unique - instantiate a non-aliased dentry
  1307. * @entry: dentry to instantiate
  1308. * @inode: inode to attach to this dentry
  1309. *
  1310. * Fill in inode information in the entry. On success, it returns NULL.
  1311. * If an unhashed alias of "entry" already exists, then we return the
  1312. * aliased dentry instead and drop one reference to inode.
  1313. *
  1314. * Note that in order to avoid conflicts with rename() etc, the caller
  1315. * had better be holding the parent directory semaphore.
  1316. *
  1317. * This also assumes that the inode count has been incremented
  1318. * (or otherwise set) by the caller to indicate that it is now
  1319. * in use by the dcache.
  1320. */
  1321. static struct dentry *__d_instantiate_unique(struct dentry *entry,
  1322. struct inode *inode)
  1323. {
  1324. struct dentry *alias;
  1325. int len = entry->d_name.len;
  1326. const char *name = entry->d_name.name;
  1327. unsigned int hash = entry->d_name.hash;
  1328. struct hlist_node *p;
  1329. if (!inode) {
  1330. __d_instantiate(entry, NULL);
  1331. return NULL;
  1332. }
  1333. hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
  1334. /*
  1335. * Don't need alias->d_lock here, because aliases with
  1336. * d_parent == entry->d_parent are not subject to name or
  1337. * parent changes, because the parent inode i_mutex is held.
  1338. */
  1339. if (alias->d_name.hash != hash)
  1340. continue;
  1341. if (alias->d_parent != entry->d_parent)
  1342. continue;
  1343. if (alias->d_name.len != len)
  1344. continue;
  1345. if (dentry_cmp(alias, name, len))
  1346. continue;
  1347. __dget(alias);
  1348. return alias;
  1349. }
  1350. __d_instantiate(entry, inode);
  1351. return NULL;
  1352. }
  1353. struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
  1354. {
  1355. struct dentry *result;
  1356. BUG_ON(!hlist_unhashed(&entry->d_alias));
  1357. if (inode)
  1358. spin_lock(&inode->i_lock);
  1359. result = __d_instantiate_unique(entry, inode);
  1360. if (inode)
  1361. spin_unlock(&inode->i_lock);
  1362. if (!result) {
  1363. security_d_instantiate(entry, inode);
  1364. return NULL;
  1365. }
  1366. BUG_ON(!d_unhashed(result));
  1367. iput(inode);
  1368. return result;
  1369. }
  1370. EXPORT_SYMBOL(d_instantiate_unique);
  1371. struct dentry *d_make_root(struct inode *root_inode)
  1372. {
  1373. struct dentry *res = NULL;
  1374. if (root_inode) {
  1375. static const struct qstr name = QSTR_INIT("/", 1);
  1376. res = __d_alloc(root_inode->i_sb, &name);
  1377. if (res)
  1378. d_instantiate(res, root_inode);
  1379. else
  1380. iput(root_inode);
  1381. }
  1382. return res;
  1383. }
  1384. EXPORT_SYMBOL(d_make_root);
  1385. static struct dentry * __d_find_any_alias(struct inode *inode)
  1386. {
  1387. struct dentry *alias;
  1388. if (hlist_empty(&inode->i_dentry))
  1389. return NULL;
  1390. alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
  1391. __dget(alias);
  1392. return alias;
  1393. }
  1394. /**
  1395. * d_find_any_alias - find any alias for a given inode
  1396. * @inode: inode to find an alias for
  1397. *
  1398. * If any aliases exist for the given inode, take and return a
  1399. * reference for one of them. If no aliases exist, return %NULL.
  1400. */
  1401. struct dentry *d_find_any_alias(struct inode *inode)
  1402. {
  1403. struct dentry *de;
  1404. spin_lock(&inode->i_lock);
  1405. de = __d_find_any_alias(inode);
  1406. spin_unlock(&inode->i_lock);
  1407. return de;
  1408. }
  1409. EXPORT_SYMBOL(d_find_any_alias);
  1410. /**
  1411. * d_obtain_alias - find or allocate a dentry for a given inode
  1412. * @inode: inode to allocate the dentry for
  1413. *
  1414. * Obtain a dentry for an inode resulting from NFS filehandle conversion or
  1415. * similar open by handle operations. The returned dentry may be anonymous,
  1416. * or may have a full name (if the inode was already in the cache).
  1417. *
  1418. * When called on a directory inode, we must ensure that the inode only ever
  1419. * has one dentry. If a dentry is found, that is returned instead of
  1420. * allocating a new one.
  1421. *
  1422. * On successful return, the reference to the inode has been transferred
  1423. * to the dentry. In case of an error the reference on the inode is released.
  1424. * To make it easier to use in export operations a %NULL or IS_ERR inode may
  1425. * be passed in and will be the error will be propagate to the return value,
  1426. * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
  1427. */
  1428. struct dentry *d_obtain_alias(struct inode *inode)
  1429. {
  1430. static const struct qstr anonstring = { .name = "" };
  1431. struct dentry *tmp;
  1432. struct dentry *res;
  1433. if (!inode)
  1434. return ERR_PTR(-ESTALE);
  1435. if (IS_ERR(inode))
  1436. return ERR_CAST(inode);
  1437. res = d_find_any_alias(inode);
  1438. if (res)
  1439. goto out_iput;
  1440. tmp = __d_alloc(inode->i_sb, &anonstring);
  1441. if (!tmp) {
  1442. res = ERR_PTR(-ENOMEM);
  1443. goto out_iput;
  1444. }
  1445. spin_lock(&inode->i_lock);
  1446. res = __d_find_any_alias(inode);
  1447. if (res) {
  1448. spin_unlock(&inode->i_lock);
  1449. dput(tmp);
  1450. goto out_iput;
  1451. }
  1452. /* attach a disconnected dentry */
  1453. spin_lock(&tmp->d_lock);
  1454. tmp->d_inode = inode;
  1455. tmp->d_flags |= DCACHE_DISCONNECTED;
  1456. hlist_add_head(&tmp->d_alias, &inode->i_dentry);
  1457. hlist_bl_lock(&tmp->d_sb->s_anon);
  1458. hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
  1459. hlist_bl_unlock(&tmp->d_sb->s_anon);
  1460. spin_unlock(&tmp->d_lock);
  1461. spin_unlock(&inode->i_lock);
  1462. security_d_instantiate(tmp, inode);
  1463. return tmp;
  1464. out_iput:
  1465. if (res && !IS_ERR(res))
  1466. security_d_instantiate(res, inode);
  1467. iput(inode);
  1468. return res;
  1469. }
  1470. EXPORT_SYMBOL(d_obtain_alias);
  1471. /**
  1472. * d_splice_alias - splice a disconnected dentry into the tree if one exists
  1473. * @inode: the inode which may have a disconnected dentry
  1474. * @dentry: a negative dentry which we want to point to the inode.
  1475. *
  1476. * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
  1477. * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
  1478. * and return it, else simply d_add the inode to the dentry and return NULL.
  1479. *
  1480. * This is needed in the lookup routine of any filesystem that is exportable
  1481. * (via knfsd) so that we can build dcache paths to directories effectively.
  1482. *
  1483. * If a dentry was found and moved, then it is returned. Otherwise NULL
  1484. * is returned. This matches the expected return value of ->lookup.
  1485. *
  1486. */
  1487. struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
  1488. {
  1489. struct dentry *new = NULL;
  1490. if (IS_ERR(inode))
  1491. return ERR_CAST(inode);
  1492. if (inode && S_ISDIR(inode->i_mode)) {
  1493. spin_lock(&inode->i_lock);
  1494. new = __d_find_alias(inode, 1);
  1495. if (new) {
  1496. BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
  1497. spin_unlock(&inode->i_lock);
  1498. security_d_instantiate(new, inode);
  1499. d_move(new, dentry);
  1500. iput(inode);
  1501. } else {
  1502. /* already taking inode->i_lock, so d_add() by hand */
  1503. __d_instantiate(dentry, inode);
  1504. spin_unlock(&inode->i_lock);
  1505. security_d_instantiate(dentry, inode);
  1506. d_rehash(dentry);
  1507. }
  1508. } else
  1509. d_add(dentry, inode);
  1510. return new;
  1511. }
  1512. EXPORT_SYMBOL(d_splice_alias);
  1513. /**
  1514. * d_add_ci - lookup or allocate new dentry with case-exact name
  1515. * @inode: the inode case-insensitive lookup has found
  1516. * @dentry: the negative dentry that was passed to the parent's lookup func
  1517. * @name: the case-exact name to be associated with the returned dentry
  1518. *
  1519. * This is to avoid filling the dcache with case-insensitive names to the
  1520. * same inode, only the actual correct case is stored in the dcache for
  1521. * case-insensitive filesystems.
  1522. *
  1523. * For a case-insensitive lookup match and if the the case-exact dentry
  1524. * already exists in in the dcache, use it and return it.
  1525. *
  1526. * If no entry exists with the exact case name, allocate new dentry with
  1527. * the exact case, and return the spliced entry.
  1528. */
  1529. struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
  1530. struct qstr *name)
  1531. {
  1532. int error;
  1533. struct dentry *found;
  1534. struct dentry *new;
  1535. /*
  1536. * First check if a dentry matching the name already exists,
  1537. * if not go ahead and create it now.
  1538. */
  1539. found = d_hash_and_lookup(dentry->d_parent, name);
  1540. if (!found) {
  1541. new = d_alloc(dentry->d_parent, name);
  1542. if (!new) {
  1543. error = -ENOMEM;
  1544. goto err_out;
  1545. }
  1546. found = d_splice_alias(inode, new);
  1547. if (found) {
  1548. dput(new);
  1549. return found;
  1550. }
  1551. return new;
  1552. }
  1553. /*
  1554. * If a matching dentry exists, and it's not negative use it.
  1555. *
  1556. * Decrement the reference count to balance the iget() done
  1557. * earlier on.
  1558. */
  1559. if (found->d_inode) {
  1560. if (unlikely(found->d_inode != inode)) {
  1561. /* This can't happen because bad inodes are unhashed. */
  1562. BUG_ON(!is_bad_inode(inode));
  1563. BUG_ON(!is_bad_inode(found->d_inode));
  1564. }
  1565. iput(inode);
  1566. return found;
  1567. }
  1568. /*
  1569. * We are going to instantiate this dentry, unhash it and clear the
  1570. * lookup flag so we can do that.
  1571. */
  1572. if (unlikely(d_need_lookup(found)))
  1573. d_clear_need_lookup(found);
  1574. /*
  1575. * Negative dentry: instantiate it unless the inode is a directory and
  1576. * already has a dentry.
  1577. */
  1578. new = d_splice_alias(inode, found);
  1579. if (new) {
  1580. dput(found);
  1581. found = new;
  1582. }
  1583. return found;
  1584. err_out:
  1585. iput(inode);
  1586. return ERR_PTR(error);
  1587. }
  1588. EXPORT_SYMBOL(d_add_ci);
  1589. /*
  1590. * Do the slow-case of the dentry name compare.
  1591. *
  1592. * Unlike the dentry_cmp() function, we need to atomically
  1593. * load the name, length and inode information, so that the
  1594. * filesystem can rely on them, and can use the 'name' and
  1595. * 'len' information without worrying about walking off the
  1596. * end of memory etc.
  1597. *
  1598. * Thus the read_seqcount_retry() and the "duplicate" info
  1599. * in arguments (the low-level filesystem should not look
  1600. * at the dentry inode or name contents directly, since
  1601. * rename can change them while we're in RCU mode).
  1602. */
  1603. enum slow_d_compare {
  1604. D_COMP_OK,
  1605. D_COMP_NOMATCH,
  1606. D_COMP_SEQRETRY,
  1607. };
  1608. static noinline enum slow_d_compare slow_dentry_cmp(
  1609. const struct dentry *parent,
  1610. struct inode *inode,
  1611. struct dentry *dentry,
  1612. unsigned int seq,
  1613. const struct qstr *name)
  1614. {
  1615. int tlen = dentry->d_name.len;
  1616. const char *tname = dentry->d_name.name;
  1617. struct inode *i = dentry->d_inode;
  1618. if (read_seqcount_retry(&dentry->d_seq, seq)) {
  1619. cpu_relax();
  1620. return D_COMP_SEQRETRY;
  1621. }
  1622. if (parent->d_op->d_compare(parent, inode,
  1623. dentry, i,
  1624. tlen, tname, name))
  1625. return D_COMP_NOMATCH;
  1626. return D_COMP_OK;
  1627. }
  1628. /**
  1629. * __d_lookup_rcu - search for a dentry (racy, store-free)
  1630. * @parent: parent dentry
  1631. * @name: qstr of name we wish to find
  1632. * @seqp: returns d_seq value at the point where the dentry was found
  1633. * @inode: returns dentry->d_inode when the inode was found valid.
  1634. * Returns: dentry, or NULL
  1635. *
  1636. * __d_lookup_rcu is the dcache lookup function for rcu-walk name
  1637. * resolution (store-free path walking) design described in
  1638. * Documentation/filesystems/path-lookup.txt.
  1639. *
  1640. * This is not to be used outside core vfs.
  1641. *
  1642. * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
  1643. * held, and rcu_read_lock held. The returned dentry must not be stored into
  1644. * without taking d_lock and checking d_seq sequence count against @seq
  1645. * returned here.
  1646. *
  1647. * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
  1648. * function.
  1649. *
  1650. * Alternatively, __d_lookup_rcu may be called again to look up the child of
  1651. * the returned dentry, so long as its parent's seqlock is checked after the
  1652. * child is looked up. Thus, an interlocking stepping of sequence lock checks
  1653. * is formed, giving integrity down the path walk.
  1654. *
  1655. * NOTE! The caller *has* to check the resulting dentry against the sequence
  1656. * number we've returned before using any of the resulting dentry state!
  1657. */
  1658. struct dentry *__d_lookup_rcu(const struct dentry *parent,
  1659. const struct qstr *name,
  1660. unsigned *seqp, struct inode *inode)
  1661. {
  1662. u64 hashlen = name->hash_len;
  1663. const unsigned char *str = name->name;
  1664. struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
  1665. struct hlist_bl_node *node;
  1666. struct dentry *dentry;
  1667. /*
  1668. * Note: There is significant duplication with __d_lookup_rcu which is
  1669. * required to prevent single threaded performance regressions
  1670. * especially on architectures where smp_rmb (in seqcounts) are costly.
  1671. * Keep the two functions in sync.
  1672. */
  1673. /*
  1674. * The hash list is protected using RCU.
  1675. *
  1676. * Carefully use d_seq when comparing a candidate dentry, to avoid
  1677. * races with d_move().
  1678. *
  1679. * It is possible that concurrent renames can mess up our list
  1680. * walk here and result in missing our dentry, resulting in the
  1681. * false-negative result. d_lookup() protects against concurrent
  1682. * renames using rename_lock seqlock.
  1683. *
  1684. * See Documentation/filesystems/path-lookup.txt for more details.
  1685. */
  1686. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  1687. unsigned seq;
  1688. seqretry:
  1689. /*
  1690. * The dentry sequence count protects us from concurrent
  1691. * renames, and thus protects inode, parent and name fields.
  1692. *
  1693. * The caller must perform a seqcount check in order
  1694. * to do anything useful with the returned dentry,
  1695. * including using the 'd_inode' pointer.
  1696. *
  1697. * NOTE! We do a "raw" seqcount_begin here. That means that
  1698. * we don't wait for the sequence count to stabilize if it
  1699. * is in the middle of a sequence change. If we do the slow
  1700. * dentry compare, we will do seqretries until it is stable,
  1701. * and if we end up with a successful lookup, we actually
  1702. * want to exit RCU lookup anyway.
  1703. */
  1704. seq = raw_seqcount_begin(&dentry->d_seq);
  1705. if (dentry->d_parent != parent)
  1706. continue;
  1707. if (d_unhashed(dentry))
  1708. continue;
  1709. *seqp = seq;
  1710. if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
  1711. if (dentry->d_name.hash != hashlen_hash(hashlen))
  1712. continue;
  1713. switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
  1714. case D_COMP_OK:
  1715. return dentry;
  1716. case D_COMP_NOMATCH:
  1717. continue;
  1718. default:
  1719. goto seqretry;
  1720. }
  1721. }
  1722. if (dentry->d_name.hash_len != hashlen)
  1723. continue;
  1724. if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
  1725. return dentry;
  1726. }
  1727. return NULL;
  1728. }
  1729. /**
  1730. * d_lookup - search for a dentry
  1731. * @parent: parent dentry
  1732. * @name: qstr of name we wish to find
  1733. * Returns: dentry, or NULL
  1734. *
  1735. * d_lookup searches the children of the parent dentry for the name in
  1736. * question. If the dentry is found its reference count is incremented and the
  1737. * dentry is returned. The caller must use dput to free the entry when it has
  1738. * finished using it. %NULL is returned if the dentry does not exist.
  1739. */
  1740. struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
  1741. {
  1742. struct dentry *dentry;
  1743. unsigned seq;
  1744. do {
  1745. seq = read_seqbegin(&rename_lock);
  1746. dentry = __d_lookup(parent, name);
  1747. if (dentry)
  1748. break;
  1749. } while (read_seqretry(&rename_lock, seq));
  1750. return dentry;
  1751. }
  1752. EXPORT_SYMBOL(d_lookup);
  1753. /**
  1754. * __d_lookup - search for a dentry (racy)
  1755. * @parent: parent dentry
  1756. * @name: qstr of name we wish to find
  1757. * Returns: dentry, or NULL
  1758. *
  1759. * __d_lookup is like d_lookup, however it may (rarely) return a
  1760. * false-negative result due to unrelated rename activity.
  1761. *
  1762. * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
  1763. * however it must be used carefully, eg. with a following d_lookup in
  1764. * the case of failure.
  1765. *
  1766. * __d_lookup callers must be commented.
  1767. */
  1768. struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
  1769. {
  1770. unsigned int len = name->len;
  1771. unsigned int hash = name->hash;
  1772. const unsigned char *str = name->name;
  1773. struct hlist_bl_head *b = d_hash(parent, hash);
  1774. struct hlist_bl_node *node;
  1775. struct dentry *found = NULL;
  1776. struct dentry *dentry;
  1777. /*
  1778. * Note: There is significant duplication with __d_lookup_rcu which is
  1779. * required to prevent single threaded performance regressions
  1780. * especially on architectures where smp_rmb (in seqcounts) are costly.
  1781. * Keep the two functions in sync.
  1782. */
  1783. /*
  1784. * The hash list is protected using RCU.
  1785. *
  1786. * Take d_lock when comparing a candidate dentry, to avoid races
  1787. * with d_move().
  1788. *
  1789. * It is possible that concurrent renames can mess up our list
  1790. * walk here and result in missing our dentry, resulting in the
  1791. * false-negative result. d_lookup() protects against concurrent
  1792. * renames using rename_lock seqlock.
  1793. *
  1794. * See Documentation/filesystems/path-lookup.txt for more details.
  1795. */
  1796. rcu_read_lock();
  1797. hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
  1798. if (dentry->d_name.hash != hash)
  1799. continue;
  1800. spin_lock(&dentry->d_lock);
  1801. if (dentry->d_parent != parent)
  1802. goto next;
  1803. if (d_unhashed(dentry))
  1804. goto next;
  1805. /*
  1806. * It is safe to compare names since d_move() cannot
  1807. * change the qstr (protected by d_lock).
  1808. */
  1809. if (parent->d_flags & DCACHE_OP_COMPARE) {
  1810. int tlen = dentry->d_name.len;
  1811. const char *tname = dentry->d_name.name;
  1812. if (parent->d_op->d_compare(parent, parent->d_inode,
  1813. dentry, dentry->d_inode,
  1814. tlen, tname, name))
  1815. goto next;
  1816. } else {
  1817. if (dentry->d_name.len != len)
  1818. goto next;
  1819. if (dentry_cmp(dentry, str, len))
  1820. goto next;
  1821. }
  1822. dentry->d_count++;
  1823. found = dentry;
  1824. spin_unlock(&dentry->d_lock);
  1825. break;
  1826. next:
  1827. spin_unlock(&dentry->d_lock);
  1828. }
  1829. rcu_read_unlock();
  1830. return found;
  1831. }
  1832. /**
  1833. * d_hash_and_lookup - hash the qstr then search for a dentry
  1834. * @dir: Directory to search in
  1835. * @name: qstr of name we wish to find
  1836. *
  1837. * On hash failure or on lookup failure NULL is returned.
  1838. */
  1839. struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
  1840. {
  1841. struct dentry *dentry = NULL;
  1842. /*
  1843. * Check for a fs-specific hash function. Note that we must
  1844. * calculate the standard hash first, as the d_op->d_hash()
  1845. * routine may choose to leave the hash value unchanged.
  1846. */
  1847. name->hash = full_name_hash(name->name, name->len);
  1848. if (dir->d_flags & DCACHE_OP_HASH) {
  1849. if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
  1850. goto out;
  1851. }
  1852. dentry = d_lookup(dir, name);
  1853. out:
  1854. return dentry;
  1855. }
  1856. /**
  1857. * d_validate - verify dentry provided from insecure source (deprecated)
  1858. * @dentry: The dentry alleged to be valid child of @dparent
  1859. * @dparent: The parent dentry (known to be valid)
  1860. *
  1861. * An insecure source has sent us a dentry, here we verify it and dget() it.
  1862. * This is used by ncpfs in its readdir implementation.
  1863. * Zero is returned in the dentry is invalid.
  1864. *
  1865. * This function is slow for big directories, and deprecated, do not use it.
  1866. */
  1867. int d_validate(struct dentry *dentry, struct dentry *dparent)
  1868. {
  1869. struct dentry *child;
  1870. spin_lock(&dparent->d_lock);
  1871. list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
  1872. if (dentry == child) {
  1873. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  1874. __dget_dlock(dentry);
  1875. spin_unlock(&dentry->d_lock);
  1876. spin_unlock(&dparent->d_lock);
  1877. return 1;
  1878. }
  1879. }
  1880. spin_unlock(&dparent->d_lock);
  1881. return 0;
  1882. }
  1883. EXPORT_SYMBOL(d_validate);
  1884. /*
  1885. * When a file is deleted, we have two options:
  1886. * - turn this dentry into a negative dentry
  1887. * - unhash this dentry and free it.
  1888. *
  1889. * Usually, we want to just turn this into
  1890. * a negative dentry, but if anybody else is
  1891. * currently using the dentry or the inode
  1892. * we can't do that and we fall back on removing
  1893. * it from the hash queues and waiting for
  1894. * it to be deleted later when it has no users
  1895. */
  1896. /**
  1897. * d_delete - delete a dentry
  1898. * @dentry: The dentry to delete
  1899. *
  1900. * Turn the dentry into a negative dentry if possible, otherwise
  1901. * remove it from the hash queues so it can be deleted later
  1902. */
  1903. void d_delete(struct dentry * dentry)
  1904. {
  1905. struct inode *inode;
  1906. int isdir = 0;
  1907. /*
  1908. * Are we the only user?
  1909. */
  1910. again:
  1911. spin_lock(&dentry->d_lock);
  1912. inode = dentry->d_inode;
  1913. isdir = S_ISDIR(inode->i_mode);
  1914. if (dentry->d_count == 1) {
  1915. if (inode && !spin_trylock(&inode->i_lock)) {
  1916. spin_unlock(&dentry->d_lock);
  1917. cpu_relax();
  1918. goto again;
  1919. }
  1920. dentry->d_flags &= ~DCACHE_CANT_MOUNT;
  1921. dentry_unlink_inode(dentry);
  1922. fsnotify_nameremove(dentry, isdir);
  1923. return;
  1924. }
  1925. if (!d_unhashed(dentry))
  1926. __d_drop(dentry);
  1927. spin_unlock(&dentry->d_lock);
  1928. fsnotify_nameremove(dentry, isdir);
  1929. }
  1930. EXPORT_SYMBOL(d_delete);
  1931. static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
  1932. {
  1933. BUG_ON(!d_unhashed(entry));
  1934. hlist_bl_lock(b);
  1935. entry->d_flags |= DCACHE_RCUACCESS;
  1936. hlist_bl_add_head_rcu(&entry->d_hash, b);
  1937. hlist_bl_unlock(b);
  1938. }
  1939. static void _d_rehash(struct dentry * entry)
  1940. {
  1941. __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
  1942. }
  1943. /**
  1944. * d_rehash - add an entry back to the hash
  1945. * @entry: dentry to add to the hash
  1946. *
  1947. * Adds a dentry to the hash according to its name.
  1948. */
  1949. void d_rehash(struct dentry * entry)
  1950. {
  1951. spin_lock(&entry->d_lock);
  1952. _d_rehash(entry);
  1953. spin_unlock(&entry->d_lock);
  1954. }
  1955. EXPORT_SYMBOL(d_rehash);
  1956. /**
  1957. * dentry_update_name_case - update case insensitive dentry with a new name
  1958. * @dentry: dentry to be updated
  1959. * @name: new name
  1960. *
  1961. * Update a case insensitive dentry with new case of name.
  1962. *
  1963. * dentry must have been returned by d_lookup with name @name. Old and new
  1964. * name lengths must match (ie. no d_compare which allows mismatched name
  1965. * lengths).
  1966. *
  1967. * Parent inode i_mutex must be held over d_lookup and into this call (to
  1968. * keep renames and concurrent inserts, and readdir(2) away).
  1969. */
  1970. void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
  1971. {
  1972. BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
  1973. BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
  1974. spin_lock(&dentry->d_lock);
  1975. write_seqcount_begin(&dentry->d_seq);
  1976. memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
  1977. write_seqcount_end(&dentry->d_seq);
  1978. spin_unlock(&dentry->d_lock);
  1979. }
  1980. EXPORT_SYMBOL(dentry_update_name_case);
  1981. static void switch_names(struct dentry *dentry, struct dentry *target)
  1982. {
  1983. if (dname_external(target)) {
  1984. if (dname_external(dentry)) {
  1985. /*
  1986. * Both external: swap the pointers
  1987. */
  1988. swap(target->d_name.name, dentry->d_name.name);
  1989. } else {
  1990. /*
  1991. * dentry:internal, target:external. Steal target's
  1992. * storage and make target internal.
  1993. */
  1994. memcpy(target->d_iname, dentry->d_name.name,
  1995. dentry->d_name.len + 1);
  1996. dentry->d_name.name = target->d_name.name;
  1997. target->d_name.name = target->d_iname;
  1998. }
  1999. } else {
  2000. if (dname_external(dentry)) {
  2001. /*
  2002. * dentry:external, target:internal. Give dentry's
  2003. * storage to target and make dentry internal
  2004. */
  2005. memcpy(dentry->d_iname, target->d_name.name,
  2006. target->d_name.len + 1);
  2007. target->d_name.name = dentry->d_name.name;
  2008. dentry->d_name.name = dentry->d_iname;
  2009. } else {
  2010. /*
  2011. * Both are internal. Just copy target to dentry
  2012. */
  2013. memcpy(dentry->d_iname, target->d_name.name,
  2014. target->d_name.len + 1);
  2015. dentry->d_name.len = target->d_name.len;
  2016. return;
  2017. }
  2018. }
  2019. swap(dentry->d_name.len, target->d_name.len);
  2020. }
  2021. static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
  2022. {
  2023. /*
  2024. * XXXX: do we really need to take target->d_lock?
  2025. */
  2026. if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
  2027. spin_lock(&target->d_parent->d_lock);
  2028. else {
  2029. if (d_ancestor(dentry->d_parent, target->d_parent)) {
  2030. spin_lock(&dentry->d_parent->d_lock);
  2031. spin_lock_nested(&target->d_parent->d_lock,
  2032. DENTRY_D_LOCK_NESTED);
  2033. } else {
  2034. spin_lock(&target->d_parent->d_lock);
  2035. spin_lock_nested(&dentry->d_parent->d_lock,
  2036. DENTRY_D_LOCK_NESTED);
  2037. }
  2038. }
  2039. if (target < dentry) {
  2040. spin_lock_nested(&target->d_lock, 2);
  2041. spin_lock_nested(&dentry->d_lock, 3);
  2042. } else {
  2043. spin_lock_nested(&dentry->d_lock, 2);
  2044. spin_lock_nested(&target->d_lock, 3);
  2045. }
  2046. }
  2047. static void dentry_unlock_parents_for_move(struct dentry *dentry,
  2048. struct dentry *target)
  2049. {
  2050. if (target->d_parent != dentry->d_parent)
  2051. spin_unlock(&dentry->d_parent->d_lock);
  2052. if (target->d_parent != target)
  2053. spin_unlock(&target->d_parent->d_lock);
  2054. }
  2055. /*
  2056. * When switching names, the actual string doesn't strictly have to
  2057. * be preserved in the target - because we're dropping the target
  2058. * anyway. As such, we can just do a simple memcpy() to copy over
  2059. * the new name before we switch.
  2060. *
  2061. * Note that we have to be a lot more careful about getting the hash
  2062. * switched - we have to switch the hash value properly even if it
  2063. * then no longer matches the actual (corrupted) string of the target.
  2064. * The hash value has to match the hash queue that the dentry is on..
  2065. */
  2066. /*
  2067. * __d_move - move a dentry
  2068. * @dentry: entry to move
  2069. * @target: new dentry
  2070. *
  2071. * Update the dcache to reflect the move of a file name. Negative
  2072. * dcache entries should not be moved in this way. Caller must hold
  2073. * rename_lock, the i_mutex of the source and target directories,
  2074. * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
  2075. */
  2076. static void __d_move(struct dentry * dentry, struct dentry * target)
  2077. {
  2078. if (!dentry->d_inode)
  2079. printk(KERN_WARNING "VFS: moving negative dcache entry\n");
  2080. BUG_ON(d_ancestor(dentry, target));
  2081. BUG_ON(d_ancestor(target, dentry));
  2082. dentry_lock_for_move(dentry, target);
  2083. write_seqcount_begin(&dentry->d_seq);
  2084. write_seqcount_begin(&target->d_seq);
  2085. /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
  2086. /*
  2087. * Move the dentry to the target hash queue. Don't bother checking
  2088. * for the same hash queue because of how unlikely it is.
  2089. */
  2090. __d_drop(dentry);
  2091. __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
  2092. /* Unhash the target: dput() will then get rid of it */
  2093. __d_drop(target);
  2094. list_del(&dentry->d_u.d_child);
  2095. list_del(&target->d_u.d_child);
  2096. /* Switch the names.. */
  2097. switch_names(dentry, target);
  2098. swap(dentry->d_name.hash, target->d_name.hash);
  2099. /* ... and switch the parents */
  2100. if (IS_ROOT(dentry)) {
  2101. dentry->d_parent = target->d_parent;
  2102. target->d_parent = target;
  2103. INIT_LIST_HEAD(&target->d_u.d_child);
  2104. } else {
  2105. swap(dentry->d_parent, target->d_parent);
  2106. /* And add them back to the (new) parent lists */
  2107. list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
  2108. }
  2109. list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
  2110. write_seqcount_end(&target->d_seq);
  2111. write_seqcount_end(&dentry->d_seq);
  2112. dentry_unlock_parents_for_move(dentry, target);
  2113. spin_unlock(&target->d_lock);
  2114. fsnotify_d_move(dentry);
  2115. spin_unlock(&dentry->d_lock);
  2116. }
  2117. /*
  2118. * d_move - move a dentry
  2119. * @dentry: entry to move
  2120. * @target: new dentry
  2121. *
  2122. * Update the dcache to reflect the move of a file name. Negative
  2123. * dcache entries should not be moved in this way. See the locking
  2124. * requirements for __d_move.
  2125. */
  2126. void d_move(struct dentry *dentry, struct dentry *target)
  2127. {
  2128. write_seqlock(&rename_lock);
  2129. __d_move(dentry, target);
  2130. write_sequnlock(&rename_lock);
  2131. }
  2132. EXPORT_SYMBOL(d_move);
  2133. /**
  2134. * d_ancestor - search for an ancestor
  2135. * @p1: ancestor dentry
  2136. * @p2: child dentry
  2137. *
  2138. * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
  2139. * an ancestor of p2, else NULL.
  2140. */
  2141. struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
  2142. {
  2143. struct dentry *p;
  2144. for (p = p2; !IS_ROOT(p); p = p->d_parent) {
  2145. if (p->d_parent == p1)
  2146. return p;
  2147. }
  2148. return NULL;
  2149. }
  2150. /*
  2151. * This helper attempts to cope with remotely renamed directories
  2152. *
  2153. * It assumes that the caller is already holding
  2154. * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
  2155. *
  2156. * Note: If ever the locking in lock_rename() changes, then please
  2157. * remember to update this too...
  2158. */
  2159. static struct dentry *__d_unalias(struct inode *inode,
  2160. struct dentry *dentry, struct dentry *alias)
  2161. {
  2162. struct mutex *m1 = NULL, *m2 = NULL;
  2163. struct dentry *ret = ERR_PTR(-EBUSY);
  2164. /* If alias and dentry share a parent, then no extra locks required */
  2165. if (alias->d_parent == dentry->d_parent)
  2166. goto out_unalias;
  2167. /* See lock_rename() */
  2168. if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
  2169. goto out_err;
  2170. m1 = &dentry->d_sb->s_vfs_rename_mutex;
  2171. if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
  2172. goto out_err;
  2173. m2 = &alias->d_parent->d_inode->i_mutex;
  2174. out_unalias:
  2175. if (likely(!d_mountpoint(alias))) {
  2176. __d_move(alias, dentry);
  2177. ret = alias;
  2178. }
  2179. out_err:
  2180. spin_unlock(&inode->i_lock);
  2181. if (m2)
  2182. mutex_unlock(m2);
  2183. if (m1)
  2184. mutex_unlock(m1);
  2185. return ret;
  2186. }
  2187. /*
  2188. * Prepare an anonymous dentry for life in the superblock's dentry tree as a
  2189. * named dentry in place of the dentry to be replaced.
  2190. * returns with anon->d_lock held!
  2191. */
  2192. static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
  2193. {
  2194. struct dentry *dparent, *aparent;
  2195. dentry_lock_for_move(anon, dentry);
  2196. write_seqcount_begin(&dentry->d_seq);
  2197. write_seqcount_begin(&anon->d_seq);
  2198. dparent = dentry->d_parent;
  2199. aparent = anon->d_parent;
  2200. switch_names(dentry, anon);
  2201. swap(dentry->d_name.hash, anon->d_name.hash);
  2202. dentry->d_parent = (aparent == anon) ? dentry : aparent;
  2203. list_del(&dentry->d_u.d_child);
  2204. if (!IS_ROOT(dentry))
  2205. list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
  2206. else
  2207. INIT_LIST_HEAD(&dentry->d_u.d_child);
  2208. anon->d_parent = (dparent == dentry) ? anon : dparent;
  2209. list_del(&anon->d_u.d_child);
  2210. if (!IS_ROOT(anon))
  2211. list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
  2212. else
  2213. INIT_LIST_HEAD(&anon->d_u.d_child);
  2214. write_seqcount_end(&dentry->d_seq);
  2215. write_seqcount_end(&anon->d_seq);
  2216. dentry_unlock_parents_for_move(anon, dentry);
  2217. spin_unlock(&dentry->d_lock);
  2218. /* anon->d_lock still locked, returns locked */
  2219. anon->d_flags &= ~DCACHE_DISCONNECTED;
  2220. }
  2221. /**
  2222. * d_materialise_unique - introduce an inode into the tree
  2223. * @dentry: candidate dentry
  2224. * @inode: inode to bind to the dentry, to which aliases may be attached
  2225. *
  2226. * Introduces an dentry into the tree, substituting an extant disconnected
  2227. * root directory alias in its place if there is one. Caller must hold the
  2228. * i_mutex of the parent directory.
  2229. */
  2230. struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
  2231. {
  2232. struct dentry *actual;
  2233. BUG_ON(!d_unhashed(dentry));
  2234. if (!inode) {
  2235. actual = dentry;
  2236. __d_instantiate(dentry, NULL);
  2237. d_rehash(actual);
  2238. goto out_nolock;
  2239. }
  2240. spin_lock(&inode->i_lock);
  2241. if (S_ISDIR(inode->i_mode)) {
  2242. struct dentry *alias;
  2243. /* Does an aliased dentry already exist? */
  2244. alias = __d_find_alias(inode, 0);
  2245. if (alias) {
  2246. actual = alias;
  2247. write_seqlock(&rename_lock);
  2248. if (d_ancestor(alias, dentry)) {
  2249. /* Check for loops */
  2250. actual = ERR_PTR(-ELOOP);
  2251. spin_unlock(&inode->i_lock);
  2252. } else if (IS_ROOT(alias)) {
  2253. /* Is this an anonymous mountpoint that we
  2254. * could splice into our tree? */
  2255. __d_materialise_dentry(dentry, alias);
  2256. write_sequnlock(&rename_lock);
  2257. __d_drop(alias);
  2258. goto found;
  2259. } else {
  2260. /* Nope, but we must(!) avoid directory
  2261. * aliasing. This drops inode->i_lock */
  2262. actual = __d_unalias(inode, dentry, alias);
  2263. }
  2264. write_sequnlock(&rename_lock);
  2265. if (IS_ERR(actual)) {
  2266. if (PTR_ERR(actual) == -ELOOP)
  2267. pr_warn_ratelimited(
  2268. "VFS: Lookup of '%s' in %s %s"
  2269. " would have caused loop\n",
  2270. dentry->d_name.name,
  2271. inode->i_sb->s_type->name,
  2272. inode->i_sb->s_id);
  2273. dput(alias);
  2274. }
  2275. goto out_nolock;
  2276. }
  2277. }
  2278. /* Add a unique reference */
  2279. actual = __d_instantiate_unique(dentry, inode);
  2280. if (!actual)
  2281. actual = dentry;
  2282. else
  2283. BUG_ON(!d_unhashed(actual));
  2284. spin_lock(&actual->d_lock);
  2285. found:
  2286. _d_rehash(actual);
  2287. spin_unlock(&actual->d_lock);
  2288. spin_unlock(&inode->i_lock);
  2289. out_nolock:
  2290. if (actual == dentry) {
  2291. security_d_instantiate(dentry, inode);
  2292. return NULL;
  2293. }
  2294. iput(inode);
  2295. return actual;
  2296. }
  2297. EXPORT_SYMBOL_GPL(d_materialise_unique);
  2298. static int prepend(char **buffer, int *buflen, const char *str, int namelen)
  2299. {
  2300. *buflen -= namelen;
  2301. if (*buflen < 0)
  2302. return -ENAMETOOLONG;
  2303. *buffer -= namelen;
  2304. memcpy(*buffer, str, namelen);
  2305. return 0;
  2306. }
  2307. static int prepend_name(char **buffer, int *buflen, struct qstr *name)
  2308. {
  2309. return prepend(buffer, buflen, name->name, name->len);
  2310. }
  2311. /**
  2312. * prepend_path - Prepend path string to a buffer
  2313. * @path: the dentry/vfsmount to report
  2314. * @root: root vfsmnt/dentry
  2315. * @buffer: pointer to the end of the buffer
  2316. * @buflen: pointer to buffer length
  2317. *
  2318. * Caller holds the rename_lock.
  2319. */
  2320. static int prepend_path(const struct path *path,
  2321. const struct path *root,
  2322. char **buffer, int *buflen)
  2323. {
  2324. struct dentry *dentry = path->dentry;
  2325. struct vfsmount *vfsmnt = path->mnt;
  2326. struct mount *mnt = real_mount(vfsmnt);
  2327. bool slash = false;
  2328. int error = 0;
  2329. br_read_lock(&vfsmount_lock);
  2330. while (dentry != root->dentry || vfsmnt != root->mnt) {
  2331. struct dentry * parent;
  2332. if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
  2333. /* Global root? */
  2334. if (!mnt_has_parent(mnt))
  2335. goto global_root;
  2336. dentry = mnt->mnt_mountpoint;
  2337. mnt = mnt->mnt_parent;
  2338. vfsmnt = &mnt->mnt;
  2339. continue;
  2340. }
  2341. parent = dentry->d_parent;
  2342. prefetch(parent);
  2343. spin_lock(&dentry->d_lock);
  2344. error = prepend_name(buffer, buflen, &dentry->d_name);
  2345. spin_unlock(&dentry->d_lock);
  2346. if (!error)
  2347. error = prepend(buffer, buflen, "/", 1);
  2348. if (error)
  2349. break;
  2350. slash = true;
  2351. dentry = parent;
  2352. }
  2353. if (!error && !slash)
  2354. error = prepend(buffer, buflen, "/", 1);
  2355. out:
  2356. br_read_unlock(&vfsmount_lock);
  2357. return error;
  2358. global_root:
  2359. /*
  2360. * Filesystems needing to implement special "root names"
  2361. * should do so with ->d_dname()
  2362. */
  2363. if (IS_ROOT(dentry) &&
  2364. (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
  2365. WARN(1, "Root dentry has weird name <%.*s>\n",
  2366. (int) dentry->d_name.len, dentry->d_name.name);
  2367. }
  2368. if (!slash)
  2369. error = prepend(buffer, buflen, "/", 1);
  2370. if (!error)
  2371. error = is_mounted(vfsmnt) ? 1 : 2;
  2372. goto out;
  2373. }
  2374. /**
  2375. * __d_path - return the path of a dentry
  2376. * @path: the dentry/vfsmount to report
  2377. * @root: root vfsmnt/dentry
  2378. * @buf: buffer to return value in
  2379. * @buflen: buffer length
  2380. *
  2381. * Convert a dentry into an ASCII path name.
  2382. *
  2383. * Returns a pointer into the buffer or an error code if the
  2384. * path was too long.
  2385. *
  2386. * "buflen" should be positive.
  2387. *
  2388. * If the path is not reachable from the supplied root, return %NULL.
  2389. */
  2390. char *__d_path(const struct path *path,
  2391. const struct path *root,
  2392. char *buf, int buflen)
  2393. {
  2394. char *res = buf + buflen;
  2395. int error;
  2396. prepend(&res, &buflen, "\0", 1);
  2397. write_seqlock(&rename_lock);
  2398. error = prepend_path(path, root, &res, &buflen);
  2399. write_sequnlock(&rename_lock);
  2400. if (error < 0)
  2401. return ERR_PTR(error);
  2402. if (error > 0)
  2403. return NULL;
  2404. return res;
  2405. }
  2406. char *d_absolute_path(const struct path *path,
  2407. char *buf, int buflen)
  2408. {
  2409. struct path root = {};
  2410. char *res = buf + buflen;
  2411. int error;
  2412. prepend(&res, &buflen, "\0", 1);
  2413. write_seqlock(&rename_lock);
  2414. error = prepend_path(path, &root, &res, &buflen);
  2415. write_sequnlock(&rename_lock);
  2416. if (error > 1)
  2417. error = -EINVAL;
  2418. if (error < 0)
  2419. return ERR_PTR(error);
  2420. return res;
  2421. }
  2422. /*
  2423. * same as __d_path but appends "(deleted)" for unlinked files.
  2424. */
  2425. static int path_with_deleted(const struct path *path,
  2426. const struct path *root,
  2427. char **buf, int *buflen)
  2428. {
  2429. prepend(buf, buflen, "\0", 1);
  2430. if (d_unlinked(path->dentry)) {
  2431. int error = prepend(buf, buflen, " (deleted)", 10);
  2432. if (error)
  2433. return error;
  2434. }
  2435. return prepend_path(path, root, buf, buflen);
  2436. }
  2437. static int prepend_unreachable(char **buffer, int *buflen)
  2438. {
  2439. return prepend(buffer, buflen, "(unreachable)", 13);
  2440. }
  2441. /**
  2442. * d_path - return the path of a dentry
  2443. * @path: path to report
  2444. * @buf: buffer to return value in
  2445. * @buflen: buffer length
  2446. *
  2447. * Convert a dentry into an ASCII path name. If the entry has been deleted
  2448. * the string " (deleted)" is appended. Note that this is ambiguous.
  2449. *
  2450. * Returns a pointer into the buffer or an error code if the path was
  2451. * too long. Note: Callers should use the returned pointer, not the passed
  2452. * in buffer, to use the name! The implementation often starts at an offset
  2453. * into the buffer, and may leave 0 bytes at the start.
  2454. *
  2455. * "buflen" should be positive.
  2456. */
  2457. char *d_path(const struct path *path, char *buf, int buflen)
  2458. {
  2459. char *res = buf + buflen;
  2460. struct path root;
  2461. int error;
  2462. /*
  2463. * We have various synthetic filesystems that never get mounted. On
  2464. * these filesystems dentries are never used for lookup purposes, and
  2465. * thus don't need to be hashed. They also don't need a name until a
  2466. * user wants to identify the object in /proc/pid/fd/. The little hack
  2467. * below allows us to generate a name for these objects on demand:
  2468. */
  2469. if (path->dentry->d_op && path->dentry->d_op->d_dname)
  2470. return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
  2471. get_fs_root(current->fs, &root);
  2472. write_seqlock(&rename_lock);
  2473. error = path_with_deleted(path, &root, &res, &buflen);
  2474. if (error < 0)
  2475. res = ERR_PTR(error);
  2476. write_sequnlock(&rename_lock);
  2477. path_put(&root);
  2478. return res;
  2479. }
  2480. EXPORT_SYMBOL(d_path);
  2481. /**
  2482. * d_path_with_unreachable - return the path of a dentry
  2483. * @path: path to report
  2484. * @buf: buffer to return value in
  2485. * @buflen: buffer length
  2486. *
  2487. * The difference from d_path() is that this prepends "(unreachable)"
  2488. * to paths which are unreachable from the current process' root.
  2489. */
  2490. char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
  2491. {
  2492. char *res = buf + buflen;
  2493. struct path root;
  2494. int error;
  2495. if (path->dentry->d_op && path->dentry->d_op->d_dname)
  2496. return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
  2497. get_fs_root(current->fs, &root);
  2498. write_seqlock(&rename_lock);
  2499. error = path_with_deleted(path, &root, &res, &buflen);
  2500. if (error > 0)
  2501. error = prepend_unreachable(&res, &buflen);
  2502. write_sequnlock(&rename_lock);
  2503. path_put(&root);
  2504. if (error)
  2505. res = ERR_PTR(error);
  2506. return res;
  2507. }
  2508. /*
  2509. * Helper function for dentry_operations.d_dname() members
  2510. */
  2511. char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
  2512. const char *fmt, ...)
  2513. {
  2514. va_list args;
  2515. char temp[64];
  2516. int sz;
  2517. va_start(args, fmt);
  2518. sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
  2519. va_end(args);
  2520. if (sz > sizeof(temp) || sz > buflen)
  2521. return ERR_PTR(-ENAMETOOLONG);
  2522. buffer += buflen - sz;
  2523. return memcpy(buffer, temp, sz);
  2524. }
  2525. /*
  2526. * Write full pathname from the root of the filesystem into the buffer.
  2527. */
  2528. static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
  2529. {
  2530. char *end = buf + buflen;
  2531. char *retval;
  2532. prepend(&end, &buflen, "\0", 1);
  2533. if (buflen < 1)
  2534. goto Elong;
  2535. /* Get '/' right */
  2536. retval = end-1;
  2537. *retval = '/';
  2538. while (!IS_ROOT(dentry)) {
  2539. struct dentry *parent = dentry->d_parent;
  2540. int error;
  2541. prefetch(parent);
  2542. spin_lock(&dentry->d_lock);
  2543. error = prepend_name(&end, &buflen, &dentry->d_name);
  2544. spin_unlock(&dentry->d_lock);
  2545. if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
  2546. goto Elong;
  2547. retval = end;
  2548. dentry = parent;
  2549. }
  2550. return retval;
  2551. Elong:
  2552. return ERR_PTR(-ENAMETOOLONG);
  2553. }
  2554. char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
  2555. {
  2556. char *retval;
  2557. write_seqlock(&rename_lock);
  2558. retval = __dentry_path(dentry, buf, buflen);
  2559. write_sequnlock(&rename_lock);
  2560. return retval;
  2561. }
  2562. EXPORT_SYMBOL(dentry_path_raw);
  2563. char *dentry_path(struct dentry *dentry, char *buf, int buflen)
  2564. {
  2565. char *p = NULL;
  2566. char *retval;
  2567. write_seqlock(&rename_lock);
  2568. if (d_unlinked(dentry)) {
  2569. p = buf + buflen;
  2570. if (prepend(&p, &buflen, "//deleted", 10) != 0)
  2571. goto Elong;
  2572. buflen++;
  2573. }
  2574. retval = __dentry_path(dentry, buf, buflen);
  2575. write_sequnlock(&rename_lock);
  2576. if (!IS_ERR(retval) && p)
  2577. *p = '/'; /* restore '/' overriden with '\0' */
  2578. return retval;
  2579. Elong:
  2580. return ERR_PTR(-ENAMETOOLONG);
  2581. }
  2582. /*
  2583. * NOTE! The user-level library version returns a
  2584. * character pointer. The kernel system call just
  2585. * returns the length of the buffer filled (which
  2586. * includes the ending '\0' character), or a negative
  2587. * error value. So libc would do something like
  2588. *
  2589. * char *getcwd(char * buf, size_t size)
  2590. * {
  2591. * int retval;
  2592. *
  2593. * retval = sys_getcwd(buf, size);
  2594. * if (retval >= 0)
  2595. * return buf;
  2596. * errno = -retval;
  2597. * return NULL;
  2598. * }
  2599. */
  2600. SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
  2601. {
  2602. int error;
  2603. struct path pwd, root;
  2604. char *page = (char *) __get_free_page(GFP_USER);
  2605. if (!page)
  2606. return -ENOMEM;
  2607. get_fs_root_and_pwd(current->fs, &root, &pwd);
  2608. error = -ENOENT;
  2609. write_seqlock(&rename_lock);
  2610. if (!d_unlinked(pwd.dentry)) {
  2611. unsigned long len;
  2612. char *cwd = page + PAGE_SIZE;
  2613. int buflen = PAGE_SIZE;
  2614. prepend(&cwd, &buflen, "\0", 1);
  2615. error = prepend_path(&pwd, &root, &cwd, &buflen);
  2616. write_sequnlock(&rename_lock);
  2617. if (error < 0)
  2618. goto out;
  2619. /* Unreachable from current root */
  2620. if (error > 0) {
  2621. error = prepend_unreachable(&cwd, &buflen);
  2622. if (error)
  2623. goto out;
  2624. }
  2625. error = -ERANGE;
  2626. len = PAGE_SIZE + page - cwd;
  2627. if (len <= size) {
  2628. error = len;
  2629. if (copy_to_user(buf, cwd, len))
  2630. error = -EFAULT;
  2631. }
  2632. } else {
  2633. write_sequnlock(&rename_lock);
  2634. }
  2635. out:
  2636. path_put(&pwd);
  2637. path_put(&root);
  2638. free_page((unsigned long) page);
  2639. return error;
  2640. }
  2641. /*
  2642. * Test whether new_dentry is a subdirectory of old_dentry.
  2643. *
  2644. * Trivially implemented using the dcache structure
  2645. */
  2646. /**
  2647. * is_subdir - is new dentry a subdirectory of old_dentry
  2648. * @new_dentry: new dentry
  2649. * @old_dentry: old dentry
  2650. *
  2651. * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
  2652. * Returns 0 otherwise.
  2653. * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
  2654. */
  2655. int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
  2656. {
  2657. int result;
  2658. unsigned seq;
  2659. if (new_dentry == old_dentry)
  2660. return 1;
  2661. do {
  2662. /* for restarting inner loop in case of seq retry */
  2663. seq = read_seqbegin(&rename_lock);
  2664. /*
  2665. * Need rcu_readlock to protect against the d_parent trashing
  2666. * due to d_move
  2667. */
  2668. rcu_read_lock();
  2669. if (d_ancestor(old_dentry, new_dentry))
  2670. result = 1;
  2671. else
  2672. result = 0;
  2673. rcu_read_unlock();
  2674. } while (read_seqretry(&rename_lock, seq));
  2675. return result;
  2676. }
  2677. void d_genocide(struct dentry *root)
  2678. {
  2679. struct dentry *this_parent;
  2680. struct list_head *next;
  2681. unsigned seq;
  2682. int locked = 0;
  2683. seq = read_seqbegin(&rename_lock);
  2684. again:
  2685. this_parent = root;
  2686. spin_lock(&this_parent->d_lock);
  2687. repeat:
  2688. next = this_parent->d_subdirs.next;
  2689. resume:
  2690. while (next != &this_parent->d_subdirs) {
  2691. struct list_head *tmp = next;
  2692. struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
  2693. next = tmp->next;
  2694. spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
  2695. if (d_unhashed(dentry) || !dentry->d_inode) {
  2696. spin_unlock(&dentry->d_lock);
  2697. continue;
  2698. }
  2699. if (!list_empty(&dentry->d_subdirs)) {
  2700. spin_unlock(&this_parent->d_lock);
  2701. spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
  2702. this_parent = dentry;
  2703. spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
  2704. goto repeat;
  2705. }
  2706. if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
  2707. dentry->d_flags |= DCACHE_GENOCIDE;
  2708. dentry->d_count--;
  2709. }
  2710. spin_unlock(&dentry->d_lock);
  2711. }
  2712. if (this_parent != root) {
  2713. struct dentry *child = this_parent;
  2714. if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
  2715. this_parent->d_flags |= DCACHE_GENOCIDE;
  2716. this_parent->d_count--;
  2717. }
  2718. this_parent = try_to_ascend(this_parent, locked, seq);
  2719. if (!this_parent)
  2720. goto rename_retry;
  2721. next = child->d_u.d_child.next;
  2722. goto resume;
  2723. }
  2724. spin_unlock(&this_parent->d_lock);
  2725. if (!locked && read_seqretry(&rename_lock, seq))
  2726. goto rename_retry;
  2727. if (locked)
  2728. write_sequnlock(&rename_lock);
  2729. return;
  2730. rename_retry:
  2731. locked = 1;
  2732. write_seqlock(&rename_lock);
  2733. goto again;
  2734. }
  2735. /**
  2736. * find_inode_number - check for dentry with name
  2737. * @dir: directory to check
  2738. * @name: Name to find.
  2739. *
  2740. * Check whether a dentry already exists for the given name,
  2741. * and return the inode number if it has an inode. Otherwise
  2742. * 0 is returned.
  2743. *
  2744. * This routine is used to post-process directory listings for
  2745. * filesystems using synthetic inode numbers, and is necessary
  2746. * to keep getcwd() working.
  2747. */
  2748. ino_t find_inode_number(struct dentry *dir, struct qstr *name)
  2749. {
  2750. struct dentry * dentry;
  2751. ino_t ino = 0;
  2752. dentry = d_hash_and_lookup(dir, name);
  2753. if (dentry) {
  2754. if (dentry->d_inode)
  2755. ino = dentry->d_inode->i_ino;
  2756. dput(dentry);
  2757. }
  2758. return ino;
  2759. }
  2760. EXPORT_SYMBOL(find_inode_number);
  2761. static __initdata unsigned long dhash_entries;
  2762. static int __init set_dhash_entries(char *str)
  2763. {
  2764. if (!str)
  2765. return 0;
  2766. dhash_entries = simple_strtoul(str, &str, 0);
  2767. return 1;
  2768. }
  2769. __setup("dhash_entries=", set_dhash_entries);
  2770. static void __init dcache_init_early(void)
  2771. {
  2772. unsigned int loop;
  2773. /* If hashes are distributed across NUMA nodes, defer
  2774. * hash allocation until vmalloc space is available.
  2775. */
  2776. if (hashdist)
  2777. return;
  2778. dentry_hashtable =
  2779. alloc_large_system_hash("Dentry cache",
  2780. sizeof(struct hlist_bl_head),
  2781. dhash_entries,
  2782. 13,
  2783. HASH_EARLY,
  2784. &d_hash_shift,
  2785. &d_hash_mask,
  2786. 0,
  2787. 0);
  2788. for (loop = 0; loop < (1U << d_hash_shift); loop++)
  2789. INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
  2790. }
  2791. static void __init dcache_init(void)
  2792. {
  2793. unsigned int loop;
  2794. /*
  2795. * A constructor could be added for stable state like the lists,
  2796. * but it is probably not worth it because of the cache nature
  2797. * of the dcache.
  2798. */
  2799. dentry_cache = KMEM_CACHE(dentry,
  2800. SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
  2801. /* Hash may have been set up in dcache_init_early */
  2802. if (!hashdist)
  2803. return;
  2804. dentry_hashtable =
  2805. alloc_large_system_hash("Dentry cache",
  2806. sizeof(struct hlist_bl_head),
  2807. dhash_entries,
  2808. 13,
  2809. 0,
  2810. &d_hash_shift,
  2811. &d_hash_mask,
  2812. 0,
  2813. 0);
  2814. for (loop = 0; loop < (1U << d_hash_shift); loop++)
  2815. INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
  2816. }
  2817. /* SLAB cache for __getname() consumers */
  2818. struct kmem_cache *names_cachep __read_mostly;
  2819. EXPORT_SYMBOL(names_cachep);
  2820. EXPORT_SYMBOL(d_genocide);
  2821. void __init vfs_caches_init_early(void)
  2822. {
  2823. dcache_init_early();
  2824. inode_init_early();
  2825. }
  2826. void __init vfs_caches_init(unsigned long mempages)
  2827. {
  2828. unsigned long reserve;
  2829. /* Base hash sizes on available memory, with a reserve equal to
  2830. 150% of current kernel size */
  2831. reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
  2832. mempages -= reserve;
  2833. names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
  2834. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  2835. dcache_init();
  2836. inode_init();
  2837. files_init(mempages);
  2838. mnt_init();
  2839. bdev_cache_init();
  2840. chrdev_init();
  2841. }