delayed-inode.c 50 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 400
  24. #define BTRFS_DELAYED_BACKGROUND 100
  25. static struct kmem_cache *delayed_node_cache;
  26. int __init btrfs_delayed_inode_init(void)
  27. {
  28. delayed_node_cache = kmem_cache_create("delayed_node",
  29. sizeof(struct btrfs_delayed_node),
  30. 0,
  31. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  32. NULL);
  33. if (!delayed_node_cache)
  34. return -ENOMEM;
  35. return 0;
  36. }
  37. void btrfs_delayed_inode_exit(void)
  38. {
  39. if (delayed_node_cache)
  40. kmem_cache_destroy(delayed_node_cache);
  41. }
  42. static inline void btrfs_init_delayed_node(
  43. struct btrfs_delayed_node *delayed_node,
  44. struct btrfs_root *root, u64 inode_id)
  45. {
  46. delayed_node->root = root;
  47. delayed_node->inode_id = inode_id;
  48. atomic_set(&delayed_node->refs, 0);
  49. delayed_node->count = 0;
  50. delayed_node->in_list = 0;
  51. delayed_node->inode_dirty = 0;
  52. delayed_node->ins_root = RB_ROOT;
  53. delayed_node->del_root = RB_ROOT;
  54. mutex_init(&delayed_node->mutex);
  55. delayed_node->index_cnt = 0;
  56. INIT_LIST_HEAD(&delayed_node->n_list);
  57. INIT_LIST_HEAD(&delayed_node->p_list);
  58. delayed_node->bytes_reserved = 0;
  59. memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
  60. }
  61. static inline int btrfs_is_continuous_delayed_item(
  62. struct btrfs_delayed_item *item1,
  63. struct btrfs_delayed_item *item2)
  64. {
  65. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  66. item1->key.objectid == item2->key.objectid &&
  67. item1->key.type == item2->key.type &&
  68. item1->key.offset + 1 == item2->key.offset)
  69. return 1;
  70. return 0;
  71. }
  72. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  73. struct btrfs_root *root)
  74. {
  75. return root->fs_info->delayed_root;
  76. }
  77. static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
  78. {
  79. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  80. struct btrfs_root *root = btrfs_inode->root;
  81. u64 ino = btrfs_ino(inode);
  82. struct btrfs_delayed_node *node;
  83. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  84. if (node) {
  85. atomic_inc(&node->refs);
  86. return node;
  87. }
  88. spin_lock(&root->inode_lock);
  89. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  90. if (node) {
  91. if (btrfs_inode->delayed_node) {
  92. atomic_inc(&node->refs); /* can be accessed */
  93. BUG_ON(btrfs_inode->delayed_node != node);
  94. spin_unlock(&root->inode_lock);
  95. return node;
  96. }
  97. btrfs_inode->delayed_node = node;
  98. atomic_inc(&node->refs); /* can be accessed */
  99. atomic_inc(&node->refs); /* cached in the inode */
  100. spin_unlock(&root->inode_lock);
  101. return node;
  102. }
  103. spin_unlock(&root->inode_lock);
  104. return NULL;
  105. }
  106. /* Will return either the node or PTR_ERR(-ENOMEM) */
  107. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  108. struct inode *inode)
  109. {
  110. struct btrfs_delayed_node *node;
  111. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  112. struct btrfs_root *root = btrfs_inode->root;
  113. u64 ino = btrfs_ino(inode);
  114. int ret;
  115. again:
  116. node = btrfs_get_delayed_node(inode);
  117. if (node)
  118. return node;
  119. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  120. if (!node)
  121. return ERR_PTR(-ENOMEM);
  122. btrfs_init_delayed_node(node, root, ino);
  123. atomic_inc(&node->refs); /* cached in the btrfs inode */
  124. atomic_inc(&node->refs); /* can be accessed */
  125. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  126. if (ret) {
  127. kmem_cache_free(delayed_node_cache, node);
  128. return ERR_PTR(ret);
  129. }
  130. spin_lock(&root->inode_lock);
  131. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  132. if (ret == -EEXIST) {
  133. kmem_cache_free(delayed_node_cache, node);
  134. spin_unlock(&root->inode_lock);
  135. radix_tree_preload_end();
  136. goto again;
  137. }
  138. btrfs_inode->delayed_node = node;
  139. spin_unlock(&root->inode_lock);
  140. radix_tree_preload_end();
  141. return node;
  142. }
  143. /*
  144. * Call it when holding delayed_node->mutex
  145. *
  146. * If mod = 1, add this node into the prepared list.
  147. */
  148. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  149. struct btrfs_delayed_node *node,
  150. int mod)
  151. {
  152. spin_lock(&root->lock);
  153. if (node->in_list) {
  154. if (!list_empty(&node->p_list))
  155. list_move_tail(&node->p_list, &root->prepare_list);
  156. else if (mod)
  157. list_add_tail(&node->p_list, &root->prepare_list);
  158. } else {
  159. list_add_tail(&node->n_list, &root->node_list);
  160. list_add_tail(&node->p_list, &root->prepare_list);
  161. atomic_inc(&node->refs); /* inserted into list */
  162. root->nodes++;
  163. node->in_list = 1;
  164. }
  165. spin_unlock(&root->lock);
  166. }
  167. /* Call it when holding delayed_node->mutex */
  168. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  169. struct btrfs_delayed_node *node)
  170. {
  171. spin_lock(&root->lock);
  172. if (node->in_list) {
  173. root->nodes--;
  174. atomic_dec(&node->refs); /* not in the list */
  175. list_del_init(&node->n_list);
  176. if (!list_empty(&node->p_list))
  177. list_del_init(&node->p_list);
  178. node->in_list = 0;
  179. }
  180. spin_unlock(&root->lock);
  181. }
  182. struct btrfs_delayed_node *btrfs_first_delayed_node(
  183. struct btrfs_delayed_root *delayed_root)
  184. {
  185. struct list_head *p;
  186. struct btrfs_delayed_node *node = NULL;
  187. spin_lock(&delayed_root->lock);
  188. if (list_empty(&delayed_root->node_list))
  189. goto out;
  190. p = delayed_root->node_list.next;
  191. node = list_entry(p, struct btrfs_delayed_node, n_list);
  192. atomic_inc(&node->refs);
  193. out:
  194. spin_unlock(&delayed_root->lock);
  195. return node;
  196. }
  197. struct btrfs_delayed_node *btrfs_next_delayed_node(
  198. struct btrfs_delayed_node *node)
  199. {
  200. struct btrfs_delayed_root *delayed_root;
  201. struct list_head *p;
  202. struct btrfs_delayed_node *next = NULL;
  203. delayed_root = node->root->fs_info->delayed_root;
  204. spin_lock(&delayed_root->lock);
  205. if (!node->in_list) { /* not in the list */
  206. if (list_empty(&delayed_root->node_list))
  207. goto out;
  208. p = delayed_root->node_list.next;
  209. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  210. goto out;
  211. else
  212. p = node->n_list.next;
  213. next = list_entry(p, struct btrfs_delayed_node, n_list);
  214. atomic_inc(&next->refs);
  215. out:
  216. spin_unlock(&delayed_root->lock);
  217. return next;
  218. }
  219. static void __btrfs_release_delayed_node(
  220. struct btrfs_delayed_node *delayed_node,
  221. int mod)
  222. {
  223. struct btrfs_delayed_root *delayed_root;
  224. if (!delayed_node)
  225. return;
  226. delayed_root = delayed_node->root->fs_info->delayed_root;
  227. mutex_lock(&delayed_node->mutex);
  228. if (delayed_node->count)
  229. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  230. else
  231. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  232. mutex_unlock(&delayed_node->mutex);
  233. if (atomic_dec_and_test(&delayed_node->refs)) {
  234. struct btrfs_root *root = delayed_node->root;
  235. spin_lock(&root->inode_lock);
  236. if (atomic_read(&delayed_node->refs) == 0) {
  237. radix_tree_delete(&root->delayed_nodes_tree,
  238. delayed_node->inode_id);
  239. kmem_cache_free(delayed_node_cache, delayed_node);
  240. }
  241. spin_unlock(&root->inode_lock);
  242. }
  243. }
  244. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  245. {
  246. __btrfs_release_delayed_node(node, 0);
  247. }
  248. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  249. struct btrfs_delayed_root *delayed_root)
  250. {
  251. struct list_head *p;
  252. struct btrfs_delayed_node *node = NULL;
  253. spin_lock(&delayed_root->lock);
  254. if (list_empty(&delayed_root->prepare_list))
  255. goto out;
  256. p = delayed_root->prepare_list.next;
  257. list_del_init(p);
  258. node = list_entry(p, struct btrfs_delayed_node, p_list);
  259. atomic_inc(&node->refs);
  260. out:
  261. spin_unlock(&delayed_root->lock);
  262. return node;
  263. }
  264. static inline void btrfs_release_prepared_delayed_node(
  265. struct btrfs_delayed_node *node)
  266. {
  267. __btrfs_release_delayed_node(node, 1);
  268. }
  269. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  270. {
  271. struct btrfs_delayed_item *item;
  272. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  273. if (item) {
  274. item->data_len = data_len;
  275. item->ins_or_del = 0;
  276. item->bytes_reserved = 0;
  277. item->delayed_node = NULL;
  278. atomic_set(&item->refs, 1);
  279. }
  280. return item;
  281. }
  282. /*
  283. * __btrfs_lookup_delayed_item - look up the delayed item by key
  284. * @delayed_node: pointer to the delayed node
  285. * @key: the key to look up
  286. * @prev: used to store the prev item if the right item isn't found
  287. * @next: used to store the next item if the right item isn't found
  288. *
  289. * Note: if we don't find the right item, we will return the prev item and
  290. * the next item.
  291. */
  292. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  293. struct rb_root *root,
  294. struct btrfs_key *key,
  295. struct btrfs_delayed_item **prev,
  296. struct btrfs_delayed_item **next)
  297. {
  298. struct rb_node *node, *prev_node = NULL;
  299. struct btrfs_delayed_item *delayed_item = NULL;
  300. int ret = 0;
  301. node = root->rb_node;
  302. while (node) {
  303. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  304. rb_node);
  305. prev_node = node;
  306. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  307. if (ret < 0)
  308. node = node->rb_right;
  309. else if (ret > 0)
  310. node = node->rb_left;
  311. else
  312. return delayed_item;
  313. }
  314. if (prev) {
  315. if (!prev_node)
  316. *prev = NULL;
  317. else if (ret < 0)
  318. *prev = delayed_item;
  319. else if ((node = rb_prev(prev_node)) != NULL) {
  320. *prev = rb_entry(node, struct btrfs_delayed_item,
  321. rb_node);
  322. } else
  323. *prev = NULL;
  324. }
  325. if (next) {
  326. if (!prev_node)
  327. *next = NULL;
  328. else if (ret > 0)
  329. *next = delayed_item;
  330. else if ((node = rb_next(prev_node)) != NULL) {
  331. *next = rb_entry(node, struct btrfs_delayed_item,
  332. rb_node);
  333. } else
  334. *next = NULL;
  335. }
  336. return NULL;
  337. }
  338. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  339. struct btrfs_delayed_node *delayed_node,
  340. struct btrfs_key *key)
  341. {
  342. struct btrfs_delayed_item *item;
  343. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  344. NULL, NULL);
  345. return item;
  346. }
  347. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  348. struct btrfs_delayed_node *delayed_node,
  349. struct btrfs_key *key)
  350. {
  351. struct btrfs_delayed_item *item;
  352. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  353. NULL, NULL);
  354. return item;
  355. }
  356. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  357. struct btrfs_delayed_node *delayed_node,
  358. struct btrfs_key *key)
  359. {
  360. struct btrfs_delayed_item *item, *next;
  361. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  362. NULL, &next);
  363. if (!item)
  364. item = next;
  365. return item;
  366. }
  367. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  368. struct btrfs_delayed_node *delayed_node,
  369. struct btrfs_key *key)
  370. {
  371. struct btrfs_delayed_item *item, *next;
  372. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  373. NULL, &next);
  374. if (!item)
  375. item = next;
  376. return item;
  377. }
  378. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  379. struct btrfs_delayed_item *ins,
  380. int action)
  381. {
  382. struct rb_node **p, *node;
  383. struct rb_node *parent_node = NULL;
  384. struct rb_root *root;
  385. struct btrfs_delayed_item *item;
  386. int cmp;
  387. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  388. root = &delayed_node->ins_root;
  389. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  390. root = &delayed_node->del_root;
  391. else
  392. BUG();
  393. p = &root->rb_node;
  394. node = &ins->rb_node;
  395. while (*p) {
  396. parent_node = *p;
  397. item = rb_entry(parent_node, struct btrfs_delayed_item,
  398. rb_node);
  399. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  400. if (cmp < 0)
  401. p = &(*p)->rb_right;
  402. else if (cmp > 0)
  403. p = &(*p)->rb_left;
  404. else
  405. return -EEXIST;
  406. }
  407. rb_link_node(node, parent_node, p);
  408. rb_insert_color(node, root);
  409. ins->delayed_node = delayed_node;
  410. ins->ins_or_del = action;
  411. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  412. action == BTRFS_DELAYED_INSERTION_ITEM &&
  413. ins->key.offset >= delayed_node->index_cnt)
  414. delayed_node->index_cnt = ins->key.offset + 1;
  415. delayed_node->count++;
  416. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  417. return 0;
  418. }
  419. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  420. struct btrfs_delayed_item *item)
  421. {
  422. return __btrfs_add_delayed_item(node, item,
  423. BTRFS_DELAYED_INSERTION_ITEM);
  424. }
  425. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  426. struct btrfs_delayed_item *item)
  427. {
  428. return __btrfs_add_delayed_item(node, item,
  429. BTRFS_DELAYED_DELETION_ITEM);
  430. }
  431. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  432. {
  433. struct rb_root *root;
  434. struct btrfs_delayed_root *delayed_root;
  435. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  436. BUG_ON(!delayed_root);
  437. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  438. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  439. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  440. root = &delayed_item->delayed_node->ins_root;
  441. else
  442. root = &delayed_item->delayed_node->del_root;
  443. rb_erase(&delayed_item->rb_node, root);
  444. delayed_item->delayed_node->count--;
  445. atomic_dec(&delayed_root->items);
  446. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
  447. waitqueue_active(&delayed_root->wait))
  448. wake_up(&delayed_root->wait);
  449. }
  450. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  451. {
  452. if (item) {
  453. __btrfs_remove_delayed_item(item);
  454. if (atomic_dec_and_test(&item->refs))
  455. kfree(item);
  456. }
  457. }
  458. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  459. struct btrfs_delayed_node *delayed_node)
  460. {
  461. struct rb_node *p;
  462. struct btrfs_delayed_item *item = NULL;
  463. p = rb_first(&delayed_node->ins_root);
  464. if (p)
  465. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  466. return item;
  467. }
  468. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  469. struct btrfs_delayed_node *delayed_node)
  470. {
  471. struct rb_node *p;
  472. struct btrfs_delayed_item *item = NULL;
  473. p = rb_first(&delayed_node->del_root);
  474. if (p)
  475. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  476. return item;
  477. }
  478. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  479. struct btrfs_delayed_item *item)
  480. {
  481. struct rb_node *p;
  482. struct btrfs_delayed_item *next = NULL;
  483. p = rb_next(&item->rb_node);
  484. if (p)
  485. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  486. return next;
  487. }
  488. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  489. u64 root_id)
  490. {
  491. struct btrfs_key root_key;
  492. if (root->objectid == root_id)
  493. return root;
  494. root_key.objectid = root_id;
  495. root_key.type = BTRFS_ROOT_ITEM_KEY;
  496. root_key.offset = (u64)-1;
  497. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  498. }
  499. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  500. struct btrfs_root *root,
  501. struct btrfs_delayed_item *item)
  502. {
  503. struct btrfs_block_rsv *src_rsv;
  504. struct btrfs_block_rsv *dst_rsv;
  505. u64 num_bytes;
  506. int ret;
  507. if (!trans->bytes_reserved)
  508. return 0;
  509. src_rsv = trans->block_rsv;
  510. dst_rsv = &root->fs_info->delayed_block_rsv;
  511. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  512. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  513. if (!ret) {
  514. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  515. item->key.objectid,
  516. num_bytes, 1);
  517. item->bytes_reserved = num_bytes;
  518. }
  519. return ret;
  520. }
  521. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  522. struct btrfs_delayed_item *item)
  523. {
  524. struct btrfs_block_rsv *rsv;
  525. if (!item->bytes_reserved)
  526. return;
  527. rsv = &root->fs_info->delayed_block_rsv;
  528. trace_btrfs_space_reservation(root->fs_info, "delayed_item",
  529. item->key.objectid, item->bytes_reserved,
  530. 0);
  531. btrfs_block_rsv_release(root, rsv,
  532. item->bytes_reserved);
  533. }
  534. static int btrfs_delayed_inode_reserve_metadata(
  535. struct btrfs_trans_handle *trans,
  536. struct btrfs_root *root,
  537. struct inode *inode,
  538. struct btrfs_delayed_node *node)
  539. {
  540. struct btrfs_block_rsv *src_rsv;
  541. struct btrfs_block_rsv *dst_rsv;
  542. u64 num_bytes;
  543. int ret;
  544. bool release = false;
  545. src_rsv = trans->block_rsv;
  546. dst_rsv = &root->fs_info->delayed_block_rsv;
  547. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  548. /*
  549. * btrfs_dirty_inode will update the inode under btrfs_join_transaction
  550. * which doesn't reserve space for speed. This is a problem since we
  551. * still need to reserve space for this update, so try to reserve the
  552. * space.
  553. *
  554. * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
  555. * we're accounted for.
  556. */
  557. if (!src_rsv || (!trans->bytes_reserved &&
  558. src_rsv != &root->fs_info->delalloc_block_rsv)) {
  559. ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
  560. /*
  561. * Since we're under a transaction reserve_metadata_bytes could
  562. * try to commit the transaction which will make it return
  563. * EAGAIN to make us stop the transaction we have, so return
  564. * ENOSPC instead so that btrfs_dirty_inode knows what to do.
  565. */
  566. if (ret == -EAGAIN)
  567. ret = -ENOSPC;
  568. if (!ret) {
  569. node->bytes_reserved = num_bytes;
  570. trace_btrfs_space_reservation(root->fs_info,
  571. "delayed_inode",
  572. btrfs_ino(inode),
  573. num_bytes, 1);
  574. }
  575. return ret;
  576. } else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
  577. spin_lock(&BTRFS_I(inode)->lock);
  578. if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  579. &BTRFS_I(inode)->runtime_flags)) {
  580. spin_unlock(&BTRFS_I(inode)->lock);
  581. release = true;
  582. goto migrate;
  583. }
  584. spin_unlock(&BTRFS_I(inode)->lock);
  585. /* Ok we didn't have space pre-reserved. This shouldn't happen
  586. * too often but it can happen if we do delalloc to an existing
  587. * inode which gets dirtied because of the time update, and then
  588. * isn't touched again until after the transaction commits and
  589. * then we try to write out the data. First try to be nice and
  590. * reserve something strictly for us. If not be a pain and try
  591. * to steal from the delalloc block rsv.
  592. */
  593. ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
  594. if (!ret)
  595. goto out;
  596. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  597. if (!ret)
  598. goto out;
  599. /*
  600. * Ok this is a problem, let's just steal from the global rsv
  601. * since this really shouldn't happen that often.
  602. */
  603. WARN_ON(1);
  604. ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
  605. dst_rsv, num_bytes);
  606. goto out;
  607. }
  608. migrate:
  609. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  610. out:
  611. /*
  612. * Migrate only takes a reservation, it doesn't touch the size of the
  613. * block_rsv. This is to simplify people who don't normally have things
  614. * migrated from their block rsv. If they go to release their
  615. * reservation, that will decrease the size as well, so if migrate
  616. * reduced size we'd end up with a negative size. But for the
  617. * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
  618. * but we could in fact do this reserve/migrate dance several times
  619. * between the time we did the original reservation and we'd clean it
  620. * up. So to take care of this, release the space for the meta
  621. * reservation here. I think it may be time for a documentation page on
  622. * how block rsvs. work.
  623. */
  624. if (!ret) {
  625. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  626. btrfs_ino(inode), num_bytes, 1);
  627. node->bytes_reserved = num_bytes;
  628. }
  629. if (release) {
  630. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  631. btrfs_ino(inode), num_bytes, 0);
  632. btrfs_block_rsv_release(root, src_rsv, num_bytes);
  633. }
  634. return ret;
  635. }
  636. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  637. struct btrfs_delayed_node *node)
  638. {
  639. struct btrfs_block_rsv *rsv;
  640. if (!node->bytes_reserved)
  641. return;
  642. rsv = &root->fs_info->delayed_block_rsv;
  643. trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
  644. node->inode_id, node->bytes_reserved, 0);
  645. btrfs_block_rsv_release(root, rsv,
  646. node->bytes_reserved);
  647. node->bytes_reserved = 0;
  648. }
  649. /*
  650. * This helper will insert some continuous items into the same leaf according
  651. * to the free space of the leaf.
  652. */
  653. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  654. struct btrfs_root *root,
  655. struct btrfs_path *path,
  656. struct btrfs_delayed_item *item)
  657. {
  658. struct btrfs_delayed_item *curr, *next;
  659. int free_space;
  660. int total_data_size = 0, total_size = 0;
  661. struct extent_buffer *leaf;
  662. char *data_ptr;
  663. struct btrfs_key *keys;
  664. u32 *data_size;
  665. struct list_head head;
  666. int slot;
  667. int nitems;
  668. int i;
  669. int ret = 0;
  670. BUG_ON(!path->nodes[0]);
  671. leaf = path->nodes[0];
  672. free_space = btrfs_leaf_free_space(root, leaf);
  673. INIT_LIST_HEAD(&head);
  674. next = item;
  675. nitems = 0;
  676. /*
  677. * count the number of the continuous items that we can insert in batch
  678. */
  679. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  680. free_space) {
  681. total_data_size += next->data_len;
  682. total_size += next->data_len + sizeof(struct btrfs_item);
  683. list_add_tail(&next->tree_list, &head);
  684. nitems++;
  685. curr = next;
  686. next = __btrfs_next_delayed_item(curr);
  687. if (!next)
  688. break;
  689. if (!btrfs_is_continuous_delayed_item(curr, next))
  690. break;
  691. }
  692. if (!nitems) {
  693. ret = 0;
  694. goto out;
  695. }
  696. /*
  697. * we need allocate some memory space, but it might cause the task
  698. * to sleep, so we set all locked nodes in the path to blocking locks
  699. * first.
  700. */
  701. btrfs_set_path_blocking(path);
  702. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  703. if (!keys) {
  704. ret = -ENOMEM;
  705. goto out;
  706. }
  707. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  708. if (!data_size) {
  709. ret = -ENOMEM;
  710. goto error;
  711. }
  712. /* get keys of all the delayed items */
  713. i = 0;
  714. list_for_each_entry(next, &head, tree_list) {
  715. keys[i] = next->key;
  716. data_size[i] = next->data_len;
  717. i++;
  718. }
  719. /* reset all the locked nodes in the patch to spinning locks. */
  720. btrfs_clear_path_blocking(path, NULL, 0);
  721. /* insert the keys of the items */
  722. setup_items_for_insert(trans, root, path, keys, data_size,
  723. total_data_size, total_size, nitems);
  724. /* insert the dir index items */
  725. slot = path->slots[0];
  726. list_for_each_entry_safe(curr, next, &head, tree_list) {
  727. data_ptr = btrfs_item_ptr(leaf, slot, char);
  728. write_extent_buffer(leaf, &curr->data,
  729. (unsigned long)data_ptr,
  730. curr->data_len);
  731. slot++;
  732. btrfs_delayed_item_release_metadata(root, curr);
  733. list_del(&curr->tree_list);
  734. btrfs_release_delayed_item(curr);
  735. }
  736. error:
  737. kfree(data_size);
  738. kfree(keys);
  739. out:
  740. return ret;
  741. }
  742. /*
  743. * This helper can just do simple insertion that needn't extend item for new
  744. * data, such as directory name index insertion, inode insertion.
  745. */
  746. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  747. struct btrfs_root *root,
  748. struct btrfs_path *path,
  749. struct btrfs_delayed_item *delayed_item)
  750. {
  751. struct extent_buffer *leaf;
  752. struct btrfs_item *item;
  753. char *ptr;
  754. int ret;
  755. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  756. delayed_item->data_len);
  757. if (ret < 0 && ret != -EEXIST)
  758. return ret;
  759. leaf = path->nodes[0];
  760. item = btrfs_item_nr(leaf, path->slots[0]);
  761. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  762. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  763. delayed_item->data_len);
  764. btrfs_mark_buffer_dirty(leaf);
  765. btrfs_delayed_item_release_metadata(root, delayed_item);
  766. return 0;
  767. }
  768. /*
  769. * we insert an item first, then if there are some continuous items, we try
  770. * to insert those items into the same leaf.
  771. */
  772. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  773. struct btrfs_path *path,
  774. struct btrfs_root *root,
  775. struct btrfs_delayed_node *node)
  776. {
  777. struct btrfs_delayed_item *curr, *prev;
  778. int ret = 0;
  779. do_again:
  780. mutex_lock(&node->mutex);
  781. curr = __btrfs_first_delayed_insertion_item(node);
  782. if (!curr)
  783. goto insert_end;
  784. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  785. if (ret < 0) {
  786. btrfs_release_path(path);
  787. goto insert_end;
  788. }
  789. prev = curr;
  790. curr = __btrfs_next_delayed_item(prev);
  791. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  792. /* insert the continuous items into the same leaf */
  793. path->slots[0]++;
  794. btrfs_batch_insert_items(trans, root, path, curr);
  795. }
  796. btrfs_release_delayed_item(prev);
  797. btrfs_mark_buffer_dirty(path->nodes[0]);
  798. btrfs_release_path(path);
  799. mutex_unlock(&node->mutex);
  800. goto do_again;
  801. insert_end:
  802. mutex_unlock(&node->mutex);
  803. return ret;
  804. }
  805. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  806. struct btrfs_root *root,
  807. struct btrfs_path *path,
  808. struct btrfs_delayed_item *item)
  809. {
  810. struct btrfs_delayed_item *curr, *next;
  811. struct extent_buffer *leaf;
  812. struct btrfs_key key;
  813. struct list_head head;
  814. int nitems, i, last_item;
  815. int ret = 0;
  816. BUG_ON(!path->nodes[0]);
  817. leaf = path->nodes[0];
  818. i = path->slots[0];
  819. last_item = btrfs_header_nritems(leaf) - 1;
  820. if (i > last_item)
  821. return -ENOENT; /* FIXME: Is errno suitable? */
  822. next = item;
  823. INIT_LIST_HEAD(&head);
  824. btrfs_item_key_to_cpu(leaf, &key, i);
  825. nitems = 0;
  826. /*
  827. * count the number of the dir index items that we can delete in batch
  828. */
  829. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  830. list_add_tail(&next->tree_list, &head);
  831. nitems++;
  832. curr = next;
  833. next = __btrfs_next_delayed_item(curr);
  834. if (!next)
  835. break;
  836. if (!btrfs_is_continuous_delayed_item(curr, next))
  837. break;
  838. i++;
  839. if (i > last_item)
  840. break;
  841. btrfs_item_key_to_cpu(leaf, &key, i);
  842. }
  843. if (!nitems)
  844. return 0;
  845. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  846. if (ret)
  847. goto out;
  848. list_for_each_entry_safe(curr, next, &head, tree_list) {
  849. btrfs_delayed_item_release_metadata(root, curr);
  850. list_del(&curr->tree_list);
  851. btrfs_release_delayed_item(curr);
  852. }
  853. out:
  854. return ret;
  855. }
  856. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  857. struct btrfs_path *path,
  858. struct btrfs_root *root,
  859. struct btrfs_delayed_node *node)
  860. {
  861. struct btrfs_delayed_item *curr, *prev;
  862. int ret = 0;
  863. do_again:
  864. mutex_lock(&node->mutex);
  865. curr = __btrfs_first_delayed_deletion_item(node);
  866. if (!curr)
  867. goto delete_fail;
  868. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  869. if (ret < 0)
  870. goto delete_fail;
  871. else if (ret > 0) {
  872. /*
  873. * can't find the item which the node points to, so this node
  874. * is invalid, just drop it.
  875. */
  876. prev = curr;
  877. curr = __btrfs_next_delayed_item(prev);
  878. btrfs_release_delayed_item(prev);
  879. ret = 0;
  880. btrfs_release_path(path);
  881. if (curr)
  882. goto do_again;
  883. else
  884. goto delete_fail;
  885. }
  886. btrfs_batch_delete_items(trans, root, path, curr);
  887. btrfs_release_path(path);
  888. mutex_unlock(&node->mutex);
  889. goto do_again;
  890. delete_fail:
  891. btrfs_release_path(path);
  892. mutex_unlock(&node->mutex);
  893. return ret;
  894. }
  895. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  896. {
  897. struct btrfs_delayed_root *delayed_root;
  898. if (delayed_node && delayed_node->inode_dirty) {
  899. BUG_ON(!delayed_node->root);
  900. delayed_node->inode_dirty = 0;
  901. delayed_node->count--;
  902. delayed_root = delayed_node->root->fs_info->delayed_root;
  903. atomic_dec(&delayed_root->items);
  904. if (atomic_read(&delayed_root->items) <
  905. BTRFS_DELAYED_BACKGROUND &&
  906. waitqueue_active(&delayed_root->wait))
  907. wake_up(&delayed_root->wait);
  908. }
  909. }
  910. static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  911. struct btrfs_root *root,
  912. struct btrfs_path *path,
  913. struct btrfs_delayed_node *node)
  914. {
  915. struct btrfs_key key;
  916. struct btrfs_inode_item *inode_item;
  917. struct extent_buffer *leaf;
  918. int ret;
  919. mutex_lock(&node->mutex);
  920. if (!node->inode_dirty) {
  921. mutex_unlock(&node->mutex);
  922. return 0;
  923. }
  924. key.objectid = node->inode_id;
  925. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  926. key.offset = 0;
  927. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  928. if (ret > 0) {
  929. btrfs_release_path(path);
  930. mutex_unlock(&node->mutex);
  931. return -ENOENT;
  932. } else if (ret < 0) {
  933. mutex_unlock(&node->mutex);
  934. return ret;
  935. }
  936. btrfs_unlock_up_safe(path, 1);
  937. leaf = path->nodes[0];
  938. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  939. struct btrfs_inode_item);
  940. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  941. sizeof(struct btrfs_inode_item));
  942. btrfs_mark_buffer_dirty(leaf);
  943. btrfs_release_path(path);
  944. btrfs_delayed_inode_release_metadata(root, node);
  945. btrfs_release_delayed_inode(node);
  946. mutex_unlock(&node->mutex);
  947. return 0;
  948. }
  949. /*
  950. * Called when committing the transaction.
  951. * Returns 0 on success.
  952. * Returns < 0 on error and returns with an aborted transaction with any
  953. * outstanding delayed items cleaned up.
  954. */
  955. static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  956. struct btrfs_root *root, int nr)
  957. {
  958. struct btrfs_root *curr_root = root;
  959. struct btrfs_delayed_root *delayed_root;
  960. struct btrfs_delayed_node *curr_node, *prev_node;
  961. struct btrfs_path *path;
  962. struct btrfs_block_rsv *block_rsv;
  963. int ret = 0;
  964. bool count = (nr > 0);
  965. if (trans->aborted)
  966. return -EIO;
  967. path = btrfs_alloc_path();
  968. if (!path)
  969. return -ENOMEM;
  970. path->leave_spinning = 1;
  971. block_rsv = trans->block_rsv;
  972. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  973. delayed_root = btrfs_get_delayed_root(root);
  974. curr_node = btrfs_first_delayed_node(delayed_root);
  975. while (curr_node && (!count || (count && nr--))) {
  976. curr_root = curr_node->root;
  977. ret = btrfs_insert_delayed_items(trans, path, curr_root,
  978. curr_node);
  979. if (!ret)
  980. ret = btrfs_delete_delayed_items(trans, path,
  981. curr_root, curr_node);
  982. if (!ret)
  983. ret = btrfs_update_delayed_inode(trans, curr_root,
  984. path, curr_node);
  985. if (ret) {
  986. btrfs_release_delayed_node(curr_node);
  987. curr_node = NULL;
  988. btrfs_abort_transaction(trans, root, ret);
  989. break;
  990. }
  991. prev_node = curr_node;
  992. curr_node = btrfs_next_delayed_node(curr_node);
  993. btrfs_release_delayed_node(prev_node);
  994. }
  995. if (curr_node)
  996. btrfs_release_delayed_node(curr_node);
  997. btrfs_free_path(path);
  998. trans->block_rsv = block_rsv;
  999. return ret;
  1000. }
  1001. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  1002. struct btrfs_root *root)
  1003. {
  1004. return __btrfs_run_delayed_items(trans, root, -1);
  1005. }
  1006. int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
  1007. struct btrfs_root *root, int nr)
  1008. {
  1009. return __btrfs_run_delayed_items(trans, root, nr);
  1010. }
  1011. static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1012. struct btrfs_delayed_node *node)
  1013. {
  1014. struct btrfs_path *path;
  1015. struct btrfs_block_rsv *block_rsv;
  1016. int ret;
  1017. path = btrfs_alloc_path();
  1018. if (!path)
  1019. return -ENOMEM;
  1020. path->leave_spinning = 1;
  1021. block_rsv = trans->block_rsv;
  1022. trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
  1023. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  1024. if (!ret)
  1025. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  1026. if (!ret)
  1027. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  1028. btrfs_free_path(path);
  1029. trans->block_rsv = block_rsv;
  1030. return ret;
  1031. }
  1032. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  1033. struct inode *inode)
  1034. {
  1035. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1036. int ret;
  1037. if (!delayed_node)
  1038. return 0;
  1039. mutex_lock(&delayed_node->mutex);
  1040. if (!delayed_node->count) {
  1041. mutex_unlock(&delayed_node->mutex);
  1042. btrfs_release_delayed_node(delayed_node);
  1043. return 0;
  1044. }
  1045. mutex_unlock(&delayed_node->mutex);
  1046. ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
  1047. btrfs_release_delayed_node(delayed_node);
  1048. return ret;
  1049. }
  1050. void btrfs_remove_delayed_node(struct inode *inode)
  1051. {
  1052. struct btrfs_delayed_node *delayed_node;
  1053. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  1054. if (!delayed_node)
  1055. return;
  1056. BTRFS_I(inode)->delayed_node = NULL;
  1057. btrfs_release_delayed_node(delayed_node);
  1058. }
  1059. struct btrfs_async_delayed_node {
  1060. struct btrfs_root *root;
  1061. struct btrfs_delayed_node *delayed_node;
  1062. struct btrfs_work work;
  1063. };
  1064. static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
  1065. {
  1066. struct btrfs_async_delayed_node *async_node;
  1067. struct btrfs_trans_handle *trans;
  1068. struct btrfs_path *path;
  1069. struct btrfs_delayed_node *delayed_node = NULL;
  1070. struct btrfs_root *root;
  1071. struct btrfs_block_rsv *block_rsv;
  1072. unsigned long nr = 0;
  1073. int need_requeue = 0;
  1074. int ret;
  1075. async_node = container_of(work, struct btrfs_async_delayed_node, work);
  1076. path = btrfs_alloc_path();
  1077. if (!path)
  1078. goto out;
  1079. path->leave_spinning = 1;
  1080. delayed_node = async_node->delayed_node;
  1081. root = delayed_node->root;
  1082. trans = btrfs_join_transaction(root);
  1083. if (IS_ERR(trans))
  1084. goto free_path;
  1085. block_rsv = trans->block_rsv;
  1086. trans->block_rsv = &root->fs_info->delayed_block_rsv;
  1087. ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
  1088. if (!ret)
  1089. ret = btrfs_delete_delayed_items(trans, path, root,
  1090. delayed_node);
  1091. if (!ret)
  1092. btrfs_update_delayed_inode(trans, root, path, delayed_node);
  1093. /*
  1094. * Maybe new delayed items have been inserted, so we need requeue
  1095. * the work. Besides that, we must dequeue the empty delayed nodes
  1096. * to avoid the race between delayed items balance and the worker.
  1097. * The race like this:
  1098. * Task1 Worker thread
  1099. * count == 0, needn't requeue
  1100. * also needn't insert the
  1101. * delayed node into prepare
  1102. * list again.
  1103. * add lots of delayed items
  1104. * queue the delayed node
  1105. * already in the list,
  1106. * and not in the prepare
  1107. * list, it means the delayed
  1108. * node is being dealt with
  1109. * by the worker.
  1110. * do delayed items balance
  1111. * the delayed node is being
  1112. * dealt with by the worker
  1113. * now, just wait.
  1114. * the worker goto idle.
  1115. * Task1 will sleep until the transaction is commited.
  1116. */
  1117. mutex_lock(&delayed_node->mutex);
  1118. if (delayed_node->count)
  1119. need_requeue = 1;
  1120. else
  1121. btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
  1122. delayed_node);
  1123. mutex_unlock(&delayed_node->mutex);
  1124. nr = trans->blocks_used;
  1125. trans->block_rsv = block_rsv;
  1126. btrfs_end_transaction_dmeta(trans, root);
  1127. __btrfs_btree_balance_dirty(root, nr);
  1128. free_path:
  1129. btrfs_free_path(path);
  1130. out:
  1131. if (need_requeue)
  1132. btrfs_requeue_work(&async_node->work);
  1133. else {
  1134. btrfs_release_prepared_delayed_node(delayed_node);
  1135. kfree(async_node);
  1136. }
  1137. }
  1138. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1139. struct btrfs_root *root, int all)
  1140. {
  1141. struct btrfs_async_delayed_node *async_node;
  1142. struct btrfs_delayed_node *curr;
  1143. int count = 0;
  1144. again:
  1145. curr = btrfs_first_prepared_delayed_node(delayed_root);
  1146. if (!curr)
  1147. return 0;
  1148. async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
  1149. if (!async_node) {
  1150. btrfs_release_prepared_delayed_node(curr);
  1151. return -ENOMEM;
  1152. }
  1153. async_node->root = root;
  1154. async_node->delayed_node = curr;
  1155. async_node->work.func = btrfs_async_run_delayed_node_done;
  1156. async_node->work.flags = 0;
  1157. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
  1158. count++;
  1159. if (all || count < 4)
  1160. goto again;
  1161. return 0;
  1162. }
  1163. void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
  1164. {
  1165. struct btrfs_delayed_root *delayed_root;
  1166. delayed_root = btrfs_get_delayed_root(root);
  1167. WARN_ON(btrfs_first_delayed_node(delayed_root));
  1168. }
  1169. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1170. {
  1171. struct btrfs_delayed_root *delayed_root;
  1172. delayed_root = btrfs_get_delayed_root(root);
  1173. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1174. return;
  1175. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1176. int ret;
  1177. ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
  1178. if (ret)
  1179. return;
  1180. wait_event_interruptible_timeout(
  1181. delayed_root->wait,
  1182. (atomic_read(&delayed_root->items) <
  1183. BTRFS_DELAYED_BACKGROUND),
  1184. HZ);
  1185. return;
  1186. }
  1187. btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1188. }
  1189. /* Will return 0 or -ENOMEM */
  1190. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1191. struct btrfs_root *root, const char *name,
  1192. int name_len, struct inode *dir,
  1193. struct btrfs_disk_key *disk_key, u8 type,
  1194. u64 index)
  1195. {
  1196. struct btrfs_delayed_node *delayed_node;
  1197. struct btrfs_delayed_item *delayed_item;
  1198. struct btrfs_dir_item *dir_item;
  1199. int ret;
  1200. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1201. if (IS_ERR(delayed_node))
  1202. return PTR_ERR(delayed_node);
  1203. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1204. if (!delayed_item) {
  1205. ret = -ENOMEM;
  1206. goto release_node;
  1207. }
  1208. delayed_item->key.objectid = btrfs_ino(dir);
  1209. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1210. delayed_item->key.offset = index;
  1211. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1212. dir_item->location = *disk_key;
  1213. dir_item->transid = cpu_to_le64(trans->transid);
  1214. dir_item->data_len = 0;
  1215. dir_item->name_len = cpu_to_le16(name_len);
  1216. dir_item->type = type;
  1217. memcpy((char *)(dir_item + 1), name, name_len);
  1218. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1219. /*
  1220. * we have reserved enough space when we start a new transaction,
  1221. * so reserving metadata failure is impossible
  1222. */
  1223. BUG_ON(ret);
  1224. mutex_lock(&delayed_node->mutex);
  1225. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1226. if (unlikely(ret)) {
  1227. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1228. "the insertion tree of the delayed node"
  1229. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1230. name,
  1231. (unsigned long long)delayed_node->root->objectid,
  1232. (unsigned long long)delayed_node->inode_id,
  1233. ret);
  1234. BUG();
  1235. }
  1236. mutex_unlock(&delayed_node->mutex);
  1237. release_node:
  1238. btrfs_release_delayed_node(delayed_node);
  1239. return ret;
  1240. }
  1241. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1242. struct btrfs_delayed_node *node,
  1243. struct btrfs_key *key)
  1244. {
  1245. struct btrfs_delayed_item *item;
  1246. mutex_lock(&node->mutex);
  1247. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1248. if (!item) {
  1249. mutex_unlock(&node->mutex);
  1250. return 1;
  1251. }
  1252. btrfs_delayed_item_release_metadata(root, item);
  1253. btrfs_release_delayed_item(item);
  1254. mutex_unlock(&node->mutex);
  1255. return 0;
  1256. }
  1257. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1258. struct btrfs_root *root, struct inode *dir,
  1259. u64 index)
  1260. {
  1261. struct btrfs_delayed_node *node;
  1262. struct btrfs_delayed_item *item;
  1263. struct btrfs_key item_key;
  1264. int ret;
  1265. node = btrfs_get_or_create_delayed_node(dir);
  1266. if (IS_ERR(node))
  1267. return PTR_ERR(node);
  1268. item_key.objectid = btrfs_ino(dir);
  1269. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1270. item_key.offset = index;
  1271. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1272. if (!ret)
  1273. goto end;
  1274. item = btrfs_alloc_delayed_item(0);
  1275. if (!item) {
  1276. ret = -ENOMEM;
  1277. goto end;
  1278. }
  1279. item->key = item_key;
  1280. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1281. /*
  1282. * we have reserved enough space when we start a new transaction,
  1283. * so reserving metadata failure is impossible.
  1284. */
  1285. BUG_ON(ret);
  1286. mutex_lock(&node->mutex);
  1287. ret = __btrfs_add_delayed_deletion_item(node, item);
  1288. if (unlikely(ret)) {
  1289. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1290. "into the deletion tree of the delayed node"
  1291. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1292. (unsigned long long)index,
  1293. (unsigned long long)node->root->objectid,
  1294. (unsigned long long)node->inode_id,
  1295. ret);
  1296. BUG();
  1297. }
  1298. mutex_unlock(&node->mutex);
  1299. end:
  1300. btrfs_release_delayed_node(node);
  1301. return ret;
  1302. }
  1303. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1304. {
  1305. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  1306. if (!delayed_node)
  1307. return -ENOENT;
  1308. /*
  1309. * Since we have held i_mutex of this directory, it is impossible that
  1310. * a new directory index is added into the delayed node and index_cnt
  1311. * is updated now. So we needn't lock the delayed node.
  1312. */
  1313. if (!delayed_node->index_cnt) {
  1314. btrfs_release_delayed_node(delayed_node);
  1315. return -EINVAL;
  1316. }
  1317. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1318. btrfs_release_delayed_node(delayed_node);
  1319. return 0;
  1320. }
  1321. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1322. struct list_head *del_list)
  1323. {
  1324. struct btrfs_delayed_node *delayed_node;
  1325. struct btrfs_delayed_item *item;
  1326. delayed_node = btrfs_get_delayed_node(inode);
  1327. if (!delayed_node)
  1328. return;
  1329. mutex_lock(&delayed_node->mutex);
  1330. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1331. while (item) {
  1332. atomic_inc(&item->refs);
  1333. list_add_tail(&item->readdir_list, ins_list);
  1334. item = __btrfs_next_delayed_item(item);
  1335. }
  1336. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1337. while (item) {
  1338. atomic_inc(&item->refs);
  1339. list_add_tail(&item->readdir_list, del_list);
  1340. item = __btrfs_next_delayed_item(item);
  1341. }
  1342. mutex_unlock(&delayed_node->mutex);
  1343. /*
  1344. * This delayed node is still cached in the btrfs inode, so refs
  1345. * must be > 1 now, and we needn't check it is going to be freed
  1346. * or not.
  1347. *
  1348. * Besides that, this function is used to read dir, we do not
  1349. * insert/delete delayed items in this period. So we also needn't
  1350. * requeue or dequeue this delayed node.
  1351. */
  1352. atomic_dec(&delayed_node->refs);
  1353. }
  1354. void btrfs_put_delayed_items(struct list_head *ins_list,
  1355. struct list_head *del_list)
  1356. {
  1357. struct btrfs_delayed_item *curr, *next;
  1358. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1359. list_del(&curr->readdir_list);
  1360. if (atomic_dec_and_test(&curr->refs))
  1361. kfree(curr);
  1362. }
  1363. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1364. list_del(&curr->readdir_list);
  1365. if (atomic_dec_and_test(&curr->refs))
  1366. kfree(curr);
  1367. }
  1368. }
  1369. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1370. u64 index)
  1371. {
  1372. struct btrfs_delayed_item *curr, *next;
  1373. int ret;
  1374. if (list_empty(del_list))
  1375. return 0;
  1376. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1377. if (curr->key.offset > index)
  1378. break;
  1379. list_del(&curr->readdir_list);
  1380. ret = (curr->key.offset == index);
  1381. if (atomic_dec_and_test(&curr->refs))
  1382. kfree(curr);
  1383. if (ret)
  1384. return 1;
  1385. else
  1386. continue;
  1387. }
  1388. return 0;
  1389. }
  1390. /*
  1391. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1392. *
  1393. */
  1394. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1395. filldir_t filldir,
  1396. struct list_head *ins_list)
  1397. {
  1398. struct btrfs_dir_item *di;
  1399. struct btrfs_delayed_item *curr, *next;
  1400. struct btrfs_key location;
  1401. char *name;
  1402. int name_len;
  1403. int over = 0;
  1404. unsigned char d_type;
  1405. if (list_empty(ins_list))
  1406. return 0;
  1407. /*
  1408. * Changing the data of the delayed item is impossible. So
  1409. * we needn't lock them. And we have held i_mutex of the
  1410. * directory, nobody can delete any directory indexes now.
  1411. */
  1412. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1413. list_del(&curr->readdir_list);
  1414. if (curr->key.offset < filp->f_pos) {
  1415. if (atomic_dec_and_test(&curr->refs))
  1416. kfree(curr);
  1417. continue;
  1418. }
  1419. filp->f_pos = curr->key.offset;
  1420. di = (struct btrfs_dir_item *)curr->data;
  1421. name = (char *)(di + 1);
  1422. name_len = le16_to_cpu(di->name_len);
  1423. d_type = btrfs_filetype_table[di->type];
  1424. btrfs_disk_key_to_cpu(&location, &di->location);
  1425. over = filldir(dirent, name, name_len, curr->key.offset,
  1426. location.objectid, d_type);
  1427. if (atomic_dec_and_test(&curr->refs))
  1428. kfree(curr);
  1429. if (over)
  1430. return 1;
  1431. }
  1432. return 0;
  1433. }
  1434. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1435. generation, 64);
  1436. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1437. sequence, 64);
  1438. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1439. transid, 64);
  1440. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1441. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1442. nbytes, 64);
  1443. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1444. block_group, 64);
  1445. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1446. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1447. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1448. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1449. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1450. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1451. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1452. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1453. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1454. struct btrfs_inode_item *inode_item,
  1455. struct inode *inode)
  1456. {
  1457. btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
  1458. btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
  1459. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1460. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1461. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1462. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1463. btrfs_set_stack_inode_generation(inode_item,
  1464. BTRFS_I(inode)->generation);
  1465. btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
  1466. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1467. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1468. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1469. btrfs_set_stack_inode_block_group(inode_item, 0);
  1470. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1471. inode->i_atime.tv_sec);
  1472. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1473. inode->i_atime.tv_nsec);
  1474. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1475. inode->i_mtime.tv_sec);
  1476. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1477. inode->i_mtime.tv_nsec);
  1478. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1479. inode->i_ctime.tv_sec);
  1480. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1481. inode->i_ctime.tv_nsec);
  1482. }
  1483. int btrfs_fill_inode(struct inode *inode, u32 *rdev)
  1484. {
  1485. struct btrfs_delayed_node *delayed_node;
  1486. struct btrfs_inode_item *inode_item;
  1487. struct btrfs_timespec *tspec;
  1488. delayed_node = btrfs_get_delayed_node(inode);
  1489. if (!delayed_node)
  1490. return -ENOENT;
  1491. mutex_lock(&delayed_node->mutex);
  1492. if (!delayed_node->inode_dirty) {
  1493. mutex_unlock(&delayed_node->mutex);
  1494. btrfs_release_delayed_node(delayed_node);
  1495. return -ENOENT;
  1496. }
  1497. inode_item = &delayed_node->inode_item;
  1498. inode->i_uid = btrfs_stack_inode_uid(inode_item);
  1499. inode->i_gid = btrfs_stack_inode_gid(inode_item);
  1500. btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
  1501. inode->i_mode = btrfs_stack_inode_mode(inode_item);
  1502. set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
  1503. inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
  1504. BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
  1505. inode->i_version = btrfs_stack_inode_sequence(inode_item);
  1506. inode->i_rdev = 0;
  1507. *rdev = btrfs_stack_inode_rdev(inode_item);
  1508. BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
  1509. tspec = btrfs_inode_atime(inode_item);
  1510. inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1511. inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1512. tspec = btrfs_inode_mtime(inode_item);
  1513. inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1514. inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1515. tspec = btrfs_inode_ctime(inode_item);
  1516. inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
  1517. inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
  1518. inode->i_generation = BTRFS_I(inode)->generation;
  1519. BTRFS_I(inode)->index_cnt = (u64)-1;
  1520. mutex_unlock(&delayed_node->mutex);
  1521. btrfs_release_delayed_node(delayed_node);
  1522. return 0;
  1523. }
  1524. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1525. struct btrfs_root *root, struct inode *inode)
  1526. {
  1527. struct btrfs_delayed_node *delayed_node;
  1528. int ret = 0;
  1529. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1530. if (IS_ERR(delayed_node))
  1531. return PTR_ERR(delayed_node);
  1532. mutex_lock(&delayed_node->mutex);
  1533. if (delayed_node->inode_dirty) {
  1534. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1535. goto release_node;
  1536. }
  1537. ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
  1538. delayed_node);
  1539. if (ret)
  1540. goto release_node;
  1541. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1542. delayed_node->inode_dirty = 1;
  1543. delayed_node->count++;
  1544. atomic_inc(&root->fs_info->delayed_root->items);
  1545. release_node:
  1546. mutex_unlock(&delayed_node->mutex);
  1547. btrfs_release_delayed_node(delayed_node);
  1548. return ret;
  1549. }
  1550. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1551. {
  1552. struct btrfs_root *root = delayed_node->root;
  1553. struct btrfs_delayed_item *curr_item, *prev_item;
  1554. mutex_lock(&delayed_node->mutex);
  1555. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1556. while (curr_item) {
  1557. btrfs_delayed_item_release_metadata(root, curr_item);
  1558. prev_item = curr_item;
  1559. curr_item = __btrfs_next_delayed_item(prev_item);
  1560. btrfs_release_delayed_item(prev_item);
  1561. }
  1562. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1563. while (curr_item) {
  1564. btrfs_delayed_item_release_metadata(root, curr_item);
  1565. prev_item = curr_item;
  1566. curr_item = __btrfs_next_delayed_item(prev_item);
  1567. btrfs_release_delayed_item(prev_item);
  1568. }
  1569. if (delayed_node->inode_dirty) {
  1570. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1571. btrfs_release_delayed_inode(delayed_node);
  1572. }
  1573. mutex_unlock(&delayed_node->mutex);
  1574. }
  1575. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1576. {
  1577. struct btrfs_delayed_node *delayed_node;
  1578. delayed_node = btrfs_get_delayed_node(inode);
  1579. if (!delayed_node)
  1580. return;
  1581. __btrfs_kill_delayed_node(delayed_node);
  1582. btrfs_release_delayed_node(delayed_node);
  1583. }
  1584. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1585. {
  1586. u64 inode_id = 0;
  1587. struct btrfs_delayed_node *delayed_nodes[8];
  1588. int i, n;
  1589. while (1) {
  1590. spin_lock(&root->inode_lock);
  1591. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1592. (void **)delayed_nodes, inode_id,
  1593. ARRAY_SIZE(delayed_nodes));
  1594. if (!n) {
  1595. spin_unlock(&root->inode_lock);
  1596. break;
  1597. }
  1598. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1599. for (i = 0; i < n; i++)
  1600. atomic_inc(&delayed_nodes[i]->refs);
  1601. spin_unlock(&root->inode_lock);
  1602. for (i = 0; i < n; i++) {
  1603. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1604. btrfs_release_delayed_node(delayed_nodes[i]);
  1605. }
  1606. }
  1607. }
  1608. void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
  1609. {
  1610. struct btrfs_delayed_root *delayed_root;
  1611. struct btrfs_delayed_node *curr_node, *prev_node;
  1612. delayed_root = btrfs_get_delayed_root(root);
  1613. curr_node = btrfs_first_delayed_node(delayed_root);
  1614. while (curr_node) {
  1615. __btrfs_kill_delayed_node(curr_node);
  1616. prev_node = curr_node;
  1617. curr_node = btrfs_next_delayed_node(curr_node);
  1618. btrfs_release_delayed_node(prev_node);
  1619. }
  1620. }