bio.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/iocontext.h>
  23. #include <linux/slab.h>
  24. #include <linux/init.h>
  25. #include <linux/kernel.h>
  26. #include <linux/export.h>
  27. #include <linux/mempool.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/cgroup.h>
  30. #include <scsi/sg.h> /* for struct sg_iovec */
  31. #include <trace/events/block.h>
  32. /*
  33. * Test patch to inline a certain number of bi_io_vec's inside the bio
  34. * itself, to shrink a bio data allocation from two mempool calls to one
  35. */
  36. #define BIO_INLINE_VECS 4
  37. static mempool_t *bio_split_pool __read_mostly;
  38. /*
  39. * if you change this list, also change bvec_alloc or things will
  40. * break badly! cannot be bigger than what you can fit into an
  41. * unsigned short
  42. */
  43. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  44. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  45. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  46. };
  47. #undef BV
  48. /*
  49. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  50. * IO code that does not need private memory pools.
  51. */
  52. struct bio_set *fs_bio_set;
  53. /*
  54. * Our slab pool management
  55. */
  56. struct bio_slab {
  57. struct kmem_cache *slab;
  58. unsigned int slab_ref;
  59. unsigned int slab_size;
  60. char name[8];
  61. };
  62. static DEFINE_MUTEX(bio_slab_lock);
  63. static struct bio_slab *bio_slabs;
  64. static unsigned int bio_slab_nr, bio_slab_max;
  65. static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
  66. {
  67. unsigned int sz = sizeof(struct bio) + extra_size;
  68. struct kmem_cache *slab = NULL;
  69. struct bio_slab *bslab;
  70. unsigned int i, entry = -1;
  71. mutex_lock(&bio_slab_lock);
  72. i = 0;
  73. while (i < bio_slab_nr) {
  74. bslab = &bio_slabs[i];
  75. if (!bslab->slab && entry == -1)
  76. entry = i;
  77. else if (bslab->slab_size == sz) {
  78. slab = bslab->slab;
  79. bslab->slab_ref++;
  80. break;
  81. }
  82. i++;
  83. }
  84. if (slab)
  85. goto out_unlock;
  86. if (bio_slab_nr == bio_slab_max && entry == -1) {
  87. bio_slab_max <<= 1;
  88. bio_slabs = krealloc(bio_slabs,
  89. bio_slab_max * sizeof(struct bio_slab),
  90. GFP_KERNEL);
  91. if (!bio_slabs)
  92. goto out_unlock;
  93. }
  94. if (entry == -1)
  95. entry = bio_slab_nr++;
  96. bslab = &bio_slabs[entry];
  97. snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
  98. slab = kmem_cache_create(bslab->name, sz, 0, SLAB_HWCACHE_ALIGN, NULL);
  99. if (!slab)
  100. goto out_unlock;
  101. printk(KERN_INFO "bio: create slab <%s> at %d\n", bslab->name, entry);
  102. bslab->slab = slab;
  103. bslab->slab_ref = 1;
  104. bslab->slab_size = sz;
  105. out_unlock:
  106. mutex_unlock(&bio_slab_lock);
  107. return slab;
  108. }
  109. static void bio_put_slab(struct bio_set *bs)
  110. {
  111. struct bio_slab *bslab = NULL;
  112. unsigned int i;
  113. mutex_lock(&bio_slab_lock);
  114. for (i = 0; i < bio_slab_nr; i++) {
  115. if (bs->bio_slab == bio_slabs[i].slab) {
  116. bslab = &bio_slabs[i];
  117. break;
  118. }
  119. }
  120. if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
  121. goto out;
  122. WARN_ON(!bslab->slab_ref);
  123. if (--bslab->slab_ref)
  124. goto out;
  125. kmem_cache_destroy(bslab->slab);
  126. bslab->slab = NULL;
  127. out:
  128. mutex_unlock(&bio_slab_lock);
  129. }
  130. unsigned int bvec_nr_vecs(unsigned short idx)
  131. {
  132. return bvec_slabs[idx].nr_vecs;
  133. }
  134. void bvec_free_bs(struct bio_set *bs, struct bio_vec *bv, unsigned int idx)
  135. {
  136. BIO_BUG_ON(idx >= BIOVEC_NR_POOLS);
  137. if (idx == BIOVEC_MAX_IDX)
  138. mempool_free(bv, bs->bvec_pool);
  139. else {
  140. struct biovec_slab *bvs = bvec_slabs + idx;
  141. kmem_cache_free(bvs->slab, bv);
  142. }
  143. }
  144. struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx,
  145. struct bio_set *bs)
  146. {
  147. struct bio_vec *bvl;
  148. /*
  149. * see comment near bvec_array define!
  150. */
  151. switch (nr) {
  152. case 1:
  153. *idx = 0;
  154. break;
  155. case 2 ... 4:
  156. *idx = 1;
  157. break;
  158. case 5 ... 16:
  159. *idx = 2;
  160. break;
  161. case 17 ... 64:
  162. *idx = 3;
  163. break;
  164. case 65 ... 128:
  165. *idx = 4;
  166. break;
  167. case 129 ... BIO_MAX_PAGES:
  168. *idx = 5;
  169. break;
  170. default:
  171. return NULL;
  172. }
  173. /*
  174. * idx now points to the pool we want to allocate from. only the
  175. * 1-vec entry pool is mempool backed.
  176. */
  177. if (*idx == BIOVEC_MAX_IDX) {
  178. fallback:
  179. bvl = mempool_alloc(bs->bvec_pool, gfp_mask);
  180. } else {
  181. struct biovec_slab *bvs = bvec_slabs + *idx;
  182. gfp_t __gfp_mask = gfp_mask & ~(__GFP_WAIT | __GFP_IO);
  183. /*
  184. * Make this allocation restricted and don't dump info on
  185. * allocation failures, since we'll fallback to the mempool
  186. * in case of failure.
  187. */
  188. __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
  189. /*
  190. * Try a slab allocation. If this fails and __GFP_WAIT
  191. * is set, retry with the 1-entry mempool
  192. */
  193. bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
  194. if (unlikely(!bvl && (gfp_mask & __GFP_WAIT))) {
  195. *idx = BIOVEC_MAX_IDX;
  196. goto fallback;
  197. }
  198. }
  199. return bvl;
  200. }
  201. void bio_free(struct bio *bio, struct bio_set *bs)
  202. {
  203. void *p;
  204. if (bio_has_allocated_vec(bio))
  205. bvec_free_bs(bs, bio->bi_io_vec, BIO_POOL_IDX(bio));
  206. if (bio_integrity(bio))
  207. bio_integrity_free(bio, bs);
  208. /*
  209. * If we have front padding, adjust the bio pointer before freeing
  210. */
  211. p = bio;
  212. if (bs->front_pad)
  213. p -= bs->front_pad;
  214. mempool_free(p, bs->bio_pool);
  215. }
  216. EXPORT_SYMBOL(bio_free);
  217. void bio_init(struct bio *bio)
  218. {
  219. memset(bio, 0, sizeof(*bio));
  220. bio->bi_flags = 1 << BIO_UPTODATE;
  221. atomic_set(&bio->bi_cnt, 1);
  222. }
  223. EXPORT_SYMBOL(bio_init);
  224. /**
  225. * bio_alloc_bioset - allocate a bio for I/O
  226. * @gfp_mask: the GFP_ mask given to the slab allocator
  227. * @nr_iovecs: number of iovecs to pre-allocate
  228. * @bs: the bio_set to allocate from.
  229. *
  230. * Description:
  231. * bio_alloc_bioset will try its own mempool to satisfy the allocation.
  232. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  233. * for a &struct bio to become free.
  234. *
  235. * Note that the caller must set ->bi_destructor on successful return
  236. * of a bio, to do the appropriate freeing of the bio once the reference
  237. * count drops to zero.
  238. **/
  239. struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
  240. {
  241. unsigned long idx = BIO_POOL_NONE;
  242. struct bio_vec *bvl = NULL;
  243. struct bio *bio;
  244. void *p;
  245. p = mempool_alloc(bs->bio_pool, gfp_mask);
  246. if (unlikely(!p))
  247. return NULL;
  248. bio = p + bs->front_pad;
  249. bio_init(bio);
  250. if (unlikely(!nr_iovecs))
  251. goto out_set;
  252. if (nr_iovecs <= BIO_INLINE_VECS) {
  253. bvl = bio->bi_inline_vecs;
  254. nr_iovecs = BIO_INLINE_VECS;
  255. } else {
  256. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  257. if (unlikely(!bvl))
  258. goto err_free;
  259. nr_iovecs = bvec_nr_vecs(idx);
  260. }
  261. out_set:
  262. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  263. bio->bi_max_vecs = nr_iovecs;
  264. bio->bi_io_vec = bvl;
  265. return bio;
  266. err_free:
  267. mempool_free(p, bs->bio_pool);
  268. return NULL;
  269. }
  270. EXPORT_SYMBOL(bio_alloc_bioset);
  271. static void bio_fs_destructor(struct bio *bio)
  272. {
  273. bio_free(bio, fs_bio_set);
  274. }
  275. /**
  276. * bio_alloc - allocate a new bio, memory pool backed
  277. * @gfp_mask: allocation mask to use
  278. * @nr_iovecs: number of iovecs
  279. *
  280. * bio_alloc will allocate a bio and associated bio_vec array that can hold
  281. * at least @nr_iovecs entries. Allocations will be done from the
  282. * fs_bio_set. Also see @bio_alloc_bioset and @bio_kmalloc.
  283. *
  284. * If %__GFP_WAIT is set, then bio_alloc will always be able to allocate
  285. * a bio. This is due to the mempool guarantees. To make this work, callers
  286. * must never allocate more than 1 bio at a time from this pool. Callers
  287. * that need to allocate more than 1 bio must always submit the previously
  288. * allocated bio for IO before attempting to allocate a new one. Failure to
  289. * do so can cause livelocks under memory pressure.
  290. *
  291. * RETURNS:
  292. * Pointer to new bio on success, NULL on failure.
  293. */
  294. struct bio *bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
  295. {
  296. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  297. if (bio)
  298. bio->bi_destructor = bio_fs_destructor;
  299. return bio;
  300. }
  301. EXPORT_SYMBOL(bio_alloc);
  302. static void bio_kmalloc_destructor(struct bio *bio)
  303. {
  304. if (bio_integrity(bio))
  305. bio_integrity_free(bio, fs_bio_set);
  306. kfree(bio);
  307. }
  308. /**
  309. * bio_kmalloc - allocate a bio for I/O using kmalloc()
  310. * @gfp_mask: the GFP_ mask given to the slab allocator
  311. * @nr_iovecs: number of iovecs to pre-allocate
  312. *
  313. * Description:
  314. * Allocate a new bio with @nr_iovecs bvecs. If @gfp_mask contains
  315. * %__GFP_WAIT, the allocation is guaranteed to succeed.
  316. *
  317. **/
  318. struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned int nr_iovecs)
  319. {
  320. struct bio *bio;
  321. if (nr_iovecs > UIO_MAXIOV)
  322. return NULL;
  323. bio = kmalloc(sizeof(struct bio) + nr_iovecs * sizeof(struct bio_vec),
  324. gfp_mask);
  325. if (unlikely(!bio))
  326. return NULL;
  327. bio_init(bio);
  328. bio->bi_flags |= BIO_POOL_NONE << BIO_POOL_OFFSET;
  329. bio->bi_max_vecs = nr_iovecs;
  330. bio->bi_io_vec = bio->bi_inline_vecs;
  331. bio->bi_destructor = bio_kmalloc_destructor;
  332. return bio;
  333. }
  334. EXPORT_SYMBOL(bio_kmalloc);
  335. void zero_fill_bio(struct bio *bio)
  336. {
  337. unsigned long flags;
  338. struct bio_vec *bv;
  339. int i;
  340. bio_for_each_segment(bv, bio, i) {
  341. char *data = bvec_kmap_irq(bv, &flags);
  342. memset(data, 0, bv->bv_len);
  343. flush_dcache_page(bv->bv_page);
  344. bvec_kunmap_irq(data, &flags);
  345. }
  346. }
  347. EXPORT_SYMBOL(zero_fill_bio);
  348. /**
  349. * bio_put - release a reference to a bio
  350. * @bio: bio to release reference to
  351. *
  352. * Description:
  353. * Put a reference to a &struct bio, either one you have gotten with
  354. * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
  355. **/
  356. void bio_put(struct bio *bio)
  357. {
  358. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  359. /*
  360. * last put frees it
  361. */
  362. if (atomic_dec_and_test(&bio->bi_cnt)) {
  363. bio_disassociate_task(bio);
  364. bio->bi_next = NULL;
  365. bio->bi_destructor(bio);
  366. }
  367. }
  368. EXPORT_SYMBOL(bio_put);
  369. inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
  370. {
  371. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  372. blk_recount_segments(q, bio);
  373. return bio->bi_phys_segments;
  374. }
  375. EXPORT_SYMBOL(bio_phys_segments);
  376. /**
  377. * __bio_clone - clone a bio
  378. * @bio: destination bio
  379. * @bio_src: bio to clone
  380. *
  381. * Clone a &bio. Caller will own the returned bio, but not
  382. * the actual data it points to. Reference count of returned
  383. * bio will be one.
  384. */
  385. void __bio_clone(struct bio *bio, struct bio *bio_src)
  386. {
  387. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  388. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  389. /*
  390. * most users will be overriding ->bi_bdev with a new target,
  391. * so we don't set nor calculate new physical/hw segment counts here
  392. */
  393. bio->bi_sector = bio_src->bi_sector;
  394. bio->bi_bdev = bio_src->bi_bdev;
  395. bio->bi_flags |= 1 << BIO_CLONED;
  396. bio->bi_rw = bio_src->bi_rw;
  397. bio->bi_vcnt = bio_src->bi_vcnt;
  398. bio->bi_size = bio_src->bi_size;
  399. bio->bi_idx = bio_src->bi_idx;
  400. }
  401. EXPORT_SYMBOL(__bio_clone);
  402. /**
  403. * bio_clone - clone a bio
  404. * @bio: bio to clone
  405. * @gfp_mask: allocation priority
  406. *
  407. * Like __bio_clone, only also allocates the returned bio
  408. */
  409. struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
  410. {
  411. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  412. if (!b)
  413. return NULL;
  414. b->bi_destructor = bio_fs_destructor;
  415. __bio_clone(b, bio);
  416. if (bio_integrity(bio)) {
  417. int ret;
  418. ret = bio_integrity_clone(b, bio, gfp_mask, fs_bio_set);
  419. if (ret < 0) {
  420. bio_put(b);
  421. return NULL;
  422. }
  423. }
  424. return b;
  425. }
  426. EXPORT_SYMBOL(bio_clone);
  427. /**
  428. * bio_get_nr_vecs - return approx number of vecs
  429. * @bdev: I/O target
  430. *
  431. * Return the approximate number of pages we can send to this target.
  432. * There's no guarantee that you will be able to fit this number of pages
  433. * into a bio, it does not account for dynamic restrictions that vary
  434. * on offset.
  435. */
  436. int bio_get_nr_vecs(struct block_device *bdev)
  437. {
  438. struct request_queue *q = bdev_get_queue(bdev);
  439. int nr_pages;
  440. nr_pages = min_t(unsigned,
  441. queue_max_segments(q),
  442. queue_max_sectors(q) / (PAGE_SIZE >> 9) + 1);
  443. return min_t(unsigned, nr_pages, BIO_MAX_PAGES);
  444. }
  445. EXPORT_SYMBOL(bio_get_nr_vecs);
  446. static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
  447. *page, unsigned int len, unsigned int offset,
  448. unsigned short max_sectors)
  449. {
  450. int retried_segments = 0;
  451. struct bio_vec *bvec;
  452. /*
  453. * cloned bio must not modify vec list
  454. */
  455. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  456. return 0;
  457. if (((bio->bi_size + len) >> 9) > max_sectors)
  458. return 0;
  459. /*
  460. * For filesystems with a blocksize smaller than the pagesize
  461. * we will often be called with the same page as last time and
  462. * a consecutive offset. Optimize this special case.
  463. */
  464. if (bio->bi_vcnt > 0) {
  465. struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
  466. if (page == prev->bv_page &&
  467. offset == prev->bv_offset + prev->bv_len) {
  468. unsigned int prev_bv_len = prev->bv_len;
  469. prev->bv_len += len;
  470. if (q->merge_bvec_fn) {
  471. struct bvec_merge_data bvm = {
  472. /* prev_bvec is already charged in
  473. bi_size, discharge it in order to
  474. simulate merging updated prev_bvec
  475. as new bvec. */
  476. .bi_bdev = bio->bi_bdev,
  477. .bi_sector = bio->bi_sector,
  478. .bi_size = bio->bi_size - prev_bv_len,
  479. .bi_rw = bio->bi_rw,
  480. };
  481. if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) {
  482. prev->bv_len -= len;
  483. return 0;
  484. }
  485. }
  486. goto done;
  487. }
  488. }
  489. if (bio->bi_vcnt >= bio->bi_max_vecs)
  490. return 0;
  491. /*
  492. * we might lose a segment or two here, but rather that than
  493. * make this too complex.
  494. */
  495. while (bio->bi_phys_segments >= queue_max_segments(q)) {
  496. if (retried_segments)
  497. return 0;
  498. retried_segments = 1;
  499. blk_recount_segments(q, bio);
  500. }
  501. /*
  502. * setup the new entry, we might clear it again later if we
  503. * cannot add the page
  504. */
  505. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  506. bvec->bv_page = page;
  507. bvec->bv_len = len;
  508. bvec->bv_offset = offset;
  509. /*
  510. * if queue has other restrictions (eg varying max sector size
  511. * depending on offset), it can specify a merge_bvec_fn in the
  512. * queue to get further control
  513. */
  514. if (q->merge_bvec_fn) {
  515. struct bvec_merge_data bvm = {
  516. .bi_bdev = bio->bi_bdev,
  517. .bi_sector = bio->bi_sector,
  518. .bi_size = bio->bi_size,
  519. .bi_rw = bio->bi_rw,
  520. };
  521. /*
  522. * merge_bvec_fn() returns number of bytes it can accept
  523. * at this offset
  524. */
  525. if (q->merge_bvec_fn(q, &bvm, bvec) < bvec->bv_len) {
  526. bvec->bv_page = NULL;
  527. bvec->bv_len = 0;
  528. bvec->bv_offset = 0;
  529. return 0;
  530. }
  531. }
  532. /* If we may be able to merge these biovecs, force a recount */
  533. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
  534. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  535. bio->bi_vcnt++;
  536. bio->bi_phys_segments++;
  537. done:
  538. bio->bi_size += len;
  539. return len;
  540. }
  541. /**
  542. * bio_add_pc_page - attempt to add page to bio
  543. * @q: the target queue
  544. * @bio: destination bio
  545. * @page: page to add
  546. * @len: vec entry length
  547. * @offset: vec entry offset
  548. *
  549. * Attempt to add a page to the bio_vec maplist. This can fail for a
  550. * number of reasons, such as the bio being full or target block device
  551. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  552. * so it is always possible to add a single page to an empty bio.
  553. *
  554. * This should only be used by REQ_PC bios.
  555. */
  556. int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
  557. unsigned int len, unsigned int offset)
  558. {
  559. return __bio_add_page(q, bio, page, len, offset,
  560. queue_max_hw_sectors(q));
  561. }
  562. EXPORT_SYMBOL(bio_add_pc_page);
  563. /**
  564. * bio_add_page - attempt to add page to bio
  565. * @bio: destination bio
  566. * @page: page to add
  567. * @len: vec entry length
  568. * @offset: vec entry offset
  569. *
  570. * Attempt to add a page to the bio_vec maplist. This can fail for a
  571. * number of reasons, such as the bio being full or target block device
  572. * limitations. The target block device must allow bio's up to PAGE_SIZE,
  573. * so it is always possible to add a single page to an empty bio.
  574. */
  575. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  576. unsigned int offset)
  577. {
  578. struct request_queue *q = bdev_get_queue(bio->bi_bdev);
  579. return __bio_add_page(q, bio, page, len, offset, queue_max_sectors(q));
  580. }
  581. EXPORT_SYMBOL(bio_add_page);
  582. struct bio_map_data {
  583. struct bio_vec *iovecs;
  584. struct sg_iovec *sgvecs;
  585. int nr_sgvecs;
  586. int is_our_pages;
  587. };
  588. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
  589. struct sg_iovec *iov, int iov_count,
  590. int is_our_pages)
  591. {
  592. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  593. memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
  594. bmd->nr_sgvecs = iov_count;
  595. bmd->is_our_pages = is_our_pages;
  596. bio->bi_private = bmd;
  597. }
  598. static void bio_free_map_data(struct bio_map_data *bmd)
  599. {
  600. kfree(bmd->iovecs);
  601. kfree(bmd->sgvecs);
  602. kfree(bmd);
  603. }
  604. static struct bio_map_data *bio_alloc_map_data(int nr_segs,
  605. unsigned int iov_count,
  606. gfp_t gfp_mask)
  607. {
  608. struct bio_map_data *bmd;
  609. if (iov_count > UIO_MAXIOV)
  610. return NULL;
  611. bmd = kmalloc(sizeof(*bmd), gfp_mask);
  612. if (!bmd)
  613. return NULL;
  614. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
  615. if (!bmd->iovecs) {
  616. kfree(bmd);
  617. return NULL;
  618. }
  619. bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
  620. if (bmd->sgvecs)
  621. return bmd;
  622. kfree(bmd->iovecs);
  623. kfree(bmd);
  624. return NULL;
  625. }
  626. static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
  627. struct sg_iovec *iov, int iov_count,
  628. int to_user, int from_user, int do_free_page)
  629. {
  630. int ret = 0, i;
  631. struct bio_vec *bvec;
  632. int iov_idx = 0;
  633. unsigned int iov_off = 0;
  634. __bio_for_each_segment(bvec, bio, i, 0) {
  635. char *bv_addr = page_address(bvec->bv_page);
  636. unsigned int bv_len = iovecs[i].bv_len;
  637. while (bv_len && iov_idx < iov_count) {
  638. unsigned int bytes;
  639. char __user *iov_addr;
  640. bytes = min_t(unsigned int,
  641. iov[iov_idx].iov_len - iov_off, bv_len);
  642. iov_addr = iov[iov_idx].iov_base + iov_off;
  643. if (!ret) {
  644. if (to_user)
  645. ret = copy_to_user(iov_addr, bv_addr,
  646. bytes);
  647. if (from_user)
  648. ret = copy_from_user(bv_addr, iov_addr,
  649. bytes);
  650. if (ret)
  651. ret = -EFAULT;
  652. }
  653. bv_len -= bytes;
  654. bv_addr += bytes;
  655. iov_addr += bytes;
  656. iov_off += bytes;
  657. if (iov[iov_idx].iov_len == iov_off) {
  658. iov_idx++;
  659. iov_off = 0;
  660. }
  661. }
  662. if (do_free_page)
  663. __free_page(bvec->bv_page);
  664. }
  665. return ret;
  666. }
  667. /**
  668. * bio_uncopy_user - finish previously mapped bio
  669. * @bio: bio being terminated
  670. *
  671. * Free pages allocated from bio_copy_user() and write back data
  672. * to user space in case of a read.
  673. */
  674. int bio_uncopy_user(struct bio *bio)
  675. {
  676. struct bio_map_data *bmd = bio->bi_private;
  677. int ret = 0;
  678. if (!bio_flagged(bio, BIO_NULL_MAPPED))
  679. ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs,
  680. bmd->nr_sgvecs, bio_data_dir(bio) == READ,
  681. 0, bmd->is_our_pages);
  682. bio_free_map_data(bmd);
  683. bio_put(bio);
  684. return ret;
  685. }
  686. EXPORT_SYMBOL(bio_uncopy_user);
  687. /**
  688. * bio_copy_user_iov - copy user data to bio
  689. * @q: destination block queue
  690. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  691. * @iov: the iovec.
  692. * @iov_count: number of elements in the iovec
  693. * @write_to_vm: bool indicating writing to pages or not
  694. * @gfp_mask: memory allocation flags
  695. *
  696. * Prepares and returns a bio for indirect user io, bouncing data
  697. * to/from kernel pages as necessary. Must be paired with
  698. * call bio_uncopy_user() on io completion.
  699. */
  700. struct bio *bio_copy_user_iov(struct request_queue *q,
  701. struct rq_map_data *map_data,
  702. struct sg_iovec *iov, int iov_count,
  703. int write_to_vm, gfp_t gfp_mask)
  704. {
  705. struct bio_map_data *bmd;
  706. struct bio_vec *bvec;
  707. struct page *page;
  708. struct bio *bio;
  709. int i, ret;
  710. int nr_pages = 0;
  711. unsigned int len = 0;
  712. unsigned int offset = map_data ? map_data->offset & ~PAGE_MASK : 0;
  713. for (i = 0; i < iov_count; i++) {
  714. unsigned long uaddr;
  715. unsigned long end;
  716. unsigned long start;
  717. uaddr = (unsigned long)iov[i].iov_base;
  718. end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  719. start = uaddr >> PAGE_SHIFT;
  720. /*
  721. * Overflow, abort
  722. */
  723. if (end < start)
  724. return ERR_PTR(-EINVAL);
  725. nr_pages += end - start;
  726. len += iov[i].iov_len;
  727. }
  728. if (offset)
  729. nr_pages++;
  730. bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
  731. if (!bmd)
  732. return ERR_PTR(-ENOMEM);
  733. ret = -ENOMEM;
  734. bio = bio_kmalloc(gfp_mask, nr_pages);
  735. if (!bio)
  736. goto out_bmd;
  737. if (!write_to_vm)
  738. bio->bi_rw |= REQ_WRITE;
  739. ret = 0;
  740. if (map_data) {
  741. nr_pages = 1 << map_data->page_order;
  742. i = map_data->offset / PAGE_SIZE;
  743. }
  744. while (len) {
  745. unsigned int bytes = PAGE_SIZE;
  746. bytes -= offset;
  747. if (bytes > len)
  748. bytes = len;
  749. if (map_data) {
  750. if (i == map_data->nr_entries * nr_pages) {
  751. ret = -ENOMEM;
  752. break;
  753. }
  754. page = map_data->pages[i / nr_pages];
  755. page += (i % nr_pages);
  756. i++;
  757. } else {
  758. page = alloc_page(q->bounce_gfp | gfp_mask);
  759. if (!page) {
  760. ret = -ENOMEM;
  761. break;
  762. }
  763. }
  764. if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
  765. break;
  766. len -= bytes;
  767. offset = 0;
  768. }
  769. if (ret)
  770. goto cleanup;
  771. /*
  772. * success
  773. */
  774. if ((!write_to_vm && (!map_data || !map_data->null_mapped)) ||
  775. (map_data && map_data->from_user)) {
  776. ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 1, 0);
  777. if (ret)
  778. goto cleanup;
  779. }
  780. bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
  781. return bio;
  782. cleanup:
  783. if (!map_data)
  784. bio_for_each_segment(bvec, bio, i)
  785. __free_page(bvec->bv_page);
  786. bio_put(bio);
  787. out_bmd:
  788. bio_free_map_data(bmd);
  789. return ERR_PTR(ret);
  790. }
  791. /**
  792. * bio_copy_user - copy user data to bio
  793. * @q: destination block queue
  794. * @map_data: pointer to the rq_map_data holding pages (if necessary)
  795. * @uaddr: start of user address
  796. * @len: length in bytes
  797. * @write_to_vm: bool indicating writing to pages or not
  798. * @gfp_mask: memory allocation flags
  799. *
  800. * Prepares and returns a bio for indirect user io, bouncing data
  801. * to/from kernel pages as necessary. Must be paired with
  802. * call bio_uncopy_user() on io completion.
  803. */
  804. struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
  805. unsigned long uaddr, unsigned int len,
  806. int write_to_vm, gfp_t gfp_mask)
  807. {
  808. struct sg_iovec iov;
  809. iov.iov_base = (void __user *)uaddr;
  810. iov.iov_len = len;
  811. return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
  812. }
  813. EXPORT_SYMBOL(bio_copy_user);
  814. static struct bio *__bio_map_user_iov(struct request_queue *q,
  815. struct block_device *bdev,
  816. struct sg_iovec *iov, int iov_count,
  817. int write_to_vm, gfp_t gfp_mask)
  818. {
  819. int i, j;
  820. int nr_pages = 0;
  821. struct page **pages;
  822. struct bio *bio;
  823. int cur_page = 0;
  824. int ret, offset;
  825. for (i = 0; i < iov_count; i++) {
  826. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  827. unsigned long len = iov[i].iov_len;
  828. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  829. unsigned long start = uaddr >> PAGE_SHIFT;
  830. /*
  831. * Overflow, abort
  832. */
  833. if (end < start)
  834. return ERR_PTR(-EINVAL);
  835. nr_pages += end - start;
  836. /*
  837. * buffer must be aligned to at least hardsector size for now
  838. */
  839. if (uaddr & queue_dma_alignment(q))
  840. return ERR_PTR(-EINVAL);
  841. }
  842. if (!nr_pages)
  843. return ERR_PTR(-EINVAL);
  844. bio = bio_kmalloc(gfp_mask, nr_pages);
  845. if (!bio)
  846. return ERR_PTR(-ENOMEM);
  847. ret = -ENOMEM;
  848. pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
  849. if (!pages)
  850. goto out;
  851. for (i = 0; i < iov_count; i++) {
  852. unsigned long uaddr = (unsigned long)iov[i].iov_base;
  853. unsigned long len = iov[i].iov_len;
  854. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  855. unsigned long start = uaddr >> PAGE_SHIFT;
  856. const int local_nr_pages = end - start;
  857. const int page_limit = cur_page + local_nr_pages;
  858. ret = get_user_pages_fast(uaddr, local_nr_pages,
  859. write_to_vm, &pages[cur_page]);
  860. if (ret < local_nr_pages) {
  861. ret = -EFAULT;
  862. goto out_unmap;
  863. }
  864. offset = uaddr & ~PAGE_MASK;
  865. for (j = cur_page; j < page_limit; j++) {
  866. unsigned int bytes = PAGE_SIZE - offset;
  867. if (len <= 0)
  868. break;
  869. if (bytes > len)
  870. bytes = len;
  871. /*
  872. * sorry...
  873. */
  874. if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
  875. bytes)
  876. break;
  877. len -= bytes;
  878. offset = 0;
  879. }
  880. cur_page = j;
  881. /*
  882. * release the pages we didn't map into the bio, if any
  883. */
  884. while (j < page_limit)
  885. page_cache_release(pages[j++]);
  886. }
  887. kfree(pages);
  888. /*
  889. * set data direction, and check if mapped pages need bouncing
  890. */
  891. if (!write_to_vm)
  892. bio->bi_rw |= REQ_WRITE;
  893. bio->bi_bdev = bdev;
  894. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  895. return bio;
  896. out_unmap:
  897. for (i = 0; i < nr_pages; i++) {
  898. if(!pages[i])
  899. break;
  900. page_cache_release(pages[i]);
  901. }
  902. out:
  903. kfree(pages);
  904. bio_put(bio);
  905. return ERR_PTR(ret);
  906. }
  907. /**
  908. * bio_map_user - map user address into bio
  909. * @q: the struct request_queue for the bio
  910. * @bdev: destination block device
  911. * @uaddr: start of user address
  912. * @len: length in bytes
  913. * @write_to_vm: bool indicating writing to pages or not
  914. * @gfp_mask: memory allocation flags
  915. *
  916. * Map the user space address into a bio suitable for io to a block
  917. * device. Returns an error pointer in case of error.
  918. */
  919. struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
  920. unsigned long uaddr, unsigned int len, int write_to_vm,
  921. gfp_t gfp_mask)
  922. {
  923. struct sg_iovec iov;
  924. iov.iov_base = (void __user *)uaddr;
  925. iov.iov_len = len;
  926. return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
  927. }
  928. EXPORT_SYMBOL(bio_map_user);
  929. /**
  930. * bio_map_user_iov - map user sg_iovec table into bio
  931. * @q: the struct request_queue for the bio
  932. * @bdev: destination block device
  933. * @iov: the iovec.
  934. * @iov_count: number of elements in the iovec
  935. * @write_to_vm: bool indicating writing to pages or not
  936. * @gfp_mask: memory allocation flags
  937. *
  938. * Map the user space address into a bio suitable for io to a block
  939. * device. Returns an error pointer in case of error.
  940. */
  941. struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
  942. struct sg_iovec *iov, int iov_count,
  943. int write_to_vm, gfp_t gfp_mask)
  944. {
  945. struct bio *bio;
  946. bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
  947. gfp_mask);
  948. if (IS_ERR(bio))
  949. return bio;
  950. /*
  951. * subtle -- if __bio_map_user() ended up bouncing a bio,
  952. * it would normally disappear when its bi_end_io is run.
  953. * however, we need it for the unmap, so grab an extra
  954. * reference to it
  955. */
  956. bio_get(bio);
  957. return bio;
  958. }
  959. static void __bio_unmap_user(struct bio *bio)
  960. {
  961. struct bio_vec *bvec;
  962. int i;
  963. /*
  964. * make sure we dirty pages we wrote to
  965. */
  966. __bio_for_each_segment(bvec, bio, i, 0) {
  967. if (bio_data_dir(bio) == READ)
  968. set_page_dirty_lock(bvec->bv_page);
  969. page_cache_release(bvec->bv_page);
  970. }
  971. bio_put(bio);
  972. }
  973. /**
  974. * bio_unmap_user - unmap a bio
  975. * @bio: the bio being unmapped
  976. *
  977. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  978. * a process context.
  979. *
  980. * bio_unmap_user() may sleep.
  981. */
  982. void bio_unmap_user(struct bio *bio)
  983. {
  984. __bio_unmap_user(bio);
  985. bio_put(bio);
  986. }
  987. EXPORT_SYMBOL(bio_unmap_user);
  988. static void bio_map_kern_endio(struct bio *bio, int err)
  989. {
  990. bio_put(bio);
  991. }
  992. static struct bio *__bio_map_kern(struct request_queue *q, void *data,
  993. unsigned int len, gfp_t gfp_mask)
  994. {
  995. unsigned long kaddr = (unsigned long)data;
  996. unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  997. unsigned long start = kaddr >> PAGE_SHIFT;
  998. const int nr_pages = end - start;
  999. int offset, i;
  1000. struct bio *bio;
  1001. bio = bio_kmalloc(gfp_mask, nr_pages);
  1002. if (!bio)
  1003. return ERR_PTR(-ENOMEM);
  1004. offset = offset_in_page(kaddr);
  1005. for (i = 0; i < nr_pages; i++) {
  1006. unsigned int bytes = PAGE_SIZE - offset;
  1007. if (len <= 0)
  1008. break;
  1009. if (bytes > len)
  1010. bytes = len;
  1011. if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
  1012. offset) < bytes)
  1013. break;
  1014. data += bytes;
  1015. len -= bytes;
  1016. offset = 0;
  1017. }
  1018. bio->bi_end_io = bio_map_kern_endio;
  1019. return bio;
  1020. }
  1021. /**
  1022. * bio_map_kern - map kernel address into bio
  1023. * @q: the struct request_queue for the bio
  1024. * @data: pointer to buffer to map
  1025. * @len: length in bytes
  1026. * @gfp_mask: allocation flags for bio allocation
  1027. *
  1028. * Map the kernel address into a bio suitable for io to a block
  1029. * device. Returns an error pointer in case of error.
  1030. */
  1031. struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
  1032. gfp_t gfp_mask)
  1033. {
  1034. struct bio *bio;
  1035. bio = __bio_map_kern(q, data, len, gfp_mask);
  1036. if (IS_ERR(bio))
  1037. return bio;
  1038. if (bio->bi_size == len)
  1039. return bio;
  1040. /*
  1041. * Don't support partial mappings.
  1042. */
  1043. bio_put(bio);
  1044. return ERR_PTR(-EINVAL);
  1045. }
  1046. EXPORT_SYMBOL(bio_map_kern);
  1047. static void bio_copy_kern_endio(struct bio *bio, int err)
  1048. {
  1049. struct bio_vec *bvec;
  1050. const int read = bio_data_dir(bio) == READ;
  1051. struct bio_map_data *bmd = bio->bi_private;
  1052. int i;
  1053. char *p = bmd->sgvecs[0].iov_base;
  1054. __bio_for_each_segment(bvec, bio, i, 0) {
  1055. char *addr = page_address(bvec->bv_page);
  1056. int len = bmd->iovecs[i].bv_len;
  1057. if (read)
  1058. memcpy(p, addr, len);
  1059. __free_page(bvec->bv_page);
  1060. p += len;
  1061. }
  1062. bio_free_map_data(bmd);
  1063. bio_put(bio);
  1064. }
  1065. /**
  1066. * bio_copy_kern - copy kernel address into bio
  1067. * @q: the struct request_queue for the bio
  1068. * @data: pointer to buffer to copy
  1069. * @len: length in bytes
  1070. * @gfp_mask: allocation flags for bio and page allocation
  1071. * @reading: data direction is READ
  1072. *
  1073. * copy the kernel address into a bio suitable for io to a block
  1074. * device. Returns an error pointer in case of error.
  1075. */
  1076. struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
  1077. gfp_t gfp_mask, int reading)
  1078. {
  1079. struct bio *bio;
  1080. struct bio_vec *bvec;
  1081. int i;
  1082. bio = bio_copy_user(q, NULL, (unsigned long)data, len, 1, gfp_mask);
  1083. if (IS_ERR(bio))
  1084. return bio;
  1085. if (!reading) {
  1086. void *p = data;
  1087. bio_for_each_segment(bvec, bio, i) {
  1088. char *addr = page_address(bvec->bv_page);
  1089. memcpy(addr, p, bvec->bv_len);
  1090. p += bvec->bv_len;
  1091. }
  1092. }
  1093. bio->bi_end_io = bio_copy_kern_endio;
  1094. return bio;
  1095. }
  1096. EXPORT_SYMBOL(bio_copy_kern);
  1097. /*
  1098. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  1099. * for performing direct-IO in BIOs.
  1100. *
  1101. * The problem is that we cannot run set_page_dirty() from interrupt context
  1102. * because the required locks are not interrupt-safe. So what we can do is to
  1103. * mark the pages dirty _before_ performing IO. And in interrupt context,
  1104. * check that the pages are still dirty. If so, fine. If not, redirty them
  1105. * in process context.
  1106. *
  1107. * We special-case compound pages here: normally this means reads into hugetlb
  1108. * pages. The logic in here doesn't really work right for compound pages
  1109. * because the VM does not uniformly chase down the head page in all cases.
  1110. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  1111. * handle them at all. So we skip compound pages here at an early stage.
  1112. *
  1113. * Note that this code is very hard to test under normal circumstances because
  1114. * direct-io pins the pages with get_user_pages(). This makes
  1115. * is_page_cache_freeable return false, and the VM will not clean the pages.
  1116. * But other code (eg, pdflush) could clean the pages if they are mapped
  1117. * pagecache.
  1118. *
  1119. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  1120. * deferred bio dirtying paths.
  1121. */
  1122. /*
  1123. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  1124. */
  1125. void bio_set_pages_dirty(struct bio *bio)
  1126. {
  1127. struct bio_vec *bvec = bio->bi_io_vec;
  1128. int i;
  1129. for (i = 0; i < bio->bi_vcnt; i++) {
  1130. struct page *page = bvec[i].bv_page;
  1131. if (page && !PageCompound(page))
  1132. set_page_dirty_lock(page);
  1133. }
  1134. }
  1135. static void bio_release_pages(struct bio *bio)
  1136. {
  1137. struct bio_vec *bvec = bio->bi_io_vec;
  1138. int i;
  1139. for (i = 0; i < bio->bi_vcnt; i++) {
  1140. struct page *page = bvec[i].bv_page;
  1141. if (page)
  1142. put_page(page);
  1143. }
  1144. }
  1145. /*
  1146. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  1147. * If they are, then fine. If, however, some pages are clean then they must
  1148. * have been written out during the direct-IO read. So we take another ref on
  1149. * the BIO and the offending pages and re-dirty the pages in process context.
  1150. *
  1151. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  1152. * here on. It will run one page_cache_release() against each page and will
  1153. * run one bio_put() against the BIO.
  1154. */
  1155. static void bio_dirty_fn(struct work_struct *work);
  1156. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
  1157. static DEFINE_SPINLOCK(bio_dirty_lock);
  1158. static struct bio *bio_dirty_list;
  1159. /*
  1160. * This runs in process context
  1161. */
  1162. static void bio_dirty_fn(struct work_struct *work)
  1163. {
  1164. unsigned long flags;
  1165. struct bio *bio;
  1166. spin_lock_irqsave(&bio_dirty_lock, flags);
  1167. bio = bio_dirty_list;
  1168. bio_dirty_list = NULL;
  1169. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1170. while (bio) {
  1171. struct bio *next = bio->bi_private;
  1172. bio_set_pages_dirty(bio);
  1173. bio_release_pages(bio);
  1174. bio_put(bio);
  1175. bio = next;
  1176. }
  1177. }
  1178. void bio_check_pages_dirty(struct bio *bio)
  1179. {
  1180. struct bio_vec *bvec = bio->bi_io_vec;
  1181. int nr_clean_pages = 0;
  1182. int i;
  1183. for (i = 0; i < bio->bi_vcnt; i++) {
  1184. struct page *page = bvec[i].bv_page;
  1185. if (PageDirty(page) || PageCompound(page)) {
  1186. page_cache_release(page);
  1187. bvec[i].bv_page = NULL;
  1188. } else {
  1189. nr_clean_pages++;
  1190. }
  1191. }
  1192. if (nr_clean_pages) {
  1193. unsigned long flags;
  1194. spin_lock_irqsave(&bio_dirty_lock, flags);
  1195. bio->bi_private = bio_dirty_list;
  1196. bio_dirty_list = bio;
  1197. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  1198. schedule_work(&bio_dirty_work);
  1199. } else {
  1200. bio_put(bio);
  1201. }
  1202. }
  1203. #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
  1204. void bio_flush_dcache_pages(struct bio *bi)
  1205. {
  1206. int i;
  1207. struct bio_vec *bvec;
  1208. bio_for_each_segment(bvec, bi, i)
  1209. flush_dcache_page(bvec->bv_page);
  1210. }
  1211. EXPORT_SYMBOL(bio_flush_dcache_pages);
  1212. #endif
  1213. /**
  1214. * bio_endio - end I/O on a bio
  1215. * @bio: bio
  1216. * @error: error, if any
  1217. *
  1218. * Description:
  1219. * bio_endio() will end I/O on the whole bio. bio_endio() is the
  1220. * preferred way to end I/O on a bio, it takes care of clearing
  1221. * BIO_UPTODATE on error. @error is 0 on success, and and one of the
  1222. * established -Exxxx (-EIO, for instance) error values in case
  1223. * something went wrong. No one should call bi_end_io() directly on a
  1224. * bio unless they own it and thus know that it has an end_io
  1225. * function.
  1226. **/
  1227. void bio_endio(struct bio *bio, int error)
  1228. {
  1229. if (error)
  1230. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  1231. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  1232. error = -EIO;
  1233. if (bio->bi_end_io)
  1234. bio->bi_end_io(bio, error);
  1235. }
  1236. EXPORT_SYMBOL(bio_endio);
  1237. void bio_pair_release(struct bio_pair *bp)
  1238. {
  1239. if (atomic_dec_and_test(&bp->cnt)) {
  1240. struct bio *master = bp->bio1.bi_private;
  1241. bio_endio(master, bp->error);
  1242. mempool_free(bp, bp->bio2.bi_private);
  1243. }
  1244. }
  1245. EXPORT_SYMBOL(bio_pair_release);
  1246. static void bio_pair_end_1(struct bio *bi, int err)
  1247. {
  1248. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  1249. if (err)
  1250. bp->error = err;
  1251. bio_pair_release(bp);
  1252. }
  1253. static void bio_pair_end_2(struct bio *bi, int err)
  1254. {
  1255. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  1256. if (err)
  1257. bp->error = err;
  1258. bio_pair_release(bp);
  1259. }
  1260. /*
  1261. * split a bio - only worry about a bio with a single page in its iovec
  1262. */
  1263. struct bio_pair *bio_split(struct bio *bi, int first_sectors)
  1264. {
  1265. struct bio_pair *bp = mempool_alloc(bio_split_pool, GFP_NOIO);
  1266. if (!bp)
  1267. return bp;
  1268. trace_block_split(bdev_get_queue(bi->bi_bdev), bi,
  1269. bi->bi_sector + first_sectors);
  1270. BUG_ON(bi->bi_vcnt != 1);
  1271. BUG_ON(bi->bi_idx != 0);
  1272. atomic_set(&bp->cnt, 3);
  1273. bp->error = 0;
  1274. bp->bio1 = *bi;
  1275. bp->bio2 = *bi;
  1276. bp->bio2.bi_sector += first_sectors;
  1277. bp->bio2.bi_size -= first_sectors << 9;
  1278. bp->bio1.bi_size = first_sectors << 9;
  1279. bp->bv1 = bi->bi_io_vec[0];
  1280. bp->bv2 = bi->bi_io_vec[0];
  1281. bp->bv2.bv_offset += first_sectors << 9;
  1282. bp->bv2.bv_len -= first_sectors << 9;
  1283. bp->bv1.bv_len = first_sectors << 9;
  1284. bp->bio1.bi_io_vec = &bp->bv1;
  1285. bp->bio2.bi_io_vec = &bp->bv2;
  1286. bp->bio1.bi_max_vecs = 1;
  1287. bp->bio2.bi_max_vecs = 1;
  1288. bp->bio1.bi_end_io = bio_pair_end_1;
  1289. bp->bio2.bi_end_io = bio_pair_end_2;
  1290. bp->bio1.bi_private = bi;
  1291. bp->bio2.bi_private = bio_split_pool;
  1292. if (bio_integrity(bi))
  1293. bio_integrity_split(bi, bp, first_sectors);
  1294. return bp;
  1295. }
  1296. EXPORT_SYMBOL(bio_split);
  1297. /**
  1298. * bio_sector_offset - Find hardware sector offset in bio
  1299. * @bio: bio to inspect
  1300. * @index: bio_vec index
  1301. * @offset: offset in bv_page
  1302. *
  1303. * Return the number of hardware sectors between beginning of bio
  1304. * and an end point indicated by a bio_vec index and an offset
  1305. * within that vector's page.
  1306. */
  1307. sector_t bio_sector_offset(struct bio *bio, unsigned short index,
  1308. unsigned int offset)
  1309. {
  1310. unsigned int sector_sz;
  1311. struct bio_vec *bv;
  1312. sector_t sectors;
  1313. int i;
  1314. sector_sz = queue_logical_block_size(bio->bi_bdev->bd_disk->queue);
  1315. sectors = 0;
  1316. if (index >= bio->bi_idx)
  1317. index = bio->bi_vcnt - 1;
  1318. __bio_for_each_segment(bv, bio, i, 0) {
  1319. if (i == index) {
  1320. if (offset > bv->bv_offset)
  1321. sectors += (offset - bv->bv_offset) / sector_sz;
  1322. break;
  1323. }
  1324. sectors += bv->bv_len / sector_sz;
  1325. }
  1326. return sectors;
  1327. }
  1328. EXPORT_SYMBOL(bio_sector_offset);
  1329. /*
  1330. * create memory pools for biovec's in a bio_set.
  1331. * use the global biovec slabs created for general use.
  1332. */
  1333. static int biovec_create_pools(struct bio_set *bs, int pool_entries)
  1334. {
  1335. struct biovec_slab *bp = bvec_slabs + BIOVEC_MAX_IDX;
  1336. bs->bvec_pool = mempool_create_slab_pool(pool_entries, bp->slab);
  1337. if (!bs->bvec_pool)
  1338. return -ENOMEM;
  1339. return 0;
  1340. }
  1341. static void biovec_free_pools(struct bio_set *bs)
  1342. {
  1343. mempool_destroy(bs->bvec_pool);
  1344. }
  1345. void bioset_free(struct bio_set *bs)
  1346. {
  1347. if (bs->bio_pool)
  1348. mempool_destroy(bs->bio_pool);
  1349. bioset_integrity_free(bs);
  1350. biovec_free_pools(bs);
  1351. bio_put_slab(bs);
  1352. kfree(bs);
  1353. }
  1354. EXPORT_SYMBOL(bioset_free);
  1355. /**
  1356. * bioset_create - Create a bio_set
  1357. * @pool_size: Number of bio and bio_vecs to cache in the mempool
  1358. * @front_pad: Number of bytes to allocate in front of the returned bio
  1359. *
  1360. * Description:
  1361. * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
  1362. * to ask for a number of bytes to be allocated in front of the bio.
  1363. * Front pad allocation is useful for embedding the bio inside
  1364. * another structure, to avoid allocating extra data to go with the bio.
  1365. * Note that the bio must be embedded at the END of that structure always,
  1366. * or things will break badly.
  1367. */
  1368. struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
  1369. {
  1370. unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
  1371. struct bio_set *bs;
  1372. bs = kzalloc(sizeof(*bs), GFP_KERNEL);
  1373. if (!bs)
  1374. return NULL;
  1375. bs->front_pad = front_pad;
  1376. bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
  1377. if (!bs->bio_slab) {
  1378. kfree(bs);
  1379. return NULL;
  1380. }
  1381. bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
  1382. if (!bs->bio_pool)
  1383. goto bad;
  1384. if (!biovec_create_pools(bs, pool_size))
  1385. return bs;
  1386. bad:
  1387. bioset_free(bs);
  1388. return NULL;
  1389. }
  1390. EXPORT_SYMBOL(bioset_create);
  1391. #ifdef CONFIG_BLK_CGROUP
  1392. /**
  1393. * bio_associate_current - associate a bio with %current
  1394. * @bio: target bio
  1395. *
  1396. * Associate @bio with %current if it hasn't been associated yet. Block
  1397. * layer will treat @bio as if it were issued by %current no matter which
  1398. * task actually issues it.
  1399. *
  1400. * This function takes an extra reference of @task's io_context and blkcg
  1401. * which will be put when @bio is released. The caller must own @bio,
  1402. * ensure %current->io_context exists, and is responsible for synchronizing
  1403. * calls to this function.
  1404. */
  1405. int bio_associate_current(struct bio *bio)
  1406. {
  1407. struct io_context *ioc;
  1408. struct cgroup_subsys_state *css;
  1409. if (bio->bi_ioc)
  1410. return -EBUSY;
  1411. ioc = current->io_context;
  1412. if (!ioc)
  1413. return -ENOENT;
  1414. /* acquire active ref on @ioc and associate */
  1415. get_io_context_active(ioc);
  1416. bio->bi_ioc = ioc;
  1417. /* associate blkcg if exists */
  1418. rcu_read_lock();
  1419. css = task_subsys_state(current, blkio_subsys_id);
  1420. if (css && css_tryget(css))
  1421. bio->bi_css = css;
  1422. rcu_read_unlock();
  1423. return 0;
  1424. }
  1425. /**
  1426. * bio_disassociate_task - undo bio_associate_current()
  1427. * @bio: target bio
  1428. */
  1429. void bio_disassociate_task(struct bio *bio)
  1430. {
  1431. if (bio->bi_ioc) {
  1432. put_io_context(bio->bi_ioc);
  1433. bio->bi_ioc = NULL;
  1434. }
  1435. if (bio->bi_css) {
  1436. css_put(bio->bi_css);
  1437. bio->bi_css = NULL;
  1438. }
  1439. }
  1440. #endif /* CONFIG_BLK_CGROUP */
  1441. static void __init biovec_init_slabs(void)
  1442. {
  1443. int i;
  1444. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  1445. int size;
  1446. struct biovec_slab *bvs = bvec_slabs + i;
  1447. if (bvs->nr_vecs <= BIO_INLINE_VECS) {
  1448. bvs->slab = NULL;
  1449. continue;
  1450. }
  1451. size = bvs->nr_vecs * sizeof(struct bio_vec);
  1452. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  1453. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
  1454. }
  1455. }
  1456. static int __init init_bio(void)
  1457. {
  1458. bio_slab_max = 2;
  1459. bio_slab_nr = 0;
  1460. bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
  1461. if (!bio_slabs)
  1462. panic("bio: can't allocate bios\n");
  1463. bio_integrity_init();
  1464. biovec_init_slabs();
  1465. fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
  1466. if (!fs_bio_set)
  1467. panic("bio: can't allocate bios\n");
  1468. if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
  1469. panic("bio: can't create integrity pool\n");
  1470. bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
  1471. sizeof(struct bio_pair));
  1472. if (!bio_split_pool)
  1473. panic("bio: can't create split pool\n");
  1474. return 0;
  1475. }
  1476. subsys_initcall(init_bio);