amd_iommu.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724
  1. /*
  2. * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/ratelimit.h>
  20. #include <linux/pci.h>
  21. #include <linux/pci-ats.h>
  22. #include <linux/bitmap.h>
  23. #include <linux/slab.h>
  24. #include <linux/debugfs.h>
  25. #include <linux/scatterlist.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/iommu-helper.h>
  28. #include <linux/iommu.h>
  29. #include <linux/delay.h>
  30. #include <linux/amd-iommu.h>
  31. #include <linux/notifier.h>
  32. #include <linux/export.h>
  33. #include <asm/msidef.h>
  34. #include <asm/proto.h>
  35. #include <asm/iommu.h>
  36. #include <asm/gart.h>
  37. #include <asm/dma.h>
  38. #include "amd_iommu_proto.h"
  39. #include "amd_iommu_types.h"
  40. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  41. #define LOOP_TIMEOUT 100000
  42. /*
  43. * This bitmap is used to advertise the page sizes our hardware support
  44. * to the IOMMU core, which will then use this information to split
  45. * physically contiguous memory regions it is mapping into page sizes
  46. * that we support.
  47. *
  48. * Traditionally the IOMMU core just handed us the mappings directly,
  49. * after making sure the size is an order of a 4KiB page and that the
  50. * mapping has natural alignment.
  51. *
  52. * To retain this behavior, we currently advertise that we support
  53. * all page sizes that are an order of 4KiB.
  54. *
  55. * If at some point we'd like to utilize the IOMMU core's new behavior,
  56. * we could change this to advertise the real page sizes we support.
  57. */
  58. #define AMD_IOMMU_PGSIZES (~0xFFFUL)
  59. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  60. /* A list of preallocated protection domains */
  61. static LIST_HEAD(iommu_pd_list);
  62. static DEFINE_SPINLOCK(iommu_pd_list_lock);
  63. /* List of all available dev_data structures */
  64. static LIST_HEAD(dev_data_list);
  65. static DEFINE_SPINLOCK(dev_data_list_lock);
  66. /*
  67. * Domain for untranslated devices - only allocated
  68. * if iommu=pt passed on kernel cmd line.
  69. */
  70. static struct protection_domain *pt_domain;
  71. static struct iommu_ops amd_iommu_ops;
  72. static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  73. int amd_iommu_max_glx_val = -1;
  74. static struct dma_map_ops amd_iommu_dma_ops;
  75. /*
  76. * general struct to manage commands send to an IOMMU
  77. */
  78. struct iommu_cmd {
  79. u32 data[4];
  80. };
  81. static void update_domain(struct protection_domain *domain);
  82. static int __init alloc_passthrough_domain(void);
  83. /****************************************************************************
  84. *
  85. * Helper functions
  86. *
  87. ****************************************************************************/
  88. static struct iommu_dev_data *alloc_dev_data(u16 devid)
  89. {
  90. struct iommu_dev_data *dev_data;
  91. unsigned long flags;
  92. dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
  93. if (!dev_data)
  94. return NULL;
  95. dev_data->devid = devid;
  96. atomic_set(&dev_data->bind, 0);
  97. spin_lock_irqsave(&dev_data_list_lock, flags);
  98. list_add_tail(&dev_data->dev_data_list, &dev_data_list);
  99. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  100. return dev_data;
  101. }
  102. static void free_dev_data(struct iommu_dev_data *dev_data)
  103. {
  104. unsigned long flags;
  105. spin_lock_irqsave(&dev_data_list_lock, flags);
  106. list_del(&dev_data->dev_data_list);
  107. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  108. kfree(dev_data);
  109. }
  110. static struct iommu_dev_data *search_dev_data(u16 devid)
  111. {
  112. struct iommu_dev_data *dev_data;
  113. unsigned long flags;
  114. spin_lock_irqsave(&dev_data_list_lock, flags);
  115. list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
  116. if (dev_data->devid == devid)
  117. goto out_unlock;
  118. }
  119. dev_data = NULL;
  120. out_unlock:
  121. spin_unlock_irqrestore(&dev_data_list_lock, flags);
  122. return dev_data;
  123. }
  124. static struct iommu_dev_data *find_dev_data(u16 devid)
  125. {
  126. struct iommu_dev_data *dev_data;
  127. dev_data = search_dev_data(devid);
  128. if (dev_data == NULL)
  129. dev_data = alloc_dev_data(devid);
  130. return dev_data;
  131. }
  132. static inline u16 get_device_id(struct device *dev)
  133. {
  134. struct pci_dev *pdev = to_pci_dev(dev);
  135. return calc_devid(pdev->bus->number, pdev->devfn);
  136. }
  137. static struct iommu_dev_data *get_dev_data(struct device *dev)
  138. {
  139. return dev->archdata.iommu;
  140. }
  141. static bool pci_iommuv2_capable(struct pci_dev *pdev)
  142. {
  143. static const int caps[] = {
  144. PCI_EXT_CAP_ID_ATS,
  145. PCI_EXT_CAP_ID_PRI,
  146. PCI_EXT_CAP_ID_PASID,
  147. };
  148. int i, pos;
  149. for (i = 0; i < 3; ++i) {
  150. pos = pci_find_ext_capability(pdev, caps[i]);
  151. if (pos == 0)
  152. return false;
  153. }
  154. return true;
  155. }
  156. static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
  157. {
  158. struct iommu_dev_data *dev_data;
  159. dev_data = get_dev_data(&pdev->dev);
  160. return dev_data->errata & (1 << erratum) ? true : false;
  161. }
  162. /*
  163. * In this function the list of preallocated protection domains is traversed to
  164. * find the domain for a specific device
  165. */
  166. static struct dma_ops_domain *find_protection_domain(u16 devid)
  167. {
  168. struct dma_ops_domain *entry, *ret = NULL;
  169. unsigned long flags;
  170. u16 alias = amd_iommu_alias_table[devid];
  171. if (list_empty(&iommu_pd_list))
  172. return NULL;
  173. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  174. list_for_each_entry(entry, &iommu_pd_list, list) {
  175. if (entry->target_dev == devid ||
  176. entry->target_dev == alias) {
  177. ret = entry;
  178. break;
  179. }
  180. }
  181. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  182. return ret;
  183. }
  184. /*
  185. * This function checks if the driver got a valid device from the caller to
  186. * avoid dereferencing invalid pointers.
  187. */
  188. static bool check_device(struct device *dev)
  189. {
  190. u16 devid;
  191. if (!dev || !dev->dma_mask)
  192. return false;
  193. /* No device or no PCI device */
  194. if (dev->bus != &pci_bus_type)
  195. return false;
  196. devid = get_device_id(dev);
  197. /* Out of our scope? */
  198. if (devid > amd_iommu_last_bdf)
  199. return false;
  200. if (amd_iommu_rlookup_table[devid] == NULL)
  201. return false;
  202. return true;
  203. }
  204. static void swap_pci_ref(struct pci_dev **from, struct pci_dev *to)
  205. {
  206. pci_dev_put(*from);
  207. *from = to;
  208. }
  209. #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
  210. static int iommu_init_device(struct device *dev)
  211. {
  212. struct pci_dev *dma_pdev, *pdev = to_pci_dev(dev);
  213. struct iommu_dev_data *dev_data;
  214. struct iommu_group *group;
  215. u16 alias;
  216. int ret;
  217. if (dev->archdata.iommu)
  218. return 0;
  219. dev_data = find_dev_data(get_device_id(dev));
  220. if (!dev_data)
  221. return -ENOMEM;
  222. alias = amd_iommu_alias_table[dev_data->devid];
  223. if (alias != dev_data->devid) {
  224. struct iommu_dev_data *alias_data;
  225. alias_data = find_dev_data(alias);
  226. if (alias_data == NULL) {
  227. pr_err("AMD-Vi: Warning: Unhandled device %s\n",
  228. dev_name(dev));
  229. free_dev_data(dev_data);
  230. return -ENOTSUPP;
  231. }
  232. dev_data->alias_data = alias_data;
  233. dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
  234. } else
  235. dma_pdev = pci_dev_get(pdev);
  236. swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
  237. if (dma_pdev->multifunction &&
  238. !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
  239. swap_pci_ref(&dma_pdev,
  240. pci_get_slot(dma_pdev->bus,
  241. PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
  242. 0)));
  243. while (!pci_is_root_bus(dma_pdev->bus)) {
  244. if (pci_acs_path_enabled(dma_pdev->bus->self,
  245. NULL, REQ_ACS_FLAGS))
  246. break;
  247. swap_pci_ref(&dma_pdev, pci_dev_get(dma_pdev->bus->self));
  248. }
  249. group = iommu_group_get(&dma_pdev->dev);
  250. pci_dev_put(dma_pdev);
  251. if (!group) {
  252. group = iommu_group_alloc();
  253. if (IS_ERR(group))
  254. return PTR_ERR(group);
  255. }
  256. ret = iommu_group_add_device(group, dev);
  257. iommu_group_put(group);
  258. if (ret)
  259. return ret;
  260. if (pci_iommuv2_capable(pdev)) {
  261. struct amd_iommu *iommu;
  262. iommu = amd_iommu_rlookup_table[dev_data->devid];
  263. dev_data->iommu_v2 = iommu->is_iommu_v2;
  264. }
  265. dev->archdata.iommu = dev_data;
  266. return 0;
  267. }
  268. static void iommu_ignore_device(struct device *dev)
  269. {
  270. u16 devid, alias;
  271. devid = get_device_id(dev);
  272. alias = amd_iommu_alias_table[devid];
  273. memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
  274. memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
  275. amd_iommu_rlookup_table[devid] = NULL;
  276. amd_iommu_rlookup_table[alias] = NULL;
  277. }
  278. static void iommu_uninit_device(struct device *dev)
  279. {
  280. iommu_group_remove_device(dev);
  281. /*
  282. * Nothing to do here - we keep dev_data around for unplugged devices
  283. * and reuse it when the device is re-plugged - not doing so would
  284. * introduce a ton of races.
  285. */
  286. }
  287. void __init amd_iommu_uninit_devices(void)
  288. {
  289. struct iommu_dev_data *dev_data, *n;
  290. struct pci_dev *pdev = NULL;
  291. for_each_pci_dev(pdev) {
  292. if (!check_device(&pdev->dev))
  293. continue;
  294. iommu_uninit_device(&pdev->dev);
  295. }
  296. /* Free all of our dev_data structures */
  297. list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
  298. free_dev_data(dev_data);
  299. }
  300. int __init amd_iommu_init_devices(void)
  301. {
  302. struct pci_dev *pdev = NULL;
  303. int ret = 0;
  304. for_each_pci_dev(pdev) {
  305. if (!check_device(&pdev->dev))
  306. continue;
  307. ret = iommu_init_device(&pdev->dev);
  308. if (ret == -ENOTSUPP)
  309. iommu_ignore_device(&pdev->dev);
  310. else if (ret)
  311. goto out_free;
  312. }
  313. return 0;
  314. out_free:
  315. amd_iommu_uninit_devices();
  316. return ret;
  317. }
  318. #ifdef CONFIG_AMD_IOMMU_STATS
  319. /*
  320. * Initialization code for statistics collection
  321. */
  322. DECLARE_STATS_COUNTER(compl_wait);
  323. DECLARE_STATS_COUNTER(cnt_map_single);
  324. DECLARE_STATS_COUNTER(cnt_unmap_single);
  325. DECLARE_STATS_COUNTER(cnt_map_sg);
  326. DECLARE_STATS_COUNTER(cnt_unmap_sg);
  327. DECLARE_STATS_COUNTER(cnt_alloc_coherent);
  328. DECLARE_STATS_COUNTER(cnt_free_coherent);
  329. DECLARE_STATS_COUNTER(cross_page);
  330. DECLARE_STATS_COUNTER(domain_flush_single);
  331. DECLARE_STATS_COUNTER(domain_flush_all);
  332. DECLARE_STATS_COUNTER(alloced_io_mem);
  333. DECLARE_STATS_COUNTER(total_map_requests);
  334. DECLARE_STATS_COUNTER(complete_ppr);
  335. DECLARE_STATS_COUNTER(invalidate_iotlb);
  336. DECLARE_STATS_COUNTER(invalidate_iotlb_all);
  337. DECLARE_STATS_COUNTER(pri_requests);
  338. static struct dentry *stats_dir;
  339. static struct dentry *de_fflush;
  340. static void amd_iommu_stats_add(struct __iommu_counter *cnt)
  341. {
  342. if (stats_dir == NULL)
  343. return;
  344. cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
  345. &cnt->value);
  346. }
  347. static void amd_iommu_stats_init(void)
  348. {
  349. stats_dir = debugfs_create_dir("amd-iommu", NULL);
  350. if (stats_dir == NULL)
  351. return;
  352. de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
  353. &amd_iommu_unmap_flush);
  354. amd_iommu_stats_add(&compl_wait);
  355. amd_iommu_stats_add(&cnt_map_single);
  356. amd_iommu_stats_add(&cnt_unmap_single);
  357. amd_iommu_stats_add(&cnt_map_sg);
  358. amd_iommu_stats_add(&cnt_unmap_sg);
  359. amd_iommu_stats_add(&cnt_alloc_coherent);
  360. amd_iommu_stats_add(&cnt_free_coherent);
  361. amd_iommu_stats_add(&cross_page);
  362. amd_iommu_stats_add(&domain_flush_single);
  363. amd_iommu_stats_add(&domain_flush_all);
  364. amd_iommu_stats_add(&alloced_io_mem);
  365. amd_iommu_stats_add(&total_map_requests);
  366. amd_iommu_stats_add(&complete_ppr);
  367. amd_iommu_stats_add(&invalidate_iotlb);
  368. amd_iommu_stats_add(&invalidate_iotlb_all);
  369. amd_iommu_stats_add(&pri_requests);
  370. }
  371. #endif
  372. /****************************************************************************
  373. *
  374. * Interrupt handling functions
  375. *
  376. ****************************************************************************/
  377. static void dump_dte_entry(u16 devid)
  378. {
  379. int i;
  380. for (i = 0; i < 4; ++i)
  381. pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
  382. amd_iommu_dev_table[devid].data[i]);
  383. }
  384. static void dump_command(unsigned long phys_addr)
  385. {
  386. struct iommu_cmd *cmd = phys_to_virt(phys_addr);
  387. int i;
  388. for (i = 0; i < 4; ++i)
  389. pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
  390. }
  391. static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
  392. {
  393. int type, devid, domid, flags;
  394. volatile u32 *event = __evt;
  395. int count = 0;
  396. u64 address;
  397. retry:
  398. type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
  399. devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
  400. domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
  401. flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
  402. address = (u64)(((u64)event[3]) << 32) | event[2];
  403. if (type == 0) {
  404. /* Did we hit the erratum? */
  405. if (++count == LOOP_TIMEOUT) {
  406. pr_err("AMD-Vi: No event written to event log\n");
  407. return;
  408. }
  409. udelay(1);
  410. goto retry;
  411. }
  412. printk(KERN_ERR "AMD-Vi: Event logged [");
  413. switch (type) {
  414. case EVENT_TYPE_ILL_DEV:
  415. printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
  416. "address=0x%016llx flags=0x%04x]\n",
  417. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  418. address, flags);
  419. dump_dte_entry(devid);
  420. break;
  421. case EVENT_TYPE_IO_FAULT:
  422. printk("IO_PAGE_FAULT device=%02x:%02x.%x "
  423. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  424. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  425. domid, address, flags);
  426. break;
  427. case EVENT_TYPE_DEV_TAB_ERR:
  428. printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  429. "address=0x%016llx flags=0x%04x]\n",
  430. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  431. address, flags);
  432. break;
  433. case EVENT_TYPE_PAGE_TAB_ERR:
  434. printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
  435. "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
  436. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  437. domid, address, flags);
  438. break;
  439. case EVENT_TYPE_ILL_CMD:
  440. printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
  441. dump_command(address);
  442. break;
  443. case EVENT_TYPE_CMD_HARD_ERR:
  444. printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
  445. "flags=0x%04x]\n", address, flags);
  446. break;
  447. case EVENT_TYPE_IOTLB_INV_TO:
  448. printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
  449. "address=0x%016llx]\n",
  450. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  451. address);
  452. break;
  453. case EVENT_TYPE_INV_DEV_REQ:
  454. printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
  455. "address=0x%016llx flags=0x%04x]\n",
  456. PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
  457. address, flags);
  458. break;
  459. default:
  460. printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
  461. }
  462. memset(__evt, 0, 4 * sizeof(u32));
  463. }
  464. static void iommu_poll_events(struct amd_iommu *iommu)
  465. {
  466. u32 head, tail;
  467. unsigned long flags;
  468. spin_lock_irqsave(&iommu->lock, flags);
  469. head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  470. tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
  471. while (head != tail) {
  472. iommu_print_event(iommu, iommu->evt_buf + head);
  473. head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
  474. }
  475. writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
  476. spin_unlock_irqrestore(&iommu->lock, flags);
  477. }
  478. static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
  479. {
  480. struct amd_iommu_fault fault;
  481. INC_STATS_COUNTER(pri_requests);
  482. if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
  483. pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
  484. return;
  485. }
  486. fault.address = raw[1];
  487. fault.pasid = PPR_PASID(raw[0]);
  488. fault.device_id = PPR_DEVID(raw[0]);
  489. fault.tag = PPR_TAG(raw[0]);
  490. fault.flags = PPR_FLAGS(raw[0]);
  491. atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
  492. }
  493. static void iommu_poll_ppr_log(struct amd_iommu *iommu)
  494. {
  495. unsigned long flags;
  496. u32 head, tail;
  497. if (iommu->ppr_log == NULL)
  498. return;
  499. /* enable ppr interrupts again */
  500. writel(MMIO_STATUS_PPR_INT_MASK, iommu->mmio_base + MMIO_STATUS_OFFSET);
  501. spin_lock_irqsave(&iommu->lock, flags);
  502. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  503. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  504. while (head != tail) {
  505. volatile u64 *raw;
  506. u64 entry[2];
  507. int i;
  508. raw = (u64 *)(iommu->ppr_log + head);
  509. /*
  510. * Hardware bug: Interrupt may arrive before the entry is
  511. * written to memory. If this happens we need to wait for the
  512. * entry to arrive.
  513. */
  514. for (i = 0; i < LOOP_TIMEOUT; ++i) {
  515. if (PPR_REQ_TYPE(raw[0]) != 0)
  516. break;
  517. udelay(1);
  518. }
  519. /* Avoid memcpy function-call overhead */
  520. entry[0] = raw[0];
  521. entry[1] = raw[1];
  522. /*
  523. * To detect the hardware bug we need to clear the entry
  524. * back to zero.
  525. */
  526. raw[0] = raw[1] = 0UL;
  527. /* Update head pointer of hardware ring-buffer */
  528. head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
  529. writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  530. /*
  531. * Release iommu->lock because ppr-handling might need to
  532. * re-aquire it
  533. */
  534. spin_unlock_irqrestore(&iommu->lock, flags);
  535. /* Handle PPR entry */
  536. iommu_handle_ppr_entry(iommu, entry);
  537. spin_lock_irqsave(&iommu->lock, flags);
  538. /* Refresh ring-buffer information */
  539. head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
  540. tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
  541. }
  542. spin_unlock_irqrestore(&iommu->lock, flags);
  543. }
  544. irqreturn_t amd_iommu_int_thread(int irq, void *data)
  545. {
  546. struct amd_iommu *iommu;
  547. for_each_iommu(iommu) {
  548. iommu_poll_events(iommu);
  549. iommu_poll_ppr_log(iommu);
  550. }
  551. return IRQ_HANDLED;
  552. }
  553. irqreturn_t amd_iommu_int_handler(int irq, void *data)
  554. {
  555. return IRQ_WAKE_THREAD;
  556. }
  557. /****************************************************************************
  558. *
  559. * IOMMU command queuing functions
  560. *
  561. ****************************************************************************/
  562. static int wait_on_sem(volatile u64 *sem)
  563. {
  564. int i = 0;
  565. while (*sem == 0 && i < LOOP_TIMEOUT) {
  566. udelay(1);
  567. i += 1;
  568. }
  569. if (i == LOOP_TIMEOUT) {
  570. pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
  571. return -EIO;
  572. }
  573. return 0;
  574. }
  575. static void copy_cmd_to_buffer(struct amd_iommu *iommu,
  576. struct iommu_cmd *cmd,
  577. u32 tail)
  578. {
  579. u8 *target;
  580. target = iommu->cmd_buf + tail;
  581. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  582. /* Copy command to buffer */
  583. memcpy(target, cmd, sizeof(*cmd));
  584. /* Tell the IOMMU about it */
  585. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  586. }
  587. static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
  588. {
  589. WARN_ON(address & 0x7ULL);
  590. memset(cmd, 0, sizeof(*cmd));
  591. cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
  592. cmd->data[1] = upper_32_bits(__pa(address));
  593. cmd->data[2] = 1;
  594. CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
  595. }
  596. static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
  597. {
  598. memset(cmd, 0, sizeof(*cmd));
  599. cmd->data[0] = devid;
  600. CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
  601. }
  602. static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
  603. size_t size, u16 domid, int pde)
  604. {
  605. u64 pages;
  606. int s;
  607. pages = iommu_num_pages(address, size, PAGE_SIZE);
  608. s = 0;
  609. if (pages > 1) {
  610. /*
  611. * If we have to flush more than one page, flush all
  612. * TLB entries for this domain
  613. */
  614. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  615. s = 1;
  616. }
  617. address &= PAGE_MASK;
  618. memset(cmd, 0, sizeof(*cmd));
  619. cmd->data[1] |= domid;
  620. cmd->data[2] = lower_32_bits(address);
  621. cmd->data[3] = upper_32_bits(address);
  622. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  623. if (s) /* size bit - we flush more than one 4kb page */
  624. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  625. if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
  626. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  627. }
  628. static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
  629. u64 address, size_t size)
  630. {
  631. u64 pages;
  632. int s;
  633. pages = iommu_num_pages(address, size, PAGE_SIZE);
  634. s = 0;
  635. if (pages > 1) {
  636. /*
  637. * If we have to flush more than one page, flush all
  638. * TLB entries for this domain
  639. */
  640. address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
  641. s = 1;
  642. }
  643. address &= PAGE_MASK;
  644. memset(cmd, 0, sizeof(*cmd));
  645. cmd->data[0] = devid;
  646. cmd->data[0] |= (qdep & 0xff) << 24;
  647. cmd->data[1] = devid;
  648. cmd->data[2] = lower_32_bits(address);
  649. cmd->data[3] = upper_32_bits(address);
  650. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  651. if (s)
  652. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  653. }
  654. static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
  655. u64 address, bool size)
  656. {
  657. memset(cmd, 0, sizeof(*cmd));
  658. address &= ~(0xfffULL);
  659. cmd->data[0] = pasid & PASID_MASK;
  660. cmd->data[1] = domid;
  661. cmd->data[2] = lower_32_bits(address);
  662. cmd->data[3] = upper_32_bits(address);
  663. cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  664. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  665. if (size)
  666. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  667. CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
  668. }
  669. static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
  670. int qdep, u64 address, bool size)
  671. {
  672. memset(cmd, 0, sizeof(*cmd));
  673. address &= ~(0xfffULL);
  674. cmd->data[0] = devid;
  675. cmd->data[0] |= (pasid & 0xff) << 16;
  676. cmd->data[0] |= (qdep & 0xff) << 24;
  677. cmd->data[1] = devid;
  678. cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
  679. cmd->data[2] = lower_32_bits(address);
  680. cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
  681. cmd->data[3] = upper_32_bits(address);
  682. if (size)
  683. cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  684. CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
  685. }
  686. static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
  687. int status, int tag, bool gn)
  688. {
  689. memset(cmd, 0, sizeof(*cmd));
  690. cmd->data[0] = devid;
  691. if (gn) {
  692. cmd->data[1] = pasid & PASID_MASK;
  693. cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
  694. }
  695. cmd->data[3] = tag & 0x1ff;
  696. cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
  697. CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
  698. }
  699. static void build_inv_all(struct iommu_cmd *cmd)
  700. {
  701. memset(cmd, 0, sizeof(*cmd));
  702. CMD_SET_TYPE(cmd, CMD_INV_ALL);
  703. }
  704. /*
  705. * Writes the command to the IOMMUs command buffer and informs the
  706. * hardware about the new command.
  707. */
  708. static int iommu_queue_command_sync(struct amd_iommu *iommu,
  709. struct iommu_cmd *cmd,
  710. bool sync)
  711. {
  712. u32 left, tail, head, next_tail;
  713. unsigned long flags;
  714. WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
  715. again:
  716. spin_lock_irqsave(&iommu->lock, flags);
  717. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  718. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  719. next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  720. left = (head - next_tail) % iommu->cmd_buf_size;
  721. if (left <= 2) {
  722. struct iommu_cmd sync_cmd;
  723. volatile u64 sem = 0;
  724. int ret;
  725. build_completion_wait(&sync_cmd, (u64)&sem);
  726. copy_cmd_to_buffer(iommu, &sync_cmd, tail);
  727. spin_unlock_irqrestore(&iommu->lock, flags);
  728. if ((ret = wait_on_sem(&sem)) != 0)
  729. return ret;
  730. goto again;
  731. }
  732. copy_cmd_to_buffer(iommu, cmd, tail);
  733. /* We need to sync now to make sure all commands are processed */
  734. iommu->need_sync = sync;
  735. spin_unlock_irqrestore(&iommu->lock, flags);
  736. return 0;
  737. }
  738. static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
  739. {
  740. return iommu_queue_command_sync(iommu, cmd, true);
  741. }
  742. /*
  743. * This function queues a completion wait command into the command
  744. * buffer of an IOMMU
  745. */
  746. static int iommu_completion_wait(struct amd_iommu *iommu)
  747. {
  748. struct iommu_cmd cmd;
  749. volatile u64 sem = 0;
  750. int ret;
  751. if (!iommu->need_sync)
  752. return 0;
  753. build_completion_wait(&cmd, (u64)&sem);
  754. ret = iommu_queue_command_sync(iommu, &cmd, false);
  755. if (ret)
  756. return ret;
  757. return wait_on_sem(&sem);
  758. }
  759. static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
  760. {
  761. struct iommu_cmd cmd;
  762. build_inv_dte(&cmd, devid);
  763. return iommu_queue_command(iommu, &cmd);
  764. }
  765. static void iommu_flush_dte_all(struct amd_iommu *iommu)
  766. {
  767. u32 devid;
  768. for (devid = 0; devid <= 0xffff; ++devid)
  769. iommu_flush_dte(iommu, devid);
  770. iommu_completion_wait(iommu);
  771. }
  772. /*
  773. * This function uses heavy locking and may disable irqs for some time. But
  774. * this is no issue because it is only called during resume.
  775. */
  776. static void iommu_flush_tlb_all(struct amd_iommu *iommu)
  777. {
  778. u32 dom_id;
  779. for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
  780. struct iommu_cmd cmd;
  781. build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  782. dom_id, 1);
  783. iommu_queue_command(iommu, &cmd);
  784. }
  785. iommu_completion_wait(iommu);
  786. }
  787. static void iommu_flush_all(struct amd_iommu *iommu)
  788. {
  789. struct iommu_cmd cmd;
  790. build_inv_all(&cmd);
  791. iommu_queue_command(iommu, &cmd);
  792. iommu_completion_wait(iommu);
  793. }
  794. void iommu_flush_all_caches(struct amd_iommu *iommu)
  795. {
  796. if (iommu_feature(iommu, FEATURE_IA)) {
  797. iommu_flush_all(iommu);
  798. } else {
  799. iommu_flush_dte_all(iommu);
  800. iommu_flush_tlb_all(iommu);
  801. }
  802. }
  803. /*
  804. * Command send function for flushing on-device TLB
  805. */
  806. static int device_flush_iotlb(struct iommu_dev_data *dev_data,
  807. u64 address, size_t size)
  808. {
  809. struct amd_iommu *iommu;
  810. struct iommu_cmd cmd;
  811. int qdep;
  812. qdep = dev_data->ats.qdep;
  813. iommu = amd_iommu_rlookup_table[dev_data->devid];
  814. build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
  815. return iommu_queue_command(iommu, &cmd);
  816. }
  817. /*
  818. * Command send function for invalidating a device table entry
  819. */
  820. static int device_flush_dte(struct iommu_dev_data *dev_data)
  821. {
  822. struct amd_iommu *iommu;
  823. int ret;
  824. iommu = amd_iommu_rlookup_table[dev_data->devid];
  825. ret = iommu_flush_dte(iommu, dev_data->devid);
  826. if (ret)
  827. return ret;
  828. if (dev_data->ats.enabled)
  829. ret = device_flush_iotlb(dev_data, 0, ~0UL);
  830. return ret;
  831. }
  832. /*
  833. * TLB invalidation function which is called from the mapping functions.
  834. * It invalidates a single PTE if the range to flush is within a single
  835. * page. Otherwise it flushes the whole TLB of the IOMMU.
  836. */
  837. static void __domain_flush_pages(struct protection_domain *domain,
  838. u64 address, size_t size, int pde)
  839. {
  840. struct iommu_dev_data *dev_data;
  841. struct iommu_cmd cmd;
  842. int ret = 0, i;
  843. build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
  844. for (i = 0; i < amd_iommus_present; ++i) {
  845. if (!domain->dev_iommu[i])
  846. continue;
  847. /*
  848. * Devices of this domain are behind this IOMMU
  849. * We need a TLB flush
  850. */
  851. ret |= iommu_queue_command(amd_iommus[i], &cmd);
  852. }
  853. list_for_each_entry(dev_data, &domain->dev_list, list) {
  854. if (!dev_data->ats.enabled)
  855. continue;
  856. ret |= device_flush_iotlb(dev_data, address, size);
  857. }
  858. WARN_ON(ret);
  859. }
  860. static void domain_flush_pages(struct protection_domain *domain,
  861. u64 address, size_t size)
  862. {
  863. __domain_flush_pages(domain, address, size, 0);
  864. }
  865. /* Flush the whole IO/TLB for a given protection domain */
  866. static void domain_flush_tlb(struct protection_domain *domain)
  867. {
  868. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
  869. }
  870. /* Flush the whole IO/TLB for a given protection domain - including PDE */
  871. static void domain_flush_tlb_pde(struct protection_domain *domain)
  872. {
  873. __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
  874. }
  875. static void domain_flush_complete(struct protection_domain *domain)
  876. {
  877. int i;
  878. for (i = 0; i < amd_iommus_present; ++i) {
  879. if (!domain->dev_iommu[i])
  880. continue;
  881. /*
  882. * Devices of this domain are behind this IOMMU
  883. * We need to wait for completion of all commands.
  884. */
  885. iommu_completion_wait(amd_iommus[i]);
  886. }
  887. }
  888. /*
  889. * This function flushes the DTEs for all devices in domain
  890. */
  891. static void domain_flush_devices(struct protection_domain *domain)
  892. {
  893. struct iommu_dev_data *dev_data;
  894. list_for_each_entry(dev_data, &domain->dev_list, list)
  895. device_flush_dte(dev_data);
  896. }
  897. /****************************************************************************
  898. *
  899. * The functions below are used the create the page table mappings for
  900. * unity mapped regions.
  901. *
  902. ****************************************************************************/
  903. /*
  904. * This function is used to add another level to an IO page table. Adding
  905. * another level increases the size of the address space by 9 bits to a size up
  906. * to 64 bits.
  907. */
  908. static bool increase_address_space(struct protection_domain *domain,
  909. gfp_t gfp)
  910. {
  911. u64 *pte;
  912. if (domain->mode == PAGE_MODE_6_LEVEL)
  913. /* address space already 64 bit large */
  914. return false;
  915. pte = (void *)get_zeroed_page(gfp);
  916. if (!pte)
  917. return false;
  918. *pte = PM_LEVEL_PDE(domain->mode,
  919. virt_to_phys(domain->pt_root));
  920. domain->pt_root = pte;
  921. domain->mode += 1;
  922. domain->updated = true;
  923. return true;
  924. }
  925. static u64 *alloc_pte(struct protection_domain *domain,
  926. unsigned long address,
  927. unsigned long page_size,
  928. u64 **pte_page,
  929. gfp_t gfp)
  930. {
  931. int level, end_lvl;
  932. u64 *pte, *page;
  933. BUG_ON(!is_power_of_2(page_size));
  934. while (address > PM_LEVEL_SIZE(domain->mode))
  935. increase_address_space(domain, gfp);
  936. level = domain->mode - 1;
  937. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  938. address = PAGE_SIZE_ALIGN(address, page_size);
  939. end_lvl = PAGE_SIZE_LEVEL(page_size);
  940. while (level > end_lvl) {
  941. if (!IOMMU_PTE_PRESENT(*pte)) {
  942. page = (u64 *)get_zeroed_page(gfp);
  943. if (!page)
  944. return NULL;
  945. *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
  946. }
  947. /* No level skipping support yet */
  948. if (PM_PTE_LEVEL(*pte) != level)
  949. return NULL;
  950. level -= 1;
  951. pte = IOMMU_PTE_PAGE(*pte);
  952. if (pte_page && level == end_lvl)
  953. *pte_page = pte;
  954. pte = &pte[PM_LEVEL_INDEX(level, address)];
  955. }
  956. return pte;
  957. }
  958. /*
  959. * This function checks if there is a PTE for a given dma address. If
  960. * there is one, it returns the pointer to it.
  961. */
  962. static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
  963. {
  964. int level;
  965. u64 *pte;
  966. if (address > PM_LEVEL_SIZE(domain->mode))
  967. return NULL;
  968. level = domain->mode - 1;
  969. pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
  970. while (level > 0) {
  971. /* Not Present */
  972. if (!IOMMU_PTE_PRESENT(*pte))
  973. return NULL;
  974. /* Large PTE */
  975. if (PM_PTE_LEVEL(*pte) == 0x07) {
  976. unsigned long pte_mask, __pte;
  977. /*
  978. * If we have a series of large PTEs, make
  979. * sure to return a pointer to the first one.
  980. */
  981. pte_mask = PTE_PAGE_SIZE(*pte);
  982. pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
  983. __pte = ((unsigned long)pte) & pte_mask;
  984. return (u64 *)__pte;
  985. }
  986. /* No level skipping support yet */
  987. if (PM_PTE_LEVEL(*pte) != level)
  988. return NULL;
  989. level -= 1;
  990. /* Walk to the next level */
  991. pte = IOMMU_PTE_PAGE(*pte);
  992. pte = &pte[PM_LEVEL_INDEX(level, address)];
  993. }
  994. return pte;
  995. }
  996. /*
  997. * Generic mapping functions. It maps a physical address into a DMA
  998. * address space. It allocates the page table pages if necessary.
  999. * In the future it can be extended to a generic mapping function
  1000. * supporting all features of AMD IOMMU page tables like level skipping
  1001. * and full 64 bit address spaces.
  1002. */
  1003. static int iommu_map_page(struct protection_domain *dom,
  1004. unsigned long bus_addr,
  1005. unsigned long phys_addr,
  1006. int prot,
  1007. unsigned long page_size)
  1008. {
  1009. u64 __pte, *pte;
  1010. int i, count;
  1011. if (!(prot & IOMMU_PROT_MASK))
  1012. return -EINVAL;
  1013. bus_addr = PAGE_ALIGN(bus_addr);
  1014. phys_addr = PAGE_ALIGN(phys_addr);
  1015. count = PAGE_SIZE_PTE_COUNT(page_size);
  1016. pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
  1017. for (i = 0; i < count; ++i)
  1018. if (IOMMU_PTE_PRESENT(pte[i]))
  1019. return -EBUSY;
  1020. if (page_size > PAGE_SIZE) {
  1021. __pte = PAGE_SIZE_PTE(phys_addr, page_size);
  1022. __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
  1023. } else
  1024. __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1025. if (prot & IOMMU_PROT_IR)
  1026. __pte |= IOMMU_PTE_IR;
  1027. if (prot & IOMMU_PROT_IW)
  1028. __pte |= IOMMU_PTE_IW;
  1029. for (i = 0; i < count; ++i)
  1030. pte[i] = __pte;
  1031. update_domain(dom);
  1032. return 0;
  1033. }
  1034. static unsigned long iommu_unmap_page(struct protection_domain *dom,
  1035. unsigned long bus_addr,
  1036. unsigned long page_size)
  1037. {
  1038. unsigned long long unmap_size, unmapped;
  1039. u64 *pte;
  1040. BUG_ON(!is_power_of_2(page_size));
  1041. unmapped = 0;
  1042. while (unmapped < page_size) {
  1043. pte = fetch_pte(dom, bus_addr);
  1044. if (!pte) {
  1045. /*
  1046. * No PTE for this address
  1047. * move forward in 4kb steps
  1048. */
  1049. unmap_size = PAGE_SIZE;
  1050. } else if (PM_PTE_LEVEL(*pte) == 0) {
  1051. /* 4kb PTE found for this address */
  1052. unmap_size = PAGE_SIZE;
  1053. *pte = 0ULL;
  1054. } else {
  1055. int count, i;
  1056. /* Large PTE found which maps this address */
  1057. unmap_size = PTE_PAGE_SIZE(*pte);
  1058. count = PAGE_SIZE_PTE_COUNT(unmap_size);
  1059. for (i = 0; i < count; i++)
  1060. pte[i] = 0ULL;
  1061. }
  1062. bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
  1063. unmapped += unmap_size;
  1064. }
  1065. BUG_ON(!is_power_of_2(unmapped));
  1066. return unmapped;
  1067. }
  1068. /*
  1069. * This function checks if a specific unity mapping entry is needed for
  1070. * this specific IOMMU.
  1071. */
  1072. static int iommu_for_unity_map(struct amd_iommu *iommu,
  1073. struct unity_map_entry *entry)
  1074. {
  1075. u16 bdf, i;
  1076. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  1077. bdf = amd_iommu_alias_table[i];
  1078. if (amd_iommu_rlookup_table[bdf] == iommu)
  1079. return 1;
  1080. }
  1081. return 0;
  1082. }
  1083. /*
  1084. * This function actually applies the mapping to the page table of the
  1085. * dma_ops domain.
  1086. */
  1087. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  1088. struct unity_map_entry *e)
  1089. {
  1090. u64 addr;
  1091. int ret;
  1092. for (addr = e->address_start; addr < e->address_end;
  1093. addr += PAGE_SIZE) {
  1094. ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
  1095. PAGE_SIZE);
  1096. if (ret)
  1097. return ret;
  1098. /*
  1099. * if unity mapping is in aperture range mark the page
  1100. * as allocated in the aperture
  1101. */
  1102. if (addr < dma_dom->aperture_size)
  1103. __set_bit(addr >> PAGE_SHIFT,
  1104. dma_dom->aperture[0]->bitmap);
  1105. }
  1106. return 0;
  1107. }
  1108. /*
  1109. * Init the unity mappings for a specific IOMMU in the system
  1110. *
  1111. * Basically iterates over all unity mapping entries and applies them to
  1112. * the default domain DMA of that IOMMU if necessary.
  1113. */
  1114. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  1115. {
  1116. struct unity_map_entry *entry;
  1117. int ret;
  1118. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  1119. if (!iommu_for_unity_map(iommu, entry))
  1120. continue;
  1121. ret = dma_ops_unity_map(iommu->default_dom, entry);
  1122. if (ret)
  1123. return ret;
  1124. }
  1125. return 0;
  1126. }
  1127. /*
  1128. * Inits the unity mappings required for a specific device
  1129. */
  1130. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  1131. u16 devid)
  1132. {
  1133. struct unity_map_entry *e;
  1134. int ret;
  1135. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  1136. if (!(devid >= e->devid_start && devid <= e->devid_end))
  1137. continue;
  1138. ret = dma_ops_unity_map(dma_dom, e);
  1139. if (ret)
  1140. return ret;
  1141. }
  1142. return 0;
  1143. }
  1144. /****************************************************************************
  1145. *
  1146. * The next functions belong to the address allocator for the dma_ops
  1147. * interface functions. They work like the allocators in the other IOMMU
  1148. * drivers. Its basically a bitmap which marks the allocated pages in
  1149. * the aperture. Maybe it could be enhanced in the future to a more
  1150. * efficient allocator.
  1151. *
  1152. ****************************************************************************/
  1153. /*
  1154. * The address allocator core functions.
  1155. *
  1156. * called with domain->lock held
  1157. */
  1158. /*
  1159. * Used to reserve address ranges in the aperture (e.g. for exclusion
  1160. * ranges.
  1161. */
  1162. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  1163. unsigned long start_page,
  1164. unsigned int pages)
  1165. {
  1166. unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
  1167. if (start_page + pages > last_page)
  1168. pages = last_page - start_page;
  1169. for (i = start_page; i < start_page + pages; ++i) {
  1170. int index = i / APERTURE_RANGE_PAGES;
  1171. int page = i % APERTURE_RANGE_PAGES;
  1172. __set_bit(page, dom->aperture[index]->bitmap);
  1173. }
  1174. }
  1175. /*
  1176. * This function is used to add a new aperture range to an existing
  1177. * aperture in case of dma_ops domain allocation or address allocation
  1178. * failure.
  1179. */
  1180. static int alloc_new_range(struct dma_ops_domain *dma_dom,
  1181. bool populate, gfp_t gfp)
  1182. {
  1183. int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1184. struct amd_iommu *iommu;
  1185. unsigned long i, old_size;
  1186. #ifdef CONFIG_IOMMU_STRESS
  1187. populate = false;
  1188. #endif
  1189. if (index >= APERTURE_MAX_RANGES)
  1190. return -ENOMEM;
  1191. dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
  1192. if (!dma_dom->aperture[index])
  1193. return -ENOMEM;
  1194. dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
  1195. if (!dma_dom->aperture[index]->bitmap)
  1196. goto out_free;
  1197. dma_dom->aperture[index]->offset = dma_dom->aperture_size;
  1198. if (populate) {
  1199. unsigned long address = dma_dom->aperture_size;
  1200. int i, num_ptes = APERTURE_RANGE_PAGES / 512;
  1201. u64 *pte, *pte_page;
  1202. for (i = 0; i < num_ptes; ++i) {
  1203. pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
  1204. &pte_page, gfp);
  1205. if (!pte)
  1206. goto out_free;
  1207. dma_dom->aperture[index]->pte_pages[i] = pte_page;
  1208. address += APERTURE_RANGE_SIZE / 64;
  1209. }
  1210. }
  1211. old_size = dma_dom->aperture_size;
  1212. dma_dom->aperture_size += APERTURE_RANGE_SIZE;
  1213. /* Reserve address range used for MSI messages */
  1214. if (old_size < MSI_ADDR_BASE_LO &&
  1215. dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
  1216. unsigned long spage;
  1217. int pages;
  1218. pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
  1219. spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
  1220. dma_ops_reserve_addresses(dma_dom, spage, pages);
  1221. }
  1222. /* Initialize the exclusion range if necessary */
  1223. for_each_iommu(iommu) {
  1224. if (iommu->exclusion_start &&
  1225. iommu->exclusion_start >= dma_dom->aperture[index]->offset
  1226. && iommu->exclusion_start < dma_dom->aperture_size) {
  1227. unsigned long startpage;
  1228. int pages = iommu_num_pages(iommu->exclusion_start,
  1229. iommu->exclusion_length,
  1230. PAGE_SIZE);
  1231. startpage = iommu->exclusion_start >> PAGE_SHIFT;
  1232. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  1233. }
  1234. }
  1235. /*
  1236. * Check for areas already mapped as present in the new aperture
  1237. * range and mark those pages as reserved in the allocator. Such
  1238. * mappings may already exist as a result of requested unity
  1239. * mappings for devices.
  1240. */
  1241. for (i = dma_dom->aperture[index]->offset;
  1242. i < dma_dom->aperture_size;
  1243. i += PAGE_SIZE) {
  1244. u64 *pte = fetch_pte(&dma_dom->domain, i);
  1245. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  1246. continue;
  1247. dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
  1248. }
  1249. update_domain(&dma_dom->domain);
  1250. return 0;
  1251. out_free:
  1252. update_domain(&dma_dom->domain);
  1253. free_page((unsigned long)dma_dom->aperture[index]->bitmap);
  1254. kfree(dma_dom->aperture[index]);
  1255. dma_dom->aperture[index] = NULL;
  1256. return -ENOMEM;
  1257. }
  1258. static unsigned long dma_ops_area_alloc(struct device *dev,
  1259. struct dma_ops_domain *dom,
  1260. unsigned int pages,
  1261. unsigned long align_mask,
  1262. u64 dma_mask,
  1263. unsigned long start)
  1264. {
  1265. unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
  1266. int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
  1267. int i = start >> APERTURE_RANGE_SHIFT;
  1268. unsigned long boundary_size;
  1269. unsigned long address = -1;
  1270. unsigned long limit;
  1271. next_bit >>= PAGE_SHIFT;
  1272. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  1273. PAGE_SIZE) >> PAGE_SHIFT;
  1274. for (;i < max_index; ++i) {
  1275. unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
  1276. if (dom->aperture[i]->offset >= dma_mask)
  1277. break;
  1278. limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
  1279. dma_mask >> PAGE_SHIFT);
  1280. address = iommu_area_alloc(dom->aperture[i]->bitmap,
  1281. limit, next_bit, pages, 0,
  1282. boundary_size, align_mask);
  1283. if (address != -1) {
  1284. address = dom->aperture[i]->offset +
  1285. (address << PAGE_SHIFT);
  1286. dom->next_address = address + (pages << PAGE_SHIFT);
  1287. break;
  1288. }
  1289. next_bit = 0;
  1290. }
  1291. return address;
  1292. }
  1293. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  1294. struct dma_ops_domain *dom,
  1295. unsigned int pages,
  1296. unsigned long align_mask,
  1297. u64 dma_mask)
  1298. {
  1299. unsigned long address;
  1300. #ifdef CONFIG_IOMMU_STRESS
  1301. dom->next_address = 0;
  1302. dom->need_flush = true;
  1303. #endif
  1304. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1305. dma_mask, dom->next_address);
  1306. if (address == -1) {
  1307. dom->next_address = 0;
  1308. address = dma_ops_area_alloc(dev, dom, pages, align_mask,
  1309. dma_mask, 0);
  1310. dom->need_flush = true;
  1311. }
  1312. if (unlikely(address == -1))
  1313. address = DMA_ERROR_CODE;
  1314. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  1315. return address;
  1316. }
  1317. /*
  1318. * The address free function.
  1319. *
  1320. * called with domain->lock held
  1321. */
  1322. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  1323. unsigned long address,
  1324. unsigned int pages)
  1325. {
  1326. unsigned i = address >> APERTURE_RANGE_SHIFT;
  1327. struct aperture_range *range = dom->aperture[i];
  1328. BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
  1329. #ifdef CONFIG_IOMMU_STRESS
  1330. if (i < 4)
  1331. return;
  1332. #endif
  1333. if (address >= dom->next_address)
  1334. dom->need_flush = true;
  1335. address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
  1336. bitmap_clear(range->bitmap, address, pages);
  1337. }
  1338. /****************************************************************************
  1339. *
  1340. * The next functions belong to the domain allocation. A domain is
  1341. * allocated for every IOMMU as the default domain. If device isolation
  1342. * is enabled, every device get its own domain. The most important thing
  1343. * about domains is the page table mapping the DMA address space they
  1344. * contain.
  1345. *
  1346. ****************************************************************************/
  1347. /*
  1348. * This function adds a protection domain to the global protection domain list
  1349. */
  1350. static void add_domain_to_list(struct protection_domain *domain)
  1351. {
  1352. unsigned long flags;
  1353. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1354. list_add(&domain->list, &amd_iommu_pd_list);
  1355. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1356. }
  1357. /*
  1358. * This function removes a protection domain to the global
  1359. * protection domain list
  1360. */
  1361. static void del_domain_from_list(struct protection_domain *domain)
  1362. {
  1363. unsigned long flags;
  1364. spin_lock_irqsave(&amd_iommu_pd_lock, flags);
  1365. list_del(&domain->list);
  1366. spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
  1367. }
  1368. static u16 domain_id_alloc(void)
  1369. {
  1370. unsigned long flags;
  1371. int id;
  1372. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1373. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  1374. BUG_ON(id == 0);
  1375. if (id > 0 && id < MAX_DOMAIN_ID)
  1376. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  1377. else
  1378. id = 0;
  1379. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1380. return id;
  1381. }
  1382. static void domain_id_free(int id)
  1383. {
  1384. unsigned long flags;
  1385. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1386. if (id > 0 && id < MAX_DOMAIN_ID)
  1387. __clear_bit(id, amd_iommu_pd_alloc_bitmap);
  1388. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1389. }
  1390. static void free_pagetable(struct protection_domain *domain)
  1391. {
  1392. int i, j;
  1393. u64 *p1, *p2, *p3;
  1394. p1 = domain->pt_root;
  1395. if (!p1)
  1396. return;
  1397. for (i = 0; i < 512; ++i) {
  1398. if (!IOMMU_PTE_PRESENT(p1[i]))
  1399. continue;
  1400. p2 = IOMMU_PTE_PAGE(p1[i]);
  1401. for (j = 0; j < 512; ++j) {
  1402. if (!IOMMU_PTE_PRESENT(p2[j]))
  1403. continue;
  1404. p3 = IOMMU_PTE_PAGE(p2[j]);
  1405. free_page((unsigned long)p3);
  1406. }
  1407. free_page((unsigned long)p2);
  1408. }
  1409. free_page((unsigned long)p1);
  1410. domain->pt_root = NULL;
  1411. }
  1412. static void free_gcr3_tbl_level1(u64 *tbl)
  1413. {
  1414. u64 *ptr;
  1415. int i;
  1416. for (i = 0; i < 512; ++i) {
  1417. if (!(tbl[i] & GCR3_VALID))
  1418. continue;
  1419. ptr = __va(tbl[i] & PAGE_MASK);
  1420. free_page((unsigned long)ptr);
  1421. }
  1422. }
  1423. static void free_gcr3_tbl_level2(u64 *tbl)
  1424. {
  1425. u64 *ptr;
  1426. int i;
  1427. for (i = 0; i < 512; ++i) {
  1428. if (!(tbl[i] & GCR3_VALID))
  1429. continue;
  1430. ptr = __va(tbl[i] & PAGE_MASK);
  1431. free_gcr3_tbl_level1(ptr);
  1432. }
  1433. }
  1434. static void free_gcr3_table(struct protection_domain *domain)
  1435. {
  1436. if (domain->glx == 2)
  1437. free_gcr3_tbl_level2(domain->gcr3_tbl);
  1438. else if (domain->glx == 1)
  1439. free_gcr3_tbl_level1(domain->gcr3_tbl);
  1440. else if (domain->glx != 0)
  1441. BUG();
  1442. free_page((unsigned long)domain->gcr3_tbl);
  1443. }
  1444. /*
  1445. * Free a domain, only used if something went wrong in the
  1446. * allocation path and we need to free an already allocated page table
  1447. */
  1448. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  1449. {
  1450. int i;
  1451. if (!dom)
  1452. return;
  1453. del_domain_from_list(&dom->domain);
  1454. free_pagetable(&dom->domain);
  1455. for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
  1456. if (!dom->aperture[i])
  1457. continue;
  1458. free_page((unsigned long)dom->aperture[i]->bitmap);
  1459. kfree(dom->aperture[i]);
  1460. }
  1461. kfree(dom);
  1462. }
  1463. /*
  1464. * Allocates a new protection domain usable for the dma_ops functions.
  1465. * It also initializes the page table and the address allocator data
  1466. * structures required for the dma_ops interface
  1467. */
  1468. static struct dma_ops_domain *dma_ops_domain_alloc(void)
  1469. {
  1470. struct dma_ops_domain *dma_dom;
  1471. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  1472. if (!dma_dom)
  1473. return NULL;
  1474. spin_lock_init(&dma_dom->domain.lock);
  1475. dma_dom->domain.id = domain_id_alloc();
  1476. if (dma_dom->domain.id == 0)
  1477. goto free_dma_dom;
  1478. INIT_LIST_HEAD(&dma_dom->domain.dev_list);
  1479. dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
  1480. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  1481. dma_dom->domain.flags = PD_DMA_OPS_MASK;
  1482. dma_dom->domain.priv = dma_dom;
  1483. if (!dma_dom->domain.pt_root)
  1484. goto free_dma_dom;
  1485. dma_dom->need_flush = false;
  1486. dma_dom->target_dev = 0xffff;
  1487. add_domain_to_list(&dma_dom->domain);
  1488. if (alloc_new_range(dma_dom, true, GFP_KERNEL))
  1489. goto free_dma_dom;
  1490. /*
  1491. * mark the first page as allocated so we never return 0 as
  1492. * a valid dma-address. So we can use 0 as error value
  1493. */
  1494. dma_dom->aperture[0]->bitmap[0] = 1;
  1495. dma_dom->next_address = 0;
  1496. return dma_dom;
  1497. free_dma_dom:
  1498. dma_ops_domain_free(dma_dom);
  1499. return NULL;
  1500. }
  1501. /*
  1502. * little helper function to check whether a given protection domain is a
  1503. * dma_ops domain
  1504. */
  1505. static bool dma_ops_domain(struct protection_domain *domain)
  1506. {
  1507. return domain->flags & PD_DMA_OPS_MASK;
  1508. }
  1509. static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
  1510. {
  1511. u64 pte_root = 0;
  1512. u64 flags = 0;
  1513. if (domain->mode != PAGE_MODE_NONE)
  1514. pte_root = virt_to_phys(domain->pt_root);
  1515. pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
  1516. << DEV_ENTRY_MODE_SHIFT;
  1517. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
  1518. flags = amd_iommu_dev_table[devid].data[1];
  1519. if (ats)
  1520. flags |= DTE_FLAG_IOTLB;
  1521. if (domain->flags & PD_IOMMUV2_MASK) {
  1522. u64 gcr3 = __pa(domain->gcr3_tbl);
  1523. u64 glx = domain->glx;
  1524. u64 tmp;
  1525. pte_root |= DTE_FLAG_GV;
  1526. pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
  1527. /* First mask out possible old values for GCR3 table */
  1528. tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
  1529. flags &= ~tmp;
  1530. tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
  1531. flags &= ~tmp;
  1532. /* Encode GCR3 table into DTE */
  1533. tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
  1534. pte_root |= tmp;
  1535. tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
  1536. flags |= tmp;
  1537. tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
  1538. flags |= tmp;
  1539. }
  1540. flags &= ~(0xffffUL);
  1541. flags |= domain->id;
  1542. amd_iommu_dev_table[devid].data[1] = flags;
  1543. amd_iommu_dev_table[devid].data[0] = pte_root;
  1544. }
  1545. static void clear_dte_entry(u16 devid)
  1546. {
  1547. /* remove entry from the device table seen by the hardware */
  1548. amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
  1549. amd_iommu_dev_table[devid].data[1] = 0;
  1550. amd_iommu_apply_erratum_63(devid);
  1551. }
  1552. static void do_attach(struct iommu_dev_data *dev_data,
  1553. struct protection_domain *domain)
  1554. {
  1555. struct amd_iommu *iommu;
  1556. bool ats;
  1557. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1558. ats = dev_data->ats.enabled;
  1559. /* Update data structures */
  1560. dev_data->domain = domain;
  1561. list_add(&dev_data->list, &domain->dev_list);
  1562. set_dte_entry(dev_data->devid, domain, ats);
  1563. /* Do reference counting */
  1564. domain->dev_iommu[iommu->index] += 1;
  1565. domain->dev_cnt += 1;
  1566. /* Flush the DTE entry */
  1567. device_flush_dte(dev_data);
  1568. }
  1569. static void do_detach(struct iommu_dev_data *dev_data)
  1570. {
  1571. struct amd_iommu *iommu;
  1572. iommu = amd_iommu_rlookup_table[dev_data->devid];
  1573. /* decrease reference counters */
  1574. dev_data->domain->dev_iommu[iommu->index] -= 1;
  1575. dev_data->domain->dev_cnt -= 1;
  1576. /* Update data structures */
  1577. dev_data->domain = NULL;
  1578. list_del(&dev_data->list);
  1579. clear_dte_entry(dev_data->devid);
  1580. /* Flush the DTE entry */
  1581. device_flush_dte(dev_data);
  1582. }
  1583. /*
  1584. * If a device is not yet associated with a domain, this function does
  1585. * assigns it visible for the hardware
  1586. */
  1587. static int __attach_device(struct iommu_dev_data *dev_data,
  1588. struct protection_domain *domain)
  1589. {
  1590. int ret;
  1591. /* lock domain */
  1592. spin_lock(&domain->lock);
  1593. if (dev_data->alias_data != NULL) {
  1594. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1595. /* Some sanity checks */
  1596. ret = -EBUSY;
  1597. if (alias_data->domain != NULL &&
  1598. alias_data->domain != domain)
  1599. goto out_unlock;
  1600. if (dev_data->domain != NULL &&
  1601. dev_data->domain != domain)
  1602. goto out_unlock;
  1603. /* Do real assignment */
  1604. if (alias_data->domain == NULL)
  1605. do_attach(alias_data, domain);
  1606. atomic_inc(&alias_data->bind);
  1607. }
  1608. if (dev_data->domain == NULL)
  1609. do_attach(dev_data, domain);
  1610. atomic_inc(&dev_data->bind);
  1611. ret = 0;
  1612. out_unlock:
  1613. /* ready */
  1614. spin_unlock(&domain->lock);
  1615. return ret;
  1616. }
  1617. static void pdev_iommuv2_disable(struct pci_dev *pdev)
  1618. {
  1619. pci_disable_ats(pdev);
  1620. pci_disable_pri(pdev);
  1621. pci_disable_pasid(pdev);
  1622. }
  1623. /* FIXME: Change generic reset-function to do the same */
  1624. static int pri_reset_while_enabled(struct pci_dev *pdev)
  1625. {
  1626. u16 control;
  1627. int pos;
  1628. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1629. if (!pos)
  1630. return -EINVAL;
  1631. pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
  1632. control |= PCI_PRI_CTRL_RESET;
  1633. pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
  1634. return 0;
  1635. }
  1636. static int pdev_iommuv2_enable(struct pci_dev *pdev)
  1637. {
  1638. bool reset_enable;
  1639. int reqs, ret;
  1640. /* FIXME: Hardcode number of outstanding requests for now */
  1641. reqs = 32;
  1642. if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
  1643. reqs = 1;
  1644. reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
  1645. /* Only allow access to user-accessible pages */
  1646. ret = pci_enable_pasid(pdev, 0);
  1647. if (ret)
  1648. goto out_err;
  1649. /* First reset the PRI state of the device */
  1650. ret = pci_reset_pri(pdev);
  1651. if (ret)
  1652. goto out_err;
  1653. /* Enable PRI */
  1654. ret = pci_enable_pri(pdev, reqs);
  1655. if (ret)
  1656. goto out_err;
  1657. if (reset_enable) {
  1658. ret = pri_reset_while_enabled(pdev);
  1659. if (ret)
  1660. goto out_err;
  1661. }
  1662. ret = pci_enable_ats(pdev, PAGE_SHIFT);
  1663. if (ret)
  1664. goto out_err;
  1665. return 0;
  1666. out_err:
  1667. pci_disable_pri(pdev);
  1668. pci_disable_pasid(pdev);
  1669. return ret;
  1670. }
  1671. /* FIXME: Move this to PCI code */
  1672. #define PCI_PRI_TLP_OFF (1 << 15)
  1673. static bool pci_pri_tlp_required(struct pci_dev *pdev)
  1674. {
  1675. u16 status;
  1676. int pos;
  1677. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  1678. if (!pos)
  1679. return false;
  1680. pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
  1681. return (status & PCI_PRI_TLP_OFF) ? true : false;
  1682. }
  1683. /*
  1684. * If a device is not yet associated with a domain, this function does
  1685. * assigns it visible for the hardware
  1686. */
  1687. static int attach_device(struct device *dev,
  1688. struct protection_domain *domain)
  1689. {
  1690. struct pci_dev *pdev = to_pci_dev(dev);
  1691. struct iommu_dev_data *dev_data;
  1692. unsigned long flags;
  1693. int ret;
  1694. dev_data = get_dev_data(dev);
  1695. if (domain->flags & PD_IOMMUV2_MASK) {
  1696. if (!dev_data->iommu_v2 || !dev_data->passthrough)
  1697. return -EINVAL;
  1698. if (pdev_iommuv2_enable(pdev) != 0)
  1699. return -EINVAL;
  1700. dev_data->ats.enabled = true;
  1701. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1702. dev_data->pri_tlp = pci_pri_tlp_required(pdev);
  1703. } else if (amd_iommu_iotlb_sup &&
  1704. pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
  1705. dev_data->ats.enabled = true;
  1706. dev_data->ats.qdep = pci_ats_queue_depth(pdev);
  1707. }
  1708. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1709. ret = __attach_device(dev_data, domain);
  1710. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1711. /*
  1712. * We might boot into a crash-kernel here. The crashed kernel
  1713. * left the caches in the IOMMU dirty. So we have to flush
  1714. * here to evict all dirty stuff.
  1715. */
  1716. domain_flush_tlb_pde(domain);
  1717. return ret;
  1718. }
  1719. /*
  1720. * Removes a device from a protection domain (unlocked)
  1721. */
  1722. static void __detach_device(struct iommu_dev_data *dev_data)
  1723. {
  1724. struct protection_domain *domain;
  1725. unsigned long flags;
  1726. BUG_ON(!dev_data->domain);
  1727. domain = dev_data->domain;
  1728. spin_lock_irqsave(&domain->lock, flags);
  1729. if (dev_data->alias_data != NULL) {
  1730. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1731. if (atomic_dec_and_test(&alias_data->bind))
  1732. do_detach(alias_data);
  1733. }
  1734. if (atomic_dec_and_test(&dev_data->bind))
  1735. do_detach(dev_data);
  1736. spin_unlock_irqrestore(&domain->lock, flags);
  1737. /*
  1738. * If we run in passthrough mode the device must be assigned to the
  1739. * passthrough domain if it is detached from any other domain.
  1740. * Make sure we can deassign from the pt_domain itself.
  1741. */
  1742. if (dev_data->passthrough &&
  1743. (dev_data->domain == NULL && domain != pt_domain))
  1744. __attach_device(dev_data, pt_domain);
  1745. }
  1746. /*
  1747. * Removes a device from a protection domain (with devtable_lock held)
  1748. */
  1749. static void detach_device(struct device *dev)
  1750. {
  1751. struct protection_domain *domain;
  1752. struct iommu_dev_data *dev_data;
  1753. unsigned long flags;
  1754. dev_data = get_dev_data(dev);
  1755. domain = dev_data->domain;
  1756. /* lock device table */
  1757. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1758. __detach_device(dev_data);
  1759. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1760. if (domain->flags & PD_IOMMUV2_MASK)
  1761. pdev_iommuv2_disable(to_pci_dev(dev));
  1762. else if (dev_data->ats.enabled)
  1763. pci_disable_ats(to_pci_dev(dev));
  1764. dev_data->ats.enabled = false;
  1765. }
  1766. /*
  1767. * Find out the protection domain structure for a given PCI device. This
  1768. * will give us the pointer to the page table root for example.
  1769. */
  1770. static struct protection_domain *domain_for_device(struct device *dev)
  1771. {
  1772. struct iommu_dev_data *dev_data;
  1773. struct protection_domain *dom = NULL;
  1774. unsigned long flags;
  1775. dev_data = get_dev_data(dev);
  1776. if (dev_data->domain)
  1777. return dev_data->domain;
  1778. if (dev_data->alias_data != NULL) {
  1779. struct iommu_dev_data *alias_data = dev_data->alias_data;
  1780. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  1781. if (alias_data->domain != NULL) {
  1782. __attach_device(dev_data, alias_data->domain);
  1783. dom = alias_data->domain;
  1784. }
  1785. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  1786. }
  1787. return dom;
  1788. }
  1789. static int device_change_notifier(struct notifier_block *nb,
  1790. unsigned long action, void *data)
  1791. {
  1792. struct dma_ops_domain *dma_domain;
  1793. struct protection_domain *domain;
  1794. struct iommu_dev_data *dev_data;
  1795. struct device *dev = data;
  1796. struct amd_iommu *iommu;
  1797. unsigned long flags;
  1798. u16 devid;
  1799. if (!check_device(dev))
  1800. return 0;
  1801. devid = get_device_id(dev);
  1802. iommu = amd_iommu_rlookup_table[devid];
  1803. dev_data = get_dev_data(dev);
  1804. switch (action) {
  1805. case BUS_NOTIFY_UNBOUND_DRIVER:
  1806. domain = domain_for_device(dev);
  1807. if (!domain)
  1808. goto out;
  1809. if (dev_data->passthrough)
  1810. break;
  1811. detach_device(dev);
  1812. break;
  1813. case BUS_NOTIFY_ADD_DEVICE:
  1814. iommu_init_device(dev);
  1815. /*
  1816. * dev_data is still NULL and
  1817. * got initialized in iommu_init_device
  1818. */
  1819. dev_data = get_dev_data(dev);
  1820. if (iommu_pass_through || dev_data->iommu_v2) {
  1821. dev_data->passthrough = true;
  1822. attach_device(dev, pt_domain);
  1823. break;
  1824. }
  1825. domain = domain_for_device(dev);
  1826. /* allocate a protection domain if a device is added */
  1827. dma_domain = find_protection_domain(devid);
  1828. if (dma_domain)
  1829. goto out;
  1830. dma_domain = dma_ops_domain_alloc();
  1831. if (!dma_domain)
  1832. goto out;
  1833. dma_domain->target_dev = devid;
  1834. spin_lock_irqsave(&iommu_pd_list_lock, flags);
  1835. list_add_tail(&dma_domain->list, &iommu_pd_list);
  1836. spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
  1837. dev_data = get_dev_data(dev);
  1838. dev->archdata.dma_ops = &amd_iommu_dma_ops;
  1839. break;
  1840. case BUS_NOTIFY_DEL_DEVICE:
  1841. iommu_uninit_device(dev);
  1842. default:
  1843. goto out;
  1844. }
  1845. iommu_completion_wait(iommu);
  1846. out:
  1847. return 0;
  1848. }
  1849. static struct notifier_block device_nb = {
  1850. .notifier_call = device_change_notifier,
  1851. };
  1852. void amd_iommu_init_notifier(void)
  1853. {
  1854. bus_register_notifier(&pci_bus_type, &device_nb);
  1855. }
  1856. /*****************************************************************************
  1857. *
  1858. * The next functions belong to the dma_ops mapping/unmapping code.
  1859. *
  1860. *****************************************************************************/
  1861. /*
  1862. * In the dma_ops path we only have the struct device. This function
  1863. * finds the corresponding IOMMU, the protection domain and the
  1864. * requestor id for a given device.
  1865. * If the device is not yet associated with a domain this is also done
  1866. * in this function.
  1867. */
  1868. static struct protection_domain *get_domain(struct device *dev)
  1869. {
  1870. struct protection_domain *domain;
  1871. struct dma_ops_domain *dma_dom;
  1872. u16 devid = get_device_id(dev);
  1873. if (!check_device(dev))
  1874. return ERR_PTR(-EINVAL);
  1875. domain = domain_for_device(dev);
  1876. if (domain != NULL && !dma_ops_domain(domain))
  1877. return ERR_PTR(-EBUSY);
  1878. if (domain != NULL)
  1879. return domain;
  1880. /* Device not bount yet - bind it */
  1881. dma_dom = find_protection_domain(devid);
  1882. if (!dma_dom)
  1883. dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
  1884. attach_device(dev, &dma_dom->domain);
  1885. DUMP_printk("Using protection domain %d for device %s\n",
  1886. dma_dom->domain.id, dev_name(dev));
  1887. return &dma_dom->domain;
  1888. }
  1889. static void update_device_table(struct protection_domain *domain)
  1890. {
  1891. struct iommu_dev_data *dev_data;
  1892. list_for_each_entry(dev_data, &domain->dev_list, list)
  1893. set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
  1894. }
  1895. static void update_domain(struct protection_domain *domain)
  1896. {
  1897. if (!domain->updated)
  1898. return;
  1899. update_device_table(domain);
  1900. domain_flush_devices(domain);
  1901. domain_flush_tlb_pde(domain);
  1902. domain->updated = false;
  1903. }
  1904. /*
  1905. * This function fetches the PTE for a given address in the aperture
  1906. */
  1907. static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
  1908. unsigned long address)
  1909. {
  1910. struct aperture_range *aperture;
  1911. u64 *pte, *pte_page;
  1912. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1913. if (!aperture)
  1914. return NULL;
  1915. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1916. if (!pte) {
  1917. pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
  1918. GFP_ATOMIC);
  1919. aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
  1920. } else
  1921. pte += PM_LEVEL_INDEX(0, address);
  1922. update_domain(&dom->domain);
  1923. return pte;
  1924. }
  1925. /*
  1926. * This is the generic map function. It maps one 4kb page at paddr to
  1927. * the given address in the DMA address space for the domain.
  1928. */
  1929. static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
  1930. unsigned long address,
  1931. phys_addr_t paddr,
  1932. int direction)
  1933. {
  1934. u64 *pte, __pte;
  1935. WARN_ON(address > dom->aperture_size);
  1936. paddr &= PAGE_MASK;
  1937. pte = dma_ops_get_pte(dom, address);
  1938. if (!pte)
  1939. return DMA_ERROR_CODE;
  1940. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  1941. if (direction == DMA_TO_DEVICE)
  1942. __pte |= IOMMU_PTE_IR;
  1943. else if (direction == DMA_FROM_DEVICE)
  1944. __pte |= IOMMU_PTE_IW;
  1945. else if (direction == DMA_BIDIRECTIONAL)
  1946. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  1947. WARN_ON(*pte);
  1948. *pte = __pte;
  1949. return (dma_addr_t)address;
  1950. }
  1951. /*
  1952. * The generic unmapping function for on page in the DMA address space.
  1953. */
  1954. static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
  1955. unsigned long address)
  1956. {
  1957. struct aperture_range *aperture;
  1958. u64 *pte;
  1959. if (address >= dom->aperture_size)
  1960. return;
  1961. aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
  1962. if (!aperture)
  1963. return;
  1964. pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
  1965. if (!pte)
  1966. return;
  1967. pte += PM_LEVEL_INDEX(0, address);
  1968. WARN_ON(!*pte);
  1969. *pte = 0ULL;
  1970. }
  1971. /*
  1972. * This function contains common code for mapping of a physically
  1973. * contiguous memory region into DMA address space. It is used by all
  1974. * mapping functions provided with this IOMMU driver.
  1975. * Must be called with the domain lock held.
  1976. */
  1977. static dma_addr_t __map_single(struct device *dev,
  1978. struct dma_ops_domain *dma_dom,
  1979. phys_addr_t paddr,
  1980. size_t size,
  1981. int dir,
  1982. bool align,
  1983. u64 dma_mask)
  1984. {
  1985. dma_addr_t offset = paddr & ~PAGE_MASK;
  1986. dma_addr_t address, start, ret;
  1987. unsigned int pages;
  1988. unsigned long align_mask = 0;
  1989. int i;
  1990. pages = iommu_num_pages(paddr, size, PAGE_SIZE);
  1991. paddr &= PAGE_MASK;
  1992. INC_STATS_COUNTER(total_map_requests);
  1993. if (pages > 1)
  1994. INC_STATS_COUNTER(cross_page);
  1995. if (align)
  1996. align_mask = (1UL << get_order(size)) - 1;
  1997. retry:
  1998. address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
  1999. dma_mask);
  2000. if (unlikely(address == DMA_ERROR_CODE)) {
  2001. /*
  2002. * setting next_address here will let the address
  2003. * allocator only scan the new allocated range in the
  2004. * first run. This is a small optimization.
  2005. */
  2006. dma_dom->next_address = dma_dom->aperture_size;
  2007. if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
  2008. goto out;
  2009. /*
  2010. * aperture was successfully enlarged by 128 MB, try
  2011. * allocation again
  2012. */
  2013. goto retry;
  2014. }
  2015. start = address;
  2016. for (i = 0; i < pages; ++i) {
  2017. ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
  2018. if (ret == DMA_ERROR_CODE)
  2019. goto out_unmap;
  2020. paddr += PAGE_SIZE;
  2021. start += PAGE_SIZE;
  2022. }
  2023. address += offset;
  2024. ADD_STATS_COUNTER(alloced_io_mem, size);
  2025. if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
  2026. domain_flush_tlb(&dma_dom->domain);
  2027. dma_dom->need_flush = false;
  2028. } else if (unlikely(amd_iommu_np_cache))
  2029. domain_flush_pages(&dma_dom->domain, address, size);
  2030. out:
  2031. return address;
  2032. out_unmap:
  2033. for (--i; i >= 0; --i) {
  2034. start -= PAGE_SIZE;
  2035. dma_ops_domain_unmap(dma_dom, start);
  2036. }
  2037. dma_ops_free_addresses(dma_dom, address, pages);
  2038. return DMA_ERROR_CODE;
  2039. }
  2040. /*
  2041. * Does the reverse of the __map_single function. Must be called with
  2042. * the domain lock held too
  2043. */
  2044. static void __unmap_single(struct dma_ops_domain *dma_dom,
  2045. dma_addr_t dma_addr,
  2046. size_t size,
  2047. int dir)
  2048. {
  2049. dma_addr_t flush_addr;
  2050. dma_addr_t i, start;
  2051. unsigned int pages;
  2052. if ((dma_addr == DMA_ERROR_CODE) ||
  2053. (dma_addr + size > dma_dom->aperture_size))
  2054. return;
  2055. flush_addr = dma_addr;
  2056. pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
  2057. dma_addr &= PAGE_MASK;
  2058. start = dma_addr;
  2059. for (i = 0; i < pages; ++i) {
  2060. dma_ops_domain_unmap(dma_dom, start);
  2061. start += PAGE_SIZE;
  2062. }
  2063. SUB_STATS_COUNTER(alloced_io_mem, size);
  2064. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  2065. if (amd_iommu_unmap_flush || dma_dom->need_flush) {
  2066. domain_flush_pages(&dma_dom->domain, flush_addr, size);
  2067. dma_dom->need_flush = false;
  2068. }
  2069. }
  2070. /*
  2071. * The exported map_single function for dma_ops.
  2072. */
  2073. static dma_addr_t map_page(struct device *dev, struct page *page,
  2074. unsigned long offset, size_t size,
  2075. enum dma_data_direction dir,
  2076. struct dma_attrs *attrs)
  2077. {
  2078. unsigned long flags;
  2079. struct protection_domain *domain;
  2080. dma_addr_t addr;
  2081. u64 dma_mask;
  2082. phys_addr_t paddr = page_to_phys(page) + offset;
  2083. INC_STATS_COUNTER(cnt_map_single);
  2084. domain = get_domain(dev);
  2085. if (PTR_ERR(domain) == -EINVAL)
  2086. return (dma_addr_t)paddr;
  2087. else if (IS_ERR(domain))
  2088. return DMA_ERROR_CODE;
  2089. dma_mask = *dev->dma_mask;
  2090. spin_lock_irqsave(&domain->lock, flags);
  2091. addr = __map_single(dev, domain->priv, paddr, size, dir, false,
  2092. dma_mask);
  2093. if (addr == DMA_ERROR_CODE)
  2094. goto out;
  2095. domain_flush_complete(domain);
  2096. out:
  2097. spin_unlock_irqrestore(&domain->lock, flags);
  2098. return addr;
  2099. }
  2100. /*
  2101. * The exported unmap_single function for dma_ops.
  2102. */
  2103. static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
  2104. enum dma_data_direction dir, struct dma_attrs *attrs)
  2105. {
  2106. unsigned long flags;
  2107. struct protection_domain *domain;
  2108. INC_STATS_COUNTER(cnt_unmap_single);
  2109. domain = get_domain(dev);
  2110. if (IS_ERR(domain))
  2111. return;
  2112. spin_lock_irqsave(&domain->lock, flags);
  2113. __unmap_single(domain->priv, dma_addr, size, dir);
  2114. domain_flush_complete(domain);
  2115. spin_unlock_irqrestore(&domain->lock, flags);
  2116. }
  2117. /*
  2118. * This is a special map_sg function which is used if we should map a
  2119. * device which is not handled by an AMD IOMMU in the system.
  2120. */
  2121. static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
  2122. int nelems, int dir)
  2123. {
  2124. struct scatterlist *s;
  2125. int i;
  2126. for_each_sg(sglist, s, nelems, i) {
  2127. s->dma_address = (dma_addr_t)sg_phys(s);
  2128. s->dma_length = s->length;
  2129. }
  2130. return nelems;
  2131. }
  2132. /*
  2133. * The exported map_sg function for dma_ops (handles scatter-gather
  2134. * lists).
  2135. */
  2136. static int map_sg(struct device *dev, struct scatterlist *sglist,
  2137. int nelems, enum dma_data_direction dir,
  2138. struct dma_attrs *attrs)
  2139. {
  2140. unsigned long flags;
  2141. struct protection_domain *domain;
  2142. int i;
  2143. struct scatterlist *s;
  2144. phys_addr_t paddr;
  2145. int mapped_elems = 0;
  2146. u64 dma_mask;
  2147. INC_STATS_COUNTER(cnt_map_sg);
  2148. domain = get_domain(dev);
  2149. if (PTR_ERR(domain) == -EINVAL)
  2150. return map_sg_no_iommu(dev, sglist, nelems, dir);
  2151. else if (IS_ERR(domain))
  2152. return 0;
  2153. dma_mask = *dev->dma_mask;
  2154. spin_lock_irqsave(&domain->lock, flags);
  2155. for_each_sg(sglist, s, nelems, i) {
  2156. paddr = sg_phys(s);
  2157. s->dma_address = __map_single(dev, domain->priv,
  2158. paddr, s->length, dir, false,
  2159. dma_mask);
  2160. if (s->dma_address) {
  2161. s->dma_length = s->length;
  2162. mapped_elems++;
  2163. } else
  2164. goto unmap;
  2165. }
  2166. domain_flush_complete(domain);
  2167. out:
  2168. spin_unlock_irqrestore(&domain->lock, flags);
  2169. return mapped_elems;
  2170. unmap:
  2171. for_each_sg(sglist, s, mapped_elems, i) {
  2172. if (s->dma_address)
  2173. __unmap_single(domain->priv, s->dma_address,
  2174. s->dma_length, dir);
  2175. s->dma_address = s->dma_length = 0;
  2176. }
  2177. mapped_elems = 0;
  2178. goto out;
  2179. }
  2180. /*
  2181. * The exported map_sg function for dma_ops (handles scatter-gather
  2182. * lists).
  2183. */
  2184. static void unmap_sg(struct device *dev, struct scatterlist *sglist,
  2185. int nelems, enum dma_data_direction dir,
  2186. struct dma_attrs *attrs)
  2187. {
  2188. unsigned long flags;
  2189. struct protection_domain *domain;
  2190. struct scatterlist *s;
  2191. int i;
  2192. INC_STATS_COUNTER(cnt_unmap_sg);
  2193. domain = get_domain(dev);
  2194. if (IS_ERR(domain))
  2195. return;
  2196. spin_lock_irqsave(&domain->lock, flags);
  2197. for_each_sg(sglist, s, nelems, i) {
  2198. __unmap_single(domain->priv, s->dma_address,
  2199. s->dma_length, dir);
  2200. s->dma_address = s->dma_length = 0;
  2201. }
  2202. domain_flush_complete(domain);
  2203. spin_unlock_irqrestore(&domain->lock, flags);
  2204. }
  2205. /*
  2206. * The exported alloc_coherent function for dma_ops.
  2207. */
  2208. static void *alloc_coherent(struct device *dev, size_t size,
  2209. dma_addr_t *dma_addr, gfp_t flag,
  2210. struct dma_attrs *attrs)
  2211. {
  2212. unsigned long flags;
  2213. void *virt_addr;
  2214. struct protection_domain *domain;
  2215. phys_addr_t paddr;
  2216. u64 dma_mask = dev->coherent_dma_mask;
  2217. INC_STATS_COUNTER(cnt_alloc_coherent);
  2218. domain = get_domain(dev);
  2219. if (PTR_ERR(domain) == -EINVAL) {
  2220. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2221. *dma_addr = __pa(virt_addr);
  2222. return virt_addr;
  2223. } else if (IS_ERR(domain))
  2224. return NULL;
  2225. dma_mask = dev->coherent_dma_mask;
  2226. flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
  2227. flag |= __GFP_ZERO;
  2228. virt_addr = (void *)__get_free_pages(flag, get_order(size));
  2229. if (!virt_addr)
  2230. return NULL;
  2231. paddr = virt_to_phys(virt_addr);
  2232. if (!dma_mask)
  2233. dma_mask = *dev->dma_mask;
  2234. spin_lock_irqsave(&domain->lock, flags);
  2235. *dma_addr = __map_single(dev, domain->priv, paddr,
  2236. size, DMA_BIDIRECTIONAL, true, dma_mask);
  2237. if (*dma_addr == DMA_ERROR_CODE) {
  2238. spin_unlock_irqrestore(&domain->lock, flags);
  2239. goto out_free;
  2240. }
  2241. domain_flush_complete(domain);
  2242. spin_unlock_irqrestore(&domain->lock, flags);
  2243. return virt_addr;
  2244. out_free:
  2245. free_pages((unsigned long)virt_addr, get_order(size));
  2246. return NULL;
  2247. }
  2248. /*
  2249. * The exported free_coherent function for dma_ops.
  2250. */
  2251. static void free_coherent(struct device *dev, size_t size,
  2252. void *virt_addr, dma_addr_t dma_addr,
  2253. struct dma_attrs *attrs)
  2254. {
  2255. unsigned long flags;
  2256. struct protection_domain *domain;
  2257. INC_STATS_COUNTER(cnt_free_coherent);
  2258. domain = get_domain(dev);
  2259. if (IS_ERR(domain))
  2260. goto free_mem;
  2261. spin_lock_irqsave(&domain->lock, flags);
  2262. __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
  2263. domain_flush_complete(domain);
  2264. spin_unlock_irqrestore(&domain->lock, flags);
  2265. free_mem:
  2266. free_pages((unsigned long)virt_addr, get_order(size));
  2267. }
  2268. /*
  2269. * This function is called by the DMA layer to find out if we can handle a
  2270. * particular device. It is part of the dma_ops.
  2271. */
  2272. static int amd_iommu_dma_supported(struct device *dev, u64 mask)
  2273. {
  2274. return check_device(dev);
  2275. }
  2276. /*
  2277. * The function for pre-allocating protection domains.
  2278. *
  2279. * If the driver core informs the DMA layer if a driver grabs a device
  2280. * we don't need to preallocate the protection domains anymore.
  2281. * For now we have to.
  2282. */
  2283. static void __init prealloc_protection_domains(void)
  2284. {
  2285. struct iommu_dev_data *dev_data;
  2286. struct dma_ops_domain *dma_dom;
  2287. struct pci_dev *dev = NULL;
  2288. u16 devid;
  2289. for_each_pci_dev(dev) {
  2290. /* Do we handle this device? */
  2291. if (!check_device(&dev->dev))
  2292. continue;
  2293. dev_data = get_dev_data(&dev->dev);
  2294. if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
  2295. /* Make sure passthrough domain is allocated */
  2296. alloc_passthrough_domain();
  2297. dev_data->passthrough = true;
  2298. attach_device(&dev->dev, pt_domain);
  2299. pr_info("AMD-Vi: Using passthough domain for device %s\n",
  2300. dev_name(&dev->dev));
  2301. }
  2302. /* Is there already any domain for it? */
  2303. if (domain_for_device(&dev->dev))
  2304. continue;
  2305. devid = get_device_id(&dev->dev);
  2306. dma_dom = dma_ops_domain_alloc();
  2307. if (!dma_dom)
  2308. continue;
  2309. init_unity_mappings_for_device(dma_dom, devid);
  2310. dma_dom->target_dev = devid;
  2311. attach_device(&dev->dev, &dma_dom->domain);
  2312. list_add_tail(&dma_dom->list, &iommu_pd_list);
  2313. }
  2314. }
  2315. static struct dma_map_ops amd_iommu_dma_ops = {
  2316. .alloc = alloc_coherent,
  2317. .free = free_coherent,
  2318. .map_page = map_page,
  2319. .unmap_page = unmap_page,
  2320. .map_sg = map_sg,
  2321. .unmap_sg = unmap_sg,
  2322. .dma_supported = amd_iommu_dma_supported,
  2323. };
  2324. static unsigned device_dma_ops_init(void)
  2325. {
  2326. struct iommu_dev_data *dev_data;
  2327. struct pci_dev *pdev = NULL;
  2328. unsigned unhandled = 0;
  2329. for_each_pci_dev(pdev) {
  2330. if (!check_device(&pdev->dev)) {
  2331. iommu_ignore_device(&pdev->dev);
  2332. unhandled += 1;
  2333. continue;
  2334. }
  2335. dev_data = get_dev_data(&pdev->dev);
  2336. if (!dev_data->passthrough)
  2337. pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
  2338. else
  2339. pdev->dev.archdata.dma_ops = &nommu_dma_ops;
  2340. }
  2341. return unhandled;
  2342. }
  2343. /*
  2344. * The function which clues the AMD IOMMU driver into dma_ops.
  2345. */
  2346. void __init amd_iommu_init_api(void)
  2347. {
  2348. bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
  2349. }
  2350. int __init amd_iommu_init_dma_ops(void)
  2351. {
  2352. struct amd_iommu *iommu;
  2353. int ret, unhandled;
  2354. /*
  2355. * first allocate a default protection domain for every IOMMU we
  2356. * found in the system. Devices not assigned to any other
  2357. * protection domain will be assigned to the default one.
  2358. */
  2359. for_each_iommu(iommu) {
  2360. iommu->default_dom = dma_ops_domain_alloc();
  2361. if (iommu->default_dom == NULL)
  2362. return -ENOMEM;
  2363. iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
  2364. ret = iommu_init_unity_mappings(iommu);
  2365. if (ret)
  2366. goto free_domains;
  2367. }
  2368. /*
  2369. * Pre-allocate the protection domains for each device.
  2370. */
  2371. prealloc_protection_domains();
  2372. iommu_detected = 1;
  2373. swiotlb = 0;
  2374. /* Make the driver finally visible to the drivers */
  2375. unhandled = device_dma_ops_init();
  2376. if (unhandled && max_pfn > MAX_DMA32_PFN) {
  2377. /* There are unhandled devices - initialize swiotlb for them */
  2378. swiotlb = 1;
  2379. }
  2380. amd_iommu_stats_init();
  2381. if (amd_iommu_unmap_flush)
  2382. pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
  2383. else
  2384. pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
  2385. return 0;
  2386. free_domains:
  2387. for_each_iommu(iommu) {
  2388. if (iommu->default_dom)
  2389. dma_ops_domain_free(iommu->default_dom);
  2390. }
  2391. return ret;
  2392. }
  2393. /*****************************************************************************
  2394. *
  2395. * The following functions belong to the exported interface of AMD IOMMU
  2396. *
  2397. * This interface allows access to lower level functions of the IOMMU
  2398. * like protection domain handling and assignement of devices to domains
  2399. * which is not possible with the dma_ops interface.
  2400. *
  2401. *****************************************************************************/
  2402. static void cleanup_domain(struct protection_domain *domain)
  2403. {
  2404. struct iommu_dev_data *dev_data, *next;
  2405. unsigned long flags;
  2406. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  2407. list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
  2408. __detach_device(dev_data);
  2409. atomic_set(&dev_data->bind, 0);
  2410. }
  2411. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  2412. }
  2413. static void protection_domain_free(struct protection_domain *domain)
  2414. {
  2415. if (!domain)
  2416. return;
  2417. del_domain_from_list(domain);
  2418. if (domain->id)
  2419. domain_id_free(domain->id);
  2420. kfree(domain);
  2421. }
  2422. static struct protection_domain *protection_domain_alloc(void)
  2423. {
  2424. struct protection_domain *domain;
  2425. domain = kzalloc(sizeof(*domain), GFP_KERNEL);
  2426. if (!domain)
  2427. return NULL;
  2428. spin_lock_init(&domain->lock);
  2429. mutex_init(&domain->api_lock);
  2430. domain->id = domain_id_alloc();
  2431. if (!domain->id)
  2432. goto out_err;
  2433. INIT_LIST_HEAD(&domain->dev_list);
  2434. add_domain_to_list(domain);
  2435. return domain;
  2436. out_err:
  2437. kfree(domain);
  2438. return NULL;
  2439. }
  2440. static int __init alloc_passthrough_domain(void)
  2441. {
  2442. if (pt_domain != NULL)
  2443. return 0;
  2444. /* allocate passthrough domain */
  2445. pt_domain = protection_domain_alloc();
  2446. if (!pt_domain)
  2447. return -ENOMEM;
  2448. pt_domain->mode = PAGE_MODE_NONE;
  2449. return 0;
  2450. }
  2451. static int amd_iommu_domain_init(struct iommu_domain *dom)
  2452. {
  2453. struct protection_domain *domain;
  2454. domain = protection_domain_alloc();
  2455. if (!domain)
  2456. goto out_free;
  2457. domain->mode = PAGE_MODE_3_LEVEL;
  2458. domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  2459. if (!domain->pt_root)
  2460. goto out_free;
  2461. domain->iommu_domain = dom;
  2462. dom->priv = domain;
  2463. dom->geometry.aperture_start = 0;
  2464. dom->geometry.aperture_end = ~0ULL;
  2465. dom->geometry.force_aperture = true;
  2466. return 0;
  2467. out_free:
  2468. protection_domain_free(domain);
  2469. return -ENOMEM;
  2470. }
  2471. static void amd_iommu_domain_destroy(struct iommu_domain *dom)
  2472. {
  2473. struct protection_domain *domain = dom->priv;
  2474. if (!domain)
  2475. return;
  2476. if (domain->dev_cnt > 0)
  2477. cleanup_domain(domain);
  2478. BUG_ON(domain->dev_cnt != 0);
  2479. if (domain->mode != PAGE_MODE_NONE)
  2480. free_pagetable(domain);
  2481. if (domain->flags & PD_IOMMUV2_MASK)
  2482. free_gcr3_table(domain);
  2483. protection_domain_free(domain);
  2484. dom->priv = NULL;
  2485. }
  2486. static void amd_iommu_detach_device(struct iommu_domain *dom,
  2487. struct device *dev)
  2488. {
  2489. struct iommu_dev_data *dev_data = dev->archdata.iommu;
  2490. struct amd_iommu *iommu;
  2491. u16 devid;
  2492. if (!check_device(dev))
  2493. return;
  2494. devid = get_device_id(dev);
  2495. if (dev_data->domain != NULL)
  2496. detach_device(dev);
  2497. iommu = amd_iommu_rlookup_table[devid];
  2498. if (!iommu)
  2499. return;
  2500. iommu_completion_wait(iommu);
  2501. }
  2502. static int amd_iommu_attach_device(struct iommu_domain *dom,
  2503. struct device *dev)
  2504. {
  2505. struct protection_domain *domain = dom->priv;
  2506. struct iommu_dev_data *dev_data;
  2507. struct amd_iommu *iommu;
  2508. int ret;
  2509. if (!check_device(dev))
  2510. return -EINVAL;
  2511. dev_data = dev->archdata.iommu;
  2512. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2513. if (!iommu)
  2514. return -EINVAL;
  2515. if (dev_data->domain)
  2516. detach_device(dev);
  2517. ret = attach_device(dev, domain);
  2518. iommu_completion_wait(iommu);
  2519. return ret;
  2520. }
  2521. static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
  2522. phys_addr_t paddr, size_t page_size, int iommu_prot)
  2523. {
  2524. struct protection_domain *domain = dom->priv;
  2525. int prot = 0;
  2526. int ret;
  2527. if (domain->mode == PAGE_MODE_NONE)
  2528. return -EINVAL;
  2529. if (iommu_prot & IOMMU_READ)
  2530. prot |= IOMMU_PROT_IR;
  2531. if (iommu_prot & IOMMU_WRITE)
  2532. prot |= IOMMU_PROT_IW;
  2533. mutex_lock(&domain->api_lock);
  2534. ret = iommu_map_page(domain, iova, paddr, prot, page_size);
  2535. mutex_unlock(&domain->api_lock);
  2536. return ret;
  2537. }
  2538. static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
  2539. size_t page_size)
  2540. {
  2541. struct protection_domain *domain = dom->priv;
  2542. size_t unmap_size;
  2543. if (domain->mode == PAGE_MODE_NONE)
  2544. return -EINVAL;
  2545. mutex_lock(&domain->api_lock);
  2546. unmap_size = iommu_unmap_page(domain, iova, page_size);
  2547. mutex_unlock(&domain->api_lock);
  2548. domain_flush_tlb_pde(domain);
  2549. return unmap_size;
  2550. }
  2551. static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
  2552. unsigned long iova)
  2553. {
  2554. struct protection_domain *domain = dom->priv;
  2555. unsigned long offset_mask;
  2556. phys_addr_t paddr;
  2557. u64 *pte, __pte;
  2558. if (domain->mode == PAGE_MODE_NONE)
  2559. return iova;
  2560. pte = fetch_pte(domain, iova);
  2561. if (!pte || !IOMMU_PTE_PRESENT(*pte))
  2562. return 0;
  2563. if (PM_PTE_LEVEL(*pte) == 0)
  2564. offset_mask = PAGE_SIZE - 1;
  2565. else
  2566. offset_mask = PTE_PAGE_SIZE(*pte) - 1;
  2567. __pte = *pte & PM_ADDR_MASK;
  2568. paddr = (__pte & ~offset_mask) | (iova & offset_mask);
  2569. return paddr;
  2570. }
  2571. static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
  2572. unsigned long cap)
  2573. {
  2574. switch (cap) {
  2575. case IOMMU_CAP_CACHE_COHERENCY:
  2576. return 1;
  2577. }
  2578. return 0;
  2579. }
  2580. static struct iommu_ops amd_iommu_ops = {
  2581. .domain_init = amd_iommu_domain_init,
  2582. .domain_destroy = amd_iommu_domain_destroy,
  2583. .attach_dev = amd_iommu_attach_device,
  2584. .detach_dev = amd_iommu_detach_device,
  2585. .map = amd_iommu_map,
  2586. .unmap = amd_iommu_unmap,
  2587. .iova_to_phys = amd_iommu_iova_to_phys,
  2588. .domain_has_cap = amd_iommu_domain_has_cap,
  2589. .pgsize_bitmap = AMD_IOMMU_PGSIZES,
  2590. };
  2591. /*****************************************************************************
  2592. *
  2593. * The next functions do a basic initialization of IOMMU for pass through
  2594. * mode
  2595. *
  2596. * In passthrough mode the IOMMU is initialized and enabled but not used for
  2597. * DMA-API translation.
  2598. *
  2599. *****************************************************************************/
  2600. int __init amd_iommu_init_passthrough(void)
  2601. {
  2602. struct iommu_dev_data *dev_data;
  2603. struct pci_dev *dev = NULL;
  2604. struct amd_iommu *iommu;
  2605. u16 devid;
  2606. int ret;
  2607. ret = alloc_passthrough_domain();
  2608. if (ret)
  2609. return ret;
  2610. for_each_pci_dev(dev) {
  2611. if (!check_device(&dev->dev))
  2612. continue;
  2613. dev_data = get_dev_data(&dev->dev);
  2614. dev_data->passthrough = true;
  2615. devid = get_device_id(&dev->dev);
  2616. iommu = amd_iommu_rlookup_table[devid];
  2617. if (!iommu)
  2618. continue;
  2619. attach_device(&dev->dev, pt_domain);
  2620. }
  2621. amd_iommu_stats_init();
  2622. pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
  2623. return 0;
  2624. }
  2625. /* IOMMUv2 specific functions */
  2626. int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
  2627. {
  2628. return atomic_notifier_chain_register(&ppr_notifier, nb);
  2629. }
  2630. EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
  2631. int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
  2632. {
  2633. return atomic_notifier_chain_unregister(&ppr_notifier, nb);
  2634. }
  2635. EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
  2636. void amd_iommu_domain_direct_map(struct iommu_domain *dom)
  2637. {
  2638. struct protection_domain *domain = dom->priv;
  2639. unsigned long flags;
  2640. spin_lock_irqsave(&domain->lock, flags);
  2641. /* Update data structure */
  2642. domain->mode = PAGE_MODE_NONE;
  2643. domain->updated = true;
  2644. /* Make changes visible to IOMMUs */
  2645. update_domain(domain);
  2646. /* Page-table is not visible to IOMMU anymore, so free it */
  2647. free_pagetable(domain);
  2648. spin_unlock_irqrestore(&domain->lock, flags);
  2649. }
  2650. EXPORT_SYMBOL(amd_iommu_domain_direct_map);
  2651. int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
  2652. {
  2653. struct protection_domain *domain = dom->priv;
  2654. unsigned long flags;
  2655. int levels, ret;
  2656. if (pasids <= 0 || pasids > (PASID_MASK + 1))
  2657. return -EINVAL;
  2658. /* Number of GCR3 table levels required */
  2659. for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
  2660. levels += 1;
  2661. if (levels > amd_iommu_max_glx_val)
  2662. return -EINVAL;
  2663. spin_lock_irqsave(&domain->lock, flags);
  2664. /*
  2665. * Save us all sanity checks whether devices already in the
  2666. * domain support IOMMUv2. Just force that the domain has no
  2667. * devices attached when it is switched into IOMMUv2 mode.
  2668. */
  2669. ret = -EBUSY;
  2670. if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
  2671. goto out;
  2672. ret = -ENOMEM;
  2673. domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
  2674. if (domain->gcr3_tbl == NULL)
  2675. goto out;
  2676. domain->glx = levels;
  2677. domain->flags |= PD_IOMMUV2_MASK;
  2678. domain->updated = true;
  2679. update_domain(domain);
  2680. ret = 0;
  2681. out:
  2682. spin_unlock_irqrestore(&domain->lock, flags);
  2683. return ret;
  2684. }
  2685. EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
  2686. static int __flush_pasid(struct protection_domain *domain, int pasid,
  2687. u64 address, bool size)
  2688. {
  2689. struct iommu_dev_data *dev_data;
  2690. struct iommu_cmd cmd;
  2691. int i, ret;
  2692. if (!(domain->flags & PD_IOMMUV2_MASK))
  2693. return -EINVAL;
  2694. build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
  2695. /*
  2696. * IOMMU TLB needs to be flushed before Device TLB to
  2697. * prevent device TLB refill from IOMMU TLB
  2698. */
  2699. for (i = 0; i < amd_iommus_present; ++i) {
  2700. if (domain->dev_iommu[i] == 0)
  2701. continue;
  2702. ret = iommu_queue_command(amd_iommus[i], &cmd);
  2703. if (ret != 0)
  2704. goto out;
  2705. }
  2706. /* Wait until IOMMU TLB flushes are complete */
  2707. domain_flush_complete(domain);
  2708. /* Now flush device TLBs */
  2709. list_for_each_entry(dev_data, &domain->dev_list, list) {
  2710. struct amd_iommu *iommu;
  2711. int qdep;
  2712. BUG_ON(!dev_data->ats.enabled);
  2713. qdep = dev_data->ats.qdep;
  2714. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2715. build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
  2716. qdep, address, size);
  2717. ret = iommu_queue_command(iommu, &cmd);
  2718. if (ret != 0)
  2719. goto out;
  2720. }
  2721. /* Wait until all device TLBs are flushed */
  2722. domain_flush_complete(domain);
  2723. ret = 0;
  2724. out:
  2725. return ret;
  2726. }
  2727. static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
  2728. u64 address)
  2729. {
  2730. INC_STATS_COUNTER(invalidate_iotlb);
  2731. return __flush_pasid(domain, pasid, address, false);
  2732. }
  2733. int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
  2734. u64 address)
  2735. {
  2736. struct protection_domain *domain = dom->priv;
  2737. unsigned long flags;
  2738. int ret;
  2739. spin_lock_irqsave(&domain->lock, flags);
  2740. ret = __amd_iommu_flush_page(domain, pasid, address);
  2741. spin_unlock_irqrestore(&domain->lock, flags);
  2742. return ret;
  2743. }
  2744. EXPORT_SYMBOL(amd_iommu_flush_page);
  2745. static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
  2746. {
  2747. INC_STATS_COUNTER(invalidate_iotlb_all);
  2748. return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
  2749. true);
  2750. }
  2751. int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
  2752. {
  2753. struct protection_domain *domain = dom->priv;
  2754. unsigned long flags;
  2755. int ret;
  2756. spin_lock_irqsave(&domain->lock, flags);
  2757. ret = __amd_iommu_flush_tlb(domain, pasid);
  2758. spin_unlock_irqrestore(&domain->lock, flags);
  2759. return ret;
  2760. }
  2761. EXPORT_SYMBOL(amd_iommu_flush_tlb);
  2762. static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
  2763. {
  2764. int index;
  2765. u64 *pte;
  2766. while (true) {
  2767. index = (pasid >> (9 * level)) & 0x1ff;
  2768. pte = &root[index];
  2769. if (level == 0)
  2770. break;
  2771. if (!(*pte & GCR3_VALID)) {
  2772. if (!alloc)
  2773. return NULL;
  2774. root = (void *)get_zeroed_page(GFP_ATOMIC);
  2775. if (root == NULL)
  2776. return NULL;
  2777. *pte = __pa(root) | GCR3_VALID;
  2778. }
  2779. root = __va(*pte & PAGE_MASK);
  2780. level -= 1;
  2781. }
  2782. return pte;
  2783. }
  2784. static int __set_gcr3(struct protection_domain *domain, int pasid,
  2785. unsigned long cr3)
  2786. {
  2787. u64 *pte;
  2788. if (domain->mode != PAGE_MODE_NONE)
  2789. return -EINVAL;
  2790. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
  2791. if (pte == NULL)
  2792. return -ENOMEM;
  2793. *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
  2794. return __amd_iommu_flush_tlb(domain, pasid);
  2795. }
  2796. static int __clear_gcr3(struct protection_domain *domain, int pasid)
  2797. {
  2798. u64 *pte;
  2799. if (domain->mode != PAGE_MODE_NONE)
  2800. return -EINVAL;
  2801. pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
  2802. if (pte == NULL)
  2803. return 0;
  2804. *pte = 0;
  2805. return __amd_iommu_flush_tlb(domain, pasid);
  2806. }
  2807. int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
  2808. unsigned long cr3)
  2809. {
  2810. struct protection_domain *domain = dom->priv;
  2811. unsigned long flags;
  2812. int ret;
  2813. spin_lock_irqsave(&domain->lock, flags);
  2814. ret = __set_gcr3(domain, pasid, cr3);
  2815. spin_unlock_irqrestore(&domain->lock, flags);
  2816. return ret;
  2817. }
  2818. EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
  2819. int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
  2820. {
  2821. struct protection_domain *domain = dom->priv;
  2822. unsigned long flags;
  2823. int ret;
  2824. spin_lock_irqsave(&domain->lock, flags);
  2825. ret = __clear_gcr3(domain, pasid);
  2826. spin_unlock_irqrestore(&domain->lock, flags);
  2827. return ret;
  2828. }
  2829. EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
  2830. int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
  2831. int status, int tag)
  2832. {
  2833. struct iommu_dev_data *dev_data;
  2834. struct amd_iommu *iommu;
  2835. struct iommu_cmd cmd;
  2836. INC_STATS_COUNTER(complete_ppr);
  2837. dev_data = get_dev_data(&pdev->dev);
  2838. iommu = amd_iommu_rlookup_table[dev_data->devid];
  2839. build_complete_ppr(&cmd, dev_data->devid, pasid, status,
  2840. tag, dev_data->pri_tlp);
  2841. return iommu_queue_command(iommu, &cmd);
  2842. }
  2843. EXPORT_SYMBOL(amd_iommu_complete_ppr);
  2844. struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
  2845. {
  2846. struct protection_domain *domain;
  2847. domain = get_domain(&pdev->dev);
  2848. if (IS_ERR(domain))
  2849. return NULL;
  2850. /* Only return IOMMUv2 domains */
  2851. if (!(domain->flags & PD_IOMMUV2_MASK))
  2852. return NULL;
  2853. return domain->iommu_domain;
  2854. }
  2855. EXPORT_SYMBOL(amd_iommu_get_v2_domain);
  2856. void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
  2857. {
  2858. struct iommu_dev_data *dev_data;
  2859. if (!amd_iommu_v2_supported())
  2860. return;
  2861. dev_data = get_dev_data(&pdev->dev);
  2862. dev_data->errata |= (1 << erratum);
  2863. }
  2864. EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
  2865. int amd_iommu_device_info(struct pci_dev *pdev,
  2866. struct amd_iommu_device_info *info)
  2867. {
  2868. int max_pasids;
  2869. int pos;
  2870. if (pdev == NULL || info == NULL)
  2871. return -EINVAL;
  2872. if (!amd_iommu_v2_supported())
  2873. return -EINVAL;
  2874. memset(info, 0, sizeof(*info));
  2875. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
  2876. if (pos)
  2877. info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
  2878. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
  2879. if (pos)
  2880. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
  2881. pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
  2882. if (pos) {
  2883. int features;
  2884. max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
  2885. max_pasids = min(max_pasids, (1 << 20));
  2886. info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
  2887. info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
  2888. features = pci_pasid_features(pdev);
  2889. if (features & PCI_PASID_CAP_EXEC)
  2890. info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
  2891. if (features & PCI_PASID_CAP_PRIV)
  2892. info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
  2893. }
  2894. return 0;
  2895. }
  2896. EXPORT_SYMBOL(amd_iommu_device_info);