smp.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683
  1. /*
  2. * Xen SMP support
  3. *
  4. * This file implements the Xen versions of smp_ops. SMP under Xen is
  5. * very straightforward. Bringing a CPU up is simply a matter of
  6. * loading its initial context and setting it running.
  7. *
  8. * IPIs are handled through the Xen event mechanism.
  9. *
  10. * Because virtual CPUs can be scheduled onto any real CPU, there's no
  11. * useful topology information for the kernel to make use of. As a
  12. * result, all CPUs are treated as if they're single-core and
  13. * single-threaded.
  14. */
  15. #include <linux/sched.h>
  16. #include <linux/err.h>
  17. #include <linux/slab.h>
  18. #include <linux/smp.h>
  19. #include <linux/irq_work.h>
  20. #include <asm/paravirt.h>
  21. #include <asm/desc.h>
  22. #include <asm/pgtable.h>
  23. #include <asm/cpu.h>
  24. #include <xen/interface/xen.h>
  25. #include <xen/interface/vcpu.h>
  26. #include <asm/xen/interface.h>
  27. #include <asm/xen/hypercall.h>
  28. #include <xen/xen.h>
  29. #include <xen/page.h>
  30. #include <xen/events.h>
  31. #include <xen/hvc-console.h>
  32. #include "xen-ops.h"
  33. #include "mmu.h"
  34. cpumask_var_t xen_cpu_initialized_map;
  35. static DEFINE_PER_CPU(int, xen_resched_irq);
  36. static DEFINE_PER_CPU(int, xen_callfunc_irq);
  37. static DEFINE_PER_CPU(int, xen_callfuncsingle_irq);
  38. static DEFINE_PER_CPU(int, xen_irq_work);
  39. static DEFINE_PER_CPU(int, xen_debug_irq) = -1;
  40. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id);
  41. static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id);
  42. static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id);
  43. /*
  44. * Reschedule call back.
  45. */
  46. static irqreturn_t xen_reschedule_interrupt(int irq, void *dev_id)
  47. {
  48. inc_irq_stat(irq_resched_count);
  49. scheduler_ipi();
  50. return IRQ_HANDLED;
  51. }
  52. static void __cpuinit cpu_bringup(void)
  53. {
  54. int cpu;
  55. cpu_init();
  56. touch_softlockup_watchdog();
  57. preempt_disable();
  58. xen_enable_sysenter();
  59. xen_enable_syscall();
  60. cpu = smp_processor_id();
  61. smp_store_cpu_info(cpu);
  62. cpu_data(cpu).x86_max_cores = 1;
  63. set_cpu_sibling_map(cpu);
  64. xen_setup_cpu_clockevents();
  65. notify_cpu_starting(cpu);
  66. set_cpu_online(cpu, true);
  67. this_cpu_write(cpu_state, CPU_ONLINE);
  68. wmb();
  69. /* We can take interrupts now: we're officially "up". */
  70. local_irq_enable();
  71. wmb(); /* make sure everything is out */
  72. }
  73. static void __cpuinit cpu_bringup_and_idle(void)
  74. {
  75. cpu_bringup();
  76. cpu_idle();
  77. }
  78. static int xen_smp_intr_init(unsigned int cpu)
  79. {
  80. int rc;
  81. const char *resched_name, *callfunc_name, *debug_name;
  82. resched_name = kasprintf(GFP_KERNEL, "resched%d", cpu);
  83. rc = bind_ipi_to_irqhandler(XEN_RESCHEDULE_VECTOR,
  84. cpu,
  85. xen_reschedule_interrupt,
  86. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  87. resched_name,
  88. NULL);
  89. if (rc < 0)
  90. goto fail;
  91. per_cpu(xen_resched_irq, cpu) = rc;
  92. callfunc_name = kasprintf(GFP_KERNEL, "callfunc%d", cpu);
  93. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_VECTOR,
  94. cpu,
  95. xen_call_function_interrupt,
  96. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  97. callfunc_name,
  98. NULL);
  99. if (rc < 0)
  100. goto fail;
  101. per_cpu(xen_callfunc_irq, cpu) = rc;
  102. debug_name = kasprintf(GFP_KERNEL, "debug%d", cpu);
  103. rc = bind_virq_to_irqhandler(VIRQ_DEBUG, cpu, xen_debug_interrupt,
  104. IRQF_DISABLED | IRQF_PERCPU | IRQF_NOBALANCING,
  105. debug_name, NULL);
  106. if (rc < 0)
  107. goto fail;
  108. per_cpu(xen_debug_irq, cpu) = rc;
  109. callfunc_name = kasprintf(GFP_KERNEL, "callfuncsingle%d", cpu);
  110. rc = bind_ipi_to_irqhandler(XEN_CALL_FUNCTION_SINGLE_VECTOR,
  111. cpu,
  112. xen_call_function_single_interrupt,
  113. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  114. callfunc_name,
  115. NULL);
  116. if (rc < 0)
  117. goto fail;
  118. per_cpu(xen_callfuncsingle_irq, cpu) = rc;
  119. callfunc_name = kasprintf(GFP_KERNEL, "irqwork%d", cpu);
  120. rc = bind_ipi_to_irqhandler(XEN_IRQ_WORK_VECTOR,
  121. cpu,
  122. xen_irq_work_interrupt,
  123. IRQF_DISABLED|IRQF_PERCPU|IRQF_NOBALANCING,
  124. callfunc_name,
  125. NULL);
  126. if (rc < 0)
  127. goto fail;
  128. per_cpu(xen_irq_work, cpu) = rc;
  129. return 0;
  130. fail:
  131. if (per_cpu(xen_resched_irq, cpu) >= 0)
  132. unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu), NULL);
  133. if (per_cpu(xen_callfunc_irq, cpu) >= 0)
  134. unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu), NULL);
  135. if (per_cpu(xen_debug_irq, cpu) >= 0)
  136. unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu), NULL);
  137. if (per_cpu(xen_callfuncsingle_irq, cpu) >= 0)
  138. unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu),
  139. NULL);
  140. if (per_cpu(xen_irq_work, cpu) >= 0)
  141. unbind_from_irqhandler(per_cpu(xen_irq_work, cpu), NULL);
  142. return rc;
  143. }
  144. static void __init xen_fill_possible_map(void)
  145. {
  146. int i, rc;
  147. if (xen_initial_domain())
  148. return;
  149. for (i = 0; i < nr_cpu_ids; i++) {
  150. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  151. if (rc >= 0) {
  152. num_processors++;
  153. set_cpu_possible(i, true);
  154. }
  155. }
  156. }
  157. static void __init xen_filter_cpu_maps(void)
  158. {
  159. int i, rc;
  160. unsigned int subtract = 0;
  161. if (!xen_initial_domain())
  162. return;
  163. num_processors = 0;
  164. disabled_cpus = 0;
  165. for (i = 0; i < nr_cpu_ids; i++) {
  166. rc = HYPERVISOR_vcpu_op(VCPUOP_is_up, i, NULL);
  167. if (rc >= 0) {
  168. num_processors++;
  169. set_cpu_possible(i, true);
  170. } else {
  171. set_cpu_possible(i, false);
  172. set_cpu_present(i, false);
  173. subtract++;
  174. }
  175. }
  176. #ifdef CONFIG_HOTPLUG_CPU
  177. /* This is akin to using 'nr_cpus' on the Linux command line.
  178. * Which is OK as when we use 'dom0_max_vcpus=X' we can only
  179. * have up to X, while nr_cpu_ids is greater than X. This
  180. * normally is not a problem, except when CPU hotplugging
  181. * is involved and then there might be more than X CPUs
  182. * in the guest - which will not work as there is no
  183. * hypercall to expand the max number of VCPUs an already
  184. * running guest has. So cap it up to X. */
  185. if (subtract)
  186. nr_cpu_ids = nr_cpu_ids - subtract;
  187. #endif
  188. }
  189. static void __init xen_smp_prepare_boot_cpu(void)
  190. {
  191. BUG_ON(smp_processor_id() != 0);
  192. native_smp_prepare_boot_cpu();
  193. /* We've switched to the "real" per-cpu gdt, so make sure the
  194. old memory can be recycled */
  195. make_lowmem_page_readwrite(xen_initial_gdt);
  196. xen_filter_cpu_maps();
  197. xen_setup_vcpu_info_placement();
  198. }
  199. static void __init xen_smp_prepare_cpus(unsigned int max_cpus)
  200. {
  201. unsigned cpu;
  202. unsigned int i;
  203. if (skip_ioapic_setup) {
  204. char *m = (max_cpus == 0) ?
  205. "The nosmp parameter is incompatible with Xen; " \
  206. "use Xen dom0_max_vcpus=1 parameter" :
  207. "The noapic parameter is incompatible with Xen";
  208. xen_raw_printk(m);
  209. panic(m);
  210. }
  211. xen_init_lock_cpu(0);
  212. smp_store_cpu_info(0);
  213. cpu_data(0).x86_max_cores = 1;
  214. for_each_possible_cpu(i) {
  215. zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
  216. zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
  217. zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
  218. }
  219. set_cpu_sibling_map(0);
  220. if (xen_smp_intr_init(0))
  221. BUG();
  222. if (!alloc_cpumask_var(&xen_cpu_initialized_map, GFP_KERNEL))
  223. panic("could not allocate xen_cpu_initialized_map\n");
  224. cpumask_copy(xen_cpu_initialized_map, cpumask_of(0));
  225. /* Restrict the possible_map according to max_cpus. */
  226. while ((num_possible_cpus() > 1) && (num_possible_cpus() > max_cpus)) {
  227. for (cpu = nr_cpu_ids - 1; !cpu_possible(cpu); cpu--)
  228. continue;
  229. set_cpu_possible(cpu, false);
  230. }
  231. for_each_possible_cpu(cpu)
  232. set_cpu_present(cpu, true);
  233. }
  234. static int __cpuinit
  235. cpu_initialize_context(unsigned int cpu, struct task_struct *idle)
  236. {
  237. struct vcpu_guest_context *ctxt;
  238. struct desc_struct *gdt;
  239. unsigned long gdt_mfn;
  240. if (cpumask_test_and_set_cpu(cpu, xen_cpu_initialized_map))
  241. return 0;
  242. ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
  243. if (ctxt == NULL)
  244. return -ENOMEM;
  245. gdt = get_cpu_gdt_table(cpu);
  246. ctxt->flags = VGCF_IN_KERNEL;
  247. ctxt->user_regs.ds = __USER_DS;
  248. ctxt->user_regs.es = __USER_DS;
  249. ctxt->user_regs.ss = __KERNEL_DS;
  250. #ifdef CONFIG_X86_32
  251. ctxt->user_regs.fs = __KERNEL_PERCPU;
  252. ctxt->user_regs.gs = __KERNEL_STACK_CANARY;
  253. #else
  254. ctxt->gs_base_kernel = per_cpu_offset(cpu);
  255. #endif
  256. ctxt->user_regs.eip = (unsigned long)cpu_bringup_and_idle;
  257. ctxt->user_regs.eflags = 0x1000; /* IOPL_RING1 */
  258. memset(&ctxt->fpu_ctxt, 0, sizeof(ctxt->fpu_ctxt));
  259. xen_copy_trap_info(ctxt->trap_ctxt);
  260. ctxt->ldt_ents = 0;
  261. BUG_ON((unsigned long)gdt & ~PAGE_MASK);
  262. gdt_mfn = arbitrary_virt_to_mfn(gdt);
  263. make_lowmem_page_readonly(gdt);
  264. make_lowmem_page_readonly(mfn_to_virt(gdt_mfn));
  265. ctxt->gdt_frames[0] = gdt_mfn;
  266. ctxt->gdt_ents = GDT_ENTRIES;
  267. ctxt->user_regs.cs = __KERNEL_CS;
  268. ctxt->user_regs.esp = idle->thread.sp0 - sizeof(struct pt_regs);
  269. ctxt->kernel_ss = __KERNEL_DS;
  270. ctxt->kernel_sp = idle->thread.sp0;
  271. #ifdef CONFIG_X86_32
  272. ctxt->event_callback_cs = __KERNEL_CS;
  273. ctxt->failsafe_callback_cs = __KERNEL_CS;
  274. #endif
  275. ctxt->event_callback_eip = (unsigned long)xen_hypervisor_callback;
  276. ctxt->failsafe_callback_eip = (unsigned long)xen_failsafe_callback;
  277. per_cpu(xen_cr3, cpu) = __pa(swapper_pg_dir);
  278. ctxt->ctrlreg[3] = xen_pfn_to_cr3(virt_to_mfn(swapper_pg_dir));
  279. if (HYPERVISOR_vcpu_op(VCPUOP_initialise, cpu, ctxt))
  280. BUG();
  281. kfree(ctxt);
  282. return 0;
  283. }
  284. static int __cpuinit xen_cpu_up(unsigned int cpu, struct task_struct *idle)
  285. {
  286. int rc;
  287. per_cpu(current_task, cpu) = idle;
  288. #ifdef CONFIG_X86_32
  289. irq_ctx_init(cpu);
  290. #else
  291. clear_tsk_thread_flag(idle, TIF_FORK);
  292. per_cpu(kernel_stack, cpu) =
  293. (unsigned long)task_stack_page(idle) -
  294. KERNEL_STACK_OFFSET + THREAD_SIZE;
  295. #endif
  296. xen_setup_runstate_info(cpu);
  297. xen_setup_timer(cpu);
  298. xen_init_lock_cpu(cpu);
  299. per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
  300. /* make sure interrupts start blocked */
  301. per_cpu(xen_vcpu, cpu)->evtchn_upcall_mask = 1;
  302. rc = cpu_initialize_context(cpu, idle);
  303. if (rc)
  304. return rc;
  305. if (num_online_cpus() == 1)
  306. alternatives_smp_switch(1);
  307. rc = xen_smp_intr_init(cpu);
  308. if (rc)
  309. return rc;
  310. rc = HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL);
  311. BUG_ON(rc);
  312. while(per_cpu(cpu_state, cpu) != CPU_ONLINE) {
  313. HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
  314. barrier();
  315. }
  316. return 0;
  317. }
  318. static void xen_smp_cpus_done(unsigned int max_cpus)
  319. {
  320. }
  321. #ifdef CONFIG_HOTPLUG_CPU
  322. static int xen_cpu_disable(void)
  323. {
  324. unsigned int cpu = smp_processor_id();
  325. if (cpu == 0)
  326. return -EBUSY;
  327. cpu_disable_common();
  328. load_cr3(swapper_pg_dir);
  329. return 0;
  330. }
  331. static void xen_cpu_die(unsigned int cpu)
  332. {
  333. while (HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL)) {
  334. current->state = TASK_UNINTERRUPTIBLE;
  335. schedule_timeout(HZ/10);
  336. }
  337. unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu), NULL);
  338. unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu), NULL);
  339. unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu), NULL);
  340. unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu), NULL);
  341. unbind_from_irqhandler(per_cpu(xen_irq_work, cpu), NULL);
  342. xen_uninit_lock_cpu(cpu);
  343. xen_teardown_timer(cpu);
  344. if (num_online_cpus() == 1)
  345. alternatives_smp_switch(0);
  346. }
  347. static void __cpuinit xen_play_dead(void) /* used only with HOTPLUG_CPU */
  348. {
  349. play_dead_common();
  350. HYPERVISOR_vcpu_op(VCPUOP_down, smp_processor_id(), NULL);
  351. cpu_bringup();
  352. /*
  353. * Balance out the preempt calls - as we are running in cpu_idle
  354. * loop which has been called at bootup from cpu_bringup_and_idle.
  355. * The cpucpu_bringup_and_idle called cpu_bringup which made a
  356. * preempt_disable() So this preempt_enable will balance it out.
  357. */
  358. preempt_enable();
  359. }
  360. #else /* !CONFIG_HOTPLUG_CPU */
  361. static int xen_cpu_disable(void)
  362. {
  363. return -ENOSYS;
  364. }
  365. static void xen_cpu_die(unsigned int cpu)
  366. {
  367. BUG();
  368. }
  369. static void xen_play_dead(void)
  370. {
  371. BUG();
  372. }
  373. #endif
  374. static void stop_self(void *v)
  375. {
  376. int cpu = smp_processor_id();
  377. /* make sure we're not pinning something down */
  378. load_cr3(swapper_pg_dir);
  379. /* should set up a minimal gdt */
  380. set_cpu_online(cpu, false);
  381. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL);
  382. BUG();
  383. }
  384. static void xen_stop_other_cpus(int wait)
  385. {
  386. smp_call_function(stop_self, NULL, wait);
  387. }
  388. static void xen_smp_send_reschedule(int cpu)
  389. {
  390. xen_send_IPI_one(cpu, XEN_RESCHEDULE_VECTOR);
  391. }
  392. static void __xen_send_IPI_mask(const struct cpumask *mask,
  393. int vector)
  394. {
  395. unsigned cpu;
  396. for_each_cpu_and(cpu, mask, cpu_online_mask)
  397. xen_send_IPI_one(cpu, vector);
  398. }
  399. static void xen_smp_send_call_function_ipi(const struct cpumask *mask)
  400. {
  401. int cpu;
  402. __xen_send_IPI_mask(mask, XEN_CALL_FUNCTION_VECTOR);
  403. /* Make sure other vcpus get a chance to run if they need to. */
  404. for_each_cpu(cpu, mask) {
  405. if (xen_vcpu_stolen(cpu)) {
  406. HYPERVISOR_sched_op(SCHEDOP_yield, NULL);
  407. break;
  408. }
  409. }
  410. }
  411. static void xen_smp_send_call_function_single_ipi(int cpu)
  412. {
  413. __xen_send_IPI_mask(cpumask_of(cpu),
  414. XEN_CALL_FUNCTION_SINGLE_VECTOR);
  415. }
  416. static inline int xen_map_vector(int vector)
  417. {
  418. int xen_vector;
  419. switch (vector) {
  420. case RESCHEDULE_VECTOR:
  421. xen_vector = XEN_RESCHEDULE_VECTOR;
  422. break;
  423. case CALL_FUNCTION_VECTOR:
  424. xen_vector = XEN_CALL_FUNCTION_VECTOR;
  425. break;
  426. case CALL_FUNCTION_SINGLE_VECTOR:
  427. xen_vector = XEN_CALL_FUNCTION_SINGLE_VECTOR;
  428. break;
  429. case IRQ_WORK_VECTOR:
  430. xen_vector = XEN_IRQ_WORK_VECTOR;
  431. break;
  432. default:
  433. xen_vector = -1;
  434. printk(KERN_ERR "xen: vector 0x%x is not implemented\n",
  435. vector);
  436. }
  437. return xen_vector;
  438. }
  439. void xen_send_IPI_mask(const struct cpumask *mask,
  440. int vector)
  441. {
  442. int xen_vector = xen_map_vector(vector);
  443. if (xen_vector >= 0)
  444. __xen_send_IPI_mask(mask, xen_vector);
  445. }
  446. void xen_send_IPI_all(int vector)
  447. {
  448. int xen_vector = xen_map_vector(vector);
  449. if (xen_vector >= 0)
  450. __xen_send_IPI_mask(cpu_online_mask, xen_vector);
  451. }
  452. void xen_send_IPI_self(int vector)
  453. {
  454. int xen_vector = xen_map_vector(vector);
  455. if (xen_vector >= 0)
  456. xen_send_IPI_one(smp_processor_id(), xen_vector);
  457. }
  458. void xen_send_IPI_mask_allbutself(const struct cpumask *mask,
  459. int vector)
  460. {
  461. unsigned cpu;
  462. unsigned int this_cpu = smp_processor_id();
  463. if (!(num_online_cpus() > 1))
  464. return;
  465. for_each_cpu_and(cpu, mask, cpu_online_mask) {
  466. if (this_cpu == cpu)
  467. continue;
  468. xen_smp_send_call_function_single_ipi(cpu);
  469. }
  470. }
  471. void xen_send_IPI_allbutself(int vector)
  472. {
  473. int xen_vector = xen_map_vector(vector);
  474. if (xen_vector >= 0)
  475. xen_send_IPI_mask_allbutself(cpu_online_mask, xen_vector);
  476. }
  477. static irqreturn_t xen_call_function_interrupt(int irq, void *dev_id)
  478. {
  479. irq_enter();
  480. generic_smp_call_function_interrupt();
  481. inc_irq_stat(irq_call_count);
  482. irq_exit();
  483. return IRQ_HANDLED;
  484. }
  485. static irqreturn_t xen_call_function_single_interrupt(int irq, void *dev_id)
  486. {
  487. irq_enter();
  488. generic_smp_call_function_single_interrupt();
  489. inc_irq_stat(irq_call_count);
  490. irq_exit();
  491. return IRQ_HANDLED;
  492. }
  493. static irqreturn_t xen_irq_work_interrupt(int irq, void *dev_id)
  494. {
  495. irq_enter();
  496. irq_work_run();
  497. inc_irq_stat(apic_irq_work_irqs);
  498. irq_exit();
  499. return IRQ_HANDLED;
  500. }
  501. static const struct smp_ops xen_smp_ops __initconst = {
  502. .smp_prepare_boot_cpu = xen_smp_prepare_boot_cpu,
  503. .smp_prepare_cpus = xen_smp_prepare_cpus,
  504. .smp_cpus_done = xen_smp_cpus_done,
  505. .cpu_up = xen_cpu_up,
  506. .cpu_die = xen_cpu_die,
  507. .cpu_disable = xen_cpu_disable,
  508. .play_dead = xen_play_dead,
  509. .stop_other_cpus = xen_stop_other_cpus,
  510. .smp_send_reschedule = xen_smp_send_reschedule,
  511. .send_call_func_ipi = xen_smp_send_call_function_ipi,
  512. .send_call_func_single_ipi = xen_smp_send_call_function_single_ipi,
  513. };
  514. void __init xen_smp_init(void)
  515. {
  516. smp_ops = xen_smp_ops;
  517. xen_fill_possible_map();
  518. xen_init_spinlocks();
  519. }
  520. static void __init xen_hvm_smp_prepare_cpus(unsigned int max_cpus)
  521. {
  522. native_smp_prepare_cpus(max_cpus);
  523. WARN_ON(xen_smp_intr_init(0));
  524. xen_init_lock_cpu(0);
  525. }
  526. static int __cpuinit xen_hvm_cpu_up(unsigned int cpu, struct task_struct *tidle)
  527. {
  528. int rc;
  529. rc = native_cpu_up(cpu, tidle);
  530. WARN_ON (xen_smp_intr_init(cpu));
  531. return rc;
  532. }
  533. static void xen_hvm_cpu_die(unsigned int cpu)
  534. {
  535. unbind_from_irqhandler(per_cpu(xen_resched_irq, cpu), NULL);
  536. unbind_from_irqhandler(per_cpu(xen_callfunc_irq, cpu), NULL);
  537. unbind_from_irqhandler(per_cpu(xen_debug_irq, cpu), NULL);
  538. unbind_from_irqhandler(per_cpu(xen_callfuncsingle_irq, cpu), NULL);
  539. unbind_from_irqhandler(per_cpu(xen_irq_work, cpu), NULL);
  540. native_cpu_die(cpu);
  541. }
  542. void __init xen_hvm_smp_init(void)
  543. {
  544. if (!xen_have_vector_callback)
  545. return;
  546. smp_ops.smp_prepare_cpus = xen_hvm_smp_prepare_cpus;
  547. smp_ops.smp_send_reschedule = xen_smp_send_reschedule;
  548. smp_ops.cpu_up = xen_hvm_cpu_up;
  549. smp_ops.cpu_die = xen_hvm_cpu_die;
  550. smp_ops.send_call_func_ipi = xen_smp_send_call_function_ipi;
  551. smp_ops.send_call_func_single_ipi = xen_smp_send_call_function_single_ipi;
  552. }