enlighten.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690
  1. /*
  2. * Core of Xen paravirt_ops implementation.
  3. *
  4. * This file contains the xen_paravirt_ops structure itself, and the
  5. * implementations for:
  6. * - privileged instructions
  7. * - interrupt flags
  8. * - segment operations
  9. * - booting and setup
  10. *
  11. * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12. */
  13. #include <linux/cpu.h>
  14. #include <linux/kernel.h>
  15. #include <linux/init.h>
  16. #include <linux/smp.h>
  17. #include <linux/preempt.h>
  18. #include <linux/hardirq.h>
  19. #include <linux/percpu.h>
  20. #include <linux/delay.h>
  21. #include <linux/start_kernel.h>
  22. #include <linux/sched.h>
  23. #include <linux/kprobes.h>
  24. #include <linux/bootmem.h>
  25. #include <linux/module.h>
  26. #include <linux/mm.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/highmem.h>
  29. #include <linux/console.h>
  30. #include <linux/pci.h>
  31. #include <linux/gfp.h>
  32. #include <linux/memblock.h>
  33. #include <linux/syscore_ops.h>
  34. #include <xen/xen.h>
  35. #include <xen/interface/xen.h>
  36. #include <xen/interface/version.h>
  37. #include <xen/interface/physdev.h>
  38. #include <xen/interface/vcpu.h>
  39. #include <xen/interface/memory.h>
  40. #include <xen/interface/xen-mca.h>
  41. #include <xen/features.h>
  42. #include <xen/page.h>
  43. #include <xen/hvm.h>
  44. #include <xen/hvc-console.h>
  45. #include <xen/acpi.h>
  46. #include <asm/paravirt.h>
  47. #include <asm/apic.h>
  48. #include <asm/page.h>
  49. #include <asm/xen/pci.h>
  50. #include <asm/xen/hypercall.h>
  51. #include <asm/xen/hypervisor.h>
  52. #include <asm/fixmap.h>
  53. #include <asm/processor.h>
  54. #include <asm/proto.h>
  55. #include <asm/msr-index.h>
  56. #include <asm/traps.h>
  57. #include <asm/setup.h>
  58. #include <asm/desc.h>
  59. #include <asm/pgalloc.h>
  60. #include <asm/pgtable.h>
  61. #include <asm/tlbflush.h>
  62. #include <asm/reboot.h>
  63. #include <asm/stackprotector.h>
  64. #include <asm/hypervisor.h>
  65. #include <asm/mwait.h>
  66. #include <asm/pci_x86.h>
  67. #ifdef CONFIG_ACPI
  68. #include <linux/acpi.h>
  69. #include <asm/acpi.h>
  70. #include <acpi/pdc_intel.h>
  71. #include <acpi/processor.h>
  72. #include <xen/interface/platform.h>
  73. #endif
  74. #include "xen-ops.h"
  75. #include "mmu.h"
  76. #include "smp.h"
  77. #include "multicalls.h"
  78. EXPORT_SYMBOL_GPL(hypercall_page);
  79. DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
  80. DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
  81. enum xen_domain_type xen_domain_type = XEN_NATIVE;
  82. EXPORT_SYMBOL_GPL(xen_domain_type);
  83. unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
  84. EXPORT_SYMBOL(machine_to_phys_mapping);
  85. unsigned long machine_to_phys_nr;
  86. EXPORT_SYMBOL(machine_to_phys_nr);
  87. struct start_info *xen_start_info;
  88. EXPORT_SYMBOL_GPL(xen_start_info);
  89. struct shared_info xen_dummy_shared_info;
  90. void *xen_initial_gdt;
  91. RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
  92. __read_mostly int xen_have_vector_callback;
  93. EXPORT_SYMBOL_GPL(xen_have_vector_callback);
  94. /*
  95. * Point at some empty memory to start with. We map the real shared_info
  96. * page as soon as fixmap is up and running.
  97. */
  98. struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
  99. /*
  100. * Flag to determine whether vcpu info placement is available on all
  101. * VCPUs. We assume it is to start with, and then set it to zero on
  102. * the first failure. This is because it can succeed on some VCPUs
  103. * and not others, since it can involve hypervisor memory allocation,
  104. * or because the guest failed to guarantee all the appropriate
  105. * constraints on all VCPUs (ie buffer can't cross a page boundary).
  106. *
  107. * Note that any particular CPU may be using a placed vcpu structure,
  108. * but we can only optimise if the all are.
  109. *
  110. * 0: not available, 1: available
  111. */
  112. static int have_vcpu_info_placement = 1;
  113. struct tls_descs {
  114. struct desc_struct desc[3];
  115. };
  116. /*
  117. * Updating the 3 TLS descriptors in the GDT on every task switch is
  118. * surprisingly expensive so we avoid updating them if they haven't
  119. * changed. Since Xen writes different descriptors than the one
  120. * passed in the update_descriptor hypercall we keep shadow copies to
  121. * compare against.
  122. */
  123. static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
  124. static void clamp_max_cpus(void)
  125. {
  126. #ifdef CONFIG_SMP
  127. if (setup_max_cpus > MAX_VIRT_CPUS)
  128. setup_max_cpus = MAX_VIRT_CPUS;
  129. #endif
  130. }
  131. static void xen_vcpu_setup(int cpu)
  132. {
  133. struct vcpu_register_vcpu_info info;
  134. int err;
  135. struct vcpu_info *vcpup;
  136. BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
  137. if (cpu < MAX_VIRT_CPUS)
  138. per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  139. if (!have_vcpu_info_placement) {
  140. if (cpu >= MAX_VIRT_CPUS)
  141. clamp_max_cpus();
  142. return;
  143. }
  144. vcpup = &per_cpu(xen_vcpu_info, cpu);
  145. info.mfn = arbitrary_virt_to_mfn(vcpup);
  146. info.offset = offset_in_page(vcpup);
  147. /* Check to see if the hypervisor will put the vcpu_info
  148. structure where we want it, which allows direct access via
  149. a percpu-variable. */
  150. err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
  151. if (err) {
  152. printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
  153. have_vcpu_info_placement = 0;
  154. clamp_max_cpus();
  155. } else {
  156. /* This cpu is using the registered vcpu info, even if
  157. later ones fail to. */
  158. per_cpu(xen_vcpu, cpu) = vcpup;
  159. }
  160. }
  161. /*
  162. * On restore, set the vcpu placement up again.
  163. * If it fails, then we're in a bad state, since
  164. * we can't back out from using it...
  165. */
  166. void xen_vcpu_restore(void)
  167. {
  168. int cpu;
  169. for_each_online_cpu(cpu) {
  170. bool other_cpu = (cpu != smp_processor_id());
  171. if (other_cpu &&
  172. HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
  173. BUG();
  174. xen_setup_runstate_info(cpu);
  175. if (have_vcpu_info_placement)
  176. xen_vcpu_setup(cpu);
  177. if (other_cpu &&
  178. HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
  179. BUG();
  180. }
  181. }
  182. static void __init xen_banner(void)
  183. {
  184. unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
  185. struct xen_extraversion extra;
  186. HYPERVISOR_xen_version(XENVER_extraversion, &extra);
  187. printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
  188. pv_info.name);
  189. printk(KERN_INFO "Xen version: %d.%d%s%s\n",
  190. version >> 16, version & 0xffff, extra.extraversion,
  191. xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
  192. }
  193. #define CPUID_THERM_POWER_LEAF 6
  194. #define APERFMPERF_PRESENT 0
  195. static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
  196. static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
  197. static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
  198. static __read_mostly unsigned int cpuid_leaf5_ecx_val;
  199. static __read_mostly unsigned int cpuid_leaf5_edx_val;
  200. static void xen_cpuid(unsigned int *ax, unsigned int *bx,
  201. unsigned int *cx, unsigned int *dx)
  202. {
  203. unsigned maskebx = ~0;
  204. unsigned maskecx = ~0;
  205. unsigned maskedx = ~0;
  206. unsigned setecx = 0;
  207. /*
  208. * Mask out inconvenient features, to try and disable as many
  209. * unsupported kernel subsystems as possible.
  210. */
  211. switch (*ax) {
  212. case 1:
  213. maskecx = cpuid_leaf1_ecx_mask;
  214. setecx = cpuid_leaf1_ecx_set_mask;
  215. maskedx = cpuid_leaf1_edx_mask;
  216. break;
  217. case CPUID_MWAIT_LEAF:
  218. /* Synthesize the values.. */
  219. *ax = 0;
  220. *bx = 0;
  221. *cx = cpuid_leaf5_ecx_val;
  222. *dx = cpuid_leaf5_edx_val;
  223. return;
  224. case CPUID_THERM_POWER_LEAF:
  225. /* Disabling APERFMPERF for kernel usage */
  226. maskecx = ~(1 << APERFMPERF_PRESENT);
  227. break;
  228. case 0xb:
  229. /* Suppress extended topology stuff */
  230. maskebx = 0;
  231. break;
  232. }
  233. asm(XEN_EMULATE_PREFIX "cpuid"
  234. : "=a" (*ax),
  235. "=b" (*bx),
  236. "=c" (*cx),
  237. "=d" (*dx)
  238. : "0" (*ax), "2" (*cx));
  239. *bx &= maskebx;
  240. *cx &= maskecx;
  241. *cx |= setecx;
  242. *dx &= maskedx;
  243. }
  244. static bool __init xen_check_mwait(void)
  245. {
  246. #if defined(CONFIG_ACPI) && !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR) && \
  247. !defined(CONFIG_ACPI_PROCESSOR_AGGREGATOR_MODULE)
  248. struct xen_platform_op op = {
  249. .cmd = XENPF_set_processor_pminfo,
  250. .u.set_pminfo.id = -1,
  251. .u.set_pminfo.type = XEN_PM_PDC,
  252. };
  253. uint32_t buf[3];
  254. unsigned int ax, bx, cx, dx;
  255. unsigned int mwait_mask;
  256. /* We need to determine whether it is OK to expose the MWAIT
  257. * capability to the kernel to harvest deeper than C3 states from ACPI
  258. * _CST using the processor_harvest_xen.c module. For this to work, we
  259. * need to gather the MWAIT_LEAF values (which the cstate.c code
  260. * checks against). The hypervisor won't expose the MWAIT flag because
  261. * it would break backwards compatibility; so we will find out directly
  262. * from the hardware and hypercall.
  263. */
  264. if (!xen_initial_domain())
  265. return false;
  266. ax = 1;
  267. cx = 0;
  268. native_cpuid(&ax, &bx, &cx, &dx);
  269. mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
  270. (1 << (X86_FEATURE_MWAIT % 32));
  271. if ((cx & mwait_mask) != mwait_mask)
  272. return false;
  273. /* We need to emulate the MWAIT_LEAF and for that we need both
  274. * ecx and edx. The hypercall provides only partial information.
  275. */
  276. ax = CPUID_MWAIT_LEAF;
  277. bx = 0;
  278. cx = 0;
  279. dx = 0;
  280. native_cpuid(&ax, &bx, &cx, &dx);
  281. /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
  282. * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
  283. */
  284. buf[0] = ACPI_PDC_REVISION_ID;
  285. buf[1] = 1;
  286. buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
  287. set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
  288. if ((HYPERVISOR_dom0_op(&op) == 0) &&
  289. (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
  290. cpuid_leaf5_ecx_val = cx;
  291. cpuid_leaf5_edx_val = dx;
  292. }
  293. return true;
  294. #else
  295. return false;
  296. #endif
  297. }
  298. static void __init xen_init_cpuid_mask(void)
  299. {
  300. unsigned int ax, bx, cx, dx;
  301. unsigned int xsave_mask;
  302. cpuid_leaf1_edx_mask =
  303. ~((1 << X86_FEATURE_MTRR) | /* disable MTRR */
  304. (1 << X86_FEATURE_ACC)); /* thermal monitoring */
  305. if (!xen_initial_domain())
  306. cpuid_leaf1_edx_mask &=
  307. ~((1 << X86_FEATURE_APIC) | /* disable local APIC */
  308. (1 << X86_FEATURE_ACPI)); /* disable ACPI */
  309. ax = 1;
  310. cx = 0;
  311. xen_cpuid(&ax, &bx, &cx, &dx);
  312. xsave_mask =
  313. (1 << (X86_FEATURE_XSAVE % 32)) |
  314. (1 << (X86_FEATURE_OSXSAVE % 32));
  315. /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
  316. if ((cx & xsave_mask) != xsave_mask)
  317. cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
  318. if (xen_check_mwait())
  319. cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
  320. }
  321. static void xen_set_debugreg(int reg, unsigned long val)
  322. {
  323. HYPERVISOR_set_debugreg(reg, val);
  324. }
  325. static unsigned long xen_get_debugreg(int reg)
  326. {
  327. return HYPERVISOR_get_debugreg(reg);
  328. }
  329. static void xen_end_context_switch(struct task_struct *next)
  330. {
  331. xen_mc_flush();
  332. paravirt_end_context_switch(next);
  333. }
  334. static unsigned long xen_store_tr(void)
  335. {
  336. return 0;
  337. }
  338. /*
  339. * Set the page permissions for a particular virtual address. If the
  340. * address is a vmalloc mapping (or other non-linear mapping), then
  341. * find the linear mapping of the page and also set its protections to
  342. * match.
  343. */
  344. static void set_aliased_prot(void *v, pgprot_t prot)
  345. {
  346. int level;
  347. pte_t *ptep;
  348. pte_t pte;
  349. unsigned long pfn;
  350. struct page *page;
  351. ptep = lookup_address((unsigned long)v, &level);
  352. BUG_ON(ptep == NULL);
  353. pfn = pte_pfn(*ptep);
  354. page = pfn_to_page(pfn);
  355. pte = pfn_pte(pfn, prot);
  356. if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
  357. BUG();
  358. if (!PageHighMem(page)) {
  359. void *av = __va(PFN_PHYS(pfn));
  360. if (av != v)
  361. if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
  362. BUG();
  363. } else
  364. kmap_flush_unused();
  365. }
  366. static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
  367. {
  368. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  369. int i;
  370. for(i = 0; i < entries; i += entries_per_page)
  371. set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
  372. }
  373. static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
  374. {
  375. const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
  376. int i;
  377. for(i = 0; i < entries; i += entries_per_page)
  378. set_aliased_prot(ldt + i, PAGE_KERNEL);
  379. }
  380. static void xen_set_ldt(const void *addr, unsigned entries)
  381. {
  382. struct mmuext_op *op;
  383. struct multicall_space mcs = xen_mc_entry(sizeof(*op));
  384. trace_xen_cpu_set_ldt(addr, entries);
  385. op = mcs.args;
  386. op->cmd = MMUEXT_SET_LDT;
  387. op->arg1.linear_addr = (unsigned long)addr;
  388. op->arg2.nr_ents = entries;
  389. MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
  390. xen_mc_issue(PARAVIRT_LAZY_CPU);
  391. }
  392. static void xen_load_gdt(const struct desc_ptr *dtr)
  393. {
  394. unsigned long va = dtr->address;
  395. unsigned int size = dtr->size + 1;
  396. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  397. unsigned long frames[pages];
  398. int f;
  399. /*
  400. * A GDT can be up to 64k in size, which corresponds to 8192
  401. * 8-byte entries, or 16 4k pages..
  402. */
  403. BUG_ON(size > 65536);
  404. BUG_ON(va & ~PAGE_MASK);
  405. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  406. int level;
  407. pte_t *ptep;
  408. unsigned long pfn, mfn;
  409. void *virt;
  410. /*
  411. * The GDT is per-cpu and is in the percpu data area.
  412. * That can be virtually mapped, so we need to do a
  413. * page-walk to get the underlying MFN for the
  414. * hypercall. The page can also be in the kernel's
  415. * linear range, so we need to RO that mapping too.
  416. */
  417. ptep = lookup_address(va, &level);
  418. BUG_ON(ptep == NULL);
  419. pfn = pte_pfn(*ptep);
  420. mfn = pfn_to_mfn(pfn);
  421. virt = __va(PFN_PHYS(pfn));
  422. frames[f] = mfn;
  423. make_lowmem_page_readonly((void *)va);
  424. make_lowmem_page_readonly(virt);
  425. }
  426. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  427. BUG();
  428. }
  429. /*
  430. * load_gdt for early boot, when the gdt is only mapped once
  431. */
  432. static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
  433. {
  434. unsigned long va = dtr->address;
  435. unsigned int size = dtr->size + 1;
  436. unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
  437. unsigned long frames[pages];
  438. int f;
  439. /*
  440. * A GDT can be up to 64k in size, which corresponds to 8192
  441. * 8-byte entries, or 16 4k pages..
  442. */
  443. BUG_ON(size > 65536);
  444. BUG_ON(va & ~PAGE_MASK);
  445. for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
  446. pte_t pte;
  447. unsigned long pfn, mfn;
  448. pfn = virt_to_pfn(va);
  449. mfn = pfn_to_mfn(pfn);
  450. pte = pfn_pte(pfn, PAGE_KERNEL_RO);
  451. if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
  452. BUG();
  453. frames[f] = mfn;
  454. }
  455. if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
  456. BUG();
  457. }
  458. static inline bool desc_equal(const struct desc_struct *d1,
  459. const struct desc_struct *d2)
  460. {
  461. return d1->a == d2->a && d1->b == d2->b;
  462. }
  463. static void load_TLS_descriptor(struct thread_struct *t,
  464. unsigned int cpu, unsigned int i)
  465. {
  466. struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
  467. struct desc_struct *gdt;
  468. xmaddr_t maddr;
  469. struct multicall_space mc;
  470. if (desc_equal(shadow, &t->tls_array[i]))
  471. return;
  472. *shadow = t->tls_array[i];
  473. gdt = get_cpu_gdt_table(cpu);
  474. maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
  475. mc = __xen_mc_entry(0);
  476. MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
  477. }
  478. static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
  479. {
  480. /*
  481. * XXX sleazy hack: If we're being called in a lazy-cpu zone
  482. * and lazy gs handling is enabled, it means we're in a
  483. * context switch, and %gs has just been saved. This means we
  484. * can zero it out to prevent faults on exit from the
  485. * hypervisor if the next process has no %gs. Either way, it
  486. * has been saved, and the new value will get loaded properly.
  487. * This will go away as soon as Xen has been modified to not
  488. * save/restore %gs for normal hypercalls.
  489. *
  490. * On x86_64, this hack is not used for %gs, because gs points
  491. * to KERNEL_GS_BASE (and uses it for PDA references), so we
  492. * must not zero %gs on x86_64
  493. *
  494. * For x86_64, we need to zero %fs, otherwise we may get an
  495. * exception between the new %fs descriptor being loaded and
  496. * %fs being effectively cleared at __switch_to().
  497. */
  498. if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
  499. #ifdef CONFIG_X86_32
  500. lazy_load_gs(0);
  501. #else
  502. loadsegment(fs, 0);
  503. #endif
  504. }
  505. xen_mc_batch();
  506. load_TLS_descriptor(t, cpu, 0);
  507. load_TLS_descriptor(t, cpu, 1);
  508. load_TLS_descriptor(t, cpu, 2);
  509. xen_mc_issue(PARAVIRT_LAZY_CPU);
  510. }
  511. #ifdef CONFIG_X86_64
  512. static void xen_load_gs_index(unsigned int idx)
  513. {
  514. if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
  515. BUG();
  516. }
  517. #endif
  518. static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
  519. const void *ptr)
  520. {
  521. xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
  522. u64 entry = *(u64 *)ptr;
  523. trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
  524. preempt_disable();
  525. xen_mc_flush();
  526. if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
  527. BUG();
  528. preempt_enable();
  529. }
  530. static int cvt_gate_to_trap(int vector, const gate_desc *val,
  531. struct trap_info *info)
  532. {
  533. unsigned long addr;
  534. if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
  535. return 0;
  536. info->vector = vector;
  537. addr = gate_offset(*val);
  538. #ifdef CONFIG_X86_64
  539. /*
  540. * Look for known traps using IST, and substitute them
  541. * appropriately. The debugger ones are the only ones we care
  542. * about. Xen will handle faults like double_fault,
  543. * so we should never see them. Warn if
  544. * there's an unexpected IST-using fault handler.
  545. */
  546. if (addr == (unsigned long)debug)
  547. addr = (unsigned long)xen_debug;
  548. else if (addr == (unsigned long)int3)
  549. addr = (unsigned long)xen_int3;
  550. else if (addr == (unsigned long)stack_segment)
  551. addr = (unsigned long)xen_stack_segment;
  552. else if (addr == (unsigned long)double_fault ||
  553. addr == (unsigned long)nmi) {
  554. /* Don't need to handle these */
  555. return 0;
  556. #ifdef CONFIG_X86_MCE
  557. } else if (addr == (unsigned long)machine_check) {
  558. /*
  559. * when xen hypervisor inject vMCE to guest,
  560. * use native mce handler to handle it
  561. */
  562. ;
  563. #endif
  564. } else {
  565. /* Some other trap using IST? */
  566. if (WARN_ON(val->ist != 0))
  567. return 0;
  568. }
  569. #endif /* CONFIG_X86_64 */
  570. info->address = addr;
  571. info->cs = gate_segment(*val);
  572. info->flags = val->dpl;
  573. /* interrupt gates clear IF */
  574. if (val->type == GATE_INTERRUPT)
  575. info->flags |= 1 << 2;
  576. return 1;
  577. }
  578. /* Locations of each CPU's IDT */
  579. static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
  580. /* Set an IDT entry. If the entry is part of the current IDT, then
  581. also update Xen. */
  582. static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
  583. {
  584. unsigned long p = (unsigned long)&dt[entrynum];
  585. unsigned long start, end;
  586. trace_xen_cpu_write_idt_entry(dt, entrynum, g);
  587. preempt_disable();
  588. start = __this_cpu_read(idt_desc.address);
  589. end = start + __this_cpu_read(idt_desc.size) + 1;
  590. xen_mc_flush();
  591. native_write_idt_entry(dt, entrynum, g);
  592. if (p >= start && (p + 8) <= end) {
  593. struct trap_info info[2];
  594. info[1].address = 0;
  595. if (cvt_gate_to_trap(entrynum, g, &info[0]))
  596. if (HYPERVISOR_set_trap_table(info))
  597. BUG();
  598. }
  599. preempt_enable();
  600. }
  601. static void xen_convert_trap_info(const struct desc_ptr *desc,
  602. struct trap_info *traps)
  603. {
  604. unsigned in, out, count;
  605. count = (desc->size+1) / sizeof(gate_desc);
  606. BUG_ON(count > 256);
  607. for (in = out = 0; in < count; in++) {
  608. gate_desc *entry = (gate_desc*)(desc->address) + in;
  609. if (cvt_gate_to_trap(in, entry, &traps[out]))
  610. out++;
  611. }
  612. traps[out].address = 0;
  613. }
  614. void xen_copy_trap_info(struct trap_info *traps)
  615. {
  616. const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
  617. xen_convert_trap_info(desc, traps);
  618. }
  619. /* Load a new IDT into Xen. In principle this can be per-CPU, so we
  620. hold a spinlock to protect the static traps[] array (static because
  621. it avoids allocation, and saves stack space). */
  622. static void xen_load_idt(const struct desc_ptr *desc)
  623. {
  624. static DEFINE_SPINLOCK(lock);
  625. static struct trap_info traps[257];
  626. trace_xen_cpu_load_idt(desc);
  627. spin_lock(&lock);
  628. __get_cpu_var(idt_desc) = *desc;
  629. xen_convert_trap_info(desc, traps);
  630. xen_mc_flush();
  631. if (HYPERVISOR_set_trap_table(traps))
  632. BUG();
  633. spin_unlock(&lock);
  634. }
  635. /* Write a GDT descriptor entry. Ignore LDT descriptors, since
  636. they're handled differently. */
  637. static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
  638. const void *desc, int type)
  639. {
  640. trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
  641. preempt_disable();
  642. switch (type) {
  643. case DESC_LDT:
  644. case DESC_TSS:
  645. /* ignore */
  646. break;
  647. default: {
  648. xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
  649. xen_mc_flush();
  650. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  651. BUG();
  652. }
  653. }
  654. preempt_enable();
  655. }
  656. /*
  657. * Version of write_gdt_entry for use at early boot-time needed to
  658. * update an entry as simply as possible.
  659. */
  660. static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
  661. const void *desc, int type)
  662. {
  663. trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
  664. switch (type) {
  665. case DESC_LDT:
  666. case DESC_TSS:
  667. /* ignore */
  668. break;
  669. default: {
  670. xmaddr_t maddr = virt_to_machine(&dt[entry]);
  671. if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
  672. dt[entry] = *(struct desc_struct *)desc;
  673. }
  674. }
  675. }
  676. static void xen_load_sp0(struct tss_struct *tss,
  677. struct thread_struct *thread)
  678. {
  679. struct multicall_space mcs;
  680. mcs = xen_mc_entry(0);
  681. MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
  682. xen_mc_issue(PARAVIRT_LAZY_CPU);
  683. }
  684. static void xen_set_iopl_mask(unsigned mask)
  685. {
  686. struct physdev_set_iopl set_iopl;
  687. /* Force the change at ring 0. */
  688. set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
  689. HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  690. }
  691. static void xen_io_delay(void)
  692. {
  693. }
  694. #ifdef CONFIG_X86_LOCAL_APIC
  695. static unsigned long xen_set_apic_id(unsigned int x)
  696. {
  697. WARN_ON(1);
  698. return x;
  699. }
  700. static unsigned int xen_get_apic_id(unsigned long x)
  701. {
  702. return ((x)>>24) & 0xFFu;
  703. }
  704. static u32 xen_apic_read(u32 reg)
  705. {
  706. struct xen_platform_op op = {
  707. .cmd = XENPF_get_cpuinfo,
  708. .interface_version = XENPF_INTERFACE_VERSION,
  709. .u.pcpu_info.xen_cpuid = 0,
  710. };
  711. int ret = 0;
  712. /* Shouldn't need this as APIC is turned off for PV, and we only
  713. * get called on the bootup processor. But just in case. */
  714. if (!xen_initial_domain() || smp_processor_id())
  715. return 0;
  716. if (reg == APIC_LVR)
  717. return 0x10;
  718. if (reg != APIC_ID)
  719. return 0;
  720. ret = HYPERVISOR_dom0_op(&op);
  721. if (ret)
  722. return 0;
  723. return op.u.pcpu_info.apic_id << 24;
  724. }
  725. static void xen_apic_write(u32 reg, u32 val)
  726. {
  727. /* Warn to see if there's any stray references */
  728. WARN_ON(1);
  729. }
  730. static u64 xen_apic_icr_read(void)
  731. {
  732. return 0;
  733. }
  734. static void xen_apic_icr_write(u32 low, u32 id)
  735. {
  736. /* Warn to see if there's any stray references */
  737. WARN_ON(1);
  738. }
  739. static void xen_apic_wait_icr_idle(void)
  740. {
  741. return;
  742. }
  743. static u32 xen_safe_apic_wait_icr_idle(void)
  744. {
  745. return 0;
  746. }
  747. static void set_xen_basic_apic_ops(void)
  748. {
  749. apic->read = xen_apic_read;
  750. apic->write = xen_apic_write;
  751. apic->icr_read = xen_apic_icr_read;
  752. apic->icr_write = xen_apic_icr_write;
  753. apic->wait_icr_idle = xen_apic_wait_icr_idle;
  754. apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
  755. apic->set_apic_id = xen_set_apic_id;
  756. apic->get_apic_id = xen_get_apic_id;
  757. #ifdef CONFIG_SMP
  758. apic->send_IPI_allbutself = xen_send_IPI_allbutself;
  759. apic->send_IPI_mask_allbutself = xen_send_IPI_mask_allbutself;
  760. apic->send_IPI_mask = xen_send_IPI_mask;
  761. apic->send_IPI_all = xen_send_IPI_all;
  762. apic->send_IPI_self = xen_send_IPI_self;
  763. #endif
  764. }
  765. #endif
  766. static void xen_clts(void)
  767. {
  768. struct multicall_space mcs;
  769. mcs = xen_mc_entry(0);
  770. MULTI_fpu_taskswitch(mcs.mc, 0);
  771. xen_mc_issue(PARAVIRT_LAZY_CPU);
  772. }
  773. static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
  774. static unsigned long xen_read_cr0(void)
  775. {
  776. unsigned long cr0 = this_cpu_read(xen_cr0_value);
  777. if (unlikely(cr0 == 0)) {
  778. cr0 = native_read_cr0();
  779. this_cpu_write(xen_cr0_value, cr0);
  780. }
  781. return cr0;
  782. }
  783. static void xen_write_cr0(unsigned long cr0)
  784. {
  785. struct multicall_space mcs;
  786. this_cpu_write(xen_cr0_value, cr0);
  787. /* Only pay attention to cr0.TS; everything else is
  788. ignored. */
  789. mcs = xen_mc_entry(0);
  790. MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
  791. xen_mc_issue(PARAVIRT_LAZY_CPU);
  792. }
  793. static void xen_write_cr4(unsigned long cr4)
  794. {
  795. cr4 &= ~X86_CR4_PGE;
  796. cr4 &= ~X86_CR4_PSE;
  797. native_write_cr4(cr4);
  798. }
  799. static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
  800. {
  801. int ret;
  802. ret = 0;
  803. switch (msr) {
  804. #ifdef CONFIG_X86_64
  805. unsigned which;
  806. u64 base;
  807. case MSR_FS_BASE: which = SEGBASE_FS; goto set;
  808. case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
  809. case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
  810. set:
  811. base = ((u64)high << 32) | low;
  812. if (HYPERVISOR_set_segment_base(which, base) != 0)
  813. ret = -EIO;
  814. break;
  815. #endif
  816. case MSR_STAR:
  817. case MSR_CSTAR:
  818. case MSR_LSTAR:
  819. case MSR_SYSCALL_MASK:
  820. case MSR_IA32_SYSENTER_CS:
  821. case MSR_IA32_SYSENTER_ESP:
  822. case MSR_IA32_SYSENTER_EIP:
  823. /* Fast syscall setup is all done in hypercalls, so
  824. these are all ignored. Stub them out here to stop
  825. Xen console noise. */
  826. break;
  827. case MSR_IA32_CR_PAT:
  828. if (smp_processor_id() == 0)
  829. xen_set_pat(((u64)high << 32) | low);
  830. break;
  831. default:
  832. ret = native_write_msr_safe(msr, low, high);
  833. }
  834. return ret;
  835. }
  836. void xen_setup_shared_info(void)
  837. {
  838. if (!xen_feature(XENFEAT_auto_translated_physmap)) {
  839. set_fixmap(FIX_PARAVIRT_BOOTMAP,
  840. xen_start_info->shared_info);
  841. HYPERVISOR_shared_info =
  842. (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
  843. } else
  844. HYPERVISOR_shared_info =
  845. (struct shared_info *)__va(xen_start_info->shared_info);
  846. #ifndef CONFIG_SMP
  847. /* In UP this is as good a place as any to set up shared info */
  848. xen_setup_vcpu_info_placement();
  849. #endif
  850. xen_setup_mfn_list_list();
  851. }
  852. /* This is called once we have the cpu_possible_mask */
  853. void xen_setup_vcpu_info_placement(void)
  854. {
  855. int cpu;
  856. for_each_possible_cpu(cpu)
  857. xen_vcpu_setup(cpu);
  858. /* xen_vcpu_setup managed to place the vcpu_info within the
  859. percpu area for all cpus, so make use of it */
  860. if (have_vcpu_info_placement) {
  861. pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
  862. pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
  863. pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
  864. pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
  865. pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
  866. }
  867. }
  868. static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
  869. unsigned long addr, unsigned len)
  870. {
  871. char *start, *end, *reloc;
  872. unsigned ret;
  873. start = end = reloc = NULL;
  874. #define SITE(op, x) \
  875. case PARAVIRT_PATCH(op.x): \
  876. if (have_vcpu_info_placement) { \
  877. start = (char *)xen_##x##_direct; \
  878. end = xen_##x##_direct_end; \
  879. reloc = xen_##x##_direct_reloc; \
  880. } \
  881. goto patch_site
  882. switch (type) {
  883. SITE(pv_irq_ops, irq_enable);
  884. SITE(pv_irq_ops, irq_disable);
  885. SITE(pv_irq_ops, save_fl);
  886. SITE(pv_irq_ops, restore_fl);
  887. #undef SITE
  888. patch_site:
  889. if (start == NULL || (end-start) > len)
  890. goto default_patch;
  891. ret = paravirt_patch_insns(insnbuf, len, start, end);
  892. /* Note: because reloc is assigned from something that
  893. appears to be an array, gcc assumes it's non-null,
  894. but doesn't know its relationship with start and
  895. end. */
  896. if (reloc > start && reloc < end) {
  897. int reloc_off = reloc - start;
  898. long *relocp = (long *)(insnbuf + reloc_off);
  899. long delta = start - (char *)addr;
  900. *relocp += delta;
  901. }
  902. break;
  903. default_patch:
  904. default:
  905. ret = paravirt_patch_default(type, clobbers, insnbuf,
  906. addr, len);
  907. break;
  908. }
  909. return ret;
  910. }
  911. static const struct pv_info xen_info __initconst = {
  912. .paravirt_enabled = 1,
  913. .shared_kernel_pmd = 0,
  914. #ifdef CONFIG_X86_64
  915. .extra_user_64bit_cs = FLAT_USER_CS64,
  916. #endif
  917. .name = "Xen",
  918. };
  919. static const struct pv_init_ops xen_init_ops __initconst = {
  920. .patch = xen_patch,
  921. };
  922. static const struct pv_cpu_ops xen_cpu_ops __initconst = {
  923. .cpuid = xen_cpuid,
  924. .set_debugreg = xen_set_debugreg,
  925. .get_debugreg = xen_get_debugreg,
  926. .clts = xen_clts,
  927. .read_cr0 = xen_read_cr0,
  928. .write_cr0 = xen_write_cr0,
  929. .read_cr4 = native_read_cr4,
  930. .read_cr4_safe = native_read_cr4_safe,
  931. .write_cr4 = xen_write_cr4,
  932. .wbinvd = native_wbinvd,
  933. .read_msr = native_read_msr_safe,
  934. .write_msr = xen_write_msr_safe,
  935. .read_tsc = native_read_tsc,
  936. .read_pmc = native_read_pmc,
  937. .iret = xen_iret,
  938. .irq_enable_sysexit = xen_sysexit,
  939. #ifdef CONFIG_X86_64
  940. .usergs_sysret32 = xen_sysret32,
  941. .usergs_sysret64 = xen_sysret64,
  942. #endif
  943. .load_tr_desc = paravirt_nop,
  944. .set_ldt = xen_set_ldt,
  945. .load_gdt = xen_load_gdt,
  946. .load_idt = xen_load_idt,
  947. .load_tls = xen_load_tls,
  948. #ifdef CONFIG_X86_64
  949. .load_gs_index = xen_load_gs_index,
  950. #endif
  951. .alloc_ldt = xen_alloc_ldt,
  952. .free_ldt = xen_free_ldt,
  953. .store_gdt = native_store_gdt,
  954. .store_idt = native_store_idt,
  955. .store_tr = xen_store_tr,
  956. .write_ldt_entry = xen_write_ldt_entry,
  957. .write_gdt_entry = xen_write_gdt_entry,
  958. .write_idt_entry = xen_write_idt_entry,
  959. .load_sp0 = xen_load_sp0,
  960. .set_iopl_mask = xen_set_iopl_mask,
  961. .io_delay = xen_io_delay,
  962. /* Xen takes care of %gs when switching to usermode for us */
  963. .swapgs = paravirt_nop,
  964. .start_context_switch = paravirt_start_context_switch,
  965. .end_context_switch = xen_end_context_switch,
  966. };
  967. static const struct pv_apic_ops xen_apic_ops __initconst = {
  968. #ifdef CONFIG_X86_LOCAL_APIC
  969. .startup_ipi_hook = paravirt_nop,
  970. #endif
  971. };
  972. static void xen_reboot(int reason)
  973. {
  974. struct sched_shutdown r = { .reason = reason };
  975. if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
  976. BUG();
  977. }
  978. static void xen_restart(char *msg)
  979. {
  980. xen_reboot(SHUTDOWN_reboot);
  981. }
  982. static void xen_emergency_restart(void)
  983. {
  984. xen_reboot(SHUTDOWN_reboot);
  985. }
  986. static void xen_machine_halt(void)
  987. {
  988. xen_reboot(SHUTDOWN_poweroff);
  989. }
  990. static void xen_machine_power_off(void)
  991. {
  992. if (pm_power_off)
  993. pm_power_off();
  994. xen_reboot(SHUTDOWN_poweroff);
  995. }
  996. static void xen_crash_shutdown(struct pt_regs *regs)
  997. {
  998. xen_reboot(SHUTDOWN_crash);
  999. }
  1000. static int
  1001. xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
  1002. {
  1003. xen_reboot(SHUTDOWN_crash);
  1004. return NOTIFY_DONE;
  1005. }
  1006. static struct notifier_block xen_panic_block = {
  1007. .notifier_call= xen_panic_event,
  1008. };
  1009. int xen_panic_handler_init(void)
  1010. {
  1011. atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
  1012. return 0;
  1013. }
  1014. static const struct machine_ops xen_machine_ops __initconst = {
  1015. .restart = xen_restart,
  1016. .halt = xen_machine_halt,
  1017. .power_off = xen_machine_power_off,
  1018. .shutdown = xen_machine_halt,
  1019. .crash_shutdown = xen_crash_shutdown,
  1020. .emergency_restart = xen_emergency_restart,
  1021. };
  1022. /*
  1023. * Set up the GDT and segment registers for -fstack-protector. Until
  1024. * we do this, we have to be careful not to call any stack-protected
  1025. * function, which is most of the kernel.
  1026. */
  1027. static void __init xen_setup_stackprotector(void)
  1028. {
  1029. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
  1030. pv_cpu_ops.load_gdt = xen_load_gdt_boot;
  1031. setup_stack_canary_segment(0);
  1032. switch_to_new_gdt(0);
  1033. pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
  1034. pv_cpu_ops.load_gdt = xen_load_gdt;
  1035. }
  1036. /* First C function to be called on Xen boot */
  1037. asmlinkage void __init xen_start_kernel(void)
  1038. {
  1039. struct physdev_set_iopl set_iopl;
  1040. int rc;
  1041. pgd_t *pgd;
  1042. if (!xen_start_info)
  1043. return;
  1044. xen_domain_type = XEN_PV_DOMAIN;
  1045. xen_setup_machphys_mapping();
  1046. /* Install Xen paravirt ops */
  1047. pv_info = xen_info;
  1048. pv_init_ops = xen_init_ops;
  1049. pv_cpu_ops = xen_cpu_ops;
  1050. pv_apic_ops = xen_apic_ops;
  1051. x86_init.resources.memory_setup = xen_memory_setup;
  1052. x86_init.oem.arch_setup = xen_arch_setup;
  1053. x86_init.oem.banner = xen_banner;
  1054. xen_init_time_ops();
  1055. /*
  1056. * Set up some pagetable state before starting to set any ptes.
  1057. */
  1058. xen_init_mmu_ops();
  1059. /* Prevent unwanted bits from being set in PTEs. */
  1060. __supported_pte_mask &= ~_PAGE_GLOBAL;
  1061. #if 0
  1062. if (!xen_initial_domain())
  1063. #endif
  1064. __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
  1065. __supported_pte_mask |= _PAGE_IOMAP;
  1066. /*
  1067. * Prevent page tables from being allocated in highmem, even
  1068. * if CONFIG_HIGHPTE is enabled.
  1069. */
  1070. __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
  1071. /* Work out if we support NX */
  1072. x86_configure_nx();
  1073. xen_setup_features();
  1074. /* Get mfn list */
  1075. if (!xen_feature(XENFEAT_auto_translated_physmap))
  1076. xen_build_dynamic_phys_to_machine();
  1077. /*
  1078. * Set up kernel GDT and segment registers, mainly so that
  1079. * -fstack-protector code can be executed.
  1080. */
  1081. xen_setup_stackprotector();
  1082. xen_init_irq_ops();
  1083. xen_init_cpuid_mask();
  1084. #ifdef CONFIG_X86_LOCAL_APIC
  1085. /*
  1086. * set up the basic apic ops.
  1087. */
  1088. set_xen_basic_apic_ops();
  1089. #endif
  1090. if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
  1091. pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
  1092. pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
  1093. }
  1094. machine_ops = xen_machine_ops;
  1095. /*
  1096. * The only reliable way to retain the initial address of the
  1097. * percpu gdt_page is to remember it here, so we can go and
  1098. * mark it RW later, when the initial percpu area is freed.
  1099. */
  1100. xen_initial_gdt = &per_cpu(gdt_page, 0);
  1101. xen_smp_init();
  1102. #ifdef CONFIG_ACPI_NUMA
  1103. /*
  1104. * The pages we from Xen are not related to machine pages, so
  1105. * any NUMA information the kernel tries to get from ACPI will
  1106. * be meaningless. Prevent it from trying.
  1107. */
  1108. acpi_numa = -1;
  1109. #endif
  1110. pgd = (pgd_t *)xen_start_info->pt_base;
  1111. /* Don't do the full vcpu_info placement stuff until we have a
  1112. possible map and a non-dummy shared_info. */
  1113. per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
  1114. local_irq_disable();
  1115. early_boot_irqs_disabled = true;
  1116. xen_raw_console_write("mapping kernel into physical memory\n");
  1117. pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
  1118. /* Allocate and initialize top and mid mfn levels for p2m structure */
  1119. xen_build_mfn_list_list();
  1120. /* keep using Xen gdt for now; no urgent need to change it */
  1121. #ifdef CONFIG_X86_32
  1122. pv_info.kernel_rpl = 1;
  1123. if (xen_feature(XENFEAT_supervisor_mode_kernel))
  1124. pv_info.kernel_rpl = 0;
  1125. #else
  1126. pv_info.kernel_rpl = 0;
  1127. #endif
  1128. /* set the limit of our address space */
  1129. xen_reserve_top();
  1130. /* We used to do this in xen_arch_setup, but that is too late on AMD
  1131. * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
  1132. * which pokes 0xcf8 port.
  1133. */
  1134. set_iopl.iopl = 1;
  1135. rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
  1136. if (rc != 0)
  1137. xen_raw_printk("physdev_op failed %d\n", rc);
  1138. #ifdef CONFIG_X86_32
  1139. /* set up basic CPUID stuff */
  1140. cpu_detect(&new_cpu_data);
  1141. new_cpu_data.hard_math = 1;
  1142. new_cpu_data.wp_works_ok = 1;
  1143. new_cpu_data.x86_capability[0] = cpuid_edx(1);
  1144. #endif
  1145. /* Poke various useful things into boot_params */
  1146. boot_params.hdr.type_of_loader = (9 << 4) | 0;
  1147. boot_params.hdr.ramdisk_image = xen_start_info->mod_start
  1148. ? __pa(xen_start_info->mod_start) : 0;
  1149. boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
  1150. boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
  1151. if (!xen_initial_domain()) {
  1152. add_preferred_console("xenboot", 0, NULL);
  1153. add_preferred_console("tty", 0, NULL);
  1154. add_preferred_console("hvc", 0, NULL);
  1155. if (pci_xen)
  1156. x86_init.pci.arch_init = pci_xen_init;
  1157. } else {
  1158. const struct dom0_vga_console_info *info =
  1159. (void *)((char *)xen_start_info +
  1160. xen_start_info->console.dom0.info_off);
  1161. xen_init_vga(info, xen_start_info->console.dom0.info_size);
  1162. xen_start_info->console.domU.mfn = 0;
  1163. xen_start_info->console.domU.evtchn = 0;
  1164. xen_init_apic();
  1165. /* Make sure ACS will be enabled */
  1166. pci_request_acs();
  1167. xen_acpi_sleep_register();
  1168. }
  1169. #ifdef CONFIG_PCI
  1170. /* PCI BIOS service won't work from a PV guest. */
  1171. pci_probe &= ~PCI_PROBE_BIOS;
  1172. #endif
  1173. xen_raw_console_write("about to get started...\n");
  1174. xen_setup_runstate_info(0);
  1175. /* Start the world */
  1176. #ifdef CONFIG_X86_32
  1177. i386_start_kernel();
  1178. #else
  1179. x86_64_start_reservations((char *)__pa_symbol(&boot_params));
  1180. #endif
  1181. }
  1182. #ifdef CONFIG_XEN_PVHVM
  1183. /*
  1184. * The pfn containing the shared_info is located somewhere in RAM. This
  1185. * will cause trouble if the current kernel is doing a kexec boot into a
  1186. * new kernel. The new kernel (and its startup code) can not know where
  1187. * the pfn is, so it can not reserve the page. The hypervisor will
  1188. * continue to update the pfn, and as a result memory corruption occours
  1189. * in the new kernel.
  1190. *
  1191. * One way to work around this issue is to allocate a page in the
  1192. * xen-platform pci device's BAR memory range. But pci init is done very
  1193. * late and the shared_info page is already in use very early to read
  1194. * the pvclock. So moving the pfn from RAM to MMIO is racy because some
  1195. * code paths on other vcpus could access the pfn during the small
  1196. * window when the old pfn is moved to the new pfn. There is even a
  1197. * small window were the old pfn is not backed by a mfn, and during that
  1198. * time all reads return -1.
  1199. *
  1200. * Because it is not known upfront where the MMIO region is located it
  1201. * can not be used right from the start in xen_hvm_init_shared_info.
  1202. *
  1203. * To minimise trouble the move of the pfn is done shortly before kexec.
  1204. * This does not eliminate the race because all vcpus are still online
  1205. * when the syscore_ops will be called. But hopefully there is no work
  1206. * pending at this point in time. Also the syscore_op is run last which
  1207. * reduces the risk further.
  1208. */
  1209. static struct shared_info *xen_hvm_shared_info;
  1210. static void xen_hvm_connect_shared_info(unsigned long pfn)
  1211. {
  1212. struct xen_add_to_physmap xatp;
  1213. xatp.domid = DOMID_SELF;
  1214. xatp.idx = 0;
  1215. xatp.space = XENMAPSPACE_shared_info;
  1216. xatp.gpfn = pfn;
  1217. if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
  1218. BUG();
  1219. }
  1220. static void xen_hvm_set_shared_info(struct shared_info *sip)
  1221. {
  1222. int cpu;
  1223. HYPERVISOR_shared_info = sip;
  1224. /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
  1225. * page, we use it in the event channel upcall and in some pvclock
  1226. * related functions. We don't need the vcpu_info placement
  1227. * optimizations because we don't use any pv_mmu or pv_irq op on
  1228. * HVM.
  1229. * When xen_hvm_set_shared_info is run at boot time only vcpu 0 is
  1230. * online but xen_hvm_set_shared_info is run at resume time too and
  1231. * in that case multiple vcpus might be online. */
  1232. for_each_online_cpu(cpu) {
  1233. per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
  1234. }
  1235. }
  1236. /* Reconnect the shared_info pfn to a mfn */
  1237. void xen_hvm_resume_shared_info(void)
  1238. {
  1239. xen_hvm_connect_shared_info(__pa(xen_hvm_shared_info) >> PAGE_SHIFT);
  1240. }
  1241. #ifdef CONFIG_KEXEC
  1242. static struct shared_info *xen_hvm_shared_info_kexec;
  1243. static unsigned long xen_hvm_shared_info_pfn_kexec;
  1244. /* Remember a pfn in MMIO space for kexec reboot */
  1245. void __devinit xen_hvm_prepare_kexec(struct shared_info *sip, unsigned long pfn)
  1246. {
  1247. xen_hvm_shared_info_kexec = sip;
  1248. xen_hvm_shared_info_pfn_kexec = pfn;
  1249. }
  1250. static void xen_hvm_syscore_shutdown(void)
  1251. {
  1252. struct xen_memory_reservation reservation = {
  1253. .domid = DOMID_SELF,
  1254. .nr_extents = 1,
  1255. };
  1256. unsigned long prev_pfn;
  1257. int rc;
  1258. if (!xen_hvm_shared_info_kexec)
  1259. return;
  1260. prev_pfn = __pa(xen_hvm_shared_info) >> PAGE_SHIFT;
  1261. set_xen_guest_handle(reservation.extent_start, &prev_pfn);
  1262. /* Move pfn to MMIO, disconnects previous pfn from mfn */
  1263. xen_hvm_connect_shared_info(xen_hvm_shared_info_pfn_kexec);
  1264. /* Update pointers, following hypercall is also a memory barrier */
  1265. xen_hvm_set_shared_info(xen_hvm_shared_info_kexec);
  1266. /* Allocate new mfn for previous pfn */
  1267. do {
  1268. rc = HYPERVISOR_memory_op(XENMEM_populate_physmap, &reservation);
  1269. if (rc == 0)
  1270. msleep(123);
  1271. } while (rc == 0);
  1272. /* Make sure the previous pfn is really connected to a (new) mfn */
  1273. BUG_ON(rc != 1);
  1274. }
  1275. static struct syscore_ops xen_hvm_syscore_ops = {
  1276. .shutdown = xen_hvm_syscore_shutdown,
  1277. };
  1278. #endif
  1279. /* Use a pfn in RAM, may move to MMIO before kexec. */
  1280. static void __init xen_hvm_init_shared_info(void)
  1281. {
  1282. /* Remember pointer for resume */
  1283. xen_hvm_shared_info = extend_brk(PAGE_SIZE, PAGE_SIZE);
  1284. xen_hvm_connect_shared_info(__pa(xen_hvm_shared_info) >> PAGE_SHIFT);
  1285. xen_hvm_set_shared_info(xen_hvm_shared_info);
  1286. }
  1287. static void __init init_hvm_pv_info(void)
  1288. {
  1289. int major, minor;
  1290. uint32_t eax, ebx, ecx, edx, pages, msr, base;
  1291. u64 pfn;
  1292. base = xen_cpuid_base();
  1293. cpuid(base + 1, &eax, &ebx, &ecx, &edx);
  1294. major = eax >> 16;
  1295. minor = eax & 0xffff;
  1296. printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
  1297. cpuid(base + 2, &pages, &msr, &ecx, &edx);
  1298. pfn = __pa(hypercall_page);
  1299. wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
  1300. xen_setup_features();
  1301. pv_info.name = "Xen HVM";
  1302. xen_domain_type = XEN_HVM_DOMAIN;
  1303. }
  1304. static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
  1305. unsigned long action, void *hcpu)
  1306. {
  1307. int cpu = (long)hcpu;
  1308. switch (action) {
  1309. case CPU_UP_PREPARE:
  1310. xen_vcpu_setup(cpu);
  1311. if (xen_have_vector_callback)
  1312. xen_init_lock_cpu(cpu);
  1313. break;
  1314. default:
  1315. break;
  1316. }
  1317. return NOTIFY_OK;
  1318. }
  1319. static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
  1320. .notifier_call = xen_hvm_cpu_notify,
  1321. };
  1322. static void __init xen_hvm_guest_init(void)
  1323. {
  1324. init_hvm_pv_info();
  1325. xen_hvm_init_shared_info();
  1326. #ifdef CONFIG_KEXEC
  1327. register_syscore_ops(&xen_hvm_syscore_ops);
  1328. #endif
  1329. if (xen_feature(XENFEAT_hvm_callback_vector))
  1330. xen_have_vector_callback = 1;
  1331. xen_hvm_smp_init();
  1332. register_cpu_notifier(&xen_hvm_cpu_notifier);
  1333. xen_unplug_emulated_devices();
  1334. x86_init.irqs.intr_init = xen_init_IRQ;
  1335. xen_hvm_init_time_ops();
  1336. xen_hvm_init_mmu_ops();
  1337. }
  1338. static bool __init xen_hvm_platform(void)
  1339. {
  1340. if (xen_pv_domain())
  1341. return false;
  1342. if (!xen_cpuid_base())
  1343. return false;
  1344. return true;
  1345. }
  1346. bool xen_hvm_need_lapic(void)
  1347. {
  1348. if (xen_pv_domain())
  1349. return false;
  1350. if (!xen_hvm_domain())
  1351. return false;
  1352. if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
  1353. return false;
  1354. return true;
  1355. }
  1356. EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
  1357. const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
  1358. .name = "Xen HVM",
  1359. .detect = xen_hvm_platform,
  1360. .init_platform = xen_hvm_guest_init,
  1361. };
  1362. EXPORT_SYMBOL(x86_hyper_xen_hvm);
  1363. #endif