tlb.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345
  1. #include <linux/init.h>
  2. #include <linux/mm.h>
  3. #include <linux/spinlock.h>
  4. #include <linux/smp.h>
  5. #include <linux/interrupt.h>
  6. #include <linux/module.h>
  7. #include <linux/cpu.h>
  8. #include <asm/tlbflush.h>
  9. #include <asm/mmu_context.h>
  10. #include <asm/cache.h>
  11. #include <asm/apic.h>
  12. #include <asm/uv/uv.h>
  13. #include <linux/debugfs.h>
  14. DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate)
  15. = { &init_mm, 0, };
  16. /*
  17. * Smarter SMP flushing macros.
  18. * c/o Linus Torvalds.
  19. *
  20. * These mean you can really definitely utterly forget about
  21. * writing to user space from interrupts. (Its not allowed anyway).
  22. *
  23. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  24. *
  25. * More scalable flush, from Andi Kleen
  26. *
  27. * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  28. */
  29. struct flush_tlb_info {
  30. struct mm_struct *flush_mm;
  31. unsigned long flush_start;
  32. unsigned long flush_end;
  33. };
  34. /*
  35. * We cannot call mmdrop() because we are in interrupt context,
  36. * instead update mm->cpu_vm_mask.
  37. */
  38. void leave_mm(int cpu)
  39. {
  40. struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
  41. if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
  42. BUG();
  43. if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
  44. cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
  45. load_cr3(swapper_pg_dir);
  46. }
  47. }
  48. EXPORT_SYMBOL_GPL(leave_mm);
  49. /*
  50. * The flush IPI assumes that a thread switch happens in this order:
  51. * [cpu0: the cpu that switches]
  52. * 1) switch_mm() either 1a) or 1b)
  53. * 1a) thread switch to a different mm
  54. * 1a1) set cpu_tlbstate to TLBSTATE_OK
  55. * Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
  56. * if cpu0 was in lazy tlb mode.
  57. * 1a2) update cpu active_mm
  58. * Now cpu0 accepts tlb flushes for the new mm.
  59. * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
  60. * Now the other cpus will send tlb flush ipis.
  61. * 1a4) change cr3.
  62. * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
  63. * Stop ipi delivery for the old mm. This is not synchronized with
  64. * the other cpus, but flush_tlb_func ignore flush ipis for the wrong
  65. * mm, and in the worst case we perform a superfluous tlb flush.
  66. * 1b) thread switch without mm change
  67. * cpu active_mm is correct, cpu0 already handles flush ipis.
  68. * 1b1) set cpu_tlbstate to TLBSTATE_OK
  69. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  70. * Atomically set the bit [other cpus will start sending flush ipis],
  71. * and test the bit.
  72. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  73. * 2) switch %%esp, ie current
  74. *
  75. * The interrupt must handle 2 special cases:
  76. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  77. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  78. * runs in kernel space, the cpu could load tlb entries for user space
  79. * pages.
  80. *
  81. * The good news is that cpu_tlbstate is local to each cpu, no
  82. * write/read ordering problems.
  83. */
  84. /*
  85. * TLB flush funcation:
  86. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  87. * 2) Leave the mm if we are in the lazy tlb mode.
  88. */
  89. static void flush_tlb_func(void *info)
  90. {
  91. struct flush_tlb_info *f = info;
  92. if (f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
  93. return;
  94. if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
  95. if (f->flush_end == TLB_FLUSH_ALL || !cpu_has_invlpg)
  96. local_flush_tlb();
  97. else if (!f->flush_end)
  98. __flush_tlb_single(f->flush_start);
  99. else {
  100. unsigned long addr;
  101. addr = f->flush_start;
  102. while (addr < f->flush_end) {
  103. __flush_tlb_single(addr);
  104. addr += PAGE_SIZE;
  105. }
  106. }
  107. } else
  108. leave_mm(smp_processor_id());
  109. }
  110. void native_flush_tlb_others(const struct cpumask *cpumask,
  111. struct mm_struct *mm, unsigned long start,
  112. unsigned long end)
  113. {
  114. struct flush_tlb_info info;
  115. info.flush_mm = mm;
  116. info.flush_start = start;
  117. info.flush_end = end;
  118. if (is_uv_system()) {
  119. unsigned int cpu;
  120. cpu = smp_processor_id();
  121. cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
  122. if (cpumask)
  123. smp_call_function_many(cpumask, flush_tlb_func,
  124. &info, 1);
  125. return;
  126. }
  127. smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
  128. }
  129. void flush_tlb_current_task(void)
  130. {
  131. struct mm_struct *mm = current->mm;
  132. preempt_disable();
  133. local_flush_tlb();
  134. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  135. flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
  136. preempt_enable();
  137. }
  138. /*
  139. * It can find out the THP large page, or
  140. * HUGETLB page in tlb_flush when THP disabled
  141. */
  142. static inline unsigned long has_large_page(struct mm_struct *mm,
  143. unsigned long start, unsigned long end)
  144. {
  145. pgd_t *pgd;
  146. pud_t *pud;
  147. pmd_t *pmd;
  148. unsigned long addr = ALIGN(start, HPAGE_SIZE);
  149. for (; addr < end; addr += HPAGE_SIZE) {
  150. pgd = pgd_offset(mm, addr);
  151. if (likely(!pgd_none(*pgd))) {
  152. pud = pud_offset(pgd, addr);
  153. if (likely(!pud_none(*pud))) {
  154. pmd = pmd_offset(pud, addr);
  155. if (likely(!pmd_none(*pmd)))
  156. if (pmd_large(*pmd))
  157. return addr;
  158. }
  159. }
  160. }
  161. return 0;
  162. }
  163. void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
  164. unsigned long end, unsigned long vmflag)
  165. {
  166. unsigned long addr;
  167. unsigned act_entries, tlb_entries = 0;
  168. preempt_disable();
  169. if (current->active_mm != mm)
  170. goto flush_all;
  171. if (!current->mm) {
  172. leave_mm(smp_processor_id());
  173. goto flush_all;
  174. }
  175. if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1
  176. || vmflag == VM_HUGETLB) {
  177. local_flush_tlb();
  178. goto flush_all;
  179. }
  180. /* In modern CPU, last level tlb used for both data/ins */
  181. if (vmflag & VM_EXEC)
  182. tlb_entries = tlb_lli_4k[ENTRIES];
  183. else
  184. tlb_entries = tlb_lld_4k[ENTRIES];
  185. /* Assume all of TLB entries was occupied by this task */
  186. act_entries = mm->total_vm > tlb_entries ? tlb_entries : mm->total_vm;
  187. /* tlb_flushall_shift is on balance point, details in commit log */
  188. if ((end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift)
  189. local_flush_tlb();
  190. else {
  191. if (has_large_page(mm, start, end)) {
  192. local_flush_tlb();
  193. goto flush_all;
  194. }
  195. /* flush range by one by one 'invlpg' */
  196. for (addr = start; addr < end; addr += PAGE_SIZE)
  197. __flush_tlb_single(addr);
  198. if (cpumask_any_but(mm_cpumask(mm),
  199. smp_processor_id()) < nr_cpu_ids)
  200. flush_tlb_others(mm_cpumask(mm), mm, start, end);
  201. preempt_enable();
  202. return;
  203. }
  204. flush_all:
  205. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  206. flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
  207. preempt_enable();
  208. }
  209. void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
  210. {
  211. struct mm_struct *mm = vma->vm_mm;
  212. preempt_disable();
  213. if (current->active_mm == mm) {
  214. if (current->mm)
  215. __flush_tlb_one(start);
  216. else
  217. leave_mm(smp_processor_id());
  218. }
  219. if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
  220. flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
  221. preempt_enable();
  222. }
  223. static void do_flush_tlb_all(void *info)
  224. {
  225. __flush_tlb_all();
  226. if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
  227. leave_mm(smp_processor_id());
  228. }
  229. void flush_tlb_all(void)
  230. {
  231. on_each_cpu(do_flush_tlb_all, NULL, 1);
  232. }
  233. static void do_kernel_range_flush(void *info)
  234. {
  235. struct flush_tlb_info *f = info;
  236. unsigned long addr;
  237. /* flush range by one by one 'invlpg' */
  238. for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
  239. __flush_tlb_single(addr);
  240. }
  241. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  242. {
  243. unsigned act_entries;
  244. struct flush_tlb_info info;
  245. /* In modern CPU, last level tlb used for both data/ins */
  246. act_entries = tlb_lld_4k[ENTRIES];
  247. /* Balance as user space task's flush, a bit conservative */
  248. if (end == TLB_FLUSH_ALL || tlb_flushall_shift == -1 ||
  249. (end - start) >> PAGE_SHIFT > act_entries >> tlb_flushall_shift)
  250. on_each_cpu(do_flush_tlb_all, NULL, 1);
  251. else {
  252. info.flush_start = start;
  253. info.flush_end = end;
  254. on_each_cpu(do_kernel_range_flush, &info, 1);
  255. }
  256. }
  257. #ifdef CONFIG_DEBUG_TLBFLUSH
  258. static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
  259. size_t count, loff_t *ppos)
  260. {
  261. char buf[32];
  262. unsigned int len;
  263. len = sprintf(buf, "%hd\n", tlb_flushall_shift);
  264. return simple_read_from_buffer(user_buf, count, ppos, buf, len);
  265. }
  266. static ssize_t tlbflush_write_file(struct file *file,
  267. const char __user *user_buf, size_t count, loff_t *ppos)
  268. {
  269. char buf[32];
  270. ssize_t len;
  271. s8 shift;
  272. len = min(count, sizeof(buf) - 1);
  273. if (copy_from_user(buf, user_buf, len))
  274. return -EFAULT;
  275. buf[len] = '\0';
  276. if (kstrtos8(buf, 0, &shift))
  277. return -EINVAL;
  278. if (shift > 64)
  279. return -EINVAL;
  280. tlb_flushall_shift = shift;
  281. return count;
  282. }
  283. static const struct file_operations fops_tlbflush = {
  284. .read = tlbflush_read_file,
  285. .write = tlbflush_write_file,
  286. .llseek = default_llseek,
  287. };
  288. static int __cpuinit create_tlb_flushall_shift(void)
  289. {
  290. if (cpu_has_invlpg) {
  291. debugfs_create_file("tlb_flushall_shift", S_IRUSR | S_IWUSR,
  292. arch_debugfs_dir, NULL, &fops_tlbflush);
  293. }
  294. return 0;
  295. }
  296. late_initcall(create_tlb_flushall_shift);
  297. #endif