pageattr.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379
  1. /*
  2. * Copyright 2002 Andi Kleen, SuSE Labs.
  3. * Thanks to Ben LaHaise for precious feedback.
  4. */
  5. #include <linux/highmem.h>
  6. #include <linux/bootmem.h>
  7. #include <linux/module.h>
  8. #include <linux/sched.h>
  9. #include <linux/mm.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/seq_file.h>
  12. #include <linux/debugfs.h>
  13. #include <linux/pfn.h>
  14. #include <linux/percpu.h>
  15. #include <linux/gfp.h>
  16. #include <linux/pci.h>
  17. #include <asm/e820.h>
  18. #include <asm/processor.h>
  19. #include <asm/tlbflush.h>
  20. #include <asm/sections.h>
  21. #include <asm/setup.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/pgalloc.h>
  24. #include <asm/proto.h>
  25. #include <asm/pat.h>
  26. /*
  27. * The current flushing context - we pass it instead of 5 arguments:
  28. */
  29. struct cpa_data {
  30. unsigned long *vaddr;
  31. pgprot_t mask_set;
  32. pgprot_t mask_clr;
  33. int numpages;
  34. int flags;
  35. unsigned long pfn;
  36. unsigned force_split : 1;
  37. int curpage;
  38. struct page **pages;
  39. };
  40. /*
  41. * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
  42. * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
  43. * entries change the page attribute in parallel to some other cpu
  44. * splitting a large page entry along with changing the attribute.
  45. */
  46. static DEFINE_SPINLOCK(cpa_lock);
  47. #define CPA_FLUSHTLB 1
  48. #define CPA_ARRAY 2
  49. #define CPA_PAGES_ARRAY 4
  50. #ifdef CONFIG_PROC_FS
  51. static unsigned long direct_pages_count[PG_LEVEL_NUM];
  52. void update_page_count(int level, unsigned long pages)
  53. {
  54. /* Protect against CPA */
  55. spin_lock(&pgd_lock);
  56. direct_pages_count[level] += pages;
  57. spin_unlock(&pgd_lock);
  58. }
  59. static void split_page_count(int level)
  60. {
  61. direct_pages_count[level]--;
  62. direct_pages_count[level - 1] += PTRS_PER_PTE;
  63. }
  64. void arch_report_meminfo(struct seq_file *m)
  65. {
  66. seq_printf(m, "DirectMap4k: %8lu kB\n",
  67. direct_pages_count[PG_LEVEL_4K] << 2);
  68. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  69. seq_printf(m, "DirectMap2M: %8lu kB\n",
  70. direct_pages_count[PG_LEVEL_2M] << 11);
  71. #else
  72. seq_printf(m, "DirectMap4M: %8lu kB\n",
  73. direct_pages_count[PG_LEVEL_2M] << 12);
  74. #endif
  75. #ifdef CONFIG_X86_64
  76. if (direct_gbpages)
  77. seq_printf(m, "DirectMap1G: %8lu kB\n",
  78. direct_pages_count[PG_LEVEL_1G] << 20);
  79. #endif
  80. }
  81. #else
  82. static inline void split_page_count(int level) { }
  83. #endif
  84. #ifdef CONFIG_X86_64
  85. static inline unsigned long highmap_start_pfn(void)
  86. {
  87. return __pa(_text) >> PAGE_SHIFT;
  88. }
  89. static inline unsigned long highmap_end_pfn(void)
  90. {
  91. return __pa(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
  92. }
  93. #endif
  94. #ifdef CONFIG_DEBUG_PAGEALLOC
  95. # define debug_pagealloc 1
  96. #else
  97. # define debug_pagealloc 0
  98. #endif
  99. static inline int
  100. within(unsigned long addr, unsigned long start, unsigned long end)
  101. {
  102. return addr >= start && addr < end;
  103. }
  104. /*
  105. * Flushing functions
  106. */
  107. /**
  108. * clflush_cache_range - flush a cache range with clflush
  109. * @vaddr: virtual start address
  110. * @size: number of bytes to flush
  111. *
  112. * clflush is an unordered instruction which needs fencing with mfence
  113. * to avoid ordering issues.
  114. */
  115. void clflush_cache_range(void *vaddr, unsigned int size)
  116. {
  117. void *vend = vaddr + size - 1;
  118. mb();
  119. for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
  120. clflush(vaddr);
  121. /*
  122. * Flush any possible final partial cacheline:
  123. */
  124. clflush(vend);
  125. mb();
  126. }
  127. EXPORT_SYMBOL_GPL(clflush_cache_range);
  128. static void __cpa_flush_all(void *arg)
  129. {
  130. unsigned long cache = (unsigned long)arg;
  131. /*
  132. * Flush all to work around Errata in early athlons regarding
  133. * large page flushing.
  134. */
  135. __flush_tlb_all();
  136. if (cache && boot_cpu_data.x86 >= 4)
  137. wbinvd();
  138. }
  139. static void cpa_flush_all(unsigned long cache)
  140. {
  141. BUG_ON(irqs_disabled());
  142. on_each_cpu(__cpa_flush_all, (void *) cache, 1);
  143. }
  144. static void __cpa_flush_range(void *arg)
  145. {
  146. /*
  147. * We could optimize that further and do individual per page
  148. * tlb invalidates for a low number of pages. Caveat: we must
  149. * flush the high aliases on 64bit as well.
  150. */
  151. __flush_tlb_all();
  152. }
  153. static void cpa_flush_range(unsigned long start, int numpages, int cache)
  154. {
  155. unsigned int i, level;
  156. unsigned long addr;
  157. BUG_ON(irqs_disabled());
  158. WARN_ON(PAGE_ALIGN(start) != start);
  159. on_each_cpu(__cpa_flush_range, NULL, 1);
  160. if (!cache)
  161. return;
  162. /*
  163. * We only need to flush on one CPU,
  164. * clflush is a MESI-coherent instruction that
  165. * will cause all other CPUs to flush the same
  166. * cachelines:
  167. */
  168. for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
  169. pte_t *pte = lookup_address(addr, &level);
  170. /*
  171. * Only flush present addresses:
  172. */
  173. if (pte && (pte_val(*pte) & _PAGE_PRESENT))
  174. clflush_cache_range((void *) addr, PAGE_SIZE);
  175. }
  176. }
  177. static void cpa_flush_array(unsigned long *start, int numpages, int cache,
  178. int in_flags, struct page **pages)
  179. {
  180. unsigned int i, level;
  181. unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
  182. BUG_ON(irqs_disabled());
  183. on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
  184. if (!cache || do_wbinvd)
  185. return;
  186. /*
  187. * We only need to flush on one CPU,
  188. * clflush is a MESI-coherent instruction that
  189. * will cause all other CPUs to flush the same
  190. * cachelines:
  191. */
  192. for (i = 0; i < numpages; i++) {
  193. unsigned long addr;
  194. pte_t *pte;
  195. if (in_flags & CPA_PAGES_ARRAY)
  196. addr = (unsigned long)page_address(pages[i]);
  197. else
  198. addr = start[i];
  199. pte = lookup_address(addr, &level);
  200. /*
  201. * Only flush present addresses:
  202. */
  203. if (pte && (pte_val(*pte) & _PAGE_PRESENT))
  204. clflush_cache_range((void *)addr, PAGE_SIZE);
  205. }
  206. }
  207. /*
  208. * Certain areas of memory on x86 require very specific protection flags,
  209. * for example the BIOS area or kernel text. Callers don't always get this
  210. * right (again, ioremap() on BIOS memory is not uncommon) so this function
  211. * checks and fixes these known static required protection bits.
  212. */
  213. static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
  214. unsigned long pfn)
  215. {
  216. pgprot_t forbidden = __pgprot(0);
  217. /*
  218. * The BIOS area between 640k and 1Mb needs to be executable for
  219. * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
  220. */
  221. #ifdef CONFIG_PCI_BIOS
  222. if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
  223. pgprot_val(forbidden) |= _PAGE_NX;
  224. #endif
  225. /*
  226. * The kernel text needs to be executable for obvious reasons
  227. * Does not cover __inittext since that is gone later on. On
  228. * 64bit we do not enforce !NX on the low mapping
  229. */
  230. if (within(address, (unsigned long)_text, (unsigned long)_etext))
  231. pgprot_val(forbidden) |= _PAGE_NX;
  232. /*
  233. * The .rodata section needs to be read-only. Using the pfn
  234. * catches all aliases.
  235. */
  236. if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
  237. __pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
  238. pgprot_val(forbidden) |= _PAGE_RW;
  239. #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
  240. /*
  241. * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
  242. * kernel text mappings for the large page aligned text, rodata sections
  243. * will be always read-only. For the kernel identity mappings covering
  244. * the holes caused by this alignment can be anything that user asks.
  245. *
  246. * This will preserve the large page mappings for kernel text/data
  247. * at no extra cost.
  248. */
  249. if (kernel_set_to_readonly &&
  250. within(address, (unsigned long)_text,
  251. (unsigned long)__end_rodata_hpage_align)) {
  252. unsigned int level;
  253. /*
  254. * Don't enforce the !RW mapping for the kernel text mapping,
  255. * if the current mapping is already using small page mapping.
  256. * No need to work hard to preserve large page mappings in this
  257. * case.
  258. *
  259. * This also fixes the Linux Xen paravirt guest boot failure
  260. * (because of unexpected read-only mappings for kernel identity
  261. * mappings). In this paravirt guest case, the kernel text
  262. * mapping and the kernel identity mapping share the same
  263. * page-table pages. Thus we can't really use different
  264. * protections for the kernel text and identity mappings. Also,
  265. * these shared mappings are made of small page mappings.
  266. * Thus this don't enforce !RW mapping for small page kernel
  267. * text mapping logic will help Linux Xen parvirt guest boot
  268. * as well.
  269. */
  270. if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
  271. pgprot_val(forbidden) |= _PAGE_RW;
  272. }
  273. #endif
  274. prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
  275. return prot;
  276. }
  277. /*
  278. * Lookup the page table entry for a virtual address. Return a pointer
  279. * to the entry and the level of the mapping.
  280. *
  281. * Note: We return pud and pmd either when the entry is marked large
  282. * or when the present bit is not set. Otherwise we would return a
  283. * pointer to a nonexisting mapping.
  284. */
  285. pte_t *lookup_address(unsigned long address, unsigned int *level)
  286. {
  287. pgd_t *pgd = pgd_offset_k(address);
  288. pud_t *pud;
  289. pmd_t *pmd;
  290. *level = PG_LEVEL_NONE;
  291. if (pgd_none(*pgd))
  292. return NULL;
  293. pud = pud_offset(pgd, address);
  294. if (pud_none(*pud))
  295. return NULL;
  296. *level = PG_LEVEL_1G;
  297. if (pud_large(*pud) || !pud_present(*pud))
  298. return (pte_t *)pud;
  299. pmd = pmd_offset(pud, address);
  300. if (pmd_none(*pmd))
  301. return NULL;
  302. *level = PG_LEVEL_2M;
  303. if (pmd_large(*pmd) || !pmd_present(*pmd))
  304. return (pte_t *)pmd;
  305. *level = PG_LEVEL_4K;
  306. return pte_offset_kernel(pmd, address);
  307. }
  308. EXPORT_SYMBOL_GPL(lookup_address);
  309. /*
  310. * Set the new pmd in all the pgds we know about:
  311. */
  312. static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
  313. {
  314. /* change init_mm */
  315. set_pte_atomic(kpte, pte);
  316. #ifdef CONFIG_X86_32
  317. if (!SHARED_KERNEL_PMD) {
  318. struct page *page;
  319. list_for_each_entry(page, &pgd_list, lru) {
  320. pgd_t *pgd;
  321. pud_t *pud;
  322. pmd_t *pmd;
  323. pgd = (pgd_t *)page_address(page) + pgd_index(address);
  324. pud = pud_offset(pgd, address);
  325. pmd = pmd_offset(pud, address);
  326. set_pte_atomic((pte_t *)pmd, pte);
  327. }
  328. }
  329. #endif
  330. }
  331. static int
  332. try_preserve_large_page(pte_t *kpte, unsigned long address,
  333. struct cpa_data *cpa)
  334. {
  335. unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
  336. pte_t new_pte, old_pte, *tmp;
  337. pgprot_t old_prot, new_prot, req_prot;
  338. int i, do_split = 1;
  339. unsigned int level;
  340. if (cpa->force_split)
  341. return 1;
  342. spin_lock(&pgd_lock);
  343. /*
  344. * Check for races, another CPU might have split this page
  345. * up already:
  346. */
  347. tmp = lookup_address(address, &level);
  348. if (tmp != kpte)
  349. goto out_unlock;
  350. switch (level) {
  351. case PG_LEVEL_2M:
  352. psize = PMD_PAGE_SIZE;
  353. pmask = PMD_PAGE_MASK;
  354. break;
  355. #ifdef CONFIG_X86_64
  356. case PG_LEVEL_1G:
  357. psize = PUD_PAGE_SIZE;
  358. pmask = PUD_PAGE_MASK;
  359. break;
  360. #endif
  361. default:
  362. do_split = -EINVAL;
  363. goto out_unlock;
  364. }
  365. /*
  366. * Calculate the number of pages, which fit into this large
  367. * page starting at address:
  368. */
  369. nextpage_addr = (address + psize) & pmask;
  370. numpages = (nextpage_addr - address) >> PAGE_SHIFT;
  371. if (numpages < cpa->numpages)
  372. cpa->numpages = numpages;
  373. /*
  374. * We are safe now. Check whether the new pgprot is the same:
  375. */
  376. old_pte = *kpte;
  377. old_prot = new_prot = req_prot = pte_pgprot(old_pte);
  378. pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
  379. pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
  380. /*
  381. * old_pte points to the large page base address. So we need
  382. * to add the offset of the virtual address:
  383. */
  384. pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
  385. cpa->pfn = pfn;
  386. new_prot = static_protections(req_prot, address, pfn);
  387. /*
  388. * We need to check the full range, whether
  389. * static_protection() requires a different pgprot for one of
  390. * the pages in the range we try to preserve:
  391. */
  392. addr = address & pmask;
  393. pfn = pte_pfn(old_pte);
  394. for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
  395. pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
  396. if (pgprot_val(chk_prot) != pgprot_val(new_prot))
  397. goto out_unlock;
  398. }
  399. /*
  400. * If there are no changes, return. maxpages has been updated
  401. * above:
  402. */
  403. if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
  404. do_split = 0;
  405. goto out_unlock;
  406. }
  407. /*
  408. * We need to change the attributes. Check, whether we can
  409. * change the large page in one go. We request a split, when
  410. * the address is not aligned and the number of pages is
  411. * smaller than the number of pages in the large page. Note
  412. * that we limited the number of possible pages already to
  413. * the number of pages in the large page.
  414. */
  415. if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
  416. /*
  417. * The address is aligned and the number of pages
  418. * covers the full page.
  419. */
  420. new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
  421. __set_pmd_pte(kpte, address, new_pte);
  422. cpa->flags |= CPA_FLUSHTLB;
  423. do_split = 0;
  424. }
  425. out_unlock:
  426. spin_unlock(&pgd_lock);
  427. return do_split;
  428. }
  429. static int split_large_page(pte_t *kpte, unsigned long address)
  430. {
  431. unsigned long pfn, pfninc = 1;
  432. unsigned int i, level;
  433. pte_t *pbase, *tmp;
  434. pgprot_t ref_prot;
  435. struct page *base;
  436. if (!debug_pagealloc)
  437. spin_unlock(&cpa_lock);
  438. base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
  439. if (!debug_pagealloc)
  440. spin_lock(&cpa_lock);
  441. if (!base)
  442. return -ENOMEM;
  443. spin_lock(&pgd_lock);
  444. /*
  445. * Check for races, another CPU might have split this page
  446. * up for us already:
  447. */
  448. tmp = lookup_address(address, &level);
  449. if (tmp != kpte)
  450. goto out_unlock;
  451. pbase = (pte_t *)page_address(base);
  452. paravirt_alloc_pte(&init_mm, page_to_pfn(base));
  453. ref_prot = pte_pgprot(pte_clrhuge(*kpte));
  454. /*
  455. * If we ever want to utilize the PAT bit, we need to
  456. * update this function to make sure it's converted from
  457. * bit 12 to bit 7 when we cross from the 2MB level to
  458. * the 4K level:
  459. */
  460. WARN_ON_ONCE(pgprot_val(ref_prot) & _PAGE_PAT_LARGE);
  461. #ifdef CONFIG_X86_64
  462. if (level == PG_LEVEL_1G) {
  463. pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
  464. pgprot_val(ref_prot) |= _PAGE_PSE;
  465. }
  466. #endif
  467. /*
  468. * Get the target pfn from the original entry:
  469. */
  470. pfn = pte_pfn(*kpte);
  471. for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
  472. set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
  473. if (address >= (unsigned long)__va(0) &&
  474. address < (unsigned long)__va(max_low_pfn_mapped << PAGE_SHIFT))
  475. split_page_count(level);
  476. #ifdef CONFIG_X86_64
  477. if (address >= (unsigned long)__va(1UL<<32) &&
  478. address < (unsigned long)__va(max_pfn_mapped << PAGE_SHIFT))
  479. split_page_count(level);
  480. #endif
  481. /*
  482. * Install the new, split up pagetable.
  483. *
  484. * We use the standard kernel pagetable protections for the new
  485. * pagetable protections, the actual ptes set above control the
  486. * primary protection behavior:
  487. */
  488. __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
  489. /*
  490. * Intel Atom errata AAH41 workaround.
  491. *
  492. * The real fix should be in hw or in a microcode update, but
  493. * we also probabilistically try to reduce the window of having
  494. * a large TLB mixed with 4K TLBs while instruction fetches are
  495. * going on.
  496. */
  497. __flush_tlb_all();
  498. base = NULL;
  499. out_unlock:
  500. /*
  501. * If we dropped out via the lookup_address check under
  502. * pgd_lock then stick the page back into the pool:
  503. */
  504. if (base)
  505. __free_page(base);
  506. spin_unlock(&pgd_lock);
  507. return 0;
  508. }
  509. static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
  510. int primary)
  511. {
  512. /*
  513. * Ignore all non primary paths.
  514. */
  515. if (!primary)
  516. return 0;
  517. /*
  518. * Ignore the NULL PTE for kernel identity mapping, as it is expected
  519. * to have holes.
  520. * Also set numpages to '1' indicating that we processed cpa req for
  521. * one virtual address page and its pfn. TBD: numpages can be set based
  522. * on the initial value and the level returned by lookup_address().
  523. */
  524. if (within(vaddr, PAGE_OFFSET,
  525. PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
  526. cpa->numpages = 1;
  527. cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
  528. return 0;
  529. } else {
  530. WARN(1, KERN_WARNING "CPA: called for zero pte. "
  531. "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
  532. *cpa->vaddr);
  533. return -EFAULT;
  534. }
  535. }
  536. static int __change_page_attr(struct cpa_data *cpa, int primary)
  537. {
  538. unsigned long address;
  539. int do_split, err;
  540. unsigned int level;
  541. pte_t *kpte, old_pte;
  542. if (cpa->flags & CPA_PAGES_ARRAY) {
  543. struct page *page = cpa->pages[cpa->curpage];
  544. if (unlikely(PageHighMem(page)))
  545. return 0;
  546. address = (unsigned long)page_address(page);
  547. } else if (cpa->flags & CPA_ARRAY)
  548. address = cpa->vaddr[cpa->curpage];
  549. else
  550. address = *cpa->vaddr;
  551. repeat:
  552. kpte = lookup_address(address, &level);
  553. if (!kpte)
  554. return __cpa_process_fault(cpa, address, primary);
  555. old_pte = *kpte;
  556. if (!pte_val(old_pte))
  557. return __cpa_process_fault(cpa, address, primary);
  558. if (level == PG_LEVEL_4K) {
  559. pte_t new_pte;
  560. pgprot_t new_prot = pte_pgprot(old_pte);
  561. unsigned long pfn = pte_pfn(old_pte);
  562. pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
  563. pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
  564. new_prot = static_protections(new_prot, address, pfn);
  565. /*
  566. * We need to keep the pfn from the existing PTE,
  567. * after all we're only going to change it's attributes
  568. * not the memory it points to
  569. */
  570. new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
  571. cpa->pfn = pfn;
  572. /*
  573. * Do we really change anything ?
  574. */
  575. if (pte_val(old_pte) != pte_val(new_pte)) {
  576. set_pte_atomic(kpte, new_pte);
  577. cpa->flags |= CPA_FLUSHTLB;
  578. }
  579. cpa->numpages = 1;
  580. return 0;
  581. }
  582. /*
  583. * Check, whether we can keep the large page intact
  584. * and just change the pte:
  585. */
  586. do_split = try_preserve_large_page(kpte, address, cpa);
  587. /*
  588. * When the range fits into the existing large page,
  589. * return. cp->numpages and cpa->tlbflush have been updated in
  590. * try_large_page:
  591. */
  592. if (do_split <= 0)
  593. return do_split;
  594. /*
  595. * We have to split the large page:
  596. */
  597. err = split_large_page(kpte, address);
  598. if (!err) {
  599. /*
  600. * Do a global flush tlb after splitting the large page
  601. * and before we do the actual change page attribute in the PTE.
  602. *
  603. * With out this, we violate the TLB application note, that says
  604. * "The TLBs may contain both ordinary and large-page
  605. * translations for a 4-KByte range of linear addresses. This
  606. * may occur if software modifies the paging structures so that
  607. * the page size used for the address range changes. If the two
  608. * translations differ with respect to page frame or attributes
  609. * (e.g., permissions), processor behavior is undefined and may
  610. * be implementation-specific."
  611. *
  612. * We do this global tlb flush inside the cpa_lock, so that we
  613. * don't allow any other cpu, with stale tlb entries change the
  614. * page attribute in parallel, that also falls into the
  615. * just split large page entry.
  616. */
  617. flush_tlb_all();
  618. goto repeat;
  619. }
  620. return err;
  621. }
  622. static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
  623. static int cpa_process_alias(struct cpa_data *cpa)
  624. {
  625. struct cpa_data alias_cpa;
  626. unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
  627. unsigned long vaddr;
  628. int ret;
  629. if (cpa->pfn >= max_pfn_mapped)
  630. return 0;
  631. #ifdef CONFIG_X86_64
  632. if (cpa->pfn >= max_low_pfn_mapped && cpa->pfn < (1UL<<(32-PAGE_SHIFT)))
  633. return 0;
  634. #endif
  635. /*
  636. * No need to redo, when the primary call touched the direct
  637. * mapping already:
  638. */
  639. if (cpa->flags & CPA_PAGES_ARRAY) {
  640. struct page *page = cpa->pages[cpa->curpage];
  641. if (unlikely(PageHighMem(page)))
  642. return 0;
  643. vaddr = (unsigned long)page_address(page);
  644. } else if (cpa->flags & CPA_ARRAY)
  645. vaddr = cpa->vaddr[cpa->curpage];
  646. else
  647. vaddr = *cpa->vaddr;
  648. if (!(within(vaddr, PAGE_OFFSET,
  649. PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
  650. alias_cpa = *cpa;
  651. alias_cpa.vaddr = &laddr;
  652. alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
  653. ret = __change_page_attr_set_clr(&alias_cpa, 0);
  654. if (ret)
  655. return ret;
  656. }
  657. #ifdef CONFIG_X86_64
  658. /*
  659. * If the primary call didn't touch the high mapping already
  660. * and the physical address is inside the kernel map, we need
  661. * to touch the high mapped kernel as well:
  662. */
  663. if (!within(vaddr, (unsigned long)_text, _brk_end) &&
  664. within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
  665. unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
  666. __START_KERNEL_map - phys_base;
  667. alias_cpa = *cpa;
  668. alias_cpa.vaddr = &temp_cpa_vaddr;
  669. alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
  670. /*
  671. * The high mapping range is imprecise, so ignore the
  672. * return value.
  673. */
  674. __change_page_attr_set_clr(&alias_cpa, 0);
  675. }
  676. #endif
  677. return 0;
  678. }
  679. static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
  680. {
  681. int ret, numpages = cpa->numpages;
  682. while (numpages) {
  683. /*
  684. * Store the remaining nr of pages for the large page
  685. * preservation check.
  686. */
  687. cpa->numpages = numpages;
  688. /* for array changes, we can't use large page */
  689. if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
  690. cpa->numpages = 1;
  691. if (!debug_pagealloc)
  692. spin_lock(&cpa_lock);
  693. ret = __change_page_attr(cpa, checkalias);
  694. if (!debug_pagealloc)
  695. spin_unlock(&cpa_lock);
  696. if (ret)
  697. return ret;
  698. if (checkalias) {
  699. ret = cpa_process_alias(cpa);
  700. if (ret)
  701. return ret;
  702. }
  703. /*
  704. * Adjust the number of pages with the result of the
  705. * CPA operation. Either a large page has been
  706. * preserved or a single page update happened.
  707. */
  708. BUG_ON(cpa->numpages > numpages);
  709. numpages -= cpa->numpages;
  710. if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
  711. cpa->curpage++;
  712. else
  713. *cpa->vaddr += cpa->numpages * PAGE_SIZE;
  714. }
  715. return 0;
  716. }
  717. static inline int cache_attr(pgprot_t attr)
  718. {
  719. return pgprot_val(attr) &
  720. (_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
  721. }
  722. static int change_page_attr_set_clr(unsigned long *addr, int numpages,
  723. pgprot_t mask_set, pgprot_t mask_clr,
  724. int force_split, int in_flag,
  725. struct page **pages)
  726. {
  727. struct cpa_data cpa;
  728. int ret, cache, checkalias;
  729. unsigned long baddr = 0;
  730. /*
  731. * Check, if we are requested to change a not supported
  732. * feature:
  733. */
  734. mask_set = canon_pgprot(mask_set);
  735. mask_clr = canon_pgprot(mask_clr);
  736. if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
  737. return 0;
  738. /* Ensure we are PAGE_SIZE aligned */
  739. if (in_flag & CPA_ARRAY) {
  740. int i;
  741. for (i = 0; i < numpages; i++) {
  742. if (addr[i] & ~PAGE_MASK) {
  743. addr[i] &= PAGE_MASK;
  744. WARN_ON_ONCE(1);
  745. }
  746. }
  747. } else if (!(in_flag & CPA_PAGES_ARRAY)) {
  748. /*
  749. * in_flag of CPA_PAGES_ARRAY implies it is aligned.
  750. * No need to cehck in that case
  751. */
  752. if (*addr & ~PAGE_MASK) {
  753. *addr &= PAGE_MASK;
  754. /*
  755. * People should not be passing in unaligned addresses:
  756. */
  757. WARN_ON_ONCE(1);
  758. }
  759. /*
  760. * Save address for cache flush. *addr is modified in the call
  761. * to __change_page_attr_set_clr() below.
  762. */
  763. baddr = *addr;
  764. }
  765. /* Must avoid aliasing mappings in the highmem code */
  766. kmap_flush_unused();
  767. vm_unmap_aliases();
  768. cpa.vaddr = addr;
  769. cpa.pages = pages;
  770. cpa.numpages = numpages;
  771. cpa.mask_set = mask_set;
  772. cpa.mask_clr = mask_clr;
  773. cpa.flags = 0;
  774. cpa.curpage = 0;
  775. cpa.force_split = force_split;
  776. if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
  777. cpa.flags |= in_flag;
  778. /* No alias checking for _NX bit modifications */
  779. checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
  780. ret = __change_page_attr_set_clr(&cpa, checkalias);
  781. /*
  782. * Check whether we really changed something:
  783. */
  784. if (!(cpa.flags & CPA_FLUSHTLB))
  785. goto out;
  786. /*
  787. * No need to flush, when we did not set any of the caching
  788. * attributes:
  789. */
  790. cache = cache_attr(mask_set);
  791. /*
  792. * On success we use clflush, when the CPU supports it to
  793. * avoid the wbindv. If the CPU does not support it, in the
  794. * error case, and during early boot (for EFI) we fall back
  795. * to cpa_flush_all (which uses wbinvd):
  796. */
  797. if (early_boot_irqs_disabled)
  798. __cpa_flush_all((void *)(long)cache);
  799. else if (!ret && cpu_has_clflush) {
  800. if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
  801. cpa_flush_array(addr, numpages, cache,
  802. cpa.flags, pages);
  803. } else
  804. cpa_flush_range(baddr, numpages, cache);
  805. } else
  806. cpa_flush_all(cache);
  807. out:
  808. return ret;
  809. }
  810. static inline int change_page_attr_set(unsigned long *addr, int numpages,
  811. pgprot_t mask, int array)
  812. {
  813. return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
  814. (array ? CPA_ARRAY : 0), NULL);
  815. }
  816. static inline int change_page_attr_clear(unsigned long *addr, int numpages,
  817. pgprot_t mask, int array)
  818. {
  819. return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
  820. (array ? CPA_ARRAY : 0), NULL);
  821. }
  822. static inline int cpa_set_pages_array(struct page **pages, int numpages,
  823. pgprot_t mask)
  824. {
  825. return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
  826. CPA_PAGES_ARRAY, pages);
  827. }
  828. static inline int cpa_clear_pages_array(struct page **pages, int numpages,
  829. pgprot_t mask)
  830. {
  831. return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
  832. CPA_PAGES_ARRAY, pages);
  833. }
  834. int _set_memory_uc(unsigned long addr, int numpages)
  835. {
  836. /*
  837. * for now UC MINUS. see comments in ioremap_nocache()
  838. */
  839. return change_page_attr_set(&addr, numpages,
  840. __pgprot(_PAGE_CACHE_UC_MINUS), 0);
  841. }
  842. int set_memory_uc(unsigned long addr, int numpages)
  843. {
  844. int ret;
  845. /*
  846. * for now UC MINUS. see comments in ioremap_nocache()
  847. */
  848. ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
  849. _PAGE_CACHE_UC_MINUS, NULL);
  850. if (ret)
  851. goto out_err;
  852. ret = _set_memory_uc(addr, numpages);
  853. if (ret)
  854. goto out_free;
  855. return 0;
  856. out_free:
  857. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  858. out_err:
  859. return ret;
  860. }
  861. EXPORT_SYMBOL(set_memory_uc);
  862. static int _set_memory_array(unsigned long *addr, int addrinarray,
  863. unsigned long new_type)
  864. {
  865. int i, j;
  866. int ret;
  867. /*
  868. * for now UC MINUS. see comments in ioremap_nocache()
  869. */
  870. for (i = 0; i < addrinarray; i++) {
  871. ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
  872. new_type, NULL);
  873. if (ret)
  874. goto out_free;
  875. }
  876. ret = change_page_attr_set(addr, addrinarray,
  877. __pgprot(_PAGE_CACHE_UC_MINUS), 1);
  878. if (!ret && new_type == _PAGE_CACHE_WC)
  879. ret = change_page_attr_set_clr(addr, addrinarray,
  880. __pgprot(_PAGE_CACHE_WC),
  881. __pgprot(_PAGE_CACHE_MASK),
  882. 0, CPA_ARRAY, NULL);
  883. if (ret)
  884. goto out_free;
  885. return 0;
  886. out_free:
  887. for (j = 0; j < i; j++)
  888. free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
  889. return ret;
  890. }
  891. int set_memory_array_uc(unsigned long *addr, int addrinarray)
  892. {
  893. return _set_memory_array(addr, addrinarray, _PAGE_CACHE_UC_MINUS);
  894. }
  895. EXPORT_SYMBOL(set_memory_array_uc);
  896. int set_memory_array_wc(unsigned long *addr, int addrinarray)
  897. {
  898. return _set_memory_array(addr, addrinarray, _PAGE_CACHE_WC);
  899. }
  900. EXPORT_SYMBOL(set_memory_array_wc);
  901. int _set_memory_wc(unsigned long addr, int numpages)
  902. {
  903. int ret;
  904. unsigned long addr_copy = addr;
  905. ret = change_page_attr_set(&addr, numpages,
  906. __pgprot(_PAGE_CACHE_UC_MINUS), 0);
  907. if (!ret) {
  908. ret = change_page_attr_set_clr(&addr_copy, numpages,
  909. __pgprot(_PAGE_CACHE_WC),
  910. __pgprot(_PAGE_CACHE_MASK),
  911. 0, 0, NULL);
  912. }
  913. return ret;
  914. }
  915. int set_memory_wc(unsigned long addr, int numpages)
  916. {
  917. int ret;
  918. if (!pat_enabled)
  919. return set_memory_uc(addr, numpages);
  920. ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
  921. _PAGE_CACHE_WC, NULL);
  922. if (ret)
  923. goto out_err;
  924. ret = _set_memory_wc(addr, numpages);
  925. if (ret)
  926. goto out_free;
  927. return 0;
  928. out_free:
  929. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  930. out_err:
  931. return ret;
  932. }
  933. EXPORT_SYMBOL(set_memory_wc);
  934. int _set_memory_wb(unsigned long addr, int numpages)
  935. {
  936. return change_page_attr_clear(&addr, numpages,
  937. __pgprot(_PAGE_CACHE_MASK), 0);
  938. }
  939. int set_memory_wb(unsigned long addr, int numpages)
  940. {
  941. int ret;
  942. ret = _set_memory_wb(addr, numpages);
  943. if (ret)
  944. return ret;
  945. free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
  946. return 0;
  947. }
  948. EXPORT_SYMBOL(set_memory_wb);
  949. int set_memory_array_wb(unsigned long *addr, int addrinarray)
  950. {
  951. int i;
  952. int ret;
  953. ret = change_page_attr_clear(addr, addrinarray,
  954. __pgprot(_PAGE_CACHE_MASK), 1);
  955. if (ret)
  956. return ret;
  957. for (i = 0; i < addrinarray; i++)
  958. free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
  959. return 0;
  960. }
  961. EXPORT_SYMBOL(set_memory_array_wb);
  962. int set_memory_x(unsigned long addr, int numpages)
  963. {
  964. if (!(__supported_pte_mask & _PAGE_NX))
  965. return 0;
  966. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
  967. }
  968. EXPORT_SYMBOL(set_memory_x);
  969. int set_memory_nx(unsigned long addr, int numpages)
  970. {
  971. if (!(__supported_pte_mask & _PAGE_NX))
  972. return 0;
  973. return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
  974. }
  975. EXPORT_SYMBOL(set_memory_nx);
  976. int set_memory_ro(unsigned long addr, int numpages)
  977. {
  978. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
  979. }
  980. EXPORT_SYMBOL_GPL(set_memory_ro);
  981. int set_memory_rw(unsigned long addr, int numpages)
  982. {
  983. return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
  984. }
  985. EXPORT_SYMBOL_GPL(set_memory_rw);
  986. int set_memory_np(unsigned long addr, int numpages)
  987. {
  988. return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
  989. }
  990. int set_memory_4k(unsigned long addr, int numpages)
  991. {
  992. return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
  993. __pgprot(0), 1, 0, NULL);
  994. }
  995. int set_pages_uc(struct page *page, int numpages)
  996. {
  997. unsigned long addr = (unsigned long)page_address(page);
  998. return set_memory_uc(addr, numpages);
  999. }
  1000. EXPORT_SYMBOL(set_pages_uc);
  1001. static int _set_pages_array(struct page **pages, int addrinarray,
  1002. unsigned long new_type)
  1003. {
  1004. unsigned long start;
  1005. unsigned long end;
  1006. int i;
  1007. int free_idx;
  1008. int ret;
  1009. for (i = 0; i < addrinarray; i++) {
  1010. if (PageHighMem(pages[i]))
  1011. continue;
  1012. start = page_to_pfn(pages[i]) << PAGE_SHIFT;
  1013. end = start + PAGE_SIZE;
  1014. if (reserve_memtype(start, end, new_type, NULL))
  1015. goto err_out;
  1016. }
  1017. ret = cpa_set_pages_array(pages, addrinarray,
  1018. __pgprot(_PAGE_CACHE_UC_MINUS));
  1019. if (!ret && new_type == _PAGE_CACHE_WC)
  1020. ret = change_page_attr_set_clr(NULL, addrinarray,
  1021. __pgprot(_PAGE_CACHE_WC),
  1022. __pgprot(_PAGE_CACHE_MASK),
  1023. 0, CPA_PAGES_ARRAY, pages);
  1024. if (ret)
  1025. goto err_out;
  1026. return 0; /* Success */
  1027. err_out:
  1028. free_idx = i;
  1029. for (i = 0; i < free_idx; i++) {
  1030. if (PageHighMem(pages[i]))
  1031. continue;
  1032. start = page_to_pfn(pages[i]) << PAGE_SHIFT;
  1033. end = start + PAGE_SIZE;
  1034. free_memtype(start, end);
  1035. }
  1036. return -EINVAL;
  1037. }
  1038. int set_pages_array_uc(struct page **pages, int addrinarray)
  1039. {
  1040. return _set_pages_array(pages, addrinarray, _PAGE_CACHE_UC_MINUS);
  1041. }
  1042. EXPORT_SYMBOL(set_pages_array_uc);
  1043. int set_pages_array_wc(struct page **pages, int addrinarray)
  1044. {
  1045. return _set_pages_array(pages, addrinarray, _PAGE_CACHE_WC);
  1046. }
  1047. EXPORT_SYMBOL(set_pages_array_wc);
  1048. int set_pages_wb(struct page *page, int numpages)
  1049. {
  1050. unsigned long addr = (unsigned long)page_address(page);
  1051. return set_memory_wb(addr, numpages);
  1052. }
  1053. EXPORT_SYMBOL(set_pages_wb);
  1054. int set_pages_array_wb(struct page **pages, int addrinarray)
  1055. {
  1056. int retval;
  1057. unsigned long start;
  1058. unsigned long end;
  1059. int i;
  1060. retval = cpa_clear_pages_array(pages, addrinarray,
  1061. __pgprot(_PAGE_CACHE_MASK));
  1062. if (retval)
  1063. return retval;
  1064. for (i = 0; i < addrinarray; i++) {
  1065. if (PageHighMem(pages[i]))
  1066. continue;
  1067. start = page_to_pfn(pages[i]) << PAGE_SHIFT;
  1068. end = start + PAGE_SIZE;
  1069. free_memtype(start, end);
  1070. }
  1071. return 0;
  1072. }
  1073. EXPORT_SYMBOL(set_pages_array_wb);
  1074. int set_pages_x(struct page *page, int numpages)
  1075. {
  1076. unsigned long addr = (unsigned long)page_address(page);
  1077. return set_memory_x(addr, numpages);
  1078. }
  1079. EXPORT_SYMBOL(set_pages_x);
  1080. int set_pages_nx(struct page *page, int numpages)
  1081. {
  1082. unsigned long addr = (unsigned long)page_address(page);
  1083. return set_memory_nx(addr, numpages);
  1084. }
  1085. EXPORT_SYMBOL(set_pages_nx);
  1086. int set_pages_ro(struct page *page, int numpages)
  1087. {
  1088. unsigned long addr = (unsigned long)page_address(page);
  1089. return set_memory_ro(addr, numpages);
  1090. }
  1091. int set_pages_rw(struct page *page, int numpages)
  1092. {
  1093. unsigned long addr = (unsigned long)page_address(page);
  1094. return set_memory_rw(addr, numpages);
  1095. }
  1096. #ifdef CONFIG_DEBUG_PAGEALLOC
  1097. static int __set_pages_p(struct page *page, int numpages)
  1098. {
  1099. unsigned long tempaddr = (unsigned long) page_address(page);
  1100. struct cpa_data cpa = { .vaddr = &tempaddr,
  1101. .numpages = numpages,
  1102. .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
  1103. .mask_clr = __pgprot(0),
  1104. .flags = 0};
  1105. /*
  1106. * No alias checking needed for setting present flag. otherwise,
  1107. * we may need to break large pages for 64-bit kernel text
  1108. * mappings (this adds to complexity if we want to do this from
  1109. * atomic context especially). Let's keep it simple!
  1110. */
  1111. return __change_page_attr_set_clr(&cpa, 0);
  1112. }
  1113. static int __set_pages_np(struct page *page, int numpages)
  1114. {
  1115. unsigned long tempaddr = (unsigned long) page_address(page);
  1116. struct cpa_data cpa = { .vaddr = &tempaddr,
  1117. .numpages = numpages,
  1118. .mask_set = __pgprot(0),
  1119. .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
  1120. .flags = 0};
  1121. /*
  1122. * No alias checking needed for setting not present flag. otherwise,
  1123. * we may need to break large pages for 64-bit kernel text
  1124. * mappings (this adds to complexity if we want to do this from
  1125. * atomic context especially). Let's keep it simple!
  1126. */
  1127. return __change_page_attr_set_clr(&cpa, 0);
  1128. }
  1129. void kernel_map_pages(struct page *page, int numpages, int enable)
  1130. {
  1131. if (PageHighMem(page))
  1132. return;
  1133. if (!enable) {
  1134. debug_check_no_locks_freed(page_address(page),
  1135. numpages * PAGE_SIZE);
  1136. }
  1137. /*
  1138. * The return value is ignored as the calls cannot fail.
  1139. * Large pages for identity mappings are not used at boot time
  1140. * and hence no memory allocations during large page split.
  1141. */
  1142. if (enable)
  1143. __set_pages_p(page, numpages);
  1144. else
  1145. __set_pages_np(page, numpages);
  1146. /*
  1147. * We should perform an IPI and flush all tlbs,
  1148. * but that can deadlock->flush only current cpu:
  1149. */
  1150. __flush_tlb_all();
  1151. }
  1152. #ifdef CONFIG_HIBERNATION
  1153. bool kernel_page_present(struct page *page)
  1154. {
  1155. unsigned int level;
  1156. pte_t *pte;
  1157. if (PageHighMem(page))
  1158. return false;
  1159. pte = lookup_address((unsigned long)page_address(page), &level);
  1160. return (pte_val(*pte) & _PAGE_PRESENT);
  1161. }
  1162. #endif /* CONFIG_HIBERNATION */
  1163. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1164. /*
  1165. * The testcases use internal knowledge of the implementation that shouldn't
  1166. * be exposed to the rest of the kernel. Include these directly here.
  1167. */
  1168. #ifdef CONFIG_CPA_DEBUG
  1169. #include "pageattr-test.c"
  1170. #endif