paging_tmpl.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. /*
  21. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  22. * so the code in this file is compiled twice, once per pte size.
  23. */
  24. #if PTTYPE == 64
  25. #define pt_element_t u64
  26. #define guest_walker guest_walker64
  27. #define FNAME(name) paging##64_##name
  28. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  29. #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
  30. #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
  31. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
  46. #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
  47. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  48. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  49. #define PT_MAX_FULL_LEVELS 2
  50. #define CMPXCHG cmpxchg
  51. #else
  52. #error Invalid PTTYPE value
  53. #endif
  54. #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
  55. #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
  56. /*
  57. * The guest_walker structure emulates the behavior of the hardware page
  58. * table walker.
  59. */
  60. struct guest_walker {
  61. int level;
  62. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  63. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  64. pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
  65. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  66. unsigned pt_access;
  67. unsigned pte_access;
  68. gfn_t gfn;
  69. struct x86_exception fault;
  70. };
  71. static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
  72. {
  73. return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
  74. }
  75. static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  76. pt_element_t __user *ptep_user, unsigned index,
  77. pt_element_t orig_pte, pt_element_t new_pte)
  78. {
  79. int npages;
  80. pt_element_t ret;
  81. pt_element_t *table;
  82. struct page *page;
  83. npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
  84. /* Check if the user is doing something meaningless. */
  85. if (unlikely(npages != 1))
  86. return -EFAULT;
  87. table = kmap_atomic(page);
  88. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  89. kunmap_atomic(table);
  90. kvm_release_page_dirty(page);
  91. return (ret != orig_pte);
  92. }
  93. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte,
  94. bool last)
  95. {
  96. unsigned access;
  97. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  98. if (last && !is_dirty_gpte(gpte))
  99. access &= ~ACC_WRITE_MASK;
  100. #if PTTYPE == 64
  101. if (vcpu->arch.mmu.nx)
  102. access &= ~(gpte >> PT64_NX_SHIFT);
  103. #endif
  104. return access;
  105. }
  106. static bool FNAME(is_last_gpte)(struct guest_walker *walker,
  107. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  108. pt_element_t gpte)
  109. {
  110. if (walker->level == PT_PAGE_TABLE_LEVEL)
  111. return true;
  112. if ((walker->level == PT_DIRECTORY_LEVEL) && is_large_pte(gpte) &&
  113. (PTTYPE == 64 || is_pse(vcpu)))
  114. return true;
  115. if ((walker->level == PT_PDPE_LEVEL) && is_large_pte(gpte) &&
  116. (mmu->root_level == PT64_ROOT_LEVEL))
  117. return true;
  118. return false;
  119. }
  120. /*
  121. * Fetch a guest pte for a guest virtual address
  122. */
  123. static int FNAME(walk_addr_generic)(struct guest_walker *walker,
  124. struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  125. gva_t addr, u32 access)
  126. {
  127. pt_element_t pte;
  128. pt_element_t __user *uninitialized_var(ptep_user);
  129. gfn_t table_gfn;
  130. unsigned index, pt_access, uninitialized_var(pte_access);
  131. gpa_t pte_gpa;
  132. bool eperm, last_gpte;
  133. int offset;
  134. const int write_fault = access & PFERR_WRITE_MASK;
  135. const int user_fault = access & PFERR_USER_MASK;
  136. const int fetch_fault = access & PFERR_FETCH_MASK;
  137. u16 errcode = 0;
  138. trace_kvm_mmu_pagetable_walk(addr, access);
  139. retry_walk:
  140. eperm = false;
  141. walker->level = mmu->root_level;
  142. pte = mmu->get_cr3(vcpu);
  143. #if PTTYPE == 64
  144. if (walker->level == PT32E_ROOT_LEVEL) {
  145. pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
  146. trace_kvm_mmu_paging_element(pte, walker->level);
  147. if (!is_present_gpte(pte))
  148. goto error;
  149. --walker->level;
  150. }
  151. #endif
  152. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  153. (mmu->get_cr3(vcpu) & CR3_NONPAE_RESERVED_BITS) == 0);
  154. pt_access = ACC_ALL;
  155. for (;;) {
  156. gfn_t real_gfn;
  157. unsigned long host_addr;
  158. index = PT_INDEX(addr, walker->level);
  159. table_gfn = gpte_to_gfn(pte);
  160. offset = index * sizeof(pt_element_t);
  161. pte_gpa = gfn_to_gpa(table_gfn) + offset;
  162. walker->table_gfn[walker->level - 1] = table_gfn;
  163. walker->pte_gpa[walker->level - 1] = pte_gpa;
  164. real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
  165. PFERR_USER_MASK|PFERR_WRITE_MASK);
  166. if (unlikely(real_gfn == UNMAPPED_GVA))
  167. goto error;
  168. real_gfn = gpa_to_gfn(real_gfn);
  169. host_addr = gfn_to_hva(vcpu->kvm, real_gfn);
  170. if (unlikely(kvm_is_error_hva(host_addr)))
  171. goto error;
  172. ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
  173. if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
  174. goto error;
  175. trace_kvm_mmu_paging_element(pte, walker->level);
  176. if (unlikely(!is_present_gpte(pte)))
  177. goto error;
  178. if (unlikely(is_rsvd_bits_set(&vcpu->arch.mmu, pte,
  179. walker->level))) {
  180. errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
  181. goto error;
  182. }
  183. if (!check_write_user_access(vcpu, write_fault, user_fault,
  184. pte))
  185. eperm = true;
  186. #if PTTYPE == 64
  187. if (unlikely(fetch_fault && (pte & PT64_NX_MASK)))
  188. eperm = true;
  189. #endif
  190. last_gpte = FNAME(is_last_gpte)(walker, vcpu, mmu, pte);
  191. if (last_gpte) {
  192. pte_access = pt_access &
  193. FNAME(gpte_access)(vcpu, pte, true);
  194. /* check if the kernel is fetching from user page */
  195. if (unlikely(pte_access & PT_USER_MASK) &&
  196. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  197. if (fetch_fault && !user_fault)
  198. eperm = true;
  199. }
  200. if (!eperm && unlikely(!(pte & PT_ACCESSED_MASK))) {
  201. int ret;
  202. trace_kvm_mmu_set_accessed_bit(table_gfn, index,
  203. sizeof(pte));
  204. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
  205. pte, pte|PT_ACCESSED_MASK);
  206. if (unlikely(ret < 0))
  207. goto error;
  208. else if (ret)
  209. goto retry_walk;
  210. mark_page_dirty(vcpu->kvm, table_gfn);
  211. pte |= PT_ACCESSED_MASK;
  212. }
  213. walker->ptes[walker->level - 1] = pte;
  214. if (last_gpte) {
  215. int lvl = walker->level;
  216. gpa_t real_gpa;
  217. gfn_t gfn;
  218. u32 ac;
  219. gfn = gpte_to_gfn_lvl(pte, lvl);
  220. gfn += (addr & PT_LVL_OFFSET_MASK(lvl)) >> PAGE_SHIFT;
  221. if (PTTYPE == 32 &&
  222. walker->level == PT_DIRECTORY_LEVEL &&
  223. is_cpuid_PSE36())
  224. gfn += pse36_gfn_delta(pte);
  225. ac = write_fault | fetch_fault | user_fault;
  226. real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn),
  227. ac);
  228. if (real_gpa == UNMAPPED_GVA)
  229. return 0;
  230. walker->gfn = real_gpa >> PAGE_SHIFT;
  231. break;
  232. }
  233. pt_access &= FNAME(gpte_access)(vcpu, pte, false);
  234. --walker->level;
  235. }
  236. if (unlikely(eperm)) {
  237. errcode |= PFERR_PRESENT_MASK;
  238. goto error;
  239. }
  240. if (write_fault && unlikely(!is_dirty_gpte(pte))) {
  241. int ret;
  242. trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
  243. ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index,
  244. pte, pte|PT_DIRTY_MASK);
  245. if (unlikely(ret < 0))
  246. goto error;
  247. else if (ret)
  248. goto retry_walk;
  249. mark_page_dirty(vcpu->kvm, table_gfn);
  250. pte |= PT_DIRTY_MASK;
  251. walker->ptes[walker->level - 1] = pte;
  252. }
  253. walker->pt_access = pt_access;
  254. walker->pte_access = pte_access;
  255. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  256. __func__, (u64)pte, pte_access, pt_access);
  257. return 1;
  258. error:
  259. errcode |= write_fault | user_fault;
  260. if (fetch_fault && (mmu->nx ||
  261. kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
  262. errcode |= PFERR_FETCH_MASK;
  263. walker->fault.vector = PF_VECTOR;
  264. walker->fault.error_code_valid = true;
  265. walker->fault.error_code = errcode;
  266. walker->fault.address = addr;
  267. walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
  268. trace_kvm_mmu_walker_error(walker->fault.error_code);
  269. return 0;
  270. }
  271. static int FNAME(walk_addr)(struct guest_walker *walker,
  272. struct kvm_vcpu *vcpu, gva_t addr, u32 access)
  273. {
  274. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
  275. access);
  276. }
  277. static int FNAME(walk_addr_nested)(struct guest_walker *walker,
  278. struct kvm_vcpu *vcpu, gva_t addr,
  279. u32 access)
  280. {
  281. return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
  282. addr, access);
  283. }
  284. static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
  285. struct kvm_mmu_page *sp, u64 *spte,
  286. pt_element_t gpte)
  287. {
  288. if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
  289. goto no_present;
  290. if (!is_present_gpte(gpte))
  291. goto no_present;
  292. if (!(gpte & PT_ACCESSED_MASK))
  293. goto no_present;
  294. return false;
  295. no_present:
  296. drop_spte(vcpu->kvm, spte);
  297. return true;
  298. }
  299. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  300. u64 *spte, const void *pte)
  301. {
  302. pt_element_t gpte;
  303. unsigned pte_access;
  304. pfn_t pfn;
  305. gpte = *(const pt_element_t *)pte;
  306. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  307. return;
  308. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  309. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte, true);
  310. pfn = gfn_to_pfn_atomic(vcpu->kvm, gpte_to_gfn(gpte));
  311. if (mmu_invalid_pfn(pfn)) {
  312. kvm_release_pfn_clean(pfn);
  313. return;
  314. }
  315. /*
  316. * we call mmu_set_spte() with host_writable = true because that
  317. * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
  318. */
  319. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  320. NULL, PT_PAGE_TABLE_LEVEL,
  321. gpte_to_gfn(gpte), pfn, true, true);
  322. }
  323. static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
  324. struct guest_walker *gw, int level)
  325. {
  326. pt_element_t curr_pte;
  327. gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
  328. u64 mask;
  329. int r, index;
  330. if (level == PT_PAGE_TABLE_LEVEL) {
  331. mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
  332. base_gpa = pte_gpa & ~mask;
  333. index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
  334. r = kvm_read_guest_atomic(vcpu->kvm, base_gpa,
  335. gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
  336. curr_pte = gw->prefetch_ptes[index];
  337. } else
  338. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa,
  339. &curr_pte, sizeof(curr_pte));
  340. return r || curr_pte != gw->ptes[level - 1];
  341. }
  342. static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
  343. u64 *sptep)
  344. {
  345. struct kvm_mmu_page *sp;
  346. pt_element_t *gptep = gw->prefetch_ptes;
  347. u64 *spte;
  348. int i;
  349. sp = page_header(__pa(sptep));
  350. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  351. return;
  352. if (sp->role.direct)
  353. return __direct_pte_prefetch(vcpu, sp, sptep);
  354. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  355. spte = sp->spt + i;
  356. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  357. pt_element_t gpte;
  358. unsigned pte_access;
  359. gfn_t gfn;
  360. pfn_t pfn;
  361. if (spte == sptep)
  362. continue;
  363. if (is_shadow_present_pte(*spte))
  364. continue;
  365. gpte = gptep[i];
  366. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
  367. continue;
  368. pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte,
  369. true);
  370. gfn = gpte_to_gfn(gpte);
  371. pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
  372. pte_access & ACC_WRITE_MASK);
  373. if (mmu_invalid_pfn(pfn)) {
  374. kvm_release_pfn_clean(pfn);
  375. break;
  376. }
  377. mmu_set_spte(vcpu, spte, sp->role.access, pte_access, 0, 0,
  378. NULL, PT_PAGE_TABLE_LEVEL, gfn,
  379. pfn, true, true);
  380. }
  381. }
  382. /*
  383. * Fetch a shadow pte for a specific level in the paging hierarchy.
  384. */
  385. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  386. struct guest_walker *gw,
  387. int user_fault, int write_fault, int hlevel,
  388. int *emulate, pfn_t pfn, bool map_writable,
  389. bool prefault)
  390. {
  391. unsigned access = gw->pt_access;
  392. struct kvm_mmu_page *sp = NULL;
  393. int top_level;
  394. unsigned direct_access;
  395. struct kvm_shadow_walk_iterator it;
  396. if (!is_present_gpte(gw->ptes[gw->level - 1]))
  397. return NULL;
  398. direct_access = gw->pte_access;
  399. top_level = vcpu->arch.mmu.root_level;
  400. if (top_level == PT32E_ROOT_LEVEL)
  401. top_level = PT32_ROOT_LEVEL;
  402. /*
  403. * Verify that the top-level gpte is still there. Since the page
  404. * is a root page, it is either write protected (and cannot be
  405. * changed from now on) or it is invalid (in which case, we don't
  406. * really care if it changes underneath us after this point).
  407. */
  408. if (FNAME(gpte_changed)(vcpu, gw, top_level))
  409. goto out_gpte_changed;
  410. for (shadow_walk_init(&it, vcpu, addr);
  411. shadow_walk_okay(&it) && it.level > gw->level;
  412. shadow_walk_next(&it)) {
  413. gfn_t table_gfn;
  414. clear_sp_write_flooding_count(it.sptep);
  415. drop_large_spte(vcpu, it.sptep);
  416. sp = NULL;
  417. if (!is_shadow_present_pte(*it.sptep)) {
  418. table_gfn = gw->table_gfn[it.level - 2];
  419. sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
  420. false, access, it.sptep);
  421. }
  422. /*
  423. * Verify that the gpte in the page we've just write
  424. * protected is still there.
  425. */
  426. if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
  427. goto out_gpte_changed;
  428. if (sp)
  429. link_shadow_page(it.sptep, sp);
  430. }
  431. for (;
  432. shadow_walk_okay(&it) && it.level > hlevel;
  433. shadow_walk_next(&it)) {
  434. gfn_t direct_gfn;
  435. clear_sp_write_flooding_count(it.sptep);
  436. validate_direct_spte(vcpu, it.sptep, direct_access);
  437. drop_large_spte(vcpu, it.sptep);
  438. if (is_shadow_present_pte(*it.sptep))
  439. continue;
  440. direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
  441. sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
  442. true, direct_access, it.sptep);
  443. link_shadow_page(it.sptep, sp);
  444. }
  445. clear_sp_write_flooding_count(it.sptep);
  446. mmu_set_spte(vcpu, it.sptep, access, gw->pte_access,
  447. user_fault, write_fault, emulate, it.level,
  448. gw->gfn, pfn, prefault, map_writable);
  449. FNAME(pte_prefetch)(vcpu, gw, it.sptep);
  450. return it.sptep;
  451. out_gpte_changed:
  452. if (sp)
  453. kvm_mmu_put_page(sp, it.sptep);
  454. kvm_release_pfn_clean(pfn);
  455. return NULL;
  456. }
  457. /*
  458. * Page fault handler. There are several causes for a page fault:
  459. * - there is no shadow pte for the guest pte
  460. * - write access through a shadow pte marked read only so that we can set
  461. * the dirty bit
  462. * - write access to a shadow pte marked read only so we can update the page
  463. * dirty bitmap, when userspace requests it
  464. * - mmio access; in this case we will never install a present shadow pte
  465. * - normal guest page fault due to the guest pte marked not present, not
  466. * writable, or not executable
  467. *
  468. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  469. * a negative value on error.
  470. */
  471. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
  472. bool prefault)
  473. {
  474. int write_fault = error_code & PFERR_WRITE_MASK;
  475. int user_fault = error_code & PFERR_USER_MASK;
  476. struct guest_walker walker;
  477. u64 *sptep;
  478. int emulate = 0;
  479. int r;
  480. pfn_t pfn;
  481. int level = PT_PAGE_TABLE_LEVEL;
  482. int force_pt_level;
  483. unsigned long mmu_seq;
  484. bool map_writable;
  485. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  486. if (unlikely(error_code & PFERR_RSVD_MASK))
  487. return handle_mmio_page_fault(vcpu, addr, error_code,
  488. mmu_is_nested(vcpu));
  489. r = mmu_topup_memory_caches(vcpu);
  490. if (r)
  491. return r;
  492. /*
  493. * Look up the guest pte for the faulting address.
  494. */
  495. r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
  496. /*
  497. * The page is not mapped by the guest. Let the guest handle it.
  498. */
  499. if (!r) {
  500. pgprintk("%s: guest page fault\n", __func__);
  501. if (!prefault)
  502. inject_page_fault(vcpu, &walker.fault);
  503. return 0;
  504. }
  505. if (walker.level >= PT_DIRECTORY_LEVEL)
  506. force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn);
  507. else
  508. force_pt_level = 1;
  509. if (!force_pt_level) {
  510. level = min(walker.level, mapping_level(vcpu, walker.gfn));
  511. walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
  512. }
  513. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  514. smp_rmb();
  515. if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
  516. &map_writable))
  517. return 0;
  518. if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr,
  519. walker.gfn, pfn, walker.pte_access, &r))
  520. return r;
  521. spin_lock(&vcpu->kvm->mmu_lock);
  522. if (mmu_notifier_retry(vcpu, mmu_seq))
  523. goto out_unlock;
  524. kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
  525. kvm_mmu_free_some_pages(vcpu);
  526. if (!force_pt_level)
  527. transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
  528. sptep = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  529. level, &emulate, pfn, map_writable, prefault);
  530. (void)sptep;
  531. pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__,
  532. sptep, *sptep, emulate);
  533. ++vcpu->stat.pf_fixed;
  534. kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
  535. spin_unlock(&vcpu->kvm->mmu_lock);
  536. return emulate;
  537. out_unlock:
  538. spin_unlock(&vcpu->kvm->mmu_lock);
  539. kvm_release_pfn_clean(pfn);
  540. return 0;
  541. }
  542. static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
  543. {
  544. int offset = 0;
  545. WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
  546. if (PTTYPE == 32)
  547. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  548. return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
  549. }
  550. static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
  551. {
  552. struct kvm_shadow_walk_iterator iterator;
  553. struct kvm_mmu_page *sp;
  554. int level;
  555. u64 *sptep;
  556. vcpu_clear_mmio_info(vcpu, gva);
  557. /*
  558. * No need to check return value here, rmap_can_add() can
  559. * help us to skip pte prefetch later.
  560. */
  561. mmu_topup_memory_caches(vcpu);
  562. spin_lock(&vcpu->kvm->mmu_lock);
  563. for_each_shadow_entry(vcpu, gva, iterator) {
  564. level = iterator.level;
  565. sptep = iterator.sptep;
  566. sp = page_header(__pa(sptep));
  567. if (is_last_spte(*sptep, level)) {
  568. pt_element_t gpte;
  569. gpa_t pte_gpa;
  570. if (!sp->unsync)
  571. break;
  572. pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  573. pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
  574. if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
  575. kvm_flush_remote_tlbs(vcpu->kvm);
  576. if (!rmap_can_add(vcpu))
  577. break;
  578. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  579. sizeof(pt_element_t)))
  580. break;
  581. FNAME(update_pte)(vcpu, sp, sptep, &gpte);
  582. }
  583. if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
  584. break;
  585. }
  586. spin_unlock(&vcpu->kvm->mmu_lock);
  587. }
  588. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
  589. struct x86_exception *exception)
  590. {
  591. struct guest_walker walker;
  592. gpa_t gpa = UNMAPPED_GVA;
  593. int r;
  594. r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);
  595. if (r) {
  596. gpa = gfn_to_gpa(walker.gfn);
  597. gpa |= vaddr & ~PAGE_MASK;
  598. } else if (exception)
  599. *exception = walker.fault;
  600. return gpa;
  601. }
  602. static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
  603. u32 access,
  604. struct x86_exception *exception)
  605. {
  606. struct guest_walker walker;
  607. gpa_t gpa = UNMAPPED_GVA;
  608. int r;
  609. r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
  610. if (r) {
  611. gpa = gfn_to_gpa(walker.gfn);
  612. gpa |= vaddr & ~PAGE_MASK;
  613. } else if (exception)
  614. *exception = walker.fault;
  615. return gpa;
  616. }
  617. /*
  618. * Using the cached information from sp->gfns is safe because:
  619. * - The spte has a reference to the struct page, so the pfn for a given gfn
  620. * can't change unless all sptes pointing to it are nuked first.
  621. *
  622. * Note:
  623. * We should flush all tlbs if spte is dropped even though guest is
  624. * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
  625. * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
  626. * used by guest then tlbs are not flushed, so guest is allowed to access the
  627. * freed pages.
  628. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
  629. */
  630. static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  631. {
  632. int i, nr_present = 0;
  633. bool host_writable;
  634. gpa_t first_pte_gpa;
  635. /* direct kvm_mmu_page can not be unsync. */
  636. BUG_ON(sp->role.direct);
  637. first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
  638. for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
  639. unsigned pte_access;
  640. pt_element_t gpte;
  641. gpa_t pte_gpa;
  642. gfn_t gfn;
  643. if (!sp->spt[i])
  644. continue;
  645. pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
  646. if (kvm_read_guest_atomic(vcpu->kvm, pte_gpa, &gpte,
  647. sizeof(pt_element_t)))
  648. return -EINVAL;
  649. if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
  650. vcpu->kvm->tlbs_dirty++;
  651. continue;
  652. }
  653. gfn = gpte_to_gfn(gpte);
  654. pte_access = sp->role.access;
  655. pte_access &= FNAME(gpte_access)(vcpu, gpte, true);
  656. if (sync_mmio_spte(&sp->spt[i], gfn, pte_access, &nr_present))
  657. continue;
  658. if (gfn != sp->gfns[i]) {
  659. drop_spte(vcpu->kvm, &sp->spt[i]);
  660. vcpu->kvm->tlbs_dirty++;
  661. continue;
  662. }
  663. nr_present++;
  664. host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
  665. set_spte(vcpu, &sp->spt[i], pte_access, 0, 0,
  666. PT_PAGE_TABLE_LEVEL, gfn,
  667. spte_to_pfn(sp->spt[i]), true, false,
  668. host_writable);
  669. }
  670. return !nr_present;
  671. }
  672. #undef pt_element_t
  673. #undef guest_walker
  674. #undef FNAME
  675. #undef PT_BASE_ADDR_MASK
  676. #undef PT_INDEX
  677. #undef PT_LVL_ADDR_MASK
  678. #undef PT_LVL_OFFSET_MASK
  679. #undef PT_LEVEL_BITS
  680. #undef PT_MAX_FULL_LEVELS
  681. #undef gpte_to_gfn
  682. #undef gpte_to_gfn_lvl
  683. #undef CMPXCHG