init.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation, version 2.
  8. *
  9. * This program is distributed in the hope that it will be useful, but
  10. * WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12. * NON INFRINGEMENT. See the GNU General Public License for
  13. * more details.
  14. */
  15. #include <linux/module.h>
  16. #include <linux/signal.h>
  17. #include <linux/sched.h>
  18. #include <linux/kernel.h>
  19. #include <linux/errno.h>
  20. #include <linux/string.h>
  21. #include <linux/types.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/mman.h>
  24. #include <linux/mm.h>
  25. #include <linux/hugetlb.h>
  26. #include <linux/swap.h>
  27. #include <linux/smp.h>
  28. #include <linux/init.h>
  29. #include <linux/highmem.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/poison.h>
  32. #include <linux/bootmem.h>
  33. #include <linux/slab.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/efi.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/uaccess.h>
  38. #include <asm/mmu_context.h>
  39. #include <asm/processor.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/pgalloc.h>
  42. #include <asm/dma.h>
  43. #include <asm/fixmap.h>
  44. #include <asm/tlb.h>
  45. #include <asm/tlbflush.h>
  46. #include <asm/sections.h>
  47. #include <asm/setup.h>
  48. #include <asm/homecache.h>
  49. #include <hv/hypervisor.h>
  50. #include <arch/chip.h>
  51. #include "migrate.h"
  52. #define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
  53. #ifndef __tilegx__
  54. unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
  55. EXPORT_SYMBOL(VMALLOC_RESERVE);
  56. #endif
  57. /* Create an L2 page table */
  58. static pte_t * __init alloc_pte(void)
  59. {
  60. return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  61. }
  62. /*
  63. * L2 page tables per controller. We allocate these all at once from
  64. * the bootmem allocator and store them here. This saves on kernel L2
  65. * page table memory, compared to allocating a full 64K page per L2
  66. * page table, and also means that in cases where we use huge pages,
  67. * we are guaranteed to later be able to shatter those huge pages and
  68. * switch to using these page tables instead, without requiring
  69. * further allocation. Each l2_ptes[] entry points to the first page
  70. * table for the first hugepage-size piece of memory on the
  71. * controller; other page tables are just indexed directly, i.e. the
  72. * L2 page tables are contiguous in memory for each controller.
  73. */
  74. static pte_t *l2_ptes[MAX_NUMNODES];
  75. static int num_l2_ptes[MAX_NUMNODES];
  76. static void init_prealloc_ptes(int node, int pages)
  77. {
  78. BUG_ON(pages & (PTRS_PER_PTE - 1));
  79. if (pages) {
  80. num_l2_ptes[node] = pages;
  81. l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
  82. HV_PAGE_TABLE_ALIGN, 0);
  83. }
  84. }
  85. pte_t *get_prealloc_pte(unsigned long pfn)
  86. {
  87. int node = pfn_to_nid(pfn);
  88. pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
  89. BUG_ON(node >= MAX_NUMNODES);
  90. BUG_ON(pfn >= num_l2_ptes[node]);
  91. return &l2_ptes[node][pfn];
  92. }
  93. /*
  94. * What caching do we expect pages from the heap to have when
  95. * they are allocated during bootup? (Once we've installed the
  96. * "real" swapper_pg_dir.)
  97. */
  98. static int initial_heap_home(void)
  99. {
  100. #if CHIP_HAS_CBOX_HOME_MAP()
  101. if (hash_default)
  102. return PAGE_HOME_HASH;
  103. #endif
  104. return smp_processor_id();
  105. }
  106. /*
  107. * Place a pointer to an L2 page table in a middle page
  108. * directory entry.
  109. */
  110. static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
  111. {
  112. phys_addr_t pa = __pa(page_table);
  113. unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
  114. pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
  115. BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
  116. pteval = pte_set_home(pteval, initial_heap_home());
  117. *(pte_t *)pmd = pteval;
  118. if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
  119. BUG();
  120. }
  121. #ifdef __tilegx__
  122. static inline pmd_t *alloc_pmd(void)
  123. {
  124. return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  125. }
  126. static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
  127. {
  128. assign_pte((pmd_t *)pud, (pte_t *)pmd);
  129. }
  130. #endif /* __tilegx__ */
  131. /* Replace the given pmd with a full PTE table. */
  132. void __init shatter_pmd(pmd_t *pmd)
  133. {
  134. pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
  135. assign_pte(pmd, pte);
  136. }
  137. #ifdef __tilegx__
  138. static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
  139. {
  140. pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
  141. if (pud_none(*pud))
  142. assign_pmd(pud, alloc_pmd());
  143. return pmd_offset(pud, va);
  144. }
  145. #else
  146. static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
  147. {
  148. return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
  149. }
  150. #endif
  151. /*
  152. * This function initializes a certain range of kernel virtual memory
  153. * with new bootmem page tables, everywhere page tables are missing in
  154. * the given range.
  155. */
  156. /*
  157. * NOTE: The pagetables are allocated contiguous on the physical space
  158. * so we can cache the place of the first one and move around without
  159. * checking the pgd every time.
  160. */
  161. static void __init page_table_range_init(unsigned long start,
  162. unsigned long end, pgd_t *pgd)
  163. {
  164. unsigned long vaddr;
  165. start = round_down(start, PMD_SIZE);
  166. end = round_up(end, PMD_SIZE);
  167. for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) {
  168. pmd_t *pmd = get_pmd(pgd, vaddr);
  169. if (pmd_none(*pmd))
  170. assign_pte(pmd, alloc_pte());
  171. }
  172. }
  173. #if CHIP_HAS_CBOX_HOME_MAP()
  174. static int __initdata ktext_hash = 1; /* .text pages */
  175. static int __initdata kdata_hash = 1; /* .data and .bss pages */
  176. int __write_once hash_default = 1; /* kernel allocator pages */
  177. EXPORT_SYMBOL(hash_default);
  178. int __write_once kstack_hash = 1; /* if no homecaching, use h4h */
  179. #endif /* CHIP_HAS_CBOX_HOME_MAP */
  180. /*
  181. * CPUs to use to for striping the pages of kernel data. If hash-for-home
  182. * is available, this is only relevant if kcache_hash sets up the
  183. * .data and .bss to be page-homed, and we don't want the default mode
  184. * of using the full set of kernel cpus for the striping.
  185. */
  186. static __initdata struct cpumask kdata_mask;
  187. static __initdata int kdata_arg_seen;
  188. int __write_once kdata_huge; /* if no homecaching, small pages */
  189. /* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
  190. static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
  191. {
  192. prot = pte_set_home(prot, home);
  193. #if CHIP_HAS_CBOX_HOME_MAP()
  194. if (home == PAGE_HOME_IMMUTABLE) {
  195. if (ktext_hash)
  196. prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
  197. else
  198. prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
  199. }
  200. #endif
  201. return prot;
  202. }
  203. /*
  204. * For a given kernel data VA, how should it be cached?
  205. * We return the complete pgprot_t with caching bits set.
  206. */
  207. static pgprot_t __init init_pgprot(ulong address)
  208. {
  209. int cpu;
  210. unsigned long page;
  211. enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
  212. #if CHIP_HAS_CBOX_HOME_MAP()
  213. /* For kdata=huge, everything is just hash-for-home. */
  214. if (kdata_huge)
  215. return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
  216. #endif
  217. /* We map the aliased pages of permanent text inaccessible. */
  218. if (address < (ulong) _sinittext - CODE_DELTA)
  219. return PAGE_NONE;
  220. /*
  221. * We map read-only data non-coherent for performance. We could
  222. * use neighborhood caching on TILE64, but it's not clear it's a win.
  223. */
  224. if ((address >= (ulong) __start_rodata &&
  225. address < (ulong) __end_rodata) ||
  226. address == (ulong) empty_zero_page) {
  227. return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
  228. }
  229. #ifndef __tilegx__
  230. #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
  231. /* Force the atomic_locks[] array page to be hash-for-home. */
  232. if (address == (ulong) atomic_locks)
  233. return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
  234. #endif
  235. #endif
  236. /*
  237. * Everything else that isn't data or bss is heap, so mark it
  238. * with the initial heap home (hash-for-home, or this cpu). This
  239. * includes any addresses after the loaded image and any address before
  240. * _einitdata, since we already captured the case of text before
  241. * _sinittext, and __pa(einittext) is approximately __pa(sinitdata).
  242. *
  243. * All the LOWMEM pages that we mark this way will get their
  244. * struct page homecache properly marked later, in set_page_homes().
  245. * The HIGHMEM pages we leave with a default zero for their
  246. * homes, but with a zero free_time we don't have to actually
  247. * do a flush action the first time we use them, either.
  248. */
  249. if (address >= (ulong) _end || address < (ulong) _einitdata)
  250. return construct_pgprot(PAGE_KERNEL, initial_heap_home());
  251. #if CHIP_HAS_CBOX_HOME_MAP()
  252. /* Use hash-for-home if requested for data/bss. */
  253. if (kdata_hash)
  254. return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
  255. #endif
  256. /*
  257. * Make the w1data homed like heap to start with, to avoid
  258. * making it part of the page-striped data area when we're just
  259. * going to convert it to read-only soon anyway.
  260. */
  261. if (address >= (ulong)__w1data_begin && address < (ulong)__w1data_end)
  262. return construct_pgprot(PAGE_KERNEL, initial_heap_home());
  263. /*
  264. * Otherwise we just hand out consecutive cpus. To avoid
  265. * requiring this function to hold state, we just walk forward from
  266. * _sdata by PAGE_SIZE, skipping the readonly and init data, to reach
  267. * the requested address, while walking cpu home around kdata_mask.
  268. * This is typically no more than a dozen or so iterations.
  269. */
  270. page = (((ulong)__w1data_end) + PAGE_SIZE - 1) & PAGE_MASK;
  271. BUG_ON(address < page || address >= (ulong)_end);
  272. cpu = cpumask_first(&kdata_mask);
  273. for (; page < address; page += PAGE_SIZE) {
  274. if (page >= (ulong)&init_thread_union &&
  275. page < (ulong)&init_thread_union + THREAD_SIZE)
  276. continue;
  277. if (page == (ulong)empty_zero_page)
  278. continue;
  279. #ifndef __tilegx__
  280. #if !ATOMIC_LOCKS_FOUND_VIA_TABLE()
  281. if (page == (ulong)atomic_locks)
  282. continue;
  283. #endif
  284. #endif
  285. cpu = cpumask_next(cpu, &kdata_mask);
  286. if (cpu == NR_CPUS)
  287. cpu = cpumask_first(&kdata_mask);
  288. }
  289. return construct_pgprot(PAGE_KERNEL, cpu);
  290. }
  291. /*
  292. * This function sets up how we cache the kernel text. If we have
  293. * hash-for-home support, normally that is used instead (see the
  294. * kcache_hash boot flag for more information). But if we end up
  295. * using a page-based caching technique, this option sets up the
  296. * details of that. In addition, the "ktext=nocache" option may
  297. * always be used to disable local caching of text pages, if desired.
  298. */
  299. static int __initdata ktext_arg_seen;
  300. static int __initdata ktext_small;
  301. static int __initdata ktext_local;
  302. static int __initdata ktext_all;
  303. static int __initdata ktext_nondataplane;
  304. static int __initdata ktext_nocache;
  305. static struct cpumask __initdata ktext_mask;
  306. static int __init setup_ktext(char *str)
  307. {
  308. if (str == NULL)
  309. return -EINVAL;
  310. /* If you have a leading "nocache", turn off ktext caching */
  311. if (strncmp(str, "nocache", 7) == 0) {
  312. ktext_nocache = 1;
  313. pr_info("ktext: disabling local caching of kernel text\n");
  314. str += 7;
  315. if (*str == ',')
  316. ++str;
  317. if (*str == '\0')
  318. return 0;
  319. }
  320. ktext_arg_seen = 1;
  321. /* Default setting on Tile64: use a huge page */
  322. if (strcmp(str, "huge") == 0)
  323. pr_info("ktext: using one huge locally cached page\n");
  324. /* Pay TLB cost but get no cache benefit: cache small pages locally */
  325. else if (strcmp(str, "local") == 0) {
  326. ktext_small = 1;
  327. ktext_local = 1;
  328. pr_info("ktext: using small pages with local caching\n");
  329. }
  330. /* Neighborhood cache ktext pages on all cpus. */
  331. else if (strcmp(str, "all") == 0) {
  332. ktext_small = 1;
  333. ktext_all = 1;
  334. pr_info("ktext: using maximal caching neighborhood\n");
  335. }
  336. /* Neighborhood ktext pages on specified mask */
  337. else if (cpulist_parse(str, &ktext_mask) == 0) {
  338. char buf[NR_CPUS * 5];
  339. cpulist_scnprintf(buf, sizeof(buf), &ktext_mask);
  340. if (cpumask_weight(&ktext_mask) > 1) {
  341. ktext_small = 1;
  342. pr_info("ktext: using caching neighborhood %s "
  343. "with small pages\n", buf);
  344. } else {
  345. pr_info("ktext: caching on cpu %s with one huge page\n",
  346. buf);
  347. }
  348. }
  349. else if (*str)
  350. return -EINVAL;
  351. return 0;
  352. }
  353. early_param("ktext", setup_ktext);
  354. static inline pgprot_t ktext_set_nocache(pgprot_t prot)
  355. {
  356. if (!ktext_nocache)
  357. prot = hv_pte_set_nc(prot);
  358. #if CHIP_HAS_NC_AND_NOALLOC_BITS()
  359. else
  360. prot = hv_pte_set_no_alloc_l2(prot);
  361. #endif
  362. return prot;
  363. }
  364. /* Temporary page table we use for staging. */
  365. static pgd_t pgtables[PTRS_PER_PGD]
  366. __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
  367. /*
  368. * This maps the physical memory to kernel virtual address space, a total
  369. * of max_low_pfn pages, by creating page tables starting from address
  370. * PAGE_OFFSET.
  371. *
  372. * This routine transitions us from using a set of compiled-in large
  373. * pages to using some more precise caching, including removing access
  374. * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
  375. * marking read-only data as locally cacheable, striping the remaining
  376. * .data and .bss across all the available tiles, and removing access
  377. * to pages above the top of RAM (thus ensuring a page fault from a bad
  378. * virtual address rather than a hypervisor shoot down for accessing
  379. * memory outside the assigned limits).
  380. */
  381. static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
  382. {
  383. unsigned long long irqmask;
  384. unsigned long address, pfn;
  385. pmd_t *pmd;
  386. pte_t *pte;
  387. int pte_ofs;
  388. const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
  389. struct cpumask kstripe_mask;
  390. int rc, i;
  391. #if CHIP_HAS_CBOX_HOME_MAP()
  392. if (ktext_arg_seen && ktext_hash) {
  393. pr_warning("warning: \"ktext\" boot argument ignored"
  394. " if \"kcache_hash\" sets up text hash-for-home\n");
  395. ktext_small = 0;
  396. }
  397. if (kdata_arg_seen && kdata_hash) {
  398. pr_warning("warning: \"kdata\" boot argument ignored"
  399. " if \"kcache_hash\" sets up data hash-for-home\n");
  400. }
  401. if (kdata_huge && !hash_default) {
  402. pr_warning("warning: disabling \"kdata=huge\"; requires"
  403. " kcache_hash=all or =allbutstack\n");
  404. kdata_huge = 0;
  405. }
  406. #endif
  407. /*
  408. * Set up a mask for cpus to use for kernel striping.
  409. * This is normally all cpus, but minus dataplane cpus if any.
  410. * If the dataplane covers the whole chip, we stripe over
  411. * the whole chip too.
  412. */
  413. cpumask_copy(&kstripe_mask, cpu_possible_mask);
  414. if (!kdata_arg_seen)
  415. kdata_mask = kstripe_mask;
  416. /* Allocate and fill in L2 page tables */
  417. for (i = 0; i < MAX_NUMNODES; ++i) {
  418. #ifdef CONFIG_HIGHMEM
  419. unsigned long end_pfn = node_lowmem_end_pfn[i];
  420. #else
  421. unsigned long end_pfn = node_end_pfn[i];
  422. #endif
  423. unsigned long end_huge_pfn = 0;
  424. /* Pre-shatter the last huge page to allow per-cpu pages. */
  425. if (kdata_huge)
  426. end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
  427. pfn = node_start_pfn[i];
  428. /* Allocate enough memory to hold L2 page tables for node. */
  429. init_prealloc_ptes(i, end_pfn - pfn);
  430. address = (unsigned long) pfn_to_kaddr(pfn);
  431. while (pfn < end_pfn) {
  432. BUG_ON(address & (HPAGE_SIZE-1));
  433. pmd = get_pmd(pgtables, address);
  434. pte = get_prealloc_pte(pfn);
  435. if (pfn < end_huge_pfn) {
  436. pgprot_t prot = init_pgprot(address);
  437. *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
  438. for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
  439. pfn++, pte_ofs++, address += PAGE_SIZE)
  440. pte[pte_ofs] = pfn_pte(pfn, prot);
  441. } else {
  442. if (kdata_huge)
  443. printk(KERN_DEBUG "pre-shattered huge"
  444. " page at %#lx\n", address);
  445. for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
  446. pfn++, pte_ofs++, address += PAGE_SIZE) {
  447. pgprot_t prot = init_pgprot(address);
  448. pte[pte_ofs] = pfn_pte(pfn, prot);
  449. }
  450. assign_pte(pmd, pte);
  451. }
  452. }
  453. }
  454. /*
  455. * Set or check ktext_map now that we have cpu_possible_mask
  456. * and kstripe_mask to work with.
  457. */
  458. if (ktext_all)
  459. cpumask_copy(&ktext_mask, cpu_possible_mask);
  460. else if (ktext_nondataplane)
  461. ktext_mask = kstripe_mask;
  462. else if (!cpumask_empty(&ktext_mask)) {
  463. /* Sanity-check any mask that was requested */
  464. struct cpumask bad;
  465. cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
  466. cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
  467. if (!cpumask_empty(&bad)) {
  468. char buf[NR_CPUS * 5];
  469. cpulist_scnprintf(buf, sizeof(buf), &bad);
  470. pr_info("ktext: not using unavailable cpus %s\n", buf);
  471. }
  472. if (cpumask_empty(&ktext_mask)) {
  473. pr_warning("ktext: no valid cpus; caching on %d.\n",
  474. smp_processor_id());
  475. cpumask_copy(&ktext_mask,
  476. cpumask_of(smp_processor_id()));
  477. }
  478. }
  479. address = MEM_SV_INTRPT;
  480. pmd = get_pmd(pgtables, address);
  481. pfn = 0; /* code starts at PA 0 */
  482. if (ktext_small) {
  483. /* Allocate an L2 PTE for the kernel text */
  484. int cpu = 0;
  485. pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
  486. PAGE_HOME_IMMUTABLE);
  487. if (ktext_local) {
  488. if (ktext_nocache)
  489. prot = hv_pte_set_mode(prot,
  490. HV_PTE_MODE_UNCACHED);
  491. else
  492. prot = hv_pte_set_mode(prot,
  493. HV_PTE_MODE_CACHE_NO_L3);
  494. } else {
  495. prot = hv_pte_set_mode(prot,
  496. HV_PTE_MODE_CACHE_TILE_L3);
  497. cpu = cpumask_first(&ktext_mask);
  498. prot = ktext_set_nocache(prot);
  499. }
  500. BUG_ON(address != (unsigned long)_stext);
  501. pte = NULL;
  502. for (; address < (unsigned long)_einittext;
  503. pfn++, address += PAGE_SIZE) {
  504. pte_ofs = pte_index(address);
  505. if (pte_ofs == 0) {
  506. if (pte)
  507. assign_pte(pmd++, pte);
  508. pte = alloc_pte();
  509. }
  510. if (!ktext_local) {
  511. prot = set_remote_cache_cpu(prot, cpu);
  512. cpu = cpumask_next(cpu, &ktext_mask);
  513. if (cpu == NR_CPUS)
  514. cpu = cpumask_first(&ktext_mask);
  515. }
  516. pte[pte_ofs] = pfn_pte(pfn, prot);
  517. }
  518. if (pte)
  519. assign_pte(pmd, pte);
  520. } else {
  521. pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
  522. pteval = pte_mkhuge(pteval);
  523. #if CHIP_HAS_CBOX_HOME_MAP()
  524. if (ktext_hash) {
  525. pteval = hv_pte_set_mode(pteval,
  526. HV_PTE_MODE_CACHE_HASH_L3);
  527. pteval = ktext_set_nocache(pteval);
  528. } else
  529. #endif /* CHIP_HAS_CBOX_HOME_MAP() */
  530. if (cpumask_weight(&ktext_mask) == 1) {
  531. pteval = set_remote_cache_cpu(pteval,
  532. cpumask_first(&ktext_mask));
  533. pteval = hv_pte_set_mode(pteval,
  534. HV_PTE_MODE_CACHE_TILE_L3);
  535. pteval = ktext_set_nocache(pteval);
  536. } else if (ktext_nocache)
  537. pteval = hv_pte_set_mode(pteval,
  538. HV_PTE_MODE_UNCACHED);
  539. else
  540. pteval = hv_pte_set_mode(pteval,
  541. HV_PTE_MODE_CACHE_NO_L3);
  542. for (; address < (unsigned long)_einittext;
  543. pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
  544. *(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
  545. }
  546. /* Set swapper_pgprot here so it is flushed to memory right away. */
  547. swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
  548. /*
  549. * Since we may be changing the caching of the stack and page
  550. * table itself, we invoke an assembly helper to do the
  551. * following steps:
  552. *
  553. * - flush the cache so we start with an empty slate
  554. * - install pgtables[] as the real page table
  555. * - flush the TLB so the new page table takes effect
  556. */
  557. irqmask = interrupt_mask_save_mask();
  558. interrupt_mask_set_mask(-1ULL);
  559. rc = flush_and_install_context(__pa(pgtables),
  560. init_pgprot((unsigned long)pgtables),
  561. __get_cpu_var(current_asid),
  562. cpumask_bits(my_cpu_mask));
  563. interrupt_mask_restore_mask(irqmask);
  564. BUG_ON(rc != 0);
  565. /* Copy the page table back to the normal swapper_pg_dir. */
  566. memcpy(pgd_base, pgtables, sizeof(pgtables));
  567. __install_page_table(pgd_base, __get_cpu_var(current_asid),
  568. swapper_pgprot);
  569. /*
  570. * We just read swapper_pgprot and thus brought it into the cache,
  571. * with its new home & caching mode. When we start the other CPUs,
  572. * they're going to reference swapper_pgprot via their initial fake
  573. * VA-is-PA mappings, which cache everything locally. At that
  574. * time, if it's in our cache with a conflicting home, the
  575. * simulator's coherence checker will complain. So, flush it out
  576. * of our cache; we're not going to ever use it again anyway.
  577. */
  578. __insn_finv(&swapper_pgprot);
  579. }
  580. /*
  581. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  582. * is valid. The argument is a physical page number.
  583. *
  584. * On Tile, the only valid things for which we can just hand out unchecked
  585. * PTEs are the kernel code and data. Anything else might change its
  586. * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
  587. * Note that init_thread_union is released to heap soon after boot,
  588. * so we include it in the init data.
  589. *
  590. * For TILE-Gx, we might want to consider allowing access to PA
  591. * regions corresponding to PCI space, etc.
  592. */
  593. int devmem_is_allowed(unsigned long pagenr)
  594. {
  595. return pagenr < kaddr_to_pfn(_end) &&
  596. !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
  597. pagenr < kaddr_to_pfn(_einitdata)) &&
  598. !(pagenr >= kaddr_to_pfn(_sinittext) ||
  599. pagenr <= kaddr_to_pfn(_einittext-1));
  600. }
  601. #ifdef CONFIG_HIGHMEM
  602. static void __init permanent_kmaps_init(pgd_t *pgd_base)
  603. {
  604. pgd_t *pgd;
  605. pud_t *pud;
  606. pmd_t *pmd;
  607. pte_t *pte;
  608. unsigned long vaddr;
  609. vaddr = PKMAP_BASE;
  610. page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
  611. pgd = swapper_pg_dir + pgd_index(vaddr);
  612. pud = pud_offset(pgd, vaddr);
  613. pmd = pmd_offset(pud, vaddr);
  614. pte = pte_offset_kernel(pmd, vaddr);
  615. pkmap_page_table = pte;
  616. }
  617. #endif /* CONFIG_HIGHMEM */
  618. #ifndef CONFIG_64BIT
  619. static void __init init_free_pfn_range(unsigned long start, unsigned long end)
  620. {
  621. unsigned long pfn;
  622. struct page *page = pfn_to_page(start);
  623. for (pfn = start; pfn < end; ) {
  624. /* Optimize by freeing pages in large batches */
  625. int order = __ffs(pfn);
  626. int count, i;
  627. struct page *p;
  628. if (order >= MAX_ORDER)
  629. order = MAX_ORDER-1;
  630. count = 1 << order;
  631. while (pfn + count > end) {
  632. count >>= 1;
  633. --order;
  634. }
  635. for (p = page, i = 0; i < count; ++i, ++p) {
  636. __ClearPageReserved(p);
  637. /*
  638. * Hacky direct set to avoid unnecessary
  639. * lock take/release for EVERY page here.
  640. */
  641. p->_count.counter = 0;
  642. p->_mapcount.counter = -1;
  643. }
  644. init_page_count(page);
  645. __free_pages(page, order);
  646. totalram_pages += count;
  647. page += count;
  648. pfn += count;
  649. }
  650. }
  651. static void __init set_non_bootmem_pages_init(void)
  652. {
  653. struct zone *z;
  654. for_each_zone(z) {
  655. unsigned long start, end;
  656. int nid = z->zone_pgdat->node_id;
  657. #ifdef CONFIG_HIGHMEM
  658. int idx = zone_idx(z);
  659. #endif
  660. start = z->zone_start_pfn;
  661. end = start + z->spanned_pages;
  662. start = max(start, node_free_pfn[nid]);
  663. start = max(start, max_low_pfn);
  664. #ifdef CONFIG_HIGHMEM
  665. if (idx == ZONE_HIGHMEM)
  666. totalhigh_pages += z->spanned_pages;
  667. #endif
  668. if (kdata_huge) {
  669. unsigned long percpu_pfn = node_percpu_pfn[nid];
  670. if (start < percpu_pfn && end > percpu_pfn)
  671. end = percpu_pfn;
  672. }
  673. #ifdef CONFIG_PCI
  674. if (start <= pci_reserve_start_pfn &&
  675. end > pci_reserve_start_pfn) {
  676. if (end > pci_reserve_end_pfn)
  677. init_free_pfn_range(pci_reserve_end_pfn, end);
  678. end = pci_reserve_start_pfn;
  679. }
  680. #endif
  681. init_free_pfn_range(start, end);
  682. }
  683. }
  684. #endif
  685. /*
  686. * paging_init() sets up the page tables - note that all of lowmem is
  687. * already mapped by head.S.
  688. */
  689. void __init paging_init(void)
  690. {
  691. #ifdef __tilegx__
  692. pud_t *pud;
  693. #endif
  694. pgd_t *pgd_base = swapper_pg_dir;
  695. kernel_physical_mapping_init(pgd_base);
  696. /*
  697. * Fixed mappings, only the page table structure has to be
  698. * created - mappings will be set by set_fixmap():
  699. */
  700. page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1),
  701. FIXADDR_TOP, pgd_base);
  702. #ifdef CONFIG_HIGHMEM
  703. permanent_kmaps_init(pgd_base);
  704. #endif
  705. #ifdef __tilegx__
  706. /*
  707. * Since GX allocates just one pmd_t array worth of vmalloc space,
  708. * we go ahead and allocate it statically here, then share it
  709. * globally. As a result we don't have to worry about any task
  710. * changing init_mm once we get up and running, and there's no
  711. * need for e.g. vmalloc_sync_all().
  712. */
  713. BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1));
  714. pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
  715. assign_pmd(pud, alloc_pmd());
  716. #endif
  717. }
  718. /*
  719. * Walk the kernel page tables and derive the page_home() from
  720. * the PTEs, so that set_pte() can properly validate the caching
  721. * of all PTEs it sees.
  722. */
  723. void __init set_page_homes(void)
  724. {
  725. }
  726. static void __init set_max_mapnr_init(void)
  727. {
  728. #ifdef CONFIG_FLATMEM
  729. max_mapnr = max_low_pfn;
  730. #endif
  731. }
  732. void __init mem_init(void)
  733. {
  734. int codesize, datasize, initsize;
  735. int i;
  736. #ifndef __tilegx__
  737. void *last;
  738. #endif
  739. #ifdef CONFIG_FLATMEM
  740. BUG_ON(!mem_map);
  741. #endif
  742. #ifdef CONFIG_HIGHMEM
  743. /* check that fixmap and pkmap do not overlap */
  744. if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
  745. pr_err("fixmap and kmap areas overlap"
  746. " - this will crash\n");
  747. pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
  748. PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1),
  749. FIXADDR_START);
  750. BUG();
  751. }
  752. #endif
  753. set_max_mapnr_init();
  754. /* this will put all bootmem onto the freelists */
  755. totalram_pages += free_all_bootmem();
  756. #ifndef CONFIG_64BIT
  757. /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
  758. set_non_bootmem_pages_init();
  759. #endif
  760. codesize = (unsigned long)&_etext - (unsigned long)&_text;
  761. datasize = (unsigned long)&_end - (unsigned long)&_sdata;
  762. initsize = (unsigned long)&_einittext - (unsigned long)&_sinittext;
  763. initsize += (unsigned long)&_einitdata - (unsigned long)&_sinitdata;
  764. pr_info("Memory: %luk/%luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
  765. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  766. num_physpages << (PAGE_SHIFT-10),
  767. codesize >> 10,
  768. datasize >> 10,
  769. initsize >> 10,
  770. (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
  771. );
  772. /*
  773. * In debug mode, dump some interesting memory mappings.
  774. */
  775. #ifdef CONFIG_HIGHMEM
  776. printk(KERN_DEBUG " KMAP %#lx - %#lx\n",
  777. FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
  778. printk(KERN_DEBUG " PKMAP %#lx - %#lx\n",
  779. PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
  780. #endif
  781. #ifdef CONFIG_HUGEVMAP
  782. printk(KERN_DEBUG " HUGEMAP %#lx - %#lx\n",
  783. HUGE_VMAP_BASE, HUGE_VMAP_END - 1);
  784. #endif
  785. printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n",
  786. _VMALLOC_START, _VMALLOC_END - 1);
  787. #ifdef __tilegx__
  788. for (i = MAX_NUMNODES-1; i >= 0; --i) {
  789. struct pglist_data *node = &node_data[i];
  790. if (node->node_present_pages) {
  791. unsigned long start = (unsigned long)
  792. pfn_to_kaddr(node->node_start_pfn);
  793. unsigned long end = start +
  794. (node->node_present_pages << PAGE_SHIFT);
  795. printk(KERN_DEBUG " MEM%d %#lx - %#lx\n",
  796. i, start, end - 1);
  797. }
  798. }
  799. #else
  800. last = high_memory;
  801. for (i = MAX_NUMNODES-1; i >= 0; --i) {
  802. if ((unsigned long)vbase_map[i] != -1UL) {
  803. printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n",
  804. i, (unsigned long) (vbase_map[i]),
  805. (unsigned long) (last-1));
  806. last = vbase_map[i];
  807. }
  808. }
  809. #endif
  810. #ifndef __tilegx__
  811. /*
  812. * Convert from using one lock for all atomic operations to
  813. * one per cpu.
  814. */
  815. __init_atomic_per_cpu();
  816. #endif
  817. }
  818. /*
  819. * this is for the non-NUMA, single node SMP system case.
  820. * Specifically, in the case of x86, we will always add
  821. * memory to the highmem for now.
  822. */
  823. #ifndef CONFIG_NEED_MULTIPLE_NODES
  824. int arch_add_memory(u64 start, u64 size)
  825. {
  826. struct pglist_data *pgdata = &contig_page_data;
  827. struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
  828. unsigned long start_pfn = start >> PAGE_SHIFT;
  829. unsigned long nr_pages = size >> PAGE_SHIFT;
  830. return __add_pages(zone, start_pfn, nr_pages);
  831. }
  832. int remove_memory(u64 start, u64 size)
  833. {
  834. return -EINVAL;
  835. }
  836. #endif
  837. struct kmem_cache *pgd_cache;
  838. void __init pgtable_cache_init(void)
  839. {
  840. pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
  841. if (!pgd_cache)
  842. panic("pgtable_cache_init(): Cannot create pgd cache");
  843. }
  844. #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
  845. /*
  846. * The __w1data area holds data that is only written during initialization,
  847. * and is read-only and thus freely cacheable thereafter. Fix the page
  848. * table entries that cover that region accordingly.
  849. */
  850. static void mark_w1data_ro(void)
  851. {
  852. /* Loop over page table entries */
  853. unsigned long addr = (unsigned long)__w1data_begin;
  854. BUG_ON((addr & (PAGE_SIZE-1)) != 0);
  855. for (; addr <= (unsigned long)__w1data_end - 1; addr += PAGE_SIZE) {
  856. unsigned long pfn = kaddr_to_pfn((void *)addr);
  857. pte_t *ptep = virt_to_pte(NULL, addr);
  858. BUG_ON(pte_huge(*ptep)); /* not relevant for kdata_huge */
  859. set_pte_at(&init_mm, addr, ptep, pfn_pte(pfn, PAGE_KERNEL_RO));
  860. }
  861. }
  862. #endif
  863. #ifdef CONFIG_DEBUG_PAGEALLOC
  864. static long __write_once initfree;
  865. #else
  866. static long __write_once initfree = 1;
  867. #endif
  868. /* Select whether to free (1) or mark unusable (0) the __init pages. */
  869. static int __init set_initfree(char *str)
  870. {
  871. long val;
  872. if (strict_strtol(str, 0, &val) == 0) {
  873. initfree = val;
  874. pr_info("initfree: %s free init pages\n",
  875. initfree ? "will" : "won't");
  876. }
  877. return 1;
  878. }
  879. __setup("initfree=", set_initfree);
  880. static void free_init_pages(char *what, unsigned long begin, unsigned long end)
  881. {
  882. unsigned long addr = (unsigned long) begin;
  883. if (kdata_huge && !initfree) {
  884. pr_warning("Warning: ignoring initfree=0:"
  885. " incompatible with kdata=huge\n");
  886. initfree = 1;
  887. }
  888. end = (end + PAGE_SIZE - 1) & PAGE_MASK;
  889. local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
  890. for (addr = begin; addr < end; addr += PAGE_SIZE) {
  891. /*
  892. * Note we just reset the home here directly in the
  893. * page table. We know this is safe because our caller
  894. * just flushed the caches on all the other cpus,
  895. * and they won't be touching any of these pages.
  896. */
  897. int pfn = kaddr_to_pfn((void *)addr);
  898. struct page *page = pfn_to_page(pfn);
  899. pte_t *ptep = virt_to_pte(NULL, addr);
  900. if (!initfree) {
  901. /*
  902. * If debugging page accesses then do not free
  903. * this memory but mark them not present - any
  904. * buggy init-section access will create a
  905. * kernel page fault:
  906. */
  907. pte_clear(&init_mm, addr, ptep);
  908. continue;
  909. }
  910. __ClearPageReserved(page);
  911. init_page_count(page);
  912. if (pte_huge(*ptep))
  913. BUG_ON(!kdata_huge);
  914. else
  915. set_pte_at(&init_mm, addr, ptep,
  916. pfn_pte(pfn, PAGE_KERNEL));
  917. memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
  918. free_page(addr);
  919. totalram_pages++;
  920. }
  921. pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
  922. }
  923. void free_initmem(void)
  924. {
  925. const unsigned long text_delta = MEM_SV_INTRPT - PAGE_OFFSET;
  926. /*
  927. * Evict the dirty initdata on the boot cpu, evict the w1data
  928. * wherever it's homed, and evict all the init code everywhere.
  929. * We are guaranteed that no one will touch the init pages any
  930. * more, and although other cpus may be touching the w1data,
  931. * we only actually change the caching on tile64, which won't
  932. * be keeping local copies in the other tiles' caches anyway.
  933. */
  934. homecache_evict(&cpu_cacheable_map);
  935. /* Free the data pages that we won't use again after init. */
  936. free_init_pages("unused kernel data",
  937. (unsigned long)_sinitdata,
  938. (unsigned long)_einitdata);
  939. /*
  940. * Free the pages mapped from 0xc0000000 that correspond to code
  941. * pages from MEM_SV_INTRPT that we won't use again after init.
  942. */
  943. free_init_pages("unused kernel text",
  944. (unsigned long)_sinittext - text_delta,
  945. (unsigned long)_einittext - text_delta);
  946. #if !CHIP_HAS_COHERENT_LOCAL_CACHE()
  947. /*
  948. * Upgrade the .w1data section to globally cached.
  949. * We don't do this on tilepro, since the cache architecture
  950. * pretty much makes it irrelevant, and in any case we end
  951. * up having racing issues with other tiles that may touch
  952. * the data after we flush the cache but before we update
  953. * the PTEs and flush the TLBs, causing sharer shootdowns
  954. * later. Even though this is to clean data, it seems like
  955. * an unnecessary complication.
  956. */
  957. mark_w1data_ro();
  958. #endif
  959. /* Do a global TLB flush so everyone sees the changes. */
  960. flush_tlb_all();
  961. }