hugetlbpage.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. /*
  2. * Copyright 2010 Tilera Corporation. All Rights Reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation, version 2.
  7. *
  8. * This program is distributed in the hope that it will be useful, but
  9. * WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11. * NON INFRINGEMENT. See the GNU General Public License for
  12. * more details.
  13. *
  14. * TILE Huge TLB Page Support for Kernel.
  15. * Taken from i386 hugetlb implementation:
  16. * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
  17. */
  18. #include <linux/init.h>
  19. #include <linux/fs.h>
  20. #include <linux/mm.h>
  21. #include <linux/hugetlb.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/slab.h>
  24. #include <linux/err.h>
  25. #include <linux/sysctl.h>
  26. #include <linux/mman.h>
  27. #include <asm/tlb.h>
  28. #include <asm/tlbflush.h>
  29. #include <asm/setup.h>
  30. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  31. /*
  32. * Provide an additional huge page size (in addition to the regular default
  33. * huge page size) if no "hugepagesz" arguments are specified.
  34. * Note that it must be smaller than the default huge page size so
  35. * that it's possible to allocate them on demand from the buddy allocator.
  36. * You can change this to 64K (on a 16K build), 256K, 1M, or 4M,
  37. * or not define it at all.
  38. */
  39. #define ADDITIONAL_HUGE_SIZE (1024 * 1024UL)
  40. /* "Extra" page-size multipliers, one per level of the page table. */
  41. int huge_shift[HUGE_SHIFT_ENTRIES] = {
  42. #ifdef ADDITIONAL_HUGE_SIZE
  43. #define ADDITIONAL_HUGE_SHIFT __builtin_ctzl(ADDITIONAL_HUGE_SIZE / PAGE_SIZE)
  44. [HUGE_SHIFT_PAGE] = ADDITIONAL_HUGE_SHIFT
  45. #endif
  46. };
  47. /*
  48. * This routine is a hybrid of pte_alloc_map() and pte_alloc_kernel().
  49. * It assumes that L2 PTEs are never in HIGHMEM (we don't support that).
  50. * It locks the user pagetable, and bumps up the mm->nr_ptes field,
  51. * but otherwise allocate the page table using the kernel versions.
  52. */
  53. static pte_t *pte_alloc_hugetlb(struct mm_struct *mm, pmd_t *pmd,
  54. unsigned long address)
  55. {
  56. pte_t *new;
  57. if (pmd_none(*pmd)) {
  58. new = pte_alloc_one_kernel(mm, address);
  59. if (!new)
  60. return NULL;
  61. smp_wmb(); /* See comment in __pte_alloc */
  62. spin_lock(&mm->page_table_lock);
  63. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  64. mm->nr_ptes++;
  65. pmd_populate_kernel(mm, pmd, new);
  66. new = NULL;
  67. } else
  68. VM_BUG_ON(pmd_trans_splitting(*pmd));
  69. spin_unlock(&mm->page_table_lock);
  70. if (new)
  71. pte_free_kernel(mm, new);
  72. }
  73. return pte_offset_kernel(pmd, address);
  74. }
  75. #endif
  76. pte_t *huge_pte_alloc(struct mm_struct *mm,
  77. unsigned long addr, unsigned long sz)
  78. {
  79. pgd_t *pgd;
  80. pud_t *pud;
  81. addr &= -sz; /* Mask off any low bits in the address. */
  82. pgd = pgd_offset(mm, addr);
  83. pud = pud_alloc(mm, pgd, addr);
  84. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  85. if (sz >= PGDIR_SIZE) {
  86. BUG_ON(sz != PGDIR_SIZE &&
  87. sz != PGDIR_SIZE << huge_shift[HUGE_SHIFT_PGDIR]);
  88. return (pte_t *)pud;
  89. } else {
  90. pmd_t *pmd = pmd_alloc(mm, pud, addr);
  91. if (sz >= PMD_SIZE) {
  92. BUG_ON(sz != PMD_SIZE &&
  93. sz != (PMD_SIZE << huge_shift[HUGE_SHIFT_PMD]));
  94. return (pte_t *)pmd;
  95. }
  96. else {
  97. if (sz != PAGE_SIZE << huge_shift[HUGE_SHIFT_PAGE])
  98. panic("Unexpected page size %#lx\n", sz);
  99. return pte_alloc_hugetlb(mm, pmd, addr);
  100. }
  101. }
  102. #else
  103. BUG_ON(sz != PMD_SIZE);
  104. return (pte_t *) pmd_alloc(mm, pud, addr);
  105. #endif
  106. }
  107. static pte_t *get_pte(pte_t *base, int index, int level)
  108. {
  109. pte_t *ptep = base + index;
  110. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  111. if (!pte_present(*ptep) && huge_shift[level] != 0) {
  112. unsigned long mask = -1UL << huge_shift[level];
  113. pte_t *super_ptep = base + (index & mask);
  114. pte_t pte = *super_ptep;
  115. if (pte_present(pte) && pte_super(pte))
  116. ptep = super_ptep;
  117. }
  118. #endif
  119. return ptep;
  120. }
  121. pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  122. {
  123. pgd_t *pgd;
  124. pud_t *pud;
  125. pmd_t *pmd;
  126. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  127. pte_t *pte;
  128. #endif
  129. /* Get the top-level page table entry. */
  130. pgd = (pgd_t *)get_pte((pte_t *)mm->pgd, pgd_index(addr), 0);
  131. if (!pgd_present(*pgd))
  132. return NULL;
  133. /* We don't have four levels. */
  134. pud = pud_offset(pgd, addr);
  135. #ifndef __PAGETABLE_PUD_FOLDED
  136. # error support fourth page table level
  137. #endif
  138. /* Check for an L0 huge PTE, if we have three levels. */
  139. #ifndef __PAGETABLE_PMD_FOLDED
  140. if (pud_huge(*pud))
  141. return (pte_t *)pud;
  142. pmd = (pmd_t *)get_pte((pte_t *)pud_page_vaddr(*pud),
  143. pmd_index(addr), 1);
  144. if (!pmd_present(*pmd))
  145. return NULL;
  146. #else
  147. pmd = pmd_offset(pud, addr);
  148. #endif
  149. /* Check for an L1 huge PTE. */
  150. if (pmd_huge(*pmd))
  151. return (pte_t *)pmd;
  152. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  153. /* Check for an L2 huge PTE. */
  154. pte = get_pte((pte_t *)pmd_page_vaddr(*pmd), pte_index(addr), 2);
  155. if (!pte_present(*pte))
  156. return NULL;
  157. if (pte_super(*pte))
  158. return pte;
  159. #endif
  160. return NULL;
  161. }
  162. struct page *follow_huge_addr(struct mm_struct *mm, unsigned long address,
  163. int write)
  164. {
  165. return ERR_PTR(-EINVAL);
  166. }
  167. int pmd_huge(pmd_t pmd)
  168. {
  169. return !!(pmd_val(pmd) & _PAGE_HUGE_PAGE);
  170. }
  171. int pud_huge(pud_t pud)
  172. {
  173. return !!(pud_val(pud) & _PAGE_HUGE_PAGE);
  174. }
  175. struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
  176. pmd_t *pmd, int write)
  177. {
  178. struct page *page;
  179. page = pte_page(*(pte_t *)pmd);
  180. if (page)
  181. page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
  182. return page;
  183. }
  184. struct page *follow_huge_pud(struct mm_struct *mm, unsigned long address,
  185. pud_t *pud, int write)
  186. {
  187. struct page *page;
  188. page = pte_page(*(pte_t *)pud);
  189. if (page)
  190. page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
  191. return page;
  192. }
  193. int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
  194. {
  195. return 0;
  196. }
  197. #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  198. static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
  199. unsigned long addr, unsigned long len,
  200. unsigned long pgoff, unsigned long flags)
  201. {
  202. struct hstate *h = hstate_file(file);
  203. struct mm_struct *mm = current->mm;
  204. struct vm_area_struct *vma;
  205. unsigned long start_addr;
  206. if (len > mm->cached_hole_size) {
  207. start_addr = mm->free_area_cache;
  208. } else {
  209. start_addr = TASK_UNMAPPED_BASE;
  210. mm->cached_hole_size = 0;
  211. }
  212. full_search:
  213. addr = ALIGN(start_addr, huge_page_size(h));
  214. for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
  215. /* At this point: (!vma || addr < vma->vm_end). */
  216. if (TASK_SIZE - len < addr) {
  217. /*
  218. * Start a new search - just in case we missed
  219. * some holes.
  220. */
  221. if (start_addr != TASK_UNMAPPED_BASE) {
  222. start_addr = TASK_UNMAPPED_BASE;
  223. mm->cached_hole_size = 0;
  224. goto full_search;
  225. }
  226. return -ENOMEM;
  227. }
  228. if (!vma || addr + len <= vma->vm_start) {
  229. mm->free_area_cache = addr + len;
  230. return addr;
  231. }
  232. if (addr + mm->cached_hole_size < vma->vm_start)
  233. mm->cached_hole_size = vma->vm_start - addr;
  234. addr = ALIGN(vma->vm_end, huge_page_size(h));
  235. }
  236. }
  237. static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
  238. unsigned long addr0, unsigned long len,
  239. unsigned long pgoff, unsigned long flags)
  240. {
  241. struct hstate *h = hstate_file(file);
  242. struct mm_struct *mm = current->mm;
  243. struct vm_area_struct *vma, *prev_vma;
  244. unsigned long base = mm->mmap_base, addr = addr0;
  245. unsigned long largest_hole = mm->cached_hole_size;
  246. int first_time = 1;
  247. /* don't allow allocations above current base */
  248. if (mm->free_area_cache > base)
  249. mm->free_area_cache = base;
  250. if (len <= largest_hole) {
  251. largest_hole = 0;
  252. mm->free_area_cache = base;
  253. }
  254. try_again:
  255. /* make sure it can fit in the remaining address space */
  256. if (mm->free_area_cache < len)
  257. goto fail;
  258. /* either no address requested or can't fit in requested address hole */
  259. addr = (mm->free_area_cache - len) & huge_page_mask(h);
  260. do {
  261. /*
  262. * Lookup failure means no vma is above this address,
  263. * i.e. return with success:
  264. */
  265. vma = find_vma_prev(mm, addr, &prev_vma);
  266. if (!vma) {
  267. return addr;
  268. break;
  269. }
  270. /*
  271. * new region fits between prev_vma->vm_end and
  272. * vma->vm_start, use it:
  273. */
  274. if (addr + len <= vma->vm_start &&
  275. (!prev_vma || (addr >= prev_vma->vm_end))) {
  276. /* remember the address as a hint for next time */
  277. mm->cached_hole_size = largest_hole;
  278. mm->free_area_cache = addr;
  279. return addr;
  280. } else {
  281. /* pull free_area_cache down to the first hole */
  282. if (mm->free_area_cache == vma->vm_end) {
  283. mm->free_area_cache = vma->vm_start;
  284. mm->cached_hole_size = largest_hole;
  285. }
  286. }
  287. /* remember the largest hole we saw so far */
  288. if (addr + largest_hole < vma->vm_start)
  289. largest_hole = vma->vm_start - addr;
  290. /* try just below the current vma->vm_start */
  291. addr = (vma->vm_start - len) & huge_page_mask(h);
  292. } while (len <= vma->vm_start);
  293. fail:
  294. /*
  295. * if hint left us with no space for the requested
  296. * mapping then try again:
  297. */
  298. if (first_time) {
  299. mm->free_area_cache = base;
  300. largest_hole = 0;
  301. first_time = 0;
  302. goto try_again;
  303. }
  304. /*
  305. * A failed mmap() very likely causes application failure,
  306. * so fall back to the bottom-up function here. This scenario
  307. * can happen with large stack limits and large mmap()
  308. * allocations.
  309. */
  310. mm->free_area_cache = TASK_UNMAPPED_BASE;
  311. mm->cached_hole_size = ~0UL;
  312. addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
  313. len, pgoff, flags);
  314. /*
  315. * Restore the topdown base:
  316. */
  317. mm->free_area_cache = base;
  318. mm->cached_hole_size = ~0UL;
  319. return addr;
  320. }
  321. unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  322. unsigned long len, unsigned long pgoff, unsigned long flags)
  323. {
  324. struct hstate *h = hstate_file(file);
  325. struct mm_struct *mm = current->mm;
  326. struct vm_area_struct *vma;
  327. if (len & ~huge_page_mask(h))
  328. return -EINVAL;
  329. if (len > TASK_SIZE)
  330. return -ENOMEM;
  331. if (flags & MAP_FIXED) {
  332. if (prepare_hugepage_range(file, addr, len))
  333. return -EINVAL;
  334. return addr;
  335. }
  336. if (addr) {
  337. addr = ALIGN(addr, huge_page_size(h));
  338. vma = find_vma(mm, addr);
  339. if (TASK_SIZE - len >= addr &&
  340. (!vma || addr + len <= vma->vm_start))
  341. return addr;
  342. }
  343. if (current->mm->get_unmapped_area == arch_get_unmapped_area)
  344. return hugetlb_get_unmapped_area_bottomup(file, addr, len,
  345. pgoff, flags);
  346. else
  347. return hugetlb_get_unmapped_area_topdown(file, addr, len,
  348. pgoff, flags);
  349. }
  350. #endif /* HAVE_ARCH_HUGETLB_UNMAPPED_AREA */
  351. #ifdef CONFIG_HUGETLB_SUPER_PAGES
  352. static __init int __setup_hugepagesz(unsigned long ps)
  353. {
  354. int log_ps = __builtin_ctzl(ps);
  355. int level, base_shift;
  356. if ((1UL << log_ps) != ps || (log_ps & 1) != 0) {
  357. pr_warn("Not enabling %ld byte huge pages;"
  358. " must be a power of four.\n", ps);
  359. return -EINVAL;
  360. }
  361. if (ps > 64*1024*1024*1024UL) {
  362. pr_warn("Not enabling %ld MB huge pages;"
  363. " largest legal value is 64 GB .\n", ps >> 20);
  364. return -EINVAL;
  365. } else if (ps >= PUD_SIZE) {
  366. static long hv_jpage_size;
  367. if (hv_jpage_size == 0)
  368. hv_jpage_size = hv_sysconf(HV_SYSCONF_PAGE_SIZE_JUMBO);
  369. if (hv_jpage_size != PUD_SIZE) {
  370. pr_warn("Not enabling >= %ld MB huge pages:"
  371. " hypervisor reports size %ld\n",
  372. PUD_SIZE >> 20, hv_jpage_size);
  373. return -EINVAL;
  374. }
  375. level = 0;
  376. base_shift = PUD_SHIFT;
  377. } else if (ps >= PMD_SIZE) {
  378. level = 1;
  379. base_shift = PMD_SHIFT;
  380. } else if (ps > PAGE_SIZE) {
  381. level = 2;
  382. base_shift = PAGE_SHIFT;
  383. } else {
  384. pr_err("hugepagesz: huge page size %ld too small\n", ps);
  385. return -EINVAL;
  386. }
  387. if (log_ps != base_shift) {
  388. int shift_val = log_ps - base_shift;
  389. if (huge_shift[level] != 0) {
  390. int old_shift = base_shift + huge_shift[level];
  391. pr_warn("Not enabling %ld MB huge pages;"
  392. " already have size %ld MB.\n",
  393. ps >> 20, (1UL << old_shift) >> 20);
  394. return -EINVAL;
  395. }
  396. if (hv_set_pte_super_shift(level, shift_val) != 0) {
  397. pr_warn("Not enabling %ld MB huge pages;"
  398. " no hypervisor support.\n", ps >> 20);
  399. return -EINVAL;
  400. }
  401. printk(KERN_DEBUG "Enabled %ld MB huge pages\n", ps >> 20);
  402. huge_shift[level] = shift_val;
  403. }
  404. hugetlb_add_hstate(log_ps - PAGE_SHIFT);
  405. return 0;
  406. }
  407. static bool saw_hugepagesz;
  408. static __init int setup_hugepagesz(char *opt)
  409. {
  410. if (!saw_hugepagesz) {
  411. saw_hugepagesz = true;
  412. memset(huge_shift, 0, sizeof(huge_shift));
  413. }
  414. return __setup_hugepagesz(memparse(opt, NULL));
  415. }
  416. __setup("hugepagesz=", setup_hugepagesz);
  417. #ifdef ADDITIONAL_HUGE_SIZE
  418. /*
  419. * Provide an additional huge page size if no "hugepagesz" args are given.
  420. * In that case, all the cores have properly set up their hv super_shift
  421. * already, but we need to notify the hugetlb code to enable the
  422. * new huge page size from the Linux point of view.
  423. */
  424. static __init int add_default_hugepagesz(void)
  425. {
  426. if (!saw_hugepagesz) {
  427. BUILD_BUG_ON(ADDITIONAL_HUGE_SIZE >= PMD_SIZE ||
  428. ADDITIONAL_HUGE_SIZE <= PAGE_SIZE);
  429. BUILD_BUG_ON((PAGE_SIZE << ADDITIONAL_HUGE_SHIFT) !=
  430. ADDITIONAL_HUGE_SIZE);
  431. BUILD_BUG_ON(ADDITIONAL_HUGE_SHIFT & 1);
  432. hugetlb_add_hstate(ADDITIONAL_HUGE_SHIFT);
  433. }
  434. return 0;
  435. }
  436. arch_initcall(add_default_hugepagesz);
  437. #endif
  438. #endif /* CONFIG_HUGETLB_SUPER_PAGES */