bpf_jit_comp.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806
  1. #include <linux/moduleloader.h>
  2. #include <linux/workqueue.h>
  3. #include <linux/netdevice.h>
  4. #include <linux/filter.h>
  5. #include <linux/cache.h>
  6. #include <asm/cacheflush.h>
  7. #include <asm/ptrace.h>
  8. #include "bpf_jit.h"
  9. int bpf_jit_enable __read_mostly;
  10. static inline bool is_simm13(unsigned int value)
  11. {
  12. return value + 0x1000 < 0x2000;
  13. }
  14. static void bpf_flush_icache(void *start_, void *end_)
  15. {
  16. #ifdef CONFIG_SPARC64
  17. /* Cheetah's I-cache is fully coherent. */
  18. if (tlb_type == spitfire) {
  19. unsigned long start = (unsigned long) start_;
  20. unsigned long end = (unsigned long) end_;
  21. start &= ~7UL;
  22. end = (end + 7UL) & ~7UL;
  23. while (start < end) {
  24. flushi(start);
  25. start += 32;
  26. }
  27. }
  28. #endif
  29. }
  30. #define SEEN_DATAREF 1 /* might call external helpers */
  31. #define SEEN_XREG 2 /* ebx is used */
  32. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  33. #define S13(X) ((X) & 0x1fff)
  34. #define IMMED 0x00002000
  35. #define RD(X) ((X) << 25)
  36. #define RS1(X) ((X) << 14)
  37. #define RS2(X) ((X))
  38. #define OP(X) ((X) << 30)
  39. #define OP2(X) ((X) << 22)
  40. #define OP3(X) ((X) << 19)
  41. #define COND(X) ((X) << 25)
  42. #define F1(X) OP(X)
  43. #define F2(X, Y) (OP(X) | OP2(Y))
  44. #define F3(X, Y) (OP(X) | OP3(Y))
  45. #define CONDN COND(0x0)
  46. #define CONDE COND(0x1)
  47. #define CONDLE COND(0x2)
  48. #define CONDL COND(0x3)
  49. #define CONDLEU COND(0x4)
  50. #define CONDCS COND(0x5)
  51. #define CONDNEG COND(0x6)
  52. #define CONDVC COND(0x7)
  53. #define CONDA COND(0x8)
  54. #define CONDNE COND(0x9)
  55. #define CONDG COND(0xa)
  56. #define CONDGE COND(0xb)
  57. #define CONDGU COND(0xc)
  58. #define CONDCC COND(0xd)
  59. #define CONDPOS COND(0xe)
  60. #define CONDVS COND(0xf)
  61. #define CONDGEU CONDCC
  62. #define CONDLU CONDCS
  63. #define WDISP22(X) (((X) >> 2) & 0x3fffff)
  64. #define BA (F2(0, 2) | CONDA)
  65. #define BGU (F2(0, 2) | CONDGU)
  66. #define BLEU (F2(0, 2) | CONDLEU)
  67. #define BGEU (F2(0, 2) | CONDGEU)
  68. #define BLU (F2(0, 2) | CONDLU)
  69. #define BE (F2(0, 2) | CONDE)
  70. #define BNE (F2(0, 2) | CONDNE)
  71. #ifdef CONFIG_SPARC64
  72. #define BNE_PTR (F2(0, 1) | CONDNE | (2 << 20))
  73. #else
  74. #define BNE_PTR BNE
  75. #endif
  76. #define SETHI(K, REG) \
  77. (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
  78. #define OR_LO(K, REG) \
  79. (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
  80. #define ADD F3(2, 0x00)
  81. #define AND F3(2, 0x01)
  82. #define ANDCC F3(2, 0x11)
  83. #define OR F3(2, 0x02)
  84. #define XOR F3(2, 0x03)
  85. #define SUB F3(2, 0x04)
  86. #define SUBCC F3(2, 0x14)
  87. #define MUL F3(2, 0x0a) /* umul */
  88. #define DIV F3(2, 0x0e) /* udiv */
  89. #define SLL F3(2, 0x25)
  90. #define SRL F3(2, 0x26)
  91. #define JMPL F3(2, 0x38)
  92. #define CALL F1(1)
  93. #define BR F2(0, 0x01)
  94. #define RD_Y F3(2, 0x28)
  95. #define WR_Y F3(2, 0x30)
  96. #define LD32 F3(3, 0x00)
  97. #define LD8 F3(3, 0x01)
  98. #define LD16 F3(3, 0x02)
  99. #define LD64 F3(3, 0x0b)
  100. #define ST32 F3(3, 0x04)
  101. #ifdef CONFIG_SPARC64
  102. #define LDPTR LD64
  103. #define BASE_STACKFRAME 176
  104. #else
  105. #define LDPTR LD32
  106. #define BASE_STACKFRAME 96
  107. #endif
  108. #define LD32I (LD32 | IMMED)
  109. #define LD8I (LD8 | IMMED)
  110. #define LD16I (LD16 | IMMED)
  111. #define LD64I (LD64 | IMMED)
  112. #define LDPTRI (LDPTR | IMMED)
  113. #define ST32I (ST32 | IMMED)
  114. #define emit_nop() \
  115. do { \
  116. *prog++ = SETHI(0, G0); \
  117. } while (0)
  118. #define emit_neg() \
  119. do { /* sub %g0, r_A, r_A */ \
  120. *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
  121. } while (0)
  122. #define emit_reg_move(FROM, TO) \
  123. do { /* or %g0, FROM, TO */ \
  124. *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
  125. } while (0)
  126. #define emit_clear(REG) \
  127. do { /* or %g0, %g0, REG */ \
  128. *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
  129. } while (0)
  130. #define emit_set_const(K, REG) \
  131. do { /* sethi %hi(K), REG */ \
  132. *prog++ = SETHI(K, REG); \
  133. /* or REG, %lo(K), REG */ \
  134. *prog++ = OR_LO(K, REG); \
  135. } while (0)
  136. /* Emit
  137. *
  138. * OP r_A, r_X, r_A
  139. */
  140. #define emit_alu_X(OPCODE) \
  141. do { \
  142. seen |= SEEN_XREG; \
  143. *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
  144. } while (0)
  145. /* Emit either:
  146. *
  147. * OP r_A, K, r_A
  148. *
  149. * or
  150. *
  151. * sethi %hi(K), r_TMP
  152. * or r_TMP, %lo(K), r_TMP
  153. * OP r_A, r_TMP, r_A
  154. *
  155. * depending upon whether K fits in a signed 13-bit
  156. * immediate instruction field. Emit nothing if K
  157. * is zero.
  158. */
  159. #define emit_alu_K(OPCODE, K) \
  160. do { \
  161. if (K) { \
  162. unsigned int _insn = OPCODE; \
  163. _insn |= RS1(r_A) | RD(r_A); \
  164. if (is_simm13(K)) { \
  165. *prog++ = _insn | IMMED | S13(K); \
  166. } else { \
  167. emit_set_const(K, r_TMP); \
  168. *prog++ = _insn | RS2(r_TMP); \
  169. } \
  170. } \
  171. } while (0)
  172. #define emit_loadimm(K, DEST) \
  173. do { \
  174. if (is_simm13(K)) { \
  175. /* or %g0, K, DEST */ \
  176. *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
  177. } else { \
  178. emit_set_const(K, DEST); \
  179. } \
  180. } while (0)
  181. #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
  182. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  183. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
  184. *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
  185. } while (0)
  186. #define emit_load32(BASE, STRUCT, FIELD, DEST) \
  187. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  188. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
  189. *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
  190. } while (0)
  191. #define emit_load16(BASE, STRUCT, FIELD, DEST) \
  192. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  193. BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
  194. *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
  195. } while (0)
  196. #define __emit_load8(BASE, STRUCT, FIELD, DEST) \
  197. do { unsigned int _off = offsetof(STRUCT, FIELD); \
  198. *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
  199. } while (0)
  200. #define emit_load8(BASE, STRUCT, FIELD, DEST) \
  201. do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
  202. __emit_load8(BASE, STRUCT, FIELD, DEST); \
  203. } while (0)
  204. #define emit_ldmem(OFF, DEST) \
  205. do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST); \
  206. } while (0)
  207. #define emit_stmem(OFF, SRC) \
  208. do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC); \
  209. } while (0)
  210. #ifdef CONFIG_SMP
  211. #ifdef CONFIG_SPARC64
  212. #define emit_load_cpu(REG) \
  213. emit_load16(G6, struct thread_info, cpu, REG)
  214. #else
  215. #define emit_load_cpu(REG) \
  216. emit_load32(G6, struct thread_info, cpu, REG)
  217. #endif
  218. #else
  219. #define emit_load_cpu(REG) emit_clear(REG)
  220. #endif
  221. #define emit_skb_loadptr(FIELD, DEST) \
  222. emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
  223. #define emit_skb_load32(FIELD, DEST) \
  224. emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
  225. #define emit_skb_load16(FIELD, DEST) \
  226. emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
  227. #define __emit_skb_load8(FIELD, DEST) \
  228. __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
  229. #define emit_skb_load8(FIELD, DEST) \
  230. emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
  231. #define emit_jmpl(BASE, IMM_OFF, LREG) \
  232. *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
  233. #define emit_call(FUNC) \
  234. do { void *_here = image + addrs[i] - 8; \
  235. unsigned int _off = (void *)(FUNC) - _here; \
  236. *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
  237. emit_nop(); \
  238. } while (0)
  239. #define emit_branch(BR_OPC, DEST) \
  240. do { unsigned int _here = addrs[i] - 8; \
  241. *prog++ = BR_OPC | WDISP22((DEST) - _here); \
  242. } while (0)
  243. #define emit_branch_off(BR_OPC, OFF) \
  244. do { *prog++ = BR_OPC | WDISP22(OFF); \
  245. } while (0)
  246. #define emit_jump(DEST) emit_branch(BA, DEST)
  247. #define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
  248. #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
  249. #define emit_cmp(R1, R2) \
  250. *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
  251. #define emit_cmpi(R1, IMM) \
  252. *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
  253. #define emit_btst(R1, R2) \
  254. *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
  255. #define emit_btsti(R1, IMM) \
  256. *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
  257. #define emit_sub(R1, R2, R3) \
  258. *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
  259. #define emit_subi(R1, IMM, R3) \
  260. *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
  261. #define emit_add(R1, R2, R3) \
  262. *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
  263. #define emit_addi(R1, IMM, R3) \
  264. *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
  265. #define emit_alloc_stack(SZ) \
  266. *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
  267. #define emit_release_stack(SZ) \
  268. *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
  269. /* A note about branch offset calculations. The addrs[] array,
  270. * indexed by BPF instruction, records the address after all the
  271. * sparc instructions emitted for that BPF instruction.
  272. *
  273. * The most common case is to emit a branch at the end of such
  274. * a code sequence. So this would be two instructions, the
  275. * branch and it's delay slot.
  276. *
  277. * Therefore by default the branch emitters calculate the branch
  278. * offset field as:
  279. *
  280. * destination - (addrs[i] - 8)
  281. *
  282. * This "addrs[i] - 8" is the address of the branch itself or
  283. * what "." would be in assembler notation. The "8" part is
  284. * how we take into consideration the branch and it's delay
  285. * slot mentioned above.
  286. *
  287. * Sometimes we need to emit a branch earlier in the code
  288. * sequence. And in these situations we adjust "destination"
  289. * to accomodate this difference. For example, if we needed
  290. * to emit a branch (and it's delay slot) right before the
  291. * final instruction emitted for a BPF opcode, we'd use
  292. * "destination + 4" instead of just plain "destination" above.
  293. *
  294. * This is why you see all of these funny emit_branch() and
  295. * emit_jump() calls with adjusted offsets.
  296. */
  297. void bpf_jit_compile(struct sk_filter *fp)
  298. {
  299. unsigned int cleanup_addr, proglen, oldproglen = 0;
  300. u32 temp[8], *prog, *func, seen = 0, pass;
  301. const struct sock_filter *filter = fp->insns;
  302. int i, flen = fp->len, pc_ret0 = -1;
  303. unsigned int *addrs;
  304. void *image;
  305. if (!bpf_jit_enable)
  306. return;
  307. addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
  308. if (addrs == NULL)
  309. return;
  310. /* Before first pass, make a rough estimation of addrs[]
  311. * each bpf instruction is translated to less than 64 bytes
  312. */
  313. for (proglen = 0, i = 0; i < flen; i++) {
  314. proglen += 64;
  315. addrs[i] = proglen;
  316. }
  317. cleanup_addr = proglen; /* epilogue address */
  318. image = NULL;
  319. for (pass = 0; pass < 10; pass++) {
  320. u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
  321. /* no prologue/epilogue for trivial filters (RET something) */
  322. proglen = 0;
  323. prog = temp;
  324. /* Prologue */
  325. if (seen_or_pass0) {
  326. if (seen_or_pass0 & SEEN_MEM) {
  327. unsigned int sz = BASE_STACKFRAME;
  328. sz += BPF_MEMWORDS * sizeof(u32);
  329. emit_alloc_stack(sz);
  330. }
  331. /* Make sure we dont leek kernel memory. */
  332. if (seen_or_pass0 & SEEN_XREG)
  333. emit_clear(r_X);
  334. /* If this filter needs to access skb data,
  335. * load %o4 and %o5 with:
  336. * %o4 = skb->len - skb->data_len
  337. * %o5 = skb->data
  338. * And also back up %o7 into r_saved_O7 so we can
  339. * invoke the stubs using 'call'.
  340. */
  341. if (seen_or_pass0 & SEEN_DATAREF) {
  342. emit_load32(r_SKB, struct sk_buff, len, r_HEADLEN);
  343. emit_load32(r_SKB, struct sk_buff, data_len, r_TMP);
  344. emit_sub(r_HEADLEN, r_TMP, r_HEADLEN);
  345. emit_loadptr(r_SKB, struct sk_buff, data, r_SKB_DATA);
  346. }
  347. }
  348. emit_reg_move(O7, r_saved_O7);
  349. switch (filter[0].code) {
  350. case BPF_S_RET_K:
  351. case BPF_S_LD_W_LEN:
  352. case BPF_S_ANC_PROTOCOL:
  353. case BPF_S_ANC_PKTTYPE:
  354. case BPF_S_ANC_IFINDEX:
  355. case BPF_S_ANC_MARK:
  356. case BPF_S_ANC_RXHASH:
  357. case BPF_S_ANC_CPU:
  358. case BPF_S_ANC_QUEUE:
  359. case BPF_S_LD_W_ABS:
  360. case BPF_S_LD_H_ABS:
  361. case BPF_S_LD_B_ABS:
  362. /* The first instruction sets the A register (or is
  363. * a "RET 'constant'")
  364. */
  365. break;
  366. default:
  367. /* Make sure we dont leak kernel information to the
  368. * user.
  369. */
  370. emit_clear(r_A); /* A = 0 */
  371. }
  372. for (i = 0; i < flen; i++) {
  373. unsigned int K = filter[i].k;
  374. unsigned int t_offset;
  375. unsigned int f_offset;
  376. u32 t_op, f_op;
  377. int ilen;
  378. switch (filter[i].code) {
  379. case BPF_S_ALU_ADD_X: /* A += X; */
  380. emit_alu_X(ADD);
  381. break;
  382. case BPF_S_ALU_ADD_K: /* A += K; */
  383. emit_alu_K(ADD, K);
  384. break;
  385. case BPF_S_ALU_SUB_X: /* A -= X; */
  386. emit_alu_X(SUB);
  387. break;
  388. case BPF_S_ALU_SUB_K: /* A -= K */
  389. emit_alu_K(SUB, K);
  390. break;
  391. case BPF_S_ALU_AND_X: /* A &= X */
  392. emit_alu_X(AND);
  393. break;
  394. case BPF_S_ALU_AND_K: /* A &= K */
  395. emit_alu_K(AND, K);
  396. break;
  397. case BPF_S_ALU_OR_X: /* A |= X */
  398. emit_alu_X(OR);
  399. break;
  400. case BPF_S_ALU_OR_K: /* A |= K */
  401. emit_alu_K(OR, K);
  402. break;
  403. case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
  404. emit_alu_X(XOR);
  405. break;
  406. case BPF_S_ALU_LSH_X: /* A <<= X */
  407. emit_alu_X(SLL);
  408. break;
  409. case BPF_S_ALU_LSH_K: /* A <<= K */
  410. emit_alu_K(SLL, K);
  411. break;
  412. case BPF_S_ALU_RSH_X: /* A >>= X */
  413. emit_alu_X(SRL);
  414. break;
  415. case BPF_S_ALU_RSH_K: /* A >>= K */
  416. emit_alu_K(SRL, K);
  417. break;
  418. case BPF_S_ALU_MUL_X: /* A *= X; */
  419. emit_alu_X(MUL);
  420. break;
  421. case BPF_S_ALU_MUL_K: /* A *= K */
  422. emit_alu_K(MUL, K);
  423. break;
  424. case BPF_S_ALU_DIV_K: /* A /= K */
  425. emit_alu_K(MUL, K);
  426. emit_read_y(r_A);
  427. break;
  428. case BPF_S_ALU_DIV_X: /* A /= X; */
  429. emit_cmpi(r_X, 0);
  430. if (pc_ret0 > 0) {
  431. t_offset = addrs[pc_ret0 - 1];
  432. #ifdef CONFIG_SPARC32
  433. emit_branch(BE, t_offset + 20);
  434. #else
  435. emit_branch(BE, t_offset + 8);
  436. #endif
  437. emit_nop(); /* delay slot */
  438. } else {
  439. emit_branch_off(BNE, 16);
  440. emit_nop();
  441. #ifdef CONFIG_SPARC32
  442. emit_jump(cleanup_addr + 20);
  443. #else
  444. emit_jump(cleanup_addr + 8);
  445. #endif
  446. emit_clear(r_A);
  447. }
  448. emit_write_y(G0);
  449. #ifdef CONFIG_SPARC32
  450. /* The Sparc v8 architecture requires
  451. * three instructions between a %y
  452. * register write and the first use.
  453. */
  454. emit_nop();
  455. emit_nop();
  456. emit_nop();
  457. #endif
  458. emit_alu_X(DIV);
  459. break;
  460. case BPF_S_ALU_NEG:
  461. emit_neg();
  462. break;
  463. case BPF_S_RET_K:
  464. if (!K) {
  465. if (pc_ret0 == -1)
  466. pc_ret0 = i;
  467. emit_clear(r_A);
  468. } else {
  469. emit_loadimm(K, r_A);
  470. }
  471. /* Fallthrough */
  472. case BPF_S_RET_A:
  473. if (seen_or_pass0) {
  474. if (i != flen - 1) {
  475. emit_jump(cleanup_addr);
  476. emit_nop();
  477. break;
  478. }
  479. if (seen_or_pass0 & SEEN_MEM) {
  480. unsigned int sz = BASE_STACKFRAME;
  481. sz += BPF_MEMWORDS * sizeof(u32);
  482. emit_release_stack(sz);
  483. }
  484. }
  485. /* jmpl %r_saved_O7 + 8, %g0 */
  486. emit_jmpl(r_saved_O7, 8, G0);
  487. emit_reg_move(r_A, O0); /* delay slot */
  488. break;
  489. case BPF_S_MISC_TAX:
  490. seen |= SEEN_XREG;
  491. emit_reg_move(r_A, r_X);
  492. break;
  493. case BPF_S_MISC_TXA:
  494. seen |= SEEN_XREG;
  495. emit_reg_move(r_X, r_A);
  496. break;
  497. case BPF_S_ANC_CPU:
  498. emit_load_cpu(r_A);
  499. break;
  500. case BPF_S_ANC_PROTOCOL:
  501. emit_skb_load16(protocol, r_A);
  502. break;
  503. #if 0
  504. /* GCC won't let us take the address of
  505. * a bit field even though we very much
  506. * know what we are doing here.
  507. */
  508. case BPF_S_ANC_PKTTYPE:
  509. __emit_skb_load8(pkt_type, r_A);
  510. emit_alu_K(SRL, 5);
  511. break;
  512. #endif
  513. case BPF_S_ANC_IFINDEX:
  514. emit_skb_loadptr(dev, r_A);
  515. emit_cmpi(r_A, 0);
  516. emit_branch(BNE_PTR, cleanup_addr + 4);
  517. emit_nop();
  518. emit_load32(r_A, struct net_device, ifindex, r_A);
  519. break;
  520. case BPF_S_ANC_MARK:
  521. emit_skb_load32(mark, r_A);
  522. break;
  523. case BPF_S_ANC_QUEUE:
  524. emit_skb_load16(queue_mapping, r_A);
  525. break;
  526. case BPF_S_ANC_HATYPE:
  527. emit_skb_loadptr(dev, r_A);
  528. emit_cmpi(r_A, 0);
  529. emit_branch(BNE_PTR, cleanup_addr + 4);
  530. emit_nop();
  531. emit_load16(r_A, struct net_device, type, r_A);
  532. break;
  533. case BPF_S_ANC_RXHASH:
  534. emit_skb_load32(rxhash, r_A);
  535. break;
  536. case BPF_S_LD_IMM:
  537. emit_loadimm(K, r_A);
  538. break;
  539. case BPF_S_LDX_IMM:
  540. emit_loadimm(K, r_X);
  541. break;
  542. case BPF_S_LD_MEM:
  543. emit_ldmem(K * 4, r_A);
  544. break;
  545. case BPF_S_LDX_MEM:
  546. emit_ldmem(K * 4, r_X);
  547. break;
  548. case BPF_S_ST:
  549. emit_stmem(K * 4, r_A);
  550. break;
  551. case BPF_S_STX:
  552. emit_stmem(K * 4, r_X);
  553. break;
  554. #define CHOOSE_LOAD_FUNC(K, func) \
  555. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
  556. case BPF_S_LD_W_ABS:
  557. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_word);
  558. common_load: seen |= SEEN_DATAREF;
  559. emit_loadimm(K, r_OFF);
  560. emit_call(func);
  561. break;
  562. case BPF_S_LD_H_ABS:
  563. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_half);
  564. goto common_load;
  565. case BPF_S_LD_B_ABS:
  566. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte);
  567. goto common_load;
  568. case BPF_S_LDX_B_MSH:
  569. func = CHOOSE_LOAD_FUNC(K, bpf_jit_load_byte_msh);
  570. goto common_load;
  571. case BPF_S_LD_W_IND:
  572. func = bpf_jit_load_word;
  573. common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
  574. if (K) {
  575. if (is_simm13(K)) {
  576. emit_addi(r_X, K, r_OFF);
  577. } else {
  578. emit_loadimm(K, r_TMP);
  579. emit_add(r_X, r_TMP, r_OFF);
  580. }
  581. } else {
  582. emit_reg_move(r_X, r_OFF);
  583. }
  584. emit_call(func);
  585. break;
  586. case BPF_S_LD_H_IND:
  587. func = bpf_jit_load_half;
  588. goto common_load_ind;
  589. case BPF_S_LD_B_IND:
  590. func = bpf_jit_load_byte;
  591. goto common_load_ind;
  592. case BPF_S_JMP_JA:
  593. emit_jump(addrs[i + K]);
  594. emit_nop();
  595. break;
  596. #define COND_SEL(CODE, TOP, FOP) \
  597. case CODE: \
  598. t_op = TOP; \
  599. f_op = FOP; \
  600. goto cond_branch
  601. COND_SEL(BPF_S_JMP_JGT_K, BGU, BLEU);
  602. COND_SEL(BPF_S_JMP_JGE_K, BGEU, BLU);
  603. COND_SEL(BPF_S_JMP_JEQ_K, BE, BNE);
  604. COND_SEL(BPF_S_JMP_JSET_K, BNE, BE);
  605. COND_SEL(BPF_S_JMP_JGT_X, BGU, BLEU);
  606. COND_SEL(BPF_S_JMP_JGE_X, BGEU, BLU);
  607. COND_SEL(BPF_S_JMP_JEQ_X, BE, BNE);
  608. COND_SEL(BPF_S_JMP_JSET_X, BNE, BE);
  609. cond_branch: f_offset = addrs[i + filter[i].jf];
  610. t_offset = addrs[i + filter[i].jt];
  611. /* same targets, can avoid doing the test :) */
  612. if (filter[i].jt == filter[i].jf) {
  613. emit_jump(t_offset);
  614. emit_nop();
  615. break;
  616. }
  617. switch (filter[i].code) {
  618. case BPF_S_JMP_JGT_X:
  619. case BPF_S_JMP_JGE_X:
  620. case BPF_S_JMP_JEQ_X:
  621. seen |= SEEN_XREG;
  622. emit_cmp(r_A, r_X);
  623. break;
  624. case BPF_S_JMP_JSET_X:
  625. seen |= SEEN_XREG;
  626. emit_btst(r_A, r_X);
  627. break;
  628. case BPF_S_JMP_JEQ_K:
  629. case BPF_S_JMP_JGT_K:
  630. case BPF_S_JMP_JGE_K:
  631. if (is_simm13(K)) {
  632. emit_cmpi(r_A, K);
  633. } else {
  634. emit_loadimm(K, r_TMP);
  635. emit_cmp(r_A, r_TMP);
  636. }
  637. break;
  638. case BPF_S_JMP_JSET_K:
  639. if (is_simm13(K)) {
  640. emit_btsti(r_A, K);
  641. } else {
  642. emit_loadimm(K, r_TMP);
  643. emit_btst(r_A, r_TMP);
  644. }
  645. break;
  646. }
  647. if (filter[i].jt != 0) {
  648. if (filter[i].jf)
  649. t_offset += 8;
  650. emit_branch(t_op, t_offset);
  651. emit_nop(); /* delay slot */
  652. if (filter[i].jf) {
  653. emit_jump(f_offset);
  654. emit_nop();
  655. }
  656. break;
  657. }
  658. emit_branch(f_op, f_offset);
  659. emit_nop(); /* delay slot */
  660. break;
  661. default:
  662. /* hmm, too complex filter, give up with jit compiler */
  663. goto out;
  664. }
  665. ilen = (void *) prog - (void *) temp;
  666. if (image) {
  667. if (unlikely(proglen + ilen > oldproglen)) {
  668. pr_err("bpb_jit_compile fatal error\n");
  669. kfree(addrs);
  670. module_free(NULL, image);
  671. return;
  672. }
  673. memcpy(image + proglen, temp, ilen);
  674. }
  675. proglen += ilen;
  676. addrs[i] = proglen;
  677. prog = temp;
  678. }
  679. /* last bpf instruction is always a RET :
  680. * use it to give the cleanup instruction(s) addr
  681. */
  682. cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
  683. if (seen_or_pass0 & SEEN_MEM)
  684. cleanup_addr -= 4; /* add %sp, X, %sp; */
  685. if (image) {
  686. if (proglen != oldproglen)
  687. pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
  688. proglen, oldproglen);
  689. break;
  690. }
  691. if (proglen == oldproglen) {
  692. image = module_alloc(max_t(unsigned int,
  693. proglen,
  694. sizeof(struct work_struct)));
  695. if (!image)
  696. goto out;
  697. }
  698. oldproglen = proglen;
  699. }
  700. if (bpf_jit_enable > 1)
  701. pr_err("flen=%d proglen=%u pass=%d image=%p\n",
  702. flen, proglen, pass, image);
  703. if (image) {
  704. if (bpf_jit_enable > 1)
  705. print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
  706. 16, 1, image, proglen, false);
  707. bpf_flush_icache(image, image + proglen);
  708. fp->bpf_func = (void *)image;
  709. }
  710. out:
  711. kfree(addrs);
  712. return;
  713. }
  714. static void jit_free_defer(struct work_struct *arg)
  715. {
  716. module_free(NULL, arg);
  717. }
  718. /* run from softirq, we must use a work_struct to call
  719. * module_free() from process context
  720. */
  721. void bpf_jit_free(struct sk_filter *fp)
  722. {
  723. if (fp->bpf_func != sk_run_filter) {
  724. struct work_struct *work = (struct work_struct *)fp->bpf_func;
  725. INIT_WORK(work, jit_free_defer);
  726. schedule_work(work);
  727. }
  728. }