smp_64.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482
  1. /* smp.c: Sparc64 SMP support.
  2. *
  3. * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/export.h>
  6. #include <linux/kernel.h>
  7. #include <linux/sched.h>
  8. #include <linux/mm.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/threads.h>
  11. #include <linux/smp.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/kernel_stat.h>
  14. #include <linux/delay.h>
  15. #include <linux/init.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/cache.h>
  20. #include <linux/jiffies.h>
  21. #include <linux/profile.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/vmalloc.h>
  24. #include <linux/ftrace.h>
  25. #include <linux/cpu.h>
  26. #include <linux/slab.h>
  27. #include <asm/head.h>
  28. #include <asm/ptrace.h>
  29. #include <linux/atomic.h>
  30. #include <asm/tlbflush.h>
  31. #include <asm/mmu_context.h>
  32. #include <asm/cpudata.h>
  33. #include <asm/hvtramp.h>
  34. #include <asm/io.h>
  35. #include <asm/timer.h>
  36. #include <asm/irq.h>
  37. #include <asm/irq_regs.h>
  38. #include <asm/page.h>
  39. #include <asm/pgtable.h>
  40. #include <asm/oplib.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/starfire.h>
  43. #include <asm/tlb.h>
  44. #include <asm/sections.h>
  45. #include <asm/prom.h>
  46. #include <asm/mdesc.h>
  47. #include <asm/ldc.h>
  48. #include <asm/hypervisor.h>
  49. #include <asm/pcr.h>
  50. #include "cpumap.h"
  51. int sparc64_multi_core __read_mostly;
  52. DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
  53. cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
  54. { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
  55. EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  56. EXPORT_SYMBOL(cpu_core_map);
  57. static cpumask_t smp_commenced_mask;
  58. void smp_info(struct seq_file *m)
  59. {
  60. int i;
  61. seq_printf(m, "State:\n");
  62. for_each_online_cpu(i)
  63. seq_printf(m, "CPU%d:\t\tonline\n", i);
  64. }
  65. void smp_bogo(struct seq_file *m)
  66. {
  67. int i;
  68. for_each_online_cpu(i)
  69. seq_printf(m,
  70. "Cpu%dClkTck\t: %016lx\n",
  71. i, cpu_data(i).clock_tick);
  72. }
  73. extern void setup_sparc64_timer(void);
  74. static volatile unsigned long callin_flag = 0;
  75. void __cpuinit smp_callin(void)
  76. {
  77. int cpuid = hard_smp_processor_id();
  78. __local_per_cpu_offset = __per_cpu_offset(cpuid);
  79. if (tlb_type == hypervisor)
  80. sun4v_ktsb_register();
  81. __flush_tlb_all();
  82. setup_sparc64_timer();
  83. if (cheetah_pcache_forced_on)
  84. cheetah_enable_pcache();
  85. callin_flag = 1;
  86. __asm__ __volatile__("membar #Sync\n\t"
  87. "flush %%g6" : : : "memory");
  88. /* Clear this or we will die instantly when we
  89. * schedule back to this idler...
  90. */
  91. current_thread_info()->new_child = 0;
  92. /* Attach to the address space of init_task. */
  93. atomic_inc(&init_mm.mm_count);
  94. current->active_mm = &init_mm;
  95. /* inform the notifiers about the new cpu */
  96. notify_cpu_starting(cpuid);
  97. while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
  98. rmb();
  99. set_cpu_online(cpuid, true);
  100. local_irq_enable();
  101. /* idle thread is expected to have preempt disabled */
  102. preempt_disable();
  103. }
  104. void cpu_panic(void)
  105. {
  106. printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
  107. panic("SMP bolixed\n");
  108. }
  109. /* This tick register synchronization scheme is taken entirely from
  110. * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
  111. *
  112. * The only change I've made is to rework it so that the master
  113. * initiates the synchonization instead of the slave. -DaveM
  114. */
  115. #define MASTER 0
  116. #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
  117. #define NUM_ROUNDS 64 /* magic value */
  118. #define NUM_ITERS 5 /* likewise */
  119. static DEFINE_SPINLOCK(itc_sync_lock);
  120. static unsigned long go[SLAVE + 1];
  121. #define DEBUG_TICK_SYNC 0
  122. static inline long get_delta (long *rt, long *master)
  123. {
  124. unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
  125. unsigned long tcenter, t0, t1, tm;
  126. unsigned long i;
  127. for (i = 0; i < NUM_ITERS; i++) {
  128. t0 = tick_ops->get_tick();
  129. go[MASTER] = 1;
  130. membar_safe("#StoreLoad");
  131. while (!(tm = go[SLAVE]))
  132. rmb();
  133. go[SLAVE] = 0;
  134. wmb();
  135. t1 = tick_ops->get_tick();
  136. if (t1 - t0 < best_t1 - best_t0)
  137. best_t0 = t0, best_t1 = t1, best_tm = tm;
  138. }
  139. *rt = best_t1 - best_t0;
  140. *master = best_tm - best_t0;
  141. /* average best_t0 and best_t1 without overflow: */
  142. tcenter = (best_t0/2 + best_t1/2);
  143. if (best_t0 % 2 + best_t1 % 2 == 2)
  144. tcenter++;
  145. return tcenter - best_tm;
  146. }
  147. void smp_synchronize_tick_client(void)
  148. {
  149. long i, delta, adj, adjust_latency = 0, done = 0;
  150. unsigned long flags, rt, master_time_stamp;
  151. #if DEBUG_TICK_SYNC
  152. struct {
  153. long rt; /* roundtrip time */
  154. long master; /* master's timestamp */
  155. long diff; /* difference between midpoint and master's timestamp */
  156. long lat; /* estimate of itc adjustment latency */
  157. } t[NUM_ROUNDS];
  158. #endif
  159. go[MASTER] = 1;
  160. while (go[MASTER])
  161. rmb();
  162. local_irq_save(flags);
  163. {
  164. for (i = 0; i < NUM_ROUNDS; i++) {
  165. delta = get_delta(&rt, &master_time_stamp);
  166. if (delta == 0)
  167. done = 1; /* let's lock on to this... */
  168. if (!done) {
  169. if (i > 0) {
  170. adjust_latency += -delta;
  171. adj = -delta + adjust_latency/4;
  172. } else
  173. adj = -delta;
  174. tick_ops->add_tick(adj);
  175. }
  176. #if DEBUG_TICK_SYNC
  177. t[i].rt = rt;
  178. t[i].master = master_time_stamp;
  179. t[i].diff = delta;
  180. t[i].lat = adjust_latency/4;
  181. #endif
  182. }
  183. }
  184. local_irq_restore(flags);
  185. #if DEBUG_TICK_SYNC
  186. for (i = 0; i < NUM_ROUNDS; i++)
  187. printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
  188. t[i].rt, t[i].master, t[i].diff, t[i].lat);
  189. #endif
  190. printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
  191. "(last diff %ld cycles, maxerr %lu cycles)\n",
  192. smp_processor_id(), delta, rt);
  193. }
  194. static void smp_start_sync_tick_client(int cpu);
  195. static void smp_synchronize_one_tick(int cpu)
  196. {
  197. unsigned long flags, i;
  198. go[MASTER] = 0;
  199. smp_start_sync_tick_client(cpu);
  200. /* wait for client to be ready */
  201. while (!go[MASTER])
  202. rmb();
  203. /* now let the client proceed into his loop */
  204. go[MASTER] = 0;
  205. membar_safe("#StoreLoad");
  206. spin_lock_irqsave(&itc_sync_lock, flags);
  207. {
  208. for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
  209. while (!go[MASTER])
  210. rmb();
  211. go[MASTER] = 0;
  212. wmb();
  213. go[SLAVE] = tick_ops->get_tick();
  214. membar_safe("#StoreLoad");
  215. }
  216. }
  217. spin_unlock_irqrestore(&itc_sync_lock, flags);
  218. }
  219. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  220. /* XXX Put this in some common place. XXX */
  221. static unsigned long kimage_addr_to_ra(void *p)
  222. {
  223. unsigned long val = (unsigned long) p;
  224. return kern_base + (val - KERNBASE);
  225. }
  226. static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
  227. {
  228. extern unsigned long sparc64_ttable_tl0;
  229. extern unsigned long kern_locked_tte_data;
  230. struct hvtramp_descr *hdesc;
  231. unsigned long trampoline_ra;
  232. struct trap_per_cpu *tb;
  233. u64 tte_vaddr, tte_data;
  234. unsigned long hv_err;
  235. int i;
  236. hdesc = kzalloc(sizeof(*hdesc) +
  237. (sizeof(struct hvtramp_mapping) *
  238. num_kernel_image_mappings - 1),
  239. GFP_KERNEL);
  240. if (!hdesc) {
  241. printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
  242. "hvtramp_descr.\n");
  243. return;
  244. }
  245. *descrp = hdesc;
  246. hdesc->cpu = cpu;
  247. hdesc->num_mappings = num_kernel_image_mappings;
  248. tb = &trap_block[cpu];
  249. hdesc->fault_info_va = (unsigned long) &tb->fault_info;
  250. hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
  251. hdesc->thread_reg = thread_reg;
  252. tte_vaddr = (unsigned long) KERNBASE;
  253. tte_data = kern_locked_tte_data;
  254. for (i = 0; i < hdesc->num_mappings; i++) {
  255. hdesc->maps[i].vaddr = tte_vaddr;
  256. hdesc->maps[i].tte = tte_data;
  257. tte_vaddr += 0x400000;
  258. tte_data += 0x400000;
  259. }
  260. trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
  261. hv_err = sun4v_cpu_start(cpu, trampoline_ra,
  262. kimage_addr_to_ra(&sparc64_ttable_tl0),
  263. __pa(hdesc));
  264. if (hv_err)
  265. printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
  266. "gives error %lu\n", hv_err);
  267. }
  268. #endif
  269. extern unsigned long sparc64_cpu_startup;
  270. /* The OBP cpu startup callback truncates the 3rd arg cookie to
  271. * 32-bits (I think) so to be safe we have it read the pointer
  272. * contained here so we work on >4GB machines. -DaveM
  273. */
  274. static struct thread_info *cpu_new_thread = NULL;
  275. static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
  276. {
  277. unsigned long entry =
  278. (unsigned long)(&sparc64_cpu_startup);
  279. unsigned long cookie =
  280. (unsigned long)(&cpu_new_thread);
  281. void *descr = NULL;
  282. int timeout, ret;
  283. callin_flag = 0;
  284. cpu_new_thread = task_thread_info(idle);
  285. if (tlb_type == hypervisor) {
  286. #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
  287. if (ldom_domaining_enabled)
  288. ldom_startcpu_cpuid(cpu,
  289. (unsigned long) cpu_new_thread,
  290. &descr);
  291. else
  292. #endif
  293. prom_startcpu_cpuid(cpu, entry, cookie);
  294. } else {
  295. struct device_node *dp = of_find_node_by_cpuid(cpu);
  296. prom_startcpu(dp->phandle, entry, cookie);
  297. }
  298. for (timeout = 0; timeout < 50000; timeout++) {
  299. if (callin_flag)
  300. break;
  301. udelay(100);
  302. }
  303. if (callin_flag) {
  304. ret = 0;
  305. } else {
  306. printk("Processor %d is stuck.\n", cpu);
  307. ret = -ENODEV;
  308. }
  309. cpu_new_thread = NULL;
  310. kfree(descr);
  311. return ret;
  312. }
  313. static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
  314. {
  315. u64 result, target;
  316. int stuck, tmp;
  317. if (this_is_starfire) {
  318. /* map to real upaid */
  319. cpu = (((cpu & 0x3c) << 1) |
  320. ((cpu & 0x40) >> 4) |
  321. (cpu & 0x3));
  322. }
  323. target = (cpu << 14) | 0x70;
  324. again:
  325. /* Ok, this is the real Spitfire Errata #54.
  326. * One must read back from a UDB internal register
  327. * after writes to the UDB interrupt dispatch, but
  328. * before the membar Sync for that write.
  329. * So we use the high UDB control register (ASI 0x7f,
  330. * ADDR 0x20) for the dummy read. -DaveM
  331. */
  332. tmp = 0x40;
  333. __asm__ __volatile__(
  334. "wrpr %1, %2, %%pstate\n\t"
  335. "stxa %4, [%0] %3\n\t"
  336. "stxa %5, [%0+%8] %3\n\t"
  337. "add %0, %8, %0\n\t"
  338. "stxa %6, [%0+%8] %3\n\t"
  339. "membar #Sync\n\t"
  340. "stxa %%g0, [%7] %3\n\t"
  341. "membar #Sync\n\t"
  342. "mov 0x20, %%g1\n\t"
  343. "ldxa [%%g1] 0x7f, %%g0\n\t"
  344. "membar #Sync"
  345. : "=r" (tmp)
  346. : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
  347. "r" (data0), "r" (data1), "r" (data2), "r" (target),
  348. "r" (0x10), "0" (tmp)
  349. : "g1");
  350. /* NOTE: PSTATE_IE is still clear. */
  351. stuck = 100000;
  352. do {
  353. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  354. : "=r" (result)
  355. : "i" (ASI_INTR_DISPATCH_STAT));
  356. if (result == 0) {
  357. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  358. : : "r" (pstate));
  359. return;
  360. }
  361. stuck -= 1;
  362. if (stuck == 0)
  363. break;
  364. } while (result & 0x1);
  365. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  366. : : "r" (pstate));
  367. if (stuck == 0) {
  368. printk("CPU[%d]: mondo stuckage result[%016llx]\n",
  369. smp_processor_id(), result);
  370. } else {
  371. udelay(2);
  372. goto again;
  373. }
  374. }
  375. static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  376. {
  377. u64 *mondo, data0, data1, data2;
  378. u16 *cpu_list;
  379. u64 pstate;
  380. int i;
  381. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  382. cpu_list = __va(tb->cpu_list_pa);
  383. mondo = __va(tb->cpu_mondo_block_pa);
  384. data0 = mondo[0];
  385. data1 = mondo[1];
  386. data2 = mondo[2];
  387. for (i = 0; i < cnt; i++)
  388. spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
  389. }
  390. /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
  391. * packet, but we have no use for that. However we do take advantage of
  392. * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
  393. */
  394. static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  395. {
  396. int nack_busy_id, is_jbus, need_more;
  397. u64 *mondo, pstate, ver, busy_mask;
  398. u16 *cpu_list;
  399. cpu_list = __va(tb->cpu_list_pa);
  400. mondo = __va(tb->cpu_mondo_block_pa);
  401. /* Unfortunately, someone at Sun had the brilliant idea to make the
  402. * busy/nack fields hard-coded by ITID number for this Ultra-III
  403. * derivative processor.
  404. */
  405. __asm__ ("rdpr %%ver, %0" : "=r" (ver));
  406. is_jbus = ((ver >> 32) == __JALAPENO_ID ||
  407. (ver >> 32) == __SERRANO_ID);
  408. __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
  409. retry:
  410. need_more = 0;
  411. __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
  412. : : "r" (pstate), "i" (PSTATE_IE));
  413. /* Setup the dispatch data registers. */
  414. __asm__ __volatile__("stxa %0, [%3] %6\n\t"
  415. "stxa %1, [%4] %6\n\t"
  416. "stxa %2, [%5] %6\n\t"
  417. "membar #Sync\n\t"
  418. : /* no outputs */
  419. : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
  420. "r" (0x40), "r" (0x50), "r" (0x60),
  421. "i" (ASI_INTR_W));
  422. nack_busy_id = 0;
  423. busy_mask = 0;
  424. {
  425. int i;
  426. for (i = 0; i < cnt; i++) {
  427. u64 target, nr;
  428. nr = cpu_list[i];
  429. if (nr == 0xffff)
  430. continue;
  431. target = (nr << 14) | 0x70;
  432. if (is_jbus) {
  433. busy_mask |= (0x1UL << (nr * 2));
  434. } else {
  435. target |= (nack_busy_id << 24);
  436. busy_mask |= (0x1UL <<
  437. (nack_busy_id * 2));
  438. }
  439. __asm__ __volatile__(
  440. "stxa %%g0, [%0] %1\n\t"
  441. "membar #Sync\n\t"
  442. : /* no outputs */
  443. : "r" (target), "i" (ASI_INTR_W));
  444. nack_busy_id++;
  445. if (nack_busy_id == 32) {
  446. need_more = 1;
  447. break;
  448. }
  449. }
  450. }
  451. /* Now, poll for completion. */
  452. {
  453. u64 dispatch_stat, nack_mask;
  454. long stuck;
  455. stuck = 100000 * nack_busy_id;
  456. nack_mask = busy_mask << 1;
  457. do {
  458. __asm__ __volatile__("ldxa [%%g0] %1, %0"
  459. : "=r" (dispatch_stat)
  460. : "i" (ASI_INTR_DISPATCH_STAT));
  461. if (!(dispatch_stat & (busy_mask | nack_mask))) {
  462. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  463. : : "r" (pstate));
  464. if (unlikely(need_more)) {
  465. int i, this_cnt = 0;
  466. for (i = 0; i < cnt; i++) {
  467. if (cpu_list[i] == 0xffff)
  468. continue;
  469. cpu_list[i] = 0xffff;
  470. this_cnt++;
  471. if (this_cnt == 32)
  472. break;
  473. }
  474. goto retry;
  475. }
  476. return;
  477. }
  478. if (!--stuck)
  479. break;
  480. } while (dispatch_stat & busy_mask);
  481. __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
  482. : : "r" (pstate));
  483. if (dispatch_stat & busy_mask) {
  484. /* Busy bits will not clear, continue instead
  485. * of freezing up on this cpu.
  486. */
  487. printk("CPU[%d]: mondo stuckage result[%016llx]\n",
  488. smp_processor_id(), dispatch_stat);
  489. } else {
  490. int i, this_busy_nack = 0;
  491. /* Delay some random time with interrupts enabled
  492. * to prevent deadlock.
  493. */
  494. udelay(2 * nack_busy_id);
  495. /* Clear out the mask bits for cpus which did not
  496. * NACK us.
  497. */
  498. for (i = 0; i < cnt; i++) {
  499. u64 check_mask, nr;
  500. nr = cpu_list[i];
  501. if (nr == 0xffff)
  502. continue;
  503. if (is_jbus)
  504. check_mask = (0x2UL << (2*nr));
  505. else
  506. check_mask = (0x2UL <<
  507. this_busy_nack);
  508. if ((dispatch_stat & check_mask) == 0)
  509. cpu_list[i] = 0xffff;
  510. this_busy_nack += 2;
  511. if (this_busy_nack == 64)
  512. break;
  513. }
  514. goto retry;
  515. }
  516. }
  517. }
  518. /* Multi-cpu list version. */
  519. static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
  520. {
  521. int retries, this_cpu, prev_sent, i, saw_cpu_error;
  522. unsigned long status;
  523. u16 *cpu_list;
  524. this_cpu = smp_processor_id();
  525. cpu_list = __va(tb->cpu_list_pa);
  526. saw_cpu_error = 0;
  527. retries = 0;
  528. prev_sent = 0;
  529. do {
  530. int forward_progress, n_sent;
  531. status = sun4v_cpu_mondo_send(cnt,
  532. tb->cpu_list_pa,
  533. tb->cpu_mondo_block_pa);
  534. /* HV_EOK means all cpus received the xcall, we're done. */
  535. if (likely(status == HV_EOK))
  536. break;
  537. /* First, see if we made any forward progress.
  538. *
  539. * The hypervisor indicates successful sends by setting
  540. * cpu list entries to the value 0xffff.
  541. */
  542. n_sent = 0;
  543. for (i = 0; i < cnt; i++) {
  544. if (likely(cpu_list[i] == 0xffff))
  545. n_sent++;
  546. }
  547. forward_progress = 0;
  548. if (n_sent > prev_sent)
  549. forward_progress = 1;
  550. prev_sent = n_sent;
  551. /* If we get a HV_ECPUERROR, then one or more of the cpus
  552. * in the list are in error state. Use the cpu_state()
  553. * hypervisor call to find out which cpus are in error state.
  554. */
  555. if (unlikely(status == HV_ECPUERROR)) {
  556. for (i = 0; i < cnt; i++) {
  557. long err;
  558. u16 cpu;
  559. cpu = cpu_list[i];
  560. if (cpu == 0xffff)
  561. continue;
  562. err = sun4v_cpu_state(cpu);
  563. if (err == HV_CPU_STATE_ERROR) {
  564. saw_cpu_error = (cpu + 1);
  565. cpu_list[i] = 0xffff;
  566. }
  567. }
  568. } else if (unlikely(status != HV_EWOULDBLOCK))
  569. goto fatal_mondo_error;
  570. /* Don't bother rewriting the CPU list, just leave the
  571. * 0xffff and non-0xffff entries in there and the
  572. * hypervisor will do the right thing.
  573. *
  574. * Only advance timeout state if we didn't make any
  575. * forward progress.
  576. */
  577. if (unlikely(!forward_progress)) {
  578. if (unlikely(++retries > 10000))
  579. goto fatal_mondo_timeout;
  580. /* Delay a little bit to let other cpus catch up
  581. * on their cpu mondo queue work.
  582. */
  583. udelay(2 * cnt);
  584. }
  585. } while (1);
  586. if (unlikely(saw_cpu_error))
  587. goto fatal_mondo_cpu_error;
  588. return;
  589. fatal_mondo_cpu_error:
  590. printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
  591. "(including %d) were in error state\n",
  592. this_cpu, saw_cpu_error - 1);
  593. return;
  594. fatal_mondo_timeout:
  595. printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
  596. " progress after %d retries.\n",
  597. this_cpu, retries);
  598. goto dump_cpu_list_and_out;
  599. fatal_mondo_error:
  600. printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
  601. this_cpu, status);
  602. printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
  603. "mondo_block_pa(%lx)\n",
  604. this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
  605. dump_cpu_list_and_out:
  606. printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
  607. for (i = 0; i < cnt; i++)
  608. printk("%u ", cpu_list[i]);
  609. printk("]\n");
  610. }
  611. static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
  612. static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
  613. {
  614. struct trap_per_cpu *tb;
  615. int this_cpu, i, cnt;
  616. unsigned long flags;
  617. u16 *cpu_list;
  618. u64 *mondo;
  619. /* We have to do this whole thing with interrupts fully disabled.
  620. * Otherwise if we send an xcall from interrupt context it will
  621. * corrupt both our mondo block and cpu list state.
  622. *
  623. * One consequence of this is that we cannot use timeout mechanisms
  624. * that depend upon interrupts being delivered locally. So, for
  625. * example, we cannot sample jiffies and expect it to advance.
  626. *
  627. * Fortunately, udelay() uses %stick/%tick so we can use that.
  628. */
  629. local_irq_save(flags);
  630. this_cpu = smp_processor_id();
  631. tb = &trap_block[this_cpu];
  632. mondo = __va(tb->cpu_mondo_block_pa);
  633. mondo[0] = data0;
  634. mondo[1] = data1;
  635. mondo[2] = data2;
  636. wmb();
  637. cpu_list = __va(tb->cpu_list_pa);
  638. /* Setup the initial cpu list. */
  639. cnt = 0;
  640. for_each_cpu(i, mask) {
  641. if (i == this_cpu || !cpu_online(i))
  642. continue;
  643. cpu_list[cnt++] = i;
  644. }
  645. if (cnt)
  646. xcall_deliver_impl(tb, cnt);
  647. local_irq_restore(flags);
  648. }
  649. /* Send cross call to all processors mentioned in MASK_P
  650. * except self. Really, there are only two cases currently,
  651. * "cpu_online_mask" and "mm_cpumask(mm)".
  652. */
  653. static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
  654. {
  655. u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
  656. xcall_deliver(data0, data1, data2, mask);
  657. }
  658. /* Send cross call to all processors except self. */
  659. static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
  660. {
  661. smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
  662. }
  663. extern unsigned long xcall_sync_tick;
  664. static void smp_start_sync_tick_client(int cpu)
  665. {
  666. xcall_deliver((u64) &xcall_sync_tick, 0, 0,
  667. cpumask_of(cpu));
  668. }
  669. extern unsigned long xcall_call_function;
  670. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  671. {
  672. xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
  673. }
  674. extern unsigned long xcall_call_function_single;
  675. void arch_send_call_function_single_ipi(int cpu)
  676. {
  677. xcall_deliver((u64) &xcall_call_function_single, 0, 0,
  678. cpumask_of(cpu));
  679. }
  680. void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
  681. {
  682. clear_softint(1 << irq);
  683. generic_smp_call_function_interrupt();
  684. }
  685. void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
  686. {
  687. clear_softint(1 << irq);
  688. generic_smp_call_function_single_interrupt();
  689. }
  690. static void tsb_sync(void *info)
  691. {
  692. struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
  693. struct mm_struct *mm = info;
  694. /* It is not valid to test "current->active_mm == mm" here.
  695. *
  696. * The value of "current" is not changed atomically with
  697. * switch_mm(). But that's OK, we just need to check the
  698. * current cpu's trap block PGD physical address.
  699. */
  700. if (tp->pgd_paddr == __pa(mm->pgd))
  701. tsb_context_switch(mm);
  702. }
  703. void smp_tsb_sync(struct mm_struct *mm)
  704. {
  705. smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
  706. }
  707. extern unsigned long xcall_flush_tlb_mm;
  708. extern unsigned long xcall_flush_tlb_pending;
  709. extern unsigned long xcall_flush_tlb_kernel_range;
  710. extern unsigned long xcall_fetch_glob_regs;
  711. extern unsigned long xcall_receive_signal;
  712. extern unsigned long xcall_new_mmu_context_version;
  713. #ifdef CONFIG_KGDB
  714. extern unsigned long xcall_kgdb_capture;
  715. #endif
  716. #ifdef DCACHE_ALIASING_POSSIBLE
  717. extern unsigned long xcall_flush_dcache_page_cheetah;
  718. #endif
  719. extern unsigned long xcall_flush_dcache_page_spitfire;
  720. #ifdef CONFIG_DEBUG_DCFLUSH
  721. extern atomic_t dcpage_flushes;
  722. extern atomic_t dcpage_flushes_xcall;
  723. #endif
  724. static inline void __local_flush_dcache_page(struct page *page)
  725. {
  726. #ifdef DCACHE_ALIASING_POSSIBLE
  727. __flush_dcache_page(page_address(page),
  728. ((tlb_type == spitfire) &&
  729. page_mapping(page) != NULL));
  730. #else
  731. if (page_mapping(page) != NULL &&
  732. tlb_type == spitfire)
  733. __flush_icache_page(__pa(page_address(page)));
  734. #endif
  735. }
  736. void smp_flush_dcache_page_impl(struct page *page, int cpu)
  737. {
  738. int this_cpu;
  739. if (tlb_type == hypervisor)
  740. return;
  741. #ifdef CONFIG_DEBUG_DCFLUSH
  742. atomic_inc(&dcpage_flushes);
  743. #endif
  744. this_cpu = get_cpu();
  745. if (cpu == this_cpu) {
  746. __local_flush_dcache_page(page);
  747. } else if (cpu_online(cpu)) {
  748. void *pg_addr = page_address(page);
  749. u64 data0 = 0;
  750. if (tlb_type == spitfire) {
  751. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  752. if (page_mapping(page) != NULL)
  753. data0 |= ((u64)1 << 32);
  754. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  755. #ifdef DCACHE_ALIASING_POSSIBLE
  756. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  757. #endif
  758. }
  759. if (data0) {
  760. xcall_deliver(data0, __pa(pg_addr),
  761. (u64) pg_addr, cpumask_of(cpu));
  762. #ifdef CONFIG_DEBUG_DCFLUSH
  763. atomic_inc(&dcpage_flushes_xcall);
  764. #endif
  765. }
  766. }
  767. put_cpu();
  768. }
  769. void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
  770. {
  771. void *pg_addr;
  772. u64 data0;
  773. if (tlb_type == hypervisor)
  774. return;
  775. preempt_disable();
  776. #ifdef CONFIG_DEBUG_DCFLUSH
  777. atomic_inc(&dcpage_flushes);
  778. #endif
  779. data0 = 0;
  780. pg_addr = page_address(page);
  781. if (tlb_type == spitfire) {
  782. data0 = ((u64)&xcall_flush_dcache_page_spitfire);
  783. if (page_mapping(page) != NULL)
  784. data0 |= ((u64)1 << 32);
  785. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  786. #ifdef DCACHE_ALIASING_POSSIBLE
  787. data0 = ((u64)&xcall_flush_dcache_page_cheetah);
  788. #endif
  789. }
  790. if (data0) {
  791. xcall_deliver(data0, __pa(pg_addr),
  792. (u64) pg_addr, cpu_online_mask);
  793. #ifdef CONFIG_DEBUG_DCFLUSH
  794. atomic_inc(&dcpage_flushes_xcall);
  795. #endif
  796. }
  797. __local_flush_dcache_page(page);
  798. preempt_enable();
  799. }
  800. void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
  801. {
  802. struct mm_struct *mm;
  803. unsigned long flags;
  804. clear_softint(1 << irq);
  805. /* See if we need to allocate a new TLB context because
  806. * the version of the one we are using is now out of date.
  807. */
  808. mm = current->active_mm;
  809. if (unlikely(!mm || (mm == &init_mm)))
  810. return;
  811. spin_lock_irqsave(&mm->context.lock, flags);
  812. if (unlikely(!CTX_VALID(mm->context)))
  813. get_new_mmu_context(mm);
  814. spin_unlock_irqrestore(&mm->context.lock, flags);
  815. load_secondary_context(mm);
  816. __flush_tlb_mm(CTX_HWBITS(mm->context),
  817. SECONDARY_CONTEXT);
  818. }
  819. void smp_new_mmu_context_version(void)
  820. {
  821. smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
  822. }
  823. #ifdef CONFIG_KGDB
  824. void kgdb_roundup_cpus(unsigned long flags)
  825. {
  826. smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
  827. }
  828. #endif
  829. void smp_fetch_global_regs(void)
  830. {
  831. smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
  832. }
  833. /* We know that the window frames of the user have been flushed
  834. * to the stack before we get here because all callers of us
  835. * are flush_tlb_*() routines, and these run after flush_cache_*()
  836. * which performs the flushw.
  837. *
  838. * The SMP TLB coherency scheme we use works as follows:
  839. *
  840. * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
  841. * space has (potentially) executed on, this is the heuristic
  842. * we use to avoid doing cross calls.
  843. *
  844. * Also, for flushing from kswapd and also for clones, we
  845. * use cpu_vm_mask as the list of cpus to make run the TLB.
  846. *
  847. * 2) TLB context numbers are shared globally across all processors
  848. * in the system, this allows us to play several games to avoid
  849. * cross calls.
  850. *
  851. * One invariant is that when a cpu switches to a process, and
  852. * that processes tsk->active_mm->cpu_vm_mask does not have the
  853. * current cpu's bit set, that tlb context is flushed locally.
  854. *
  855. * If the address space is non-shared (ie. mm->count == 1) we avoid
  856. * cross calls when we want to flush the currently running process's
  857. * tlb state. This is done by clearing all cpu bits except the current
  858. * processor's in current->mm->cpu_vm_mask and performing the
  859. * flush locally only. This will force any subsequent cpus which run
  860. * this task to flush the context from the local tlb if the process
  861. * migrates to another cpu (again).
  862. *
  863. * 3) For shared address spaces (threads) and swapping we bite the
  864. * bullet for most cases and perform the cross call (but only to
  865. * the cpus listed in cpu_vm_mask).
  866. *
  867. * The performance gain from "optimizing" away the cross call for threads is
  868. * questionable (in theory the big win for threads is the massive sharing of
  869. * address space state across processors).
  870. */
  871. /* This currently is only used by the hugetlb arch pre-fault
  872. * hook on UltraSPARC-III+ and later when changing the pagesize
  873. * bits of the context register for an address space.
  874. */
  875. void smp_flush_tlb_mm(struct mm_struct *mm)
  876. {
  877. u32 ctx = CTX_HWBITS(mm->context);
  878. int cpu = get_cpu();
  879. if (atomic_read(&mm->mm_users) == 1) {
  880. cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
  881. goto local_flush_and_out;
  882. }
  883. smp_cross_call_masked(&xcall_flush_tlb_mm,
  884. ctx, 0, 0,
  885. mm_cpumask(mm));
  886. local_flush_and_out:
  887. __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
  888. put_cpu();
  889. }
  890. void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
  891. {
  892. u32 ctx = CTX_HWBITS(mm->context);
  893. int cpu = get_cpu();
  894. if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
  895. cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
  896. else
  897. smp_cross_call_masked(&xcall_flush_tlb_pending,
  898. ctx, nr, (unsigned long) vaddrs,
  899. mm_cpumask(mm));
  900. __flush_tlb_pending(ctx, nr, vaddrs);
  901. put_cpu();
  902. }
  903. void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
  904. {
  905. start &= PAGE_MASK;
  906. end = PAGE_ALIGN(end);
  907. if (start != end) {
  908. smp_cross_call(&xcall_flush_tlb_kernel_range,
  909. 0, start, end);
  910. __flush_tlb_kernel_range(start, end);
  911. }
  912. }
  913. /* CPU capture. */
  914. /* #define CAPTURE_DEBUG */
  915. extern unsigned long xcall_capture;
  916. static atomic_t smp_capture_depth = ATOMIC_INIT(0);
  917. static atomic_t smp_capture_registry = ATOMIC_INIT(0);
  918. static unsigned long penguins_are_doing_time;
  919. void smp_capture(void)
  920. {
  921. int result = atomic_add_ret(1, &smp_capture_depth);
  922. if (result == 1) {
  923. int ncpus = num_online_cpus();
  924. #ifdef CAPTURE_DEBUG
  925. printk("CPU[%d]: Sending penguins to jail...",
  926. smp_processor_id());
  927. #endif
  928. penguins_are_doing_time = 1;
  929. atomic_inc(&smp_capture_registry);
  930. smp_cross_call(&xcall_capture, 0, 0, 0);
  931. while (atomic_read(&smp_capture_registry) != ncpus)
  932. rmb();
  933. #ifdef CAPTURE_DEBUG
  934. printk("done\n");
  935. #endif
  936. }
  937. }
  938. void smp_release(void)
  939. {
  940. if (atomic_dec_and_test(&smp_capture_depth)) {
  941. #ifdef CAPTURE_DEBUG
  942. printk("CPU[%d]: Giving pardon to "
  943. "imprisoned penguins\n",
  944. smp_processor_id());
  945. #endif
  946. penguins_are_doing_time = 0;
  947. membar_safe("#StoreLoad");
  948. atomic_dec(&smp_capture_registry);
  949. }
  950. }
  951. /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
  952. * set, so they can service tlb flush xcalls...
  953. */
  954. extern void prom_world(int);
  955. void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
  956. {
  957. clear_softint(1 << irq);
  958. preempt_disable();
  959. __asm__ __volatile__("flushw");
  960. prom_world(1);
  961. atomic_inc(&smp_capture_registry);
  962. membar_safe("#StoreLoad");
  963. while (penguins_are_doing_time)
  964. rmb();
  965. atomic_dec(&smp_capture_registry);
  966. prom_world(0);
  967. preempt_enable();
  968. }
  969. /* /proc/profile writes can call this, don't __init it please. */
  970. int setup_profiling_timer(unsigned int multiplier)
  971. {
  972. return -EINVAL;
  973. }
  974. void __init smp_prepare_cpus(unsigned int max_cpus)
  975. {
  976. }
  977. void __devinit smp_prepare_boot_cpu(void)
  978. {
  979. }
  980. void __init smp_setup_processor_id(void)
  981. {
  982. if (tlb_type == spitfire)
  983. xcall_deliver_impl = spitfire_xcall_deliver;
  984. else if (tlb_type == cheetah || tlb_type == cheetah_plus)
  985. xcall_deliver_impl = cheetah_xcall_deliver;
  986. else
  987. xcall_deliver_impl = hypervisor_xcall_deliver;
  988. }
  989. void __devinit smp_fill_in_sib_core_maps(void)
  990. {
  991. unsigned int i;
  992. for_each_present_cpu(i) {
  993. unsigned int j;
  994. cpumask_clear(&cpu_core_map[i]);
  995. if (cpu_data(i).core_id == 0) {
  996. cpumask_set_cpu(i, &cpu_core_map[i]);
  997. continue;
  998. }
  999. for_each_present_cpu(j) {
  1000. if (cpu_data(i).core_id ==
  1001. cpu_data(j).core_id)
  1002. cpumask_set_cpu(j, &cpu_core_map[i]);
  1003. }
  1004. }
  1005. for_each_present_cpu(i) {
  1006. unsigned int j;
  1007. cpumask_clear(&per_cpu(cpu_sibling_map, i));
  1008. if (cpu_data(i).proc_id == -1) {
  1009. cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
  1010. continue;
  1011. }
  1012. for_each_present_cpu(j) {
  1013. if (cpu_data(i).proc_id ==
  1014. cpu_data(j).proc_id)
  1015. cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
  1016. }
  1017. }
  1018. }
  1019. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
  1020. {
  1021. int ret = smp_boot_one_cpu(cpu, tidle);
  1022. if (!ret) {
  1023. cpumask_set_cpu(cpu, &smp_commenced_mask);
  1024. while (!cpu_online(cpu))
  1025. mb();
  1026. if (!cpu_online(cpu)) {
  1027. ret = -ENODEV;
  1028. } else {
  1029. /* On SUN4V, writes to %tick and %stick are
  1030. * not allowed.
  1031. */
  1032. if (tlb_type != hypervisor)
  1033. smp_synchronize_one_tick(cpu);
  1034. }
  1035. }
  1036. return ret;
  1037. }
  1038. #ifdef CONFIG_HOTPLUG_CPU
  1039. void cpu_play_dead(void)
  1040. {
  1041. int cpu = smp_processor_id();
  1042. unsigned long pstate;
  1043. idle_task_exit();
  1044. if (tlb_type == hypervisor) {
  1045. struct trap_per_cpu *tb = &trap_block[cpu];
  1046. sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
  1047. tb->cpu_mondo_pa, 0);
  1048. sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
  1049. tb->dev_mondo_pa, 0);
  1050. sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
  1051. tb->resum_mondo_pa, 0);
  1052. sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
  1053. tb->nonresum_mondo_pa, 0);
  1054. }
  1055. cpumask_clear_cpu(cpu, &smp_commenced_mask);
  1056. membar_safe("#Sync");
  1057. local_irq_disable();
  1058. __asm__ __volatile__(
  1059. "rdpr %%pstate, %0\n\t"
  1060. "wrpr %0, %1, %%pstate"
  1061. : "=r" (pstate)
  1062. : "i" (PSTATE_IE));
  1063. while (1)
  1064. barrier();
  1065. }
  1066. int __cpu_disable(void)
  1067. {
  1068. int cpu = smp_processor_id();
  1069. cpuinfo_sparc *c;
  1070. int i;
  1071. for_each_cpu(i, &cpu_core_map[cpu])
  1072. cpumask_clear_cpu(cpu, &cpu_core_map[i]);
  1073. cpumask_clear(&cpu_core_map[cpu]);
  1074. for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
  1075. cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
  1076. cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
  1077. c = &cpu_data(cpu);
  1078. c->core_id = 0;
  1079. c->proc_id = -1;
  1080. smp_wmb();
  1081. /* Make sure no interrupts point to this cpu. */
  1082. fixup_irqs();
  1083. local_irq_enable();
  1084. mdelay(1);
  1085. local_irq_disable();
  1086. set_cpu_online(cpu, false);
  1087. cpu_map_rebuild();
  1088. return 0;
  1089. }
  1090. void __cpu_die(unsigned int cpu)
  1091. {
  1092. int i;
  1093. for (i = 0; i < 100; i++) {
  1094. smp_rmb();
  1095. if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
  1096. break;
  1097. msleep(100);
  1098. }
  1099. if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
  1100. printk(KERN_ERR "CPU %u didn't die...\n", cpu);
  1101. } else {
  1102. #if defined(CONFIG_SUN_LDOMS)
  1103. unsigned long hv_err;
  1104. int limit = 100;
  1105. do {
  1106. hv_err = sun4v_cpu_stop(cpu);
  1107. if (hv_err == HV_EOK) {
  1108. set_cpu_present(cpu, false);
  1109. break;
  1110. }
  1111. } while (--limit > 0);
  1112. if (limit <= 0) {
  1113. printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
  1114. hv_err);
  1115. }
  1116. #endif
  1117. }
  1118. }
  1119. #endif
  1120. void __init smp_cpus_done(unsigned int max_cpus)
  1121. {
  1122. pcr_arch_init();
  1123. }
  1124. void smp_send_reschedule(int cpu)
  1125. {
  1126. xcall_deliver((u64) &xcall_receive_signal, 0, 0,
  1127. cpumask_of(cpu));
  1128. }
  1129. void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
  1130. {
  1131. clear_softint(1 << irq);
  1132. scheduler_ipi();
  1133. }
  1134. /* This is a nop because we capture all other cpus
  1135. * anyways when making the PROM active.
  1136. */
  1137. void smp_send_stop(void)
  1138. {
  1139. }
  1140. /**
  1141. * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
  1142. * @cpu: cpu to allocate for
  1143. * @size: size allocation in bytes
  1144. * @align: alignment
  1145. *
  1146. * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
  1147. * does the right thing for NUMA regardless of the current
  1148. * configuration.
  1149. *
  1150. * RETURNS:
  1151. * Pointer to the allocated area on success, NULL on failure.
  1152. */
  1153. static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
  1154. size_t align)
  1155. {
  1156. const unsigned long goal = __pa(MAX_DMA_ADDRESS);
  1157. #ifdef CONFIG_NEED_MULTIPLE_NODES
  1158. int node = cpu_to_node(cpu);
  1159. void *ptr;
  1160. if (!node_online(node) || !NODE_DATA(node)) {
  1161. ptr = __alloc_bootmem(size, align, goal);
  1162. pr_info("cpu %d has no node %d or node-local memory\n",
  1163. cpu, node);
  1164. pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
  1165. cpu, size, __pa(ptr));
  1166. } else {
  1167. ptr = __alloc_bootmem_node(NODE_DATA(node),
  1168. size, align, goal);
  1169. pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
  1170. "%016lx\n", cpu, size, node, __pa(ptr));
  1171. }
  1172. return ptr;
  1173. #else
  1174. return __alloc_bootmem(size, align, goal);
  1175. #endif
  1176. }
  1177. static void __init pcpu_free_bootmem(void *ptr, size_t size)
  1178. {
  1179. free_bootmem(__pa(ptr), size);
  1180. }
  1181. static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
  1182. {
  1183. if (cpu_to_node(from) == cpu_to_node(to))
  1184. return LOCAL_DISTANCE;
  1185. else
  1186. return REMOTE_DISTANCE;
  1187. }
  1188. static void __init pcpu_populate_pte(unsigned long addr)
  1189. {
  1190. pgd_t *pgd = pgd_offset_k(addr);
  1191. pud_t *pud;
  1192. pmd_t *pmd;
  1193. pud = pud_offset(pgd, addr);
  1194. if (pud_none(*pud)) {
  1195. pmd_t *new;
  1196. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1197. pud_populate(&init_mm, pud, new);
  1198. }
  1199. pmd = pmd_offset(pud, addr);
  1200. if (!pmd_present(*pmd)) {
  1201. pte_t *new;
  1202. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1203. pmd_populate_kernel(&init_mm, pmd, new);
  1204. }
  1205. }
  1206. void __init setup_per_cpu_areas(void)
  1207. {
  1208. unsigned long delta;
  1209. unsigned int cpu;
  1210. int rc = -EINVAL;
  1211. if (pcpu_chosen_fc != PCPU_FC_PAGE) {
  1212. rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
  1213. PERCPU_DYNAMIC_RESERVE, 4 << 20,
  1214. pcpu_cpu_distance,
  1215. pcpu_alloc_bootmem,
  1216. pcpu_free_bootmem);
  1217. if (rc)
  1218. pr_warning("PERCPU: %s allocator failed (%d), "
  1219. "falling back to page size\n",
  1220. pcpu_fc_names[pcpu_chosen_fc], rc);
  1221. }
  1222. if (rc < 0)
  1223. rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
  1224. pcpu_alloc_bootmem,
  1225. pcpu_free_bootmem,
  1226. pcpu_populate_pte);
  1227. if (rc < 0)
  1228. panic("cannot initialize percpu area (err=%d)", rc);
  1229. delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
  1230. for_each_possible_cpu(cpu)
  1231. __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
  1232. /* Setup %g5 for the boot cpu. */
  1233. __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
  1234. of_fill_in_cpu_data();
  1235. if (tlb_type == hypervisor)
  1236. mdesc_fill_in_cpu_data(cpu_all_mask);
  1237. }