vmem.c 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386
  1. /*
  2. * Copyright IBM Corp. 2006
  3. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  4. */
  5. #include <linux/bootmem.h>
  6. #include <linux/pfn.h>
  7. #include <linux/mm.h>
  8. #include <linux/module.h>
  9. #include <linux/list.h>
  10. #include <linux/hugetlb.h>
  11. #include <linux/slab.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/setup.h>
  15. #include <asm/tlbflush.h>
  16. #include <asm/sections.h>
  17. static DEFINE_MUTEX(vmem_mutex);
  18. struct memory_segment {
  19. struct list_head list;
  20. unsigned long start;
  21. unsigned long size;
  22. };
  23. static LIST_HEAD(mem_segs);
  24. static void __ref *vmem_alloc_pages(unsigned int order)
  25. {
  26. if (slab_is_available())
  27. return (void *)__get_free_pages(GFP_KERNEL, order);
  28. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  29. }
  30. static inline pud_t *vmem_pud_alloc(void)
  31. {
  32. pud_t *pud = NULL;
  33. #ifdef CONFIG_64BIT
  34. pud = vmem_alloc_pages(2);
  35. if (!pud)
  36. return NULL;
  37. clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
  38. #endif
  39. return pud;
  40. }
  41. static inline pmd_t *vmem_pmd_alloc(void)
  42. {
  43. pmd_t *pmd = NULL;
  44. #ifdef CONFIG_64BIT
  45. pmd = vmem_alloc_pages(2);
  46. if (!pmd)
  47. return NULL;
  48. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
  49. #endif
  50. return pmd;
  51. }
  52. static pte_t __ref *vmem_pte_alloc(unsigned long address)
  53. {
  54. pte_t *pte;
  55. if (slab_is_available())
  56. pte = (pte_t *) page_table_alloc(&init_mm, address);
  57. else
  58. pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
  59. if (!pte)
  60. return NULL;
  61. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
  62. PTRS_PER_PTE * sizeof(pte_t));
  63. return pte;
  64. }
  65. /*
  66. * Add a physical memory range to the 1:1 mapping.
  67. */
  68. static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
  69. {
  70. unsigned long address;
  71. pgd_t *pg_dir;
  72. pud_t *pu_dir;
  73. pmd_t *pm_dir;
  74. pte_t *pt_dir;
  75. pte_t pte;
  76. int ret = -ENOMEM;
  77. for (address = start; address < start + size; address += PAGE_SIZE) {
  78. pg_dir = pgd_offset_k(address);
  79. if (pgd_none(*pg_dir)) {
  80. pu_dir = vmem_pud_alloc();
  81. if (!pu_dir)
  82. goto out;
  83. pgd_populate(&init_mm, pg_dir, pu_dir);
  84. }
  85. pu_dir = pud_offset(pg_dir, address);
  86. if (pud_none(*pu_dir)) {
  87. pm_dir = vmem_pmd_alloc();
  88. if (!pm_dir)
  89. goto out;
  90. pud_populate(&init_mm, pu_dir, pm_dir);
  91. }
  92. pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
  93. pm_dir = pmd_offset(pu_dir, address);
  94. #ifdef CONFIG_64BIT
  95. if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
  96. (address + HPAGE_SIZE <= start + size) &&
  97. (address >= HPAGE_SIZE)) {
  98. pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
  99. pmd_val(*pm_dir) = pte_val(pte);
  100. address += HPAGE_SIZE - PAGE_SIZE;
  101. continue;
  102. }
  103. #endif
  104. if (pmd_none(*pm_dir)) {
  105. pt_dir = vmem_pte_alloc(address);
  106. if (!pt_dir)
  107. goto out;
  108. pmd_populate(&init_mm, pm_dir, pt_dir);
  109. }
  110. pt_dir = pte_offset_kernel(pm_dir, address);
  111. *pt_dir = pte;
  112. }
  113. ret = 0;
  114. out:
  115. flush_tlb_kernel_range(start, start + size);
  116. return ret;
  117. }
  118. /*
  119. * Remove a physical memory range from the 1:1 mapping.
  120. * Currently only invalidates page table entries.
  121. */
  122. static void vmem_remove_range(unsigned long start, unsigned long size)
  123. {
  124. unsigned long address;
  125. pgd_t *pg_dir;
  126. pud_t *pu_dir;
  127. pmd_t *pm_dir;
  128. pte_t *pt_dir;
  129. pte_t pte;
  130. pte_val(pte) = _PAGE_TYPE_EMPTY;
  131. for (address = start; address < start + size; address += PAGE_SIZE) {
  132. pg_dir = pgd_offset_k(address);
  133. pu_dir = pud_offset(pg_dir, address);
  134. if (pud_none(*pu_dir))
  135. continue;
  136. pm_dir = pmd_offset(pu_dir, address);
  137. if (pmd_none(*pm_dir))
  138. continue;
  139. if (pmd_huge(*pm_dir)) {
  140. pmd_clear(pm_dir);
  141. address += HPAGE_SIZE - PAGE_SIZE;
  142. continue;
  143. }
  144. pt_dir = pte_offset_kernel(pm_dir, address);
  145. *pt_dir = pte;
  146. }
  147. flush_tlb_kernel_range(start, start + size);
  148. }
  149. /*
  150. * Add a backed mem_map array to the virtual mem_map array.
  151. */
  152. int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
  153. {
  154. unsigned long address, start_addr, end_addr;
  155. pgd_t *pg_dir;
  156. pud_t *pu_dir;
  157. pmd_t *pm_dir;
  158. pte_t *pt_dir;
  159. pte_t pte;
  160. int ret = -ENOMEM;
  161. start_addr = (unsigned long) start;
  162. end_addr = (unsigned long) (start + nr);
  163. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  164. pg_dir = pgd_offset_k(address);
  165. if (pgd_none(*pg_dir)) {
  166. pu_dir = vmem_pud_alloc();
  167. if (!pu_dir)
  168. goto out;
  169. pgd_populate(&init_mm, pg_dir, pu_dir);
  170. }
  171. pu_dir = pud_offset(pg_dir, address);
  172. if (pud_none(*pu_dir)) {
  173. pm_dir = vmem_pmd_alloc();
  174. if (!pm_dir)
  175. goto out;
  176. pud_populate(&init_mm, pu_dir, pm_dir);
  177. }
  178. pm_dir = pmd_offset(pu_dir, address);
  179. if (pmd_none(*pm_dir)) {
  180. pt_dir = vmem_pte_alloc(address);
  181. if (!pt_dir)
  182. goto out;
  183. pmd_populate(&init_mm, pm_dir, pt_dir);
  184. }
  185. pt_dir = pte_offset_kernel(pm_dir, address);
  186. if (pte_none(*pt_dir)) {
  187. unsigned long new_page;
  188. new_page =__pa(vmem_alloc_pages(0));
  189. if (!new_page)
  190. goto out;
  191. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  192. *pt_dir = pte;
  193. }
  194. }
  195. memset(start, 0, nr * sizeof(struct page));
  196. ret = 0;
  197. out:
  198. flush_tlb_kernel_range(start_addr, end_addr);
  199. return ret;
  200. }
  201. /*
  202. * Add memory segment to the segment list if it doesn't overlap with
  203. * an already present segment.
  204. */
  205. static int insert_memory_segment(struct memory_segment *seg)
  206. {
  207. struct memory_segment *tmp;
  208. if (seg->start + seg->size > VMEM_MAX_PHYS ||
  209. seg->start + seg->size < seg->start)
  210. return -ERANGE;
  211. list_for_each_entry(tmp, &mem_segs, list) {
  212. if (seg->start >= tmp->start + tmp->size)
  213. continue;
  214. if (seg->start + seg->size <= tmp->start)
  215. continue;
  216. return -ENOSPC;
  217. }
  218. list_add(&seg->list, &mem_segs);
  219. return 0;
  220. }
  221. /*
  222. * Remove memory segment from the segment list.
  223. */
  224. static void remove_memory_segment(struct memory_segment *seg)
  225. {
  226. list_del(&seg->list);
  227. }
  228. static void __remove_shared_memory(struct memory_segment *seg)
  229. {
  230. remove_memory_segment(seg);
  231. vmem_remove_range(seg->start, seg->size);
  232. }
  233. int vmem_remove_mapping(unsigned long start, unsigned long size)
  234. {
  235. struct memory_segment *seg;
  236. int ret;
  237. mutex_lock(&vmem_mutex);
  238. ret = -ENOENT;
  239. list_for_each_entry(seg, &mem_segs, list) {
  240. if (seg->start == start && seg->size == size)
  241. break;
  242. }
  243. if (seg->start != start || seg->size != size)
  244. goto out;
  245. ret = 0;
  246. __remove_shared_memory(seg);
  247. kfree(seg);
  248. out:
  249. mutex_unlock(&vmem_mutex);
  250. return ret;
  251. }
  252. int vmem_add_mapping(unsigned long start, unsigned long size)
  253. {
  254. struct memory_segment *seg;
  255. int ret;
  256. mutex_lock(&vmem_mutex);
  257. ret = -ENOMEM;
  258. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  259. if (!seg)
  260. goto out;
  261. seg->start = start;
  262. seg->size = size;
  263. ret = insert_memory_segment(seg);
  264. if (ret)
  265. goto out_free;
  266. ret = vmem_add_mem(start, size, 0);
  267. if (ret)
  268. goto out_remove;
  269. goto out;
  270. out_remove:
  271. __remove_shared_memory(seg);
  272. out_free:
  273. kfree(seg);
  274. out:
  275. mutex_unlock(&vmem_mutex);
  276. return ret;
  277. }
  278. /*
  279. * map whole physical memory to virtual memory (identity mapping)
  280. * we reserve enough space in the vmalloc area for vmemmap to hotplug
  281. * additional memory segments.
  282. */
  283. void __init vmem_map_init(void)
  284. {
  285. unsigned long ro_start, ro_end;
  286. unsigned long start, end;
  287. int i;
  288. ro_start = ((unsigned long)&_stext) & PAGE_MASK;
  289. ro_end = PFN_ALIGN((unsigned long)&_eshared);
  290. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  291. if (memory_chunk[i].type == CHUNK_CRASHK ||
  292. memory_chunk[i].type == CHUNK_OLDMEM)
  293. continue;
  294. start = memory_chunk[i].addr;
  295. end = memory_chunk[i].addr + memory_chunk[i].size;
  296. if (start >= ro_end || end <= ro_start)
  297. vmem_add_mem(start, end - start, 0);
  298. else if (start >= ro_start && end <= ro_end)
  299. vmem_add_mem(start, end - start, 1);
  300. else if (start >= ro_start) {
  301. vmem_add_mem(start, ro_end - start, 1);
  302. vmem_add_mem(ro_end, end - ro_end, 0);
  303. } else if (end < ro_end) {
  304. vmem_add_mem(start, ro_start - start, 0);
  305. vmem_add_mem(ro_start, end - ro_start, 1);
  306. } else {
  307. vmem_add_mem(start, ro_start - start, 0);
  308. vmem_add_mem(ro_start, ro_end - ro_start, 1);
  309. vmem_add_mem(ro_end, end - ro_end, 0);
  310. }
  311. }
  312. }
  313. /*
  314. * Convert memory chunk array to a memory segment list so there is a single
  315. * list that contains both r/w memory and shared memory segments.
  316. */
  317. static int __init vmem_convert_memory_chunk(void)
  318. {
  319. struct memory_segment *seg;
  320. int i;
  321. mutex_lock(&vmem_mutex);
  322. for (i = 0; i < MEMORY_CHUNKS; i++) {
  323. if (!memory_chunk[i].size)
  324. continue;
  325. if (memory_chunk[i].type == CHUNK_CRASHK ||
  326. memory_chunk[i].type == CHUNK_OLDMEM)
  327. continue;
  328. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  329. if (!seg)
  330. panic("Out of memory...\n");
  331. seg->start = memory_chunk[i].addr;
  332. seg->size = memory_chunk[i].size;
  333. insert_memory_segment(seg);
  334. }
  335. mutex_unlock(&vmem_mutex);
  336. return 0;
  337. }
  338. core_initcall(vmem_convert_memory_chunk);