math.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253
  1. /*
  2. * S390 version
  3. * Copyright IBM Corp. 1999, 2001
  4. * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
  5. *
  6. * 'math.c' emulates IEEE instructions on a S390 processor
  7. * that does not have the IEEE fpu (all processors before G5).
  8. */
  9. #include <linux/types.h>
  10. #include <linux/sched.h>
  11. #include <linux/mm.h>
  12. #include <asm/uaccess.h>
  13. #include <asm/lowcore.h>
  14. #include <asm/sfp-util.h>
  15. #include <math-emu/soft-fp.h>
  16. #include <math-emu/single.h>
  17. #include <math-emu/double.h>
  18. #include <math-emu/quad.h>
  19. /*
  20. * I miss a macro to round a floating point number to the
  21. * nearest integer in the same floating point format.
  22. */
  23. #define _FP_TO_FPINT_ROUND(fs, wc, X) \
  24. do { \
  25. switch (X##_c) \
  26. { \
  27. case FP_CLS_NORMAL: \
  28. if (X##_e > _FP_FRACBITS_##fs + _FP_EXPBIAS_##fs) \
  29. { /* floating point number has no bits after the dot. */ \
  30. } \
  31. else if (X##_e <= _FP_FRACBITS_##fs + _FP_EXPBIAS_##fs && \
  32. X##_e > _FP_EXPBIAS_##fs) \
  33. { /* some bits before the dot, some after it. */ \
  34. _FP_FRAC_SRS_##wc(X, _FP_WFRACBITS_##fs, \
  35. X##_e - _FP_EXPBIAS_##fs \
  36. + _FP_FRACBITS_##fs); \
  37. _FP_ROUND(wc, X); \
  38. _FP_FRAC_SLL_##wc(X, X##_e - _FP_EXPBIAS_##fs \
  39. + _FP_FRACBITS_##fs); \
  40. } \
  41. else \
  42. { /* all bits after the dot. */ \
  43. FP_SET_EXCEPTION(FP_EX_INEXACT); \
  44. X##_c = FP_CLS_ZERO; \
  45. } \
  46. break; \
  47. case FP_CLS_NAN: \
  48. case FP_CLS_INF: \
  49. case FP_CLS_ZERO: \
  50. break; \
  51. } \
  52. } while (0)
  53. #define FP_TO_FPINT_ROUND_S(X) _FP_TO_FPINT_ROUND(S,1,X)
  54. #define FP_TO_FPINT_ROUND_D(X) _FP_TO_FPINT_ROUND(D,2,X)
  55. #define FP_TO_FPINT_ROUND_Q(X) _FP_TO_FPINT_ROUND(Q,4,X)
  56. typedef union {
  57. long double ld;
  58. struct {
  59. __u64 high;
  60. __u64 low;
  61. } w;
  62. } mathemu_ldcv;
  63. #ifdef CONFIG_SYSCTL
  64. int sysctl_ieee_emulation_warnings=1;
  65. #endif
  66. #define mathemu_put_user(x, p) \
  67. do { \
  68. if (put_user((x),(p))) \
  69. return SIGSEGV; \
  70. } while (0)
  71. #define mathemu_get_user(x, p) \
  72. do { \
  73. if (get_user((x),(p))) \
  74. return SIGSEGV; \
  75. } while (0)
  76. #define mathemu_copy_from_user(d, s, n)\
  77. do { \
  78. if (copy_from_user((d),(s),(n)) != 0) \
  79. return SIGSEGV; \
  80. } while (0)
  81. #define mathemu_copy_to_user(d, s, n) \
  82. do { \
  83. if (copy_to_user((d),(s),(n)) != 0) \
  84. return SIGSEGV; \
  85. } while (0)
  86. static void display_emulation_not_implemented(struct pt_regs *regs, char *instr)
  87. {
  88. __u16 *location;
  89. #ifdef CONFIG_SYSCTL
  90. if(sysctl_ieee_emulation_warnings)
  91. #endif
  92. {
  93. location = (__u16 *)(regs->psw.addr-S390_lowcore.pgm_ilc);
  94. printk("%s ieee fpu instruction not emulated "
  95. "process name: %s pid: %d \n",
  96. instr, current->comm, current->pid);
  97. printk("%s's PSW: %08lx %08lx\n", instr,
  98. (unsigned long) regs->psw.mask,
  99. (unsigned long) location);
  100. }
  101. }
  102. static inline void emu_set_CC (struct pt_regs *regs, int cc)
  103. {
  104. regs->psw.mask = (regs->psw.mask & 0xFFFFCFFF) | ((cc&3) << 12);
  105. }
  106. /*
  107. * Set the condition code in the user psw.
  108. * 0 : Result is zero
  109. * 1 : Result is less than zero
  110. * 2 : Result is greater than zero
  111. * 3 : Result is NaN or INF
  112. */
  113. static inline void emu_set_CC_cs(struct pt_regs *regs, int class, int sign)
  114. {
  115. switch (class) {
  116. case FP_CLS_NORMAL:
  117. case FP_CLS_INF:
  118. emu_set_CC(regs, sign ? 1 : 2);
  119. break;
  120. case FP_CLS_ZERO:
  121. emu_set_CC(regs, 0);
  122. break;
  123. case FP_CLS_NAN:
  124. emu_set_CC(regs, 3);
  125. break;
  126. }
  127. }
  128. /* Add long double */
  129. static int emu_axbr (struct pt_regs *regs, int rx, int ry) {
  130. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  131. FP_DECL_EX;
  132. mathemu_ldcv cvt;
  133. int mode;
  134. mode = current->thread.fp_regs.fpc & 3;
  135. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  136. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  137. FP_UNPACK_QP(QA, &cvt.ld);
  138. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  139. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  140. FP_UNPACK_QP(QB, &cvt.ld);
  141. FP_ADD_Q(QR, QA, QB);
  142. FP_PACK_QP(&cvt.ld, QR);
  143. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  144. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  145. emu_set_CC_cs(regs, QR_c, QR_s);
  146. return _fex;
  147. }
  148. /* Add double */
  149. static int emu_adbr (struct pt_regs *regs, int rx, int ry) {
  150. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  151. FP_DECL_EX;
  152. int mode;
  153. mode = current->thread.fp_regs.fpc & 3;
  154. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  155. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  156. FP_ADD_D(DR, DA, DB);
  157. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  158. emu_set_CC_cs(regs, DR_c, DR_s);
  159. return _fex;
  160. }
  161. /* Add double */
  162. static int emu_adb (struct pt_regs *regs, int rx, double *val) {
  163. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  164. FP_DECL_EX;
  165. int mode;
  166. mode = current->thread.fp_regs.fpc & 3;
  167. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  168. FP_UNPACK_DP(DB, val);
  169. FP_ADD_D(DR, DA, DB);
  170. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  171. emu_set_CC_cs(regs, DR_c, DR_s);
  172. return _fex;
  173. }
  174. /* Add float */
  175. static int emu_aebr (struct pt_regs *regs, int rx, int ry) {
  176. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  177. FP_DECL_EX;
  178. int mode;
  179. mode = current->thread.fp_regs.fpc & 3;
  180. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  181. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  182. FP_ADD_S(SR, SA, SB);
  183. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  184. emu_set_CC_cs(regs, SR_c, SR_s);
  185. return _fex;
  186. }
  187. /* Add float */
  188. static int emu_aeb (struct pt_regs *regs, int rx, float *val) {
  189. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  190. FP_DECL_EX;
  191. int mode;
  192. mode = current->thread.fp_regs.fpc & 3;
  193. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  194. FP_UNPACK_SP(SB, val);
  195. FP_ADD_S(SR, SA, SB);
  196. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  197. emu_set_CC_cs(regs, SR_c, SR_s);
  198. return _fex;
  199. }
  200. /* Compare long double */
  201. static int emu_cxbr (struct pt_regs *regs, int rx, int ry) {
  202. FP_DECL_Q(QA); FP_DECL_Q(QB);
  203. mathemu_ldcv cvt;
  204. int IR;
  205. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  206. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  207. FP_UNPACK_RAW_QP(QA, &cvt.ld);
  208. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  209. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  210. FP_UNPACK_RAW_QP(QB, &cvt.ld);
  211. FP_CMP_Q(IR, QA, QB, 3);
  212. /*
  213. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  214. * IR == 1 if DA > DB and IR == 3 if unorderded
  215. */
  216. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  217. return 0;
  218. }
  219. /* Compare double */
  220. static int emu_cdbr (struct pt_regs *regs, int rx, int ry) {
  221. FP_DECL_D(DA); FP_DECL_D(DB);
  222. int IR;
  223. FP_UNPACK_RAW_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  224. FP_UNPACK_RAW_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  225. FP_CMP_D(IR, DA, DB, 3);
  226. /*
  227. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  228. * IR == 1 if DA > DB and IR == 3 if unorderded
  229. */
  230. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  231. return 0;
  232. }
  233. /* Compare double */
  234. static int emu_cdb (struct pt_regs *regs, int rx, double *val) {
  235. FP_DECL_D(DA); FP_DECL_D(DB);
  236. int IR;
  237. FP_UNPACK_RAW_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  238. FP_UNPACK_RAW_DP(DB, val);
  239. FP_CMP_D(IR, DA, DB, 3);
  240. /*
  241. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  242. * IR == 1 if DA > DB and IR == 3 if unorderded
  243. */
  244. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  245. return 0;
  246. }
  247. /* Compare float */
  248. static int emu_cebr (struct pt_regs *regs, int rx, int ry) {
  249. FP_DECL_S(SA); FP_DECL_S(SB);
  250. int IR;
  251. FP_UNPACK_RAW_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  252. FP_UNPACK_RAW_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  253. FP_CMP_S(IR, SA, SB, 3);
  254. /*
  255. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  256. * IR == 1 if DA > DB and IR == 3 if unorderded
  257. */
  258. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  259. return 0;
  260. }
  261. /* Compare float */
  262. static int emu_ceb (struct pt_regs *regs, int rx, float *val) {
  263. FP_DECL_S(SA); FP_DECL_S(SB);
  264. int IR;
  265. FP_UNPACK_RAW_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  266. FP_UNPACK_RAW_SP(SB, val);
  267. FP_CMP_S(IR, SA, SB, 3);
  268. /*
  269. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  270. * IR == 1 if DA > DB and IR == 3 if unorderded
  271. */
  272. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  273. return 0;
  274. }
  275. /* Compare and signal long double */
  276. static int emu_kxbr (struct pt_regs *regs, int rx, int ry) {
  277. FP_DECL_Q(QA); FP_DECL_Q(QB);
  278. FP_DECL_EX;
  279. mathemu_ldcv cvt;
  280. int IR;
  281. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  282. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  283. FP_UNPACK_RAW_QP(QA, &cvt.ld);
  284. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  285. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  286. FP_UNPACK_QP(QB, &cvt.ld);
  287. FP_CMP_Q(IR, QA, QB, 3);
  288. /*
  289. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  290. * IR == 1 if DA > DB and IR == 3 if unorderded
  291. */
  292. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  293. if (IR == 3)
  294. FP_SET_EXCEPTION (FP_EX_INVALID);
  295. return _fex;
  296. }
  297. /* Compare and signal double */
  298. static int emu_kdbr (struct pt_regs *regs, int rx, int ry) {
  299. FP_DECL_D(DA); FP_DECL_D(DB);
  300. FP_DECL_EX;
  301. int IR;
  302. FP_UNPACK_RAW_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  303. FP_UNPACK_RAW_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  304. FP_CMP_D(IR, DA, DB, 3);
  305. /*
  306. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  307. * IR == 1 if DA > DB and IR == 3 if unorderded
  308. */
  309. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  310. if (IR == 3)
  311. FP_SET_EXCEPTION (FP_EX_INVALID);
  312. return _fex;
  313. }
  314. /* Compare and signal double */
  315. static int emu_kdb (struct pt_regs *regs, int rx, double *val) {
  316. FP_DECL_D(DA); FP_DECL_D(DB);
  317. FP_DECL_EX;
  318. int IR;
  319. FP_UNPACK_RAW_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  320. FP_UNPACK_RAW_DP(DB, val);
  321. FP_CMP_D(IR, DA, DB, 3);
  322. /*
  323. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  324. * IR == 1 if DA > DB and IR == 3 if unorderded
  325. */
  326. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  327. if (IR == 3)
  328. FP_SET_EXCEPTION (FP_EX_INVALID);
  329. return _fex;
  330. }
  331. /* Compare and signal float */
  332. static int emu_kebr (struct pt_regs *regs, int rx, int ry) {
  333. FP_DECL_S(SA); FP_DECL_S(SB);
  334. FP_DECL_EX;
  335. int IR;
  336. FP_UNPACK_RAW_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  337. FP_UNPACK_RAW_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  338. FP_CMP_S(IR, SA, SB, 3);
  339. /*
  340. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  341. * IR == 1 if DA > DB and IR == 3 if unorderded
  342. */
  343. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  344. if (IR == 3)
  345. FP_SET_EXCEPTION (FP_EX_INVALID);
  346. return _fex;
  347. }
  348. /* Compare and signal float */
  349. static int emu_keb (struct pt_regs *regs, int rx, float *val) {
  350. FP_DECL_S(SA); FP_DECL_S(SB);
  351. FP_DECL_EX;
  352. int IR;
  353. FP_UNPACK_RAW_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  354. FP_UNPACK_RAW_SP(SB, val);
  355. FP_CMP_S(IR, SA, SB, 3);
  356. /*
  357. * IR == -1 if DA < DB, IR == 0 if DA == DB,
  358. * IR == 1 if DA > DB and IR == 3 if unorderded
  359. */
  360. emu_set_CC(regs, (IR == -1) ? 1 : (IR == 1) ? 2 : IR);
  361. if (IR == 3)
  362. FP_SET_EXCEPTION (FP_EX_INVALID);
  363. return _fex;
  364. }
  365. /* Convert from fixed long double */
  366. static int emu_cxfbr (struct pt_regs *regs, int rx, int ry) {
  367. FP_DECL_Q(QR);
  368. FP_DECL_EX;
  369. mathemu_ldcv cvt;
  370. __s32 si;
  371. int mode;
  372. mode = current->thread.fp_regs.fpc & 3;
  373. si = regs->gprs[ry];
  374. FP_FROM_INT_Q(QR, si, 32, int);
  375. FP_PACK_QP(&cvt.ld, QR);
  376. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  377. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  378. return _fex;
  379. }
  380. /* Convert from fixed double */
  381. static int emu_cdfbr (struct pt_regs *regs, int rx, int ry) {
  382. FP_DECL_D(DR);
  383. FP_DECL_EX;
  384. __s32 si;
  385. int mode;
  386. mode = current->thread.fp_regs.fpc & 3;
  387. si = regs->gprs[ry];
  388. FP_FROM_INT_D(DR, si, 32, int);
  389. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  390. return _fex;
  391. }
  392. /* Convert from fixed float */
  393. static int emu_cefbr (struct pt_regs *regs, int rx, int ry) {
  394. FP_DECL_S(SR);
  395. FP_DECL_EX;
  396. __s32 si;
  397. int mode;
  398. mode = current->thread.fp_regs.fpc & 3;
  399. si = regs->gprs[ry];
  400. FP_FROM_INT_S(SR, si, 32, int);
  401. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  402. return _fex;
  403. }
  404. /* Convert to fixed long double */
  405. static int emu_cfxbr (struct pt_regs *regs, int rx, int ry, int mask) {
  406. FP_DECL_Q(QA);
  407. FP_DECL_EX;
  408. mathemu_ldcv cvt;
  409. __s32 si;
  410. int mode;
  411. if (mask == 0)
  412. mode = current->thread.fp_regs.fpc & 3;
  413. else if (mask == 1)
  414. mode = FP_RND_NEAREST;
  415. else
  416. mode = mask - 4;
  417. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  418. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  419. FP_UNPACK_QP(QA, &cvt.ld);
  420. FP_TO_INT_ROUND_Q(si, QA, 32, 1);
  421. regs->gprs[rx] = si;
  422. emu_set_CC_cs(regs, QA_c, QA_s);
  423. return _fex;
  424. }
  425. /* Convert to fixed double */
  426. static int emu_cfdbr (struct pt_regs *regs, int rx, int ry, int mask) {
  427. FP_DECL_D(DA);
  428. FP_DECL_EX;
  429. __s32 si;
  430. int mode;
  431. if (mask == 0)
  432. mode = current->thread.fp_regs.fpc & 3;
  433. else if (mask == 1)
  434. mode = FP_RND_NEAREST;
  435. else
  436. mode = mask - 4;
  437. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  438. FP_TO_INT_ROUND_D(si, DA, 32, 1);
  439. regs->gprs[rx] = si;
  440. emu_set_CC_cs(regs, DA_c, DA_s);
  441. return _fex;
  442. }
  443. /* Convert to fixed float */
  444. static int emu_cfebr (struct pt_regs *regs, int rx, int ry, int mask) {
  445. FP_DECL_S(SA);
  446. FP_DECL_EX;
  447. __s32 si;
  448. int mode;
  449. if (mask == 0)
  450. mode = current->thread.fp_regs.fpc & 3;
  451. else if (mask == 1)
  452. mode = FP_RND_NEAREST;
  453. else
  454. mode = mask - 4;
  455. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  456. FP_TO_INT_ROUND_S(si, SA, 32, 1);
  457. regs->gprs[rx] = si;
  458. emu_set_CC_cs(regs, SA_c, SA_s);
  459. return _fex;
  460. }
  461. /* Divide long double */
  462. static int emu_dxbr (struct pt_regs *regs, int rx, int ry) {
  463. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  464. FP_DECL_EX;
  465. mathemu_ldcv cvt;
  466. int mode;
  467. mode = current->thread.fp_regs.fpc & 3;
  468. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  469. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  470. FP_UNPACK_QP(QA, &cvt.ld);
  471. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  472. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  473. FP_UNPACK_QP(QB, &cvt.ld);
  474. FP_DIV_Q(QR, QA, QB);
  475. FP_PACK_QP(&cvt.ld, QR);
  476. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  477. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  478. return _fex;
  479. }
  480. /* Divide double */
  481. static int emu_ddbr (struct pt_regs *regs, int rx, int ry) {
  482. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  483. FP_DECL_EX;
  484. int mode;
  485. mode = current->thread.fp_regs.fpc & 3;
  486. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  487. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  488. FP_DIV_D(DR, DA, DB);
  489. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  490. return _fex;
  491. }
  492. /* Divide double */
  493. static int emu_ddb (struct pt_regs *regs, int rx, double *val) {
  494. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  495. FP_DECL_EX;
  496. int mode;
  497. mode = current->thread.fp_regs.fpc & 3;
  498. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  499. FP_UNPACK_DP(DB, val);
  500. FP_DIV_D(DR, DA, DB);
  501. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  502. return _fex;
  503. }
  504. /* Divide float */
  505. static int emu_debr (struct pt_regs *regs, int rx, int ry) {
  506. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  507. FP_DECL_EX;
  508. int mode;
  509. mode = current->thread.fp_regs.fpc & 3;
  510. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  511. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  512. FP_DIV_S(SR, SA, SB);
  513. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  514. return _fex;
  515. }
  516. /* Divide float */
  517. static int emu_deb (struct pt_regs *regs, int rx, float *val) {
  518. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  519. FP_DECL_EX;
  520. int mode;
  521. mode = current->thread.fp_regs.fpc & 3;
  522. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  523. FP_UNPACK_SP(SB, val);
  524. FP_DIV_S(SR, SA, SB);
  525. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  526. return _fex;
  527. }
  528. /* Divide to integer double */
  529. static int emu_didbr (struct pt_regs *regs, int rx, int ry, int mask) {
  530. display_emulation_not_implemented(regs, "didbr");
  531. return 0;
  532. }
  533. /* Divide to integer float */
  534. static int emu_diebr (struct pt_regs *regs, int rx, int ry, int mask) {
  535. display_emulation_not_implemented(regs, "diebr");
  536. return 0;
  537. }
  538. /* Extract fpc */
  539. static int emu_efpc (struct pt_regs *regs, int rx, int ry) {
  540. regs->gprs[rx] = current->thread.fp_regs.fpc;
  541. return 0;
  542. }
  543. /* Load and test long double */
  544. static int emu_ltxbr (struct pt_regs *regs, int rx, int ry) {
  545. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  546. mathemu_ldcv cvt;
  547. FP_DECL_Q(QA);
  548. FP_DECL_EX;
  549. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  550. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  551. FP_UNPACK_QP(QA, &cvt.ld);
  552. fp_regs->fprs[rx].ui = fp_regs->fprs[ry].ui;
  553. fp_regs->fprs[rx+2].ui = fp_regs->fprs[ry+2].ui;
  554. emu_set_CC_cs(regs, QA_c, QA_s);
  555. return _fex;
  556. }
  557. /* Load and test double */
  558. static int emu_ltdbr (struct pt_regs *regs, int rx, int ry) {
  559. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  560. FP_DECL_D(DA);
  561. FP_DECL_EX;
  562. FP_UNPACK_DP(DA, &fp_regs->fprs[ry].d);
  563. fp_regs->fprs[rx].ui = fp_regs->fprs[ry].ui;
  564. emu_set_CC_cs(regs, DA_c, DA_s);
  565. return _fex;
  566. }
  567. /* Load and test double */
  568. static int emu_ltebr (struct pt_regs *regs, int rx, int ry) {
  569. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  570. FP_DECL_S(SA);
  571. FP_DECL_EX;
  572. FP_UNPACK_SP(SA, &fp_regs->fprs[ry].f);
  573. fp_regs->fprs[rx].ui = fp_regs->fprs[ry].ui;
  574. emu_set_CC_cs(regs, SA_c, SA_s);
  575. return _fex;
  576. }
  577. /* Load complement long double */
  578. static int emu_lcxbr (struct pt_regs *regs, int rx, int ry) {
  579. FP_DECL_Q(QA); FP_DECL_Q(QR);
  580. FP_DECL_EX;
  581. mathemu_ldcv cvt;
  582. int mode;
  583. mode = current->thread.fp_regs.fpc & 3;
  584. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  585. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  586. FP_UNPACK_QP(QA, &cvt.ld);
  587. FP_NEG_Q(QR, QA);
  588. FP_PACK_QP(&cvt.ld, QR);
  589. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  590. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  591. emu_set_CC_cs(regs, QR_c, QR_s);
  592. return _fex;
  593. }
  594. /* Load complement double */
  595. static int emu_lcdbr (struct pt_regs *regs, int rx, int ry) {
  596. FP_DECL_D(DA); FP_DECL_D(DR);
  597. FP_DECL_EX;
  598. int mode;
  599. mode = current->thread.fp_regs.fpc & 3;
  600. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  601. FP_NEG_D(DR, DA);
  602. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  603. emu_set_CC_cs(regs, DR_c, DR_s);
  604. return _fex;
  605. }
  606. /* Load complement float */
  607. static int emu_lcebr (struct pt_regs *regs, int rx, int ry) {
  608. FP_DECL_S(SA); FP_DECL_S(SR);
  609. FP_DECL_EX;
  610. int mode;
  611. mode = current->thread.fp_regs.fpc & 3;
  612. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  613. FP_NEG_S(SR, SA);
  614. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  615. emu_set_CC_cs(regs, SR_c, SR_s);
  616. return _fex;
  617. }
  618. /* Load floating point integer long double */
  619. static int emu_fixbr (struct pt_regs *regs, int rx, int ry, int mask) {
  620. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  621. FP_DECL_Q(QA);
  622. FP_DECL_EX;
  623. mathemu_ldcv cvt;
  624. __s32 si;
  625. int mode;
  626. if (mask == 0)
  627. mode = fp_regs->fpc & 3;
  628. else if (mask == 1)
  629. mode = FP_RND_NEAREST;
  630. else
  631. mode = mask - 4;
  632. cvt.w.high = fp_regs->fprs[ry].ui;
  633. cvt.w.low = fp_regs->fprs[ry+2].ui;
  634. FP_UNPACK_QP(QA, &cvt.ld);
  635. FP_TO_FPINT_ROUND_Q(QA);
  636. FP_PACK_QP(&cvt.ld, QA);
  637. fp_regs->fprs[rx].ui = cvt.w.high;
  638. fp_regs->fprs[rx+2].ui = cvt.w.low;
  639. return _fex;
  640. }
  641. /* Load floating point integer double */
  642. static int emu_fidbr (struct pt_regs *regs, int rx, int ry, int mask) {
  643. /* FIXME: rounding mode !! */
  644. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  645. FP_DECL_D(DA);
  646. FP_DECL_EX;
  647. __s32 si;
  648. int mode;
  649. if (mask == 0)
  650. mode = fp_regs->fpc & 3;
  651. else if (mask == 1)
  652. mode = FP_RND_NEAREST;
  653. else
  654. mode = mask - 4;
  655. FP_UNPACK_DP(DA, &fp_regs->fprs[ry].d);
  656. FP_TO_FPINT_ROUND_D(DA);
  657. FP_PACK_DP(&fp_regs->fprs[rx].d, DA);
  658. return _fex;
  659. }
  660. /* Load floating point integer float */
  661. static int emu_fiebr (struct pt_regs *regs, int rx, int ry, int mask) {
  662. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  663. FP_DECL_S(SA);
  664. FP_DECL_EX;
  665. __s32 si;
  666. int mode;
  667. if (mask == 0)
  668. mode = fp_regs->fpc & 3;
  669. else if (mask == 1)
  670. mode = FP_RND_NEAREST;
  671. else
  672. mode = mask - 4;
  673. FP_UNPACK_SP(SA, &fp_regs->fprs[ry].f);
  674. FP_TO_FPINT_ROUND_S(SA);
  675. FP_PACK_SP(&fp_regs->fprs[rx].f, SA);
  676. return _fex;
  677. }
  678. /* Load lengthened double to long double */
  679. static int emu_lxdbr (struct pt_regs *regs, int rx, int ry) {
  680. FP_DECL_D(DA); FP_DECL_Q(QR);
  681. FP_DECL_EX;
  682. mathemu_ldcv cvt;
  683. int mode;
  684. mode = current->thread.fp_regs.fpc & 3;
  685. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  686. FP_CONV (Q, D, 4, 2, QR, DA);
  687. FP_PACK_QP(&cvt.ld, QR);
  688. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  689. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  690. return _fex;
  691. }
  692. /* Load lengthened double to long double */
  693. static int emu_lxdb (struct pt_regs *regs, int rx, double *val) {
  694. FP_DECL_D(DA); FP_DECL_Q(QR);
  695. FP_DECL_EX;
  696. mathemu_ldcv cvt;
  697. int mode;
  698. mode = current->thread.fp_regs.fpc & 3;
  699. FP_UNPACK_DP(DA, val);
  700. FP_CONV (Q, D, 4, 2, QR, DA);
  701. FP_PACK_QP(&cvt.ld, QR);
  702. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  703. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  704. return _fex;
  705. }
  706. /* Load lengthened float to long double */
  707. static int emu_lxebr (struct pt_regs *regs, int rx, int ry) {
  708. FP_DECL_S(SA); FP_DECL_Q(QR);
  709. FP_DECL_EX;
  710. mathemu_ldcv cvt;
  711. int mode;
  712. mode = current->thread.fp_regs.fpc & 3;
  713. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  714. FP_CONV (Q, S, 4, 1, QR, SA);
  715. FP_PACK_QP(&cvt.ld, QR);
  716. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  717. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  718. return _fex;
  719. }
  720. /* Load lengthened float to long double */
  721. static int emu_lxeb (struct pt_regs *regs, int rx, float *val) {
  722. FP_DECL_S(SA); FP_DECL_Q(QR);
  723. FP_DECL_EX;
  724. mathemu_ldcv cvt;
  725. int mode;
  726. mode = current->thread.fp_regs.fpc & 3;
  727. FP_UNPACK_SP(SA, val);
  728. FP_CONV (Q, S, 4, 1, QR, SA);
  729. FP_PACK_QP(&cvt.ld, QR);
  730. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  731. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  732. return _fex;
  733. }
  734. /* Load lengthened float to double */
  735. static int emu_ldebr (struct pt_regs *regs, int rx, int ry) {
  736. FP_DECL_S(SA); FP_DECL_D(DR);
  737. FP_DECL_EX;
  738. int mode;
  739. mode = current->thread.fp_regs.fpc & 3;
  740. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  741. FP_CONV (D, S, 2, 1, DR, SA);
  742. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  743. return _fex;
  744. }
  745. /* Load lengthened float to double */
  746. static int emu_ldeb (struct pt_regs *regs, int rx, float *val) {
  747. FP_DECL_S(SA); FP_DECL_D(DR);
  748. FP_DECL_EX;
  749. int mode;
  750. mode = current->thread.fp_regs.fpc & 3;
  751. FP_UNPACK_SP(SA, val);
  752. FP_CONV (D, S, 2, 1, DR, SA);
  753. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  754. return _fex;
  755. }
  756. /* Load negative long double */
  757. static int emu_lnxbr (struct pt_regs *regs, int rx, int ry) {
  758. FP_DECL_Q(QA); FP_DECL_Q(QR);
  759. FP_DECL_EX;
  760. mathemu_ldcv cvt;
  761. int mode;
  762. mode = current->thread.fp_regs.fpc & 3;
  763. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  764. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  765. FP_UNPACK_QP(QA, &cvt.ld);
  766. if (QA_s == 0) {
  767. FP_NEG_Q(QR, QA);
  768. FP_PACK_QP(&cvt.ld, QR);
  769. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  770. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  771. } else {
  772. current->thread.fp_regs.fprs[rx].ui =
  773. current->thread.fp_regs.fprs[ry].ui;
  774. current->thread.fp_regs.fprs[rx+2].ui =
  775. current->thread.fp_regs.fprs[ry+2].ui;
  776. }
  777. emu_set_CC_cs(regs, QR_c, QR_s);
  778. return _fex;
  779. }
  780. /* Load negative double */
  781. static int emu_lndbr (struct pt_regs *regs, int rx, int ry) {
  782. FP_DECL_D(DA); FP_DECL_D(DR);
  783. FP_DECL_EX;
  784. int mode;
  785. mode = current->thread.fp_regs.fpc & 3;
  786. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  787. if (DA_s == 0) {
  788. FP_NEG_D(DR, DA);
  789. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  790. } else
  791. current->thread.fp_regs.fprs[rx].ui =
  792. current->thread.fp_regs.fprs[ry].ui;
  793. emu_set_CC_cs(regs, DR_c, DR_s);
  794. return _fex;
  795. }
  796. /* Load negative float */
  797. static int emu_lnebr (struct pt_regs *regs, int rx, int ry) {
  798. FP_DECL_S(SA); FP_DECL_S(SR);
  799. FP_DECL_EX;
  800. int mode;
  801. mode = current->thread.fp_regs.fpc & 3;
  802. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  803. if (SA_s == 0) {
  804. FP_NEG_S(SR, SA);
  805. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  806. } else
  807. current->thread.fp_regs.fprs[rx].ui =
  808. current->thread.fp_regs.fprs[ry].ui;
  809. emu_set_CC_cs(regs, SR_c, SR_s);
  810. return _fex;
  811. }
  812. /* Load positive long double */
  813. static int emu_lpxbr (struct pt_regs *regs, int rx, int ry) {
  814. FP_DECL_Q(QA); FP_DECL_Q(QR);
  815. FP_DECL_EX;
  816. mathemu_ldcv cvt;
  817. int mode;
  818. mode = current->thread.fp_regs.fpc & 3;
  819. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  820. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  821. FP_UNPACK_QP(QA, &cvt.ld);
  822. if (QA_s != 0) {
  823. FP_NEG_Q(QR, QA);
  824. FP_PACK_QP(&cvt.ld, QR);
  825. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  826. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  827. } else{
  828. current->thread.fp_regs.fprs[rx].ui =
  829. current->thread.fp_regs.fprs[ry].ui;
  830. current->thread.fp_regs.fprs[rx+2].ui =
  831. current->thread.fp_regs.fprs[ry+2].ui;
  832. }
  833. emu_set_CC_cs(regs, QR_c, QR_s);
  834. return _fex;
  835. }
  836. /* Load positive double */
  837. static int emu_lpdbr (struct pt_regs *regs, int rx, int ry) {
  838. FP_DECL_D(DA); FP_DECL_D(DR);
  839. FP_DECL_EX;
  840. int mode;
  841. mode = current->thread.fp_regs.fpc & 3;
  842. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  843. if (DA_s != 0) {
  844. FP_NEG_D(DR, DA);
  845. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  846. } else
  847. current->thread.fp_regs.fprs[rx].ui =
  848. current->thread.fp_regs.fprs[ry].ui;
  849. emu_set_CC_cs(regs, DR_c, DR_s);
  850. return _fex;
  851. }
  852. /* Load positive float */
  853. static int emu_lpebr (struct pt_regs *regs, int rx, int ry) {
  854. FP_DECL_S(SA); FP_DECL_S(SR);
  855. FP_DECL_EX;
  856. int mode;
  857. mode = current->thread.fp_regs.fpc & 3;
  858. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  859. if (SA_s != 0) {
  860. FP_NEG_S(SR, SA);
  861. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  862. } else
  863. current->thread.fp_regs.fprs[rx].ui =
  864. current->thread.fp_regs.fprs[ry].ui;
  865. emu_set_CC_cs(regs, SR_c, SR_s);
  866. return _fex;
  867. }
  868. /* Load rounded long double to double */
  869. static int emu_ldxbr (struct pt_regs *regs, int rx, int ry) {
  870. FP_DECL_Q(QA); FP_DECL_D(DR);
  871. FP_DECL_EX;
  872. mathemu_ldcv cvt;
  873. int mode;
  874. mode = current->thread.fp_regs.fpc & 3;
  875. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  876. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  877. FP_UNPACK_QP(QA, &cvt.ld);
  878. FP_CONV (D, Q, 2, 4, DR, QA);
  879. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].f, DR);
  880. return _fex;
  881. }
  882. /* Load rounded long double to float */
  883. static int emu_lexbr (struct pt_regs *regs, int rx, int ry) {
  884. FP_DECL_Q(QA); FP_DECL_S(SR);
  885. FP_DECL_EX;
  886. mathemu_ldcv cvt;
  887. int mode;
  888. mode = current->thread.fp_regs.fpc & 3;
  889. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  890. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  891. FP_UNPACK_QP(QA, &cvt.ld);
  892. FP_CONV (S, Q, 1, 4, SR, QA);
  893. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  894. return _fex;
  895. }
  896. /* Load rounded double to float */
  897. static int emu_ledbr (struct pt_regs *regs, int rx, int ry) {
  898. FP_DECL_D(DA); FP_DECL_S(SR);
  899. FP_DECL_EX;
  900. int mode;
  901. mode = current->thread.fp_regs.fpc & 3;
  902. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  903. FP_CONV (S, D, 1, 2, SR, DA);
  904. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  905. return _fex;
  906. }
  907. /* Multiply long double */
  908. static int emu_mxbr (struct pt_regs *regs, int rx, int ry) {
  909. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  910. FP_DECL_EX;
  911. mathemu_ldcv cvt;
  912. int mode;
  913. mode = current->thread.fp_regs.fpc & 3;
  914. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  915. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  916. FP_UNPACK_QP(QA, &cvt.ld);
  917. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  918. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  919. FP_UNPACK_QP(QB, &cvt.ld);
  920. FP_MUL_Q(QR, QA, QB);
  921. FP_PACK_QP(&cvt.ld, QR);
  922. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  923. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  924. return _fex;
  925. }
  926. /* Multiply double */
  927. static int emu_mdbr (struct pt_regs *regs, int rx, int ry) {
  928. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  929. FP_DECL_EX;
  930. int mode;
  931. mode = current->thread.fp_regs.fpc & 3;
  932. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  933. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  934. FP_MUL_D(DR, DA, DB);
  935. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  936. return _fex;
  937. }
  938. /* Multiply double */
  939. static int emu_mdb (struct pt_regs *regs, int rx, double *val) {
  940. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  941. FP_DECL_EX;
  942. int mode;
  943. mode = current->thread.fp_regs.fpc & 3;
  944. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  945. FP_UNPACK_DP(DB, val);
  946. FP_MUL_D(DR, DA, DB);
  947. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  948. return _fex;
  949. }
  950. /* Multiply double to long double */
  951. static int emu_mxdbr (struct pt_regs *regs, int rx, int ry) {
  952. FP_DECL_D(DA); FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  953. FP_DECL_EX;
  954. mathemu_ldcv cvt;
  955. int mode;
  956. mode = current->thread.fp_regs.fpc & 3;
  957. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  958. FP_CONV (Q, D, 4, 2, QA, DA);
  959. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  960. FP_CONV (Q, D, 4, 2, QB, DA);
  961. FP_MUL_Q(QR, QA, QB);
  962. FP_PACK_QP(&cvt.ld, QR);
  963. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  964. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  965. return _fex;
  966. }
  967. /* Multiply double to long double */
  968. static int emu_mxdb (struct pt_regs *regs, int rx, long double *val) {
  969. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  970. FP_DECL_EX;
  971. mathemu_ldcv cvt;
  972. int mode;
  973. mode = current->thread.fp_regs.fpc & 3;
  974. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  975. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  976. FP_UNPACK_QP(QA, &cvt.ld);
  977. FP_UNPACK_QP(QB, val);
  978. FP_MUL_Q(QR, QA, QB);
  979. FP_PACK_QP(&cvt.ld, QR);
  980. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  981. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  982. return _fex;
  983. }
  984. /* Multiply float */
  985. static int emu_meebr (struct pt_regs *regs, int rx, int ry) {
  986. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  987. FP_DECL_EX;
  988. int mode;
  989. mode = current->thread.fp_regs.fpc & 3;
  990. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  991. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  992. FP_MUL_S(SR, SA, SB);
  993. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  994. return _fex;
  995. }
  996. /* Multiply float */
  997. static int emu_meeb (struct pt_regs *regs, int rx, float *val) {
  998. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  999. FP_DECL_EX;
  1000. int mode;
  1001. mode = current->thread.fp_regs.fpc & 3;
  1002. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1003. FP_UNPACK_SP(SB, val);
  1004. FP_MUL_S(SR, SA, SB);
  1005. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  1006. return _fex;
  1007. }
  1008. /* Multiply float to double */
  1009. static int emu_mdebr (struct pt_regs *regs, int rx, int ry) {
  1010. FP_DECL_S(SA); FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  1011. FP_DECL_EX;
  1012. int mode;
  1013. mode = current->thread.fp_regs.fpc & 3;
  1014. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1015. FP_CONV (D, S, 2, 1, DA, SA);
  1016. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  1017. FP_CONV (D, S, 2, 1, DB, SA);
  1018. FP_MUL_D(DR, DA, DB);
  1019. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1020. return _fex;
  1021. }
  1022. /* Multiply float to double */
  1023. static int emu_mdeb (struct pt_regs *regs, int rx, float *val) {
  1024. FP_DECL_S(SA); FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  1025. FP_DECL_EX;
  1026. int mode;
  1027. mode = current->thread.fp_regs.fpc & 3;
  1028. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1029. FP_CONV (D, S, 2, 1, DA, SA);
  1030. FP_UNPACK_SP(SA, val);
  1031. FP_CONV (D, S, 2, 1, DB, SA);
  1032. FP_MUL_D(DR, DA, DB);
  1033. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1034. return _fex;
  1035. }
  1036. /* Multiply and add double */
  1037. static int emu_madbr (struct pt_regs *regs, int rx, int ry, int rz) {
  1038. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DC); FP_DECL_D(DR);
  1039. FP_DECL_EX;
  1040. int mode;
  1041. mode = current->thread.fp_regs.fpc & 3;
  1042. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1043. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  1044. FP_UNPACK_DP(DC, &current->thread.fp_regs.fprs[rz].d);
  1045. FP_MUL_D(DR, DA, DB);
  1046. FP_ADD_D(DR, DR, DC);
  1047. FP_PACK_DP(&current->thread.fp_regs.fprs[rz].d, DR);
  1048. return _fex;
  1049. }
  1050. /* Multiply and add double */
  1051. static int emu_madb (struct pt_regs *regs, int rx, double *val, int rz) {
  1052. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DC); FP_DECL_D(DR);
  1053. FP_DECL_EX;
  1054. int mode;
  1055. mode = current->thread.fp_regs.fpc & 3;
  1056. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1057. FP_UNPACK_DP(DB, val);
  1058. FP_UNPACK_DP(DC, &current->thread.fp_regs.fprs[rz].d);
  1059. FP_MUL_D(DR, DA, DB);
  1060. FP_ADD_D(DR, DR, DC);
  1061. FP_PACK_DP(&current->thread.fp_regs.fprs[rz].d, DR);
  1062. return _fex;
  1063. }
  1064. /* Multiply and add float */
  1065. static int emu_maebr (struct pt_regs *regs, int rx, int ry, int rz) {
  1066. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SC); FP_DECL_S(SR);
  1067. FP_DECL_EX;
  1068. int mode;
  1069. mode = current->thread.fp_regs.fpc & 3;
  1070. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1071. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  1072. FP_UNPACK_SP(SC, &current->thread.fp_regs.fprs[rz].f);
  1073. FP_MUL_S(SR, SA, SB);
  1074. FP_ADD_S(SR, SR, SC);
  1075. FP_PACK_SP(&current->thread.fp_regs.fprs[rz].f, SR);
  1076. return _fex;
  1077. }
  1078. /* Multiply and add float */
  1079. static int emu_maeb (struct pt_regs *regs, int rx, float *val, int rz) {
  1080. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SC); FP_DECL_S(SR);
  1081. FP_DECL_EX;
  1082. int mode;
  1083. mode = current->thread.fp_regs.fpc & 3;
  1084. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1085. FP_UNPACK_SP(SB, val);
  1086. FP_UNPACK_SP(SC, &current->thread.fp_regs.fprs[rz].f);
  1087. FP_MUL_S(SR, SA, SB);
  1088. FP_ADD_S(SR, SR, SC);
  1089. FP_PACK_SP(&current->thread.fp_regs.fprs[rz].f, SR);
  1090. return _fex;
  1091. }
  1092. /* Multiply and subtract double */
  1093. static int emu_msdbr (struct pt_regs *regs, int rx, int ry, int rz) {
  1094. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DC); FP_DECL_D(DR);
  1095. FP_DECL_EX;
  1096. int mode;
  1097. mode = current->thread.fp_regs.fpc & 3;
  1098. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1099. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  1100. FP_UNPACK_DP(DC, &current->thread.fp_regs.fprs[rz].d);
  1101. FP_MUL_D(DR, DA, DB);
  1102. FP_SUB_D(DR, DR, DC);
  1103. FP_PACK_DP(&current->thread.fp_regs.fprs[rz].d, DR);
  1104. return _fex;
  1105. }
  1106. /* Multiply and subtract double */
  1107. static int emu_msdb (struct pt_regs *regs, int rx, double *val, int rz) {
  1108. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DC); FP_DECL_D(DR);
  1109. FP_DECL_EX;
  1110. int mode;
  1111. mode = current->thread.fp_regs.fpc & 3;
  1112. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1113. FP_UNPACK_DP(DB, val);
  1114. FP_UNPACK_DP(DC, &current->thread.fp_regs.fprs[rz].d);
  1115. FP_MUL_D(DR, DA, DB);
  1116. FP_SUB_D(DR, DR, DC);
  1117. FP_PACK_DP(&current->thread.fp_regs.fprs[rz].d, DR);
  1118. return _fex;
  1119. }
  1120. /* Multiply and subtract float */
  1121. static int emu_msebr (struct pt_regs *regs, int rx, int ry, int rz) {
  1122. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SC); FP_DECL_S(SR);
  1123. FP_DECL_EX;
  1124. int mode;
  1125. mode = current->thread.fp_regs.fpc & 3;
  1126. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1127. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  1128. FP_UNPACK_SP(SC, &current->thread.fp_regs.fprs[rz].f);
  1129. FP_MUL_S(SR, SA, SB);
  1130. FP_SUB_S(SR, SR, SC);
  1131. FP_PACK_SP(&current->thread.fp_regs.fprs[rz].f, SR);
  1132. return _fex;
  1133. }
  1134. /* Multiply and subtract float */
  1135. static int emu_mseb (struct pt_regs *regs, int rx, float *val, int rz) {
  1136. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SC); FP_DECL_S(SR);
  1137. FP_DECL_EX;
  1138. int mode;
  1139. mode = current->thread.fp_regs.fpc & 3;
  1140. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1141. FP_UNPACK_SP(SB, val);
  1142. FP_UNPACK_SP(SC, &current->thread.fp_regs.fprs[rz].f);
  1143. FP_MUL_S(SR, SA, SB);
  1144. FP_SUB_S(SR, SR, SC);
  1145. FP_PACK_SP(&current->thread.fp_regs.fprs[rz].f, SR);
  1146. return _fex;
  1147. }
  1148. /* Set floating point control word */
  1149. static int emu_sfpc (struct pt_regs *regs, int rx, int ry) {
  1150. __u32 temp;
  1151. temp = regs->gprs[rx];
  1152. if ((temp & ~FPC_VALID_MASK) != 0)
  1153. return SIGILL;
  1154. current->thread.fp_regs.fpc = temp;
  1155. return 0;
  1156. }
  1157. /* Square root long double */
  1158. static int emu_sqxbr (struct pt_regs *regs, int rx, int ry) {
  1159. FP_DECL_Q(QA); FP_DECL_Q(QR);
  1160. FP_DECL_EX;
  1161. mathemu_ldcv cvt;
  1162. int mode;
  1163. mode = current->thread.fp_regs.fpc & 3;
  1164. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  1165. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  1166. FP_UNPACK_QP(QA, &cvt.ld);
  1167. FP_SQRT_Q(QR, QA);
  1168. FP_PACK_QP(&cvt.ld, QR);
  1169. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  1170. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  1171. emu_set_CC_cs(regs, QR_c, QR_s);
  1172. return _fex;
  1173. }
  1174. /* Square root double */
  1175. static int emu_sqdbr (struct pt_regs *regs, int rx, int ry) {
  1176. FP_DECL_D(DA); FP_DECL_D(DR);
  1177. FP_DECL_EX;
  1178. int mode;
  1179. mode = current->thread.fp_regs.fpc & 3;
  1180. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[ry].d);
  1181. FP_SQRT_D(DR, DA);
  1182. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1183. emu_set_CC_cs(regs, DR_c, DR_s);
  1184. return _fex;
  1185. }
  1186. /* Square root double */
  1187. static int emu_sqdb (struct pt_regs *regs, int rx, double *val) {
  1188. FP_DECL_D(DA); FP_DECL_D(DR);
  1189. FP_DECL_EX;
  1190. int mode;
  1191. mode = current->thread.fp_regs.fpc & 3;
  1192. FP_UNPACK_DP(DA, val);
  1193. FP_SQRT_D(DR, DA);
  1194. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1195. emu_set_CC_cs(regs, DR_c, DR_s);
  1196. return _fex;
  1197. }
  1198. /* Square root float */
  1199. static int emu_sqebr (struct pt_regs *regs, int rx, int ry) {
  1200. FP_DECL_S(SA); FP_DECL_S(SR);
  1201. FP_DECL_EX;
  1202. int mode;
  1203. mode = current->thread.fp_regs.fpc & 3;
  1204. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[ry].f);
  1205. FP_SQRT_S(SR, SA);
  1206. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  1207. emu_set_CC_cs(regs, SR_c, SR_s);
  1208. return _fex;
  1209. }
  1210. /* Square root float */
  1211. static int emu_sqeb (struct pt_regs *regs, int rx, float *val) {
  1212. FP_DECL_S(SA); FP_DECL_S(SR);
  1213. FP_DECL_EX;
  1214. int mode;
  1215. mode = current->thread.fp_regs.fpc & 3;
  1216. FP_UNPACK_SP(SA, val);
  1217. FP_SQRT_S(SR, SA);
  1218. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  1219. emu_set_CC_cs(regs, SR_c, SR_s);
  1220. return _fex;
  1221. }
  1222. /* Subtract long double */
  1223. static int emu_sxbr (struct pt_regs *regs, int rx, int ry) {
  1224. FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
  1225. FP_DECL_EX;
  1226. mathemu_ldcv cvt;
  1227. int mode;
  1228. mode = current->thread.fp_regs.fpc & 3;
  1229. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  1230. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  1231. FP_UNPACK_QP(QA, &cvt.ld);
  1232. cvt.w.high = current->thread.fp_regs.fprs[ry].ui;
  1233. cvt.w.low = current->thread.fp_regs.fprs[ry+2].ui;
  1234. FP_UNPACK_QP(QB, &cvt.ld);
  1235. FP_SUB_Q(QR, QA, QB);
  1236. FP_PACK_QP(&cvt.ld, QR);
  1237. current->thread.fp_regs.fprs[rx].ui = cvt.w.high;
  1238. current->thread.fp_regs.fprs[rx+2].ui = cvt.w.low;
  1239. emu_set_CC_cs(regs, QR_c, QR_s);
  1240. return _fex;
  1241. }
  1242. /* Subtract double */
  1243. static int emu_sdbr (struct pt_regs *regs, int rx, int ry) {
  1244. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  1245. FP_DECL_EX;
  1246. int mode;
  1247. mode = current->thread.fp_regs.fpc & 3;
  1248. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1249. FP_UNPACK_DP(DB, &current->thread.fp_regs.fprs[ry].d);
  1250. FP_SUB_D(DR, DA, DB);
  1251. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1252. emu_set_CC_cs(regs, DR_c, DR_s);
  1253. return _fex;
  1254. }
  1255. /* Subtract double */
  1256. static int emu_sdb (struct pt_regs *regs, int rx, double *val) {
  1257. FP_DECL_D(DA); FP_DECL_D(DB); FP_DECL_D(DR);
  1258. FP_DECL_EX;
  1259. int mode;
  1260. mode = current->thread.fp_regs.fpc & 3;
  1261. FP_UNPACK_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1262. FP_UNPACK_DP(DB, val);
  1263. FP_SUB_D(DR, DA, DB);
  1264. FP_PACK_DP(&current->thread.fp_regs.fprs[rx].d, DR);
  1265. emu_set_CC_cs(regs, DR_c, DR_s);
  1266. return _fex;
  1267. }
  1268. /* Subtract float */
  1269. static int emu_sebr (struct pt_regs *regs, int rx, int ry) {
  1270. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  1271. FP_DECL_EX;
  1272. int mode;
  1273. mode = current->thread.fp_regs.fpc & 3;
  1274. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1275. FP_UNPACK_SP(SB, &current->thread.fp_regs.fprs[ry].f);
  1276. FP_SUB_S(SR, SA, SB);
  1277. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  1278. emu_set_CC_cs(regs, SR_c, SR_s);
  1279. return _fex;
  1280. }
  1281. /* Subtract float */
  1282. static int emu_seb (struct pt_regs *regs, int rx, float *val) {
  1283. FP_DECL_S(SA); FP_DECL_S(SB); FP_DECL_S(SR);
  1284. FP_DECL_EX;
  1285. int mode;
  1286. mode = current->thread.fp_regs.fpc & 3;
  1287. FP_UNPACK_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1288. FP_UNPACK_SP(SB, val);
  1289. FP_SUB_S(SR, SA, SB);
  1290. FP_PACK_SP(&current->thread.fp_regs.fprs[rx].f, SR);
  1291. emu_set_CC_cs(regs, SR_c, SR_s);
  1292. return _fex;
  1293. }
  1294. /* Test data class long double */
  1295. static int emu_tcxb (struct pt_regs *regs, int rx, long val) {
  1296. FP_DECL_Q(QA);
  1297. mathemu_ldcv cvt;
  1298. int bit;
  1299. cvt.w.high = current->thread.fp_regs.fprs[rx].ui;
  1300. cvt.w.low = current->thread.fp_regs.fprs[rx+2].ui;
  1301. FP_UNPACK_RAW_QP(QA, &cvt.ld);
  1302. switch (QA_e) {
  1303. default:
  1304. bit = 8; /* normalized number */
  1305. break;
  1306. case 0:
  1307. if (_FP_FRAC_ZEROP_4(QA))
  1308. bit = 10; /* zero */
  1309. else
  1310. bit = 6; /* denormalized number */
  1311. break;
  1312. case _FP_EXPMAX_Q:
  1313. if (_FP_FRAC_ZEROP_4(QA))
  1314. bit = 4; /* infinity */
  1315. else if (_FP_FRAC_HIGH_RAW_Q(QA) & _FP_QNANBIT_Q)
  1316. bit = 2; /* quiet NAN */
  1317. else
  1318. bit = 0; /* signaling NAN */
  1319. break;
  1320. }
  1321. if (!QA_s)
  1322. bit++;
  1323. emu_set_CC(regs, ((__u32) val >> bit) & 1);
  1324. return 0;
  1325. }
  1326. /* Test data class double */
  1327. static int emu_tcdb (struct pt_regs *regs, int rx, long val) {
  1328. FP_DECL_D(DA);
  1329. int bit;
  1330. FP_UNPACK_RAW_DP(DA, &current->thread.fp_regs.fprs[rx].d);
  1331. switch (DA_e) {
  1332. default:
  1333. bit = 8; /* normalized number */
  1334. break;
  1335. case 0:
  1336. if (_FP_FRAC_ZEROP_2(DA))
  1337. bit = 10; /* zero */
  1338. else
  1339. bit = 6; /* denormalized number */
  1340. break;
  1341. case _FP_EXPMAX_D:
  1342. if (_FP_FRAC_ZEROP_2(DA))
  1343. bit = 4; /* infinity */
  1344. else if (_FP_FRAC_HIGH_RAW_D(DA) & _FP_QNANBIT_D)
  1345. bit = 2; /* quiet NAN */
  1346. else
  1347. bit = 0; /* signaling NAN */
  1348. break;
  1349. }
  1350. if (!DA_s)
  1351. bit++;
  1352. emu_set_CC(regs, ((__u32) val >> bit) & 1);
  1353. return 0;
  1354. }
  1355. /* Test data class float */
  1356. static int emu_tceb (struct pt_regs *regs, int rx, long val) {
  1357. FP_DECL_S(SA);
  1358. int bit;
  1359. FP_UNPACK_RAW_SP(SA, &current->thread.fp_regs.fprs[rx].f);
  1360. switch (SA_e) {
  1361. default:
  1362. bit = 8; /* normalized number */
  1363. break;
  1364. case 0:
  1365. if (_FP_FRAC_ZEROP_1(SA))
  1366. bit = 10; /* zero */
  1367. else
  1368. bit = 6; /* denormalized number */
  1369. break;
  1370. case _FP_EXPMAX_S:
  1371. if (_FP_FRAC_ZEROP_1(SA))
  1372. bit = 4; /* infinity */
  1373. else if (_FP_FRAC_HIGH_RAW_S(SA) & _FP_QNANBIT_S)
  1374. bit = 2; /* quiet NAN */
  1375. else
  1376. bit = 0; /* signaling NAN */
  1377. break;
  1378. }
  1379. if (!SA_s)
  1380. bit++;
  1381. emu_set_CC(regs, ((__u32) val >> bit) & 1);
  1382. return 0;
  1383. }
  1384. static inline void emu_load_regd(int reg) {
  1385. if ((reg&9) != 0) /* test if reg in {0,2,4,6} */
  1386. return;
  1387. asm volatile( /* load reg from fp_regs.fprs[reg] */
  1388. " bras 1,0f\n"
  1389. " ld 0,0(%1)\n"
  1390. "0: ex %0,0(1)"
  1391. : /* no output */
  1392. : "a" (reg<<4),"a" (&current->thread.fp_regs.fprs[reg].d)
  1393. : "1");
  1394. }
  1395. static inline void emu_load_rege(int reg) {
  1396. if ((reg&9) != 0) /* test if reg in {0,2,4,6} */
  1397. return;
  1398. asm volatile( /* load reg from fp_regs.fprs[reg] */
  1399. " bras 1,0f\n"
  1400. " le 0,0(%1)\n"
  1401. "0: ex %0,0(1)"
  1402. : /* no output */
  1403. : "a" (reg<<4), "a" (&current->thread.fp_regs.fprs[reg].f)
  1404. : "1");
  1405. }
  1406. static inline void emu_store_regd(int reg) {
  1407. if ((reg&9) != 0) /* test if reg in {0,2,4,6} */
  1408. return;
  1409. asm volatile( /* store reg to fp_regs.fprs[reg] */
  1410. " bras 1,0f\n"
  1411. " std 0,0(%1)\n"
  1412. "0: ex %0,0(1)"
  1413. : /* no output */
  1414. : "a" (reg<<4), "a" (&current->thread.fp_regs.fprs[reg].d)
  1415. : "1");
  1416. }
  1417. static inline void emu_store_rege(int reg) {
  1418. if ((reg&9) != 0) /* test if reg in {0,2,4,6} */
  1419. return;
  1420. asm volatile( /* store reg to fp_regs.fprs[reg] */
  1421. " bras 1,0f\n"
  1422. " ste 0,0(%1)\n"
  1423. "0: ex %0,0(1)"
  1424. : /* no output */
  1425. : "a" (reg<<4), "a" (&current->thread.fp_regs.fprs[reg].f)
  1426. : "1");
  1427. }
  1428. int math_emu_b3(__u8 *opcode, struct pt_regs * regs) {
  1429. int _fex = 0;
  1430. static const __u8 format_table[256] = {
  1431. [0x00] = 0x03,[0x01] = 0x03,[0x02] = 0x03,[0x03] = 0x03,
  1432. [0x04] = 0x0f,[0x05] = 0x0d,[0x06] = 0x0e,[0x07] = 0x0d,
  1433. [0x08] = 0x03,[0x09] = 0x03,[0x0a] = 0x03,[0x0b] = 0x03,
  1434. [0x0c] = 0x0f,[0x0d] = 0x03,[0x0e] = 0x06,[0x0f] = 0x06,
  1435. [0x10] = 0x02,[0x11] = 0x02,[0x12] = 0x02,[0x13] = 0x02,
  1436. [0x14] = 0x03,[0x15] = 0x02,[0x16] = 0x01,[0x17] = 0x03,
  1437. [0x18] = 0x02,[0x19] = 0x02,[0x1a] = 0x02,[0x1b] = 0x02,
  1438. [0x1c] = 0x02,[0x1d] = 0x02,[0x1e] = 0x05,[0x1f] = 0x05,
  1439. [0x40] = 0x01,[0x41] = 0x01,[0x42] = 0x01,[0x43] = 0x01,
  1440. [0x44] = 0x12,[0x45] = 0x0d,[0x46] = 0x11,[0x47] = 0x04,
  1441. [0x48] = 0x01,[0x49] = 0x01,[0x4a] = 0x01,[0x4b] = 0x01,
  1442. [0x4c] = 0x01,[0x4d] = 0x01,[0x53] = 0x06,[0x57] = 0x06,
  1443. [0x5b] = 0x05,[0x5f] = 0x05,[0x84] = 0x13,[0x8c] = 0x13,
  1444. [0x94] = 0x09,[0x95] = 0x08,[0x96] = 0x07,[0x98] = 0x0c,
  1445. [0x99] = 0x0b,[0x9a] = 0x0a
  1446. };
  1447. static const void *jump_table[256]= {
  1448. [0x00] = emu_lpebr,[0x01] = emu_lnebr,[0x02] = emu_ltebr,
  1449. [0x03] = emu_lcebr,[0x04] = emu_ldebr,[0x05] = emu_lxdbr,
  1450. [0x06] = emu_lxebr,[0x07] = emu_mxdbr,[0x08] = emu_kebr,
  1451. [0x09] = emu_cebr, [0x0a] = emu_aebr, [0x0b] = emu_sebr,
  1452. [0x0c] = emu_mdebr,[0x0d] = emu_debr, [0x0e] = emu_maebr,
  1453. [0x0f] = emu_msebr,[0x10] = emu_lpdbr,[0x11] = emu_lndbr,
  1454. [0x12] = emu_ltdbr,[0x13] = emu_lcdbr,[0x14] = emu_sqebr,
  1455. [0x15] = emu_sqdbr,[0x16] = emu_sqxbr,[0x17] = emu_meebr,
  1456. [0x18] = emu_kdbr, [0x19] = emu_cdbr, [0x1a] = emu_adbr,
  1457. [0x1b] = emu_sdbr, [0x1c] = emu_mdbr, [0x1d] = emu_ddbr,
  1458. [0x1e] = emu_madbr,[0x1f] = emu_msdbr,[0x40] = emu_lpxbr,
  1459. [0x41] = emu_lnxbr,[0x42] = emu_ltxbr,[0x43] = emu_lcxbr,
  1460. [0x44] = emu_ledbr,[0x45] = emu_ldxbr,[0x46] = emu_lexbr,
  1461. [0x47] = emu_fixbr,[0x48] = emu_kxbr, [0x49] = emu_cxbr,
  1462. [0x4a] = emu_axbr, [0x4b] = emu_sxbr, [0x4c] = emu_mxbr,
  1463. [0x4d] = emu_dxbr, [0x53] = emu_diebr,[0x57] = emu_fiebr,
  1464. [0x5b] = emu_didbr,[0x5f] = emu_fidbr,[0x84] = emu_sfpc,
  1465. [0x8c] = emu_efpc, [0x94] = emu_cefbr,[0x95] = emu_cdfbr,
  1466. [0x96] = emu_cxfbr,[0x98] = emu_cfebr,[0x99] = emu_cfdbr,
  1467. [0x9a] = emu_cfxbr
  1468. };
  1469. switch (format_table[opcode[1]]) {
  1470. case 1: /* RRE format, long double operation */
  1471. if (opcode[3] & 0x22)
  1472. return SIGILL;
  1473. emu_store_regd((opcode[3] >> 4) & 15);
  1474. emu_store_regd(((opcode[3] >> 4) & 15) + 2);
  1475. emu_store_regd(opcode[3] & 15);
  1476. emu_store_regd((opcode[3] & 15) + 2);
  1477. /* call the emulation function */
  1478. _fex = ((int (*)(struct pt_regs *,int, int))
  1479. jump_table[opcode[1]])
  1480. (regs, opcode[3] >> 4, opcode[3] & 15);
  1481. emu_load_regd((opcode[3] >> 4) & 15);
  1482. emu_load_regd(((opcode[3] >> 4) & 15) + 2);
  1483. emu_load_regd(opcode[3] & 15);
  1484. emu_load_regd((opcode[3] & 15) + 2);
  1485. break;
  1486. case 2: /* RRE format, double operation */
  1487. emu_store_regd((opcode[3] >> 4) & 15);
  1488. emu_store_regd(opcode[3] & 15);
  1489. /* call the emulation function */
  1490. _fex = ((int (*)(struct pt_regs *, int, int))
  1491. jump_table[opcode[1]])
  1492. (regs, opcode[3] >> 4, opcode[3] & 15);
  1493. emu_load_regd((opcode[3] >> 4) & 15);
  1494. emu_load_regd(opcode[3] & 15);
  1495. break;
  1496. case 3: /* RRE format, float operation */
  1497. emu_store_rege((opcode[3] >> 4) & 15);
  1498. emu_store_rege(opcode[3] & 15);
  1499. /* call the emulation function */
  1500. _fex = ((int (*)(struct pt_regs *, int, int))
  1501. jump_table[opcode[1]])
  1502. (regs, opcode[3] >> 4, opcode[3] & 15);
  1503. emu_load_rege((opcode[3] >> 4) & 15);
  1504. emu_load_rege(opcode[3] & 15);
  1505. break;
  1506. case 4: /* RRF format, long double operation */
  1507. if (opcode[3] & 0x22)
  1508. return SIGILL;
  1509. emu_store_regd((opcode[3] >> 4) & 15);
  1510. emu_store_regd(((opcode[3] >> 4) & 15) + 2);
  1511. emu_store_regd(opcode[3] & 15);
  1512. emu_store_regd((opcode[3] & 15) + 2);
  1513. /* call the emulation function */
  1514. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1515. jump_table[opcode[1]])
  1516. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1517. emu_load_regd((opcode[3] >> 4) & 15);
  1518. emu_load_regd(((opcode[3] >> 4) & 15) + 2);
  1519. emu_load_regd(opcode[3] & 15);
  1520. emu_load_regd((opcode[3] & 15) + 2);
  1521. break;
  1522. case 5: /* RRF format, double operation */
  1523. emu_store_regd((opcode[2] >> 4) & 15);
  1524. emu_store_regd((opcode[3] >> 4) & 15);
  1525. emu_store_regd(opcode[3] & 15);
  1526. /* call the emulation function */
  1527. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1528. jump_table[opcode[1]])
  1529. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1530. emu_load_regd((opcode[2] >> 4) & 15);
  1531. emu_load_regd((opcode[3] >> 4) & 15);
  1532. emu_load_regd(opcode[3] & 15);
  1533. break;
  1534. case 6: /* RRF format, float operation */
  1535. emu_store_rege((opcode[2] >> 4) & 15);
  1536. emu_store_rege((opcode[3] >> 4) & 15);
  1537. emu_store_rege(opcode[3] & 15);
  1538. /* call the emulation function */
  1539. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1540. jump_table[opcode[1]])
  1541. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1542. emu_load_rege((opcode[2] >> 4) & 15);
  1543. emu_load_rege((opcode[3] >> 4) & 15);
  1544. emu_load_rege(opcode[3] & 15);
  1545. break;
  1546. case 7: /* RRE format, cxfbr instruction */
  1547. /* call the emulation function */
  1548. if (opcode[3] & 0x20)
  1549. return SIGILL;
  1550. _fex = ((int (*)(struct pt_regs *, int, int))
  1551. jump_table[opcode[1]])
  1552. (regs, opcode[3] >> 4, opcode[3] & 15);
  1553. emu_load_regd((opcode[3] >> 4) & 15);
  1554. emu_load_regd(((opcode[3] >> 4) & 15) + 2);
  1555. break;
  1556. case 8: /* RRE format, cdfbr instruction */
  1557. /* call the emulation function */
  1558. _fex = ((int (*)(struct pt_regs *, int, int))
  1559. jump_table[opcode[1]])
  1560. (regs, opcode[3] >> 4, opcode[3] & 15);
  1561. emu_load_regd((opcode[3] >> 4) & 15);
  1562. break;
  1563. case 9: /* RRE format, cefbr instruction */
  1564. /* call the emulation function */
  1565. _fex = ((int (*)(struct pt_regs *, int, int))
  1566. jump_table[opcode[1]])
  1567. (regs, opcode[3] >> 4, opcode[3] & 15);
  1568. emu_load_rege((opcode[3] >> 4) & 15);
  1569. break;
  1570. case 10: /* RRF format, cfxbr instruction */
  1571. if ((opcode[2] & 128) == 128 || (opcode[2] & 96) == 32)
  1572. /* mask of { 2,3,8-15 } is invalid */
  1573. return SIGILL;
  1574. if (opcode[3] & 2)
  1575. return SIGILL;
  1576. emu_store_regd(opcode[3] & 15);
  1577. emu_store_regd((opcode[3] & 15) + 2);
  1578. /* call the emulation function */
  1579. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1580. jump_table[opcode[1]])
  1581. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1582. break;
  1583. case 11: /* RRF format, cfdbr instruction */
  1584. if ((opcode[2] & 128) == 128 || (opcode[2] & 96) == 32)
  1585. /* mask of { 2,3,8-15 } is invalid */
  1586. return SIGILL;
  1587. emu_store_regd(opcode[3] & 15);
  1588. /* call the emulation function */
  1589. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1590. jump_table[opcode[1]])
  1591. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1592. break;
  1593. case 12: /* RRF format, cfebr instruction */
  1594. if ((opcode[2] & 128) == 128 || (opcode[2] & 96) == 32)
  1595. /* mask of { 2,3,8-15 } is invalid */
  1596. return SIGILL;
  1597. emu_store_rege(opcode[3] & 15);
  1598. /* call the emulation function */
  1599. _fex = ((int (*)(struct pt_regs *, int, int, int))
  1600. jump_table[opcode[1]])
  1601. (regs, opcode[3] >> 4, opcode[3] & 15, opcode[2] >> 4);
  1602. break;
  1603. case 13: /* RRE format, ldxbr & mdxbr instruction */
  1604. /* double store but long double load */
  1605. if (opcode[3] & 0x20)
  1606. return SIGILL;
  1607. emu_store_regd((opcode[3] >> 4) & 15);
  1608. emu_store_regd(opcode[3] & 15);
  1609. /* call the emulation function */
  1610. _fex = ((int (*)(struct pt_regs *, int, int))
  1611. jump_table[opcode[1]])
  1612. (regs, opcode[3] >> 4, opcode[3] & 15);
  1613. emu_load_regd((opcode[3] >> 4) & 15);
  1614. emu_load_regd(((opcode[3] >> 4) & 15) + 2);
  1615. break;
  1616. case 14: /* RRE format, ldxbr & mdxbr instruction */
  1617. /* float store but long double load */
  1618. if (opcode[3] & 0x20)
  1619. return SIGILL;
  1620. emu_store_rege((opcode[3] >> 4) & 15);
  1621. emu_store_rege(opcode[3] & 15);
  1622. /* call the emulation function */
  1623. _fex = ((int (*)(struct pt_regs *, int, int))
  1624. jump_table[opcode[1]])
  1625. (regs, opcode[3] >> 4, opcode[3] & 15);
  1626. emu_load_regd((opcode[3] >> 4) & 15);
  1627. emu_load_regd(((opcode[3] >> 4) & 15) + 2);
  1628. break;
  1629. case 15: /* RRE format, ldebr & mdebr instruction */
  1630. /* float store but double load */
  1631. emu_store_rege((opcode[3] >> 4) & 15);
  1632. emu_store_rege(opcode[3] & 15);
  1633. /* call the emulation function */
  1634. _fex = ((int (*)(struct pt_regs *, int, int))
  1635. jump_table[opcode[1]])
  1636. (regs, opcode[3] >> 4, opcode[3] & 15);
  1637. emu_load_regd((opcode[3] >> 4) & 15);
  1638. break;
  1639. case 16: /* RRE format, ldxbr instruction */
  1640. /* long double store but double load */
  1641. if (opcode[3] & 2)
  1642. return SIGILL;
  1643. emu_store_regd(opcode[3] & 15);
  1644. emu_store_regd((opcode[3] & 15) + 2);
  1645. /* call the emulation function */
  1646. _fex = ((int (*)(struct pt_regs *, int, int))
  1647. jump_table[opcode[1]])
  1648. (regs, opcode[3] >> 4, opcode[3] & 15);
  1649. emu_load_regd((opcode[3] >> 4) & 15);
  1650. break;
  1651. case 17: /* RRE format, ldxbr instruction */
  1652. /* long double store but float load */
  1653. if (opcode[3] & 2)
  1654. return SIGILL;
  1655. emu_store_regd(opcode[3] & 15);
  1656. emu_store_regd((opcode[3] & 15) + 2);
  1657. /* call the emulation function */
  1658. _fex = ((int (*)(struct pt_regs *, int, int))
  1659. jump_table[opcode[1]])
  1660. (regs, opcode[3] >> 4, opcode[3] & 15);
  1661. emu_load_rege((opcode[3] >> 4) & 15);
  1662. break;
  1663. case 18: /* RRE format, ledbr instruction */
  1664. /* double store but float load */
  1665. emu_store_regd(opcode[3] & 15);
  1666. /* call the emulation function */
  1667. _fex = ((int (*)(struct pt_regs *, int, int))
  1668. jump_table[opcode[1]])
  1669. (regs, opcode[3] >> 4, opcode[3] & 15);
  1670. emu_load_rege((opcode[3] >> 4) & 15);
  1671. break;
  1672. case 19: /* RRE format, efpc & sfpc instruction */
  1673. /* call the emulation function */
  1674. _fex = ((int (*)(struct pt_regs *, int, int))
  1675. jump_table[opcode[1]])
  1676. (regs, opcode[3] >> 4, opcode[3] & 15);
  1677. break;
  1678. default: /* invalid operation */
  1679. return SIGILL;
  1680. }
  1681. if (_fex != 0) {
  1682. current->thread.fp_regs.fpc |= _fex;
  1683. if (current->thread.fp_regs.fpc & (_fex << 8))
  1684. return SIGFPE;
  1685. }
  1686. return 0;
  1687. }
  1688. static void* calc_addr(struct pt_regs *regs, int rx, int rb, int disp)
  1689. {
  1690. addr_t addr;
  1691. rx &= 15;
  1692. rb &= 15;
  1693. addr = disp & 0xfff;
  1694. addr += (rx != 0) ? regs->gprs[rx] : 0; /* + index */
  1695. addr += (rb != 0) ? regs->gprs[rb] : 0; /* + base */
  1696. return (void*) addr;
  1697. }
  1698. int math_emu_ed(__u8 *opcode, struct pt_regs * regs) {
  1699. int _fex = 0;
  1700. static const __u8 format_table[256] = {
  1701. [0x04] = 0x06,[0x05] = 0x05,[0x06] = 0x07,[0x07] = 0x05,
  1702. [0x08] = 0x02,[0x09] = 0x02,[0x0a] = 0x02,[0x0b] = 0x02,
  1703. [0x0c] = 0x06,[0x0d] = 0x02,[0x0e] = 0x04,[0x0f] = 0x04,
  1704. [0x10] = 0x08,[0x11] = 0x09,[0x12] = 0x0a,[0x14] = 0x02,
  1705. [0x15] = 0x01,[0x17] = 0x02,[0x18] = 0x01,[0x19] = 0x01,
  1706. [0x1a] = 0x01,[0x1b] = 0x01,[0x1c] = 0x01,[0x1d] = 0x01,
  1707. [0x1e] = 0x03,[0x1f] = 0x03,
  1708. };
  1709. static const void *jump_table[]= {
  1710. [0x04] = emu_ldeb,[0x05] = emu_lxdb,[0x06] = emu_lxeb,
  1711. [0x07] = emu_mxdb,[0x08] = emu_keb, [0x09] = emu_ceb,
  1712. [0x0a] = emu_aeb, [0x0b] = emu_seb, [0x0c] = emu_mdeb,
  1713. [0x0d] = emu_deb, [0x0e] = emu_maeb,[0x0f] = emu_mseb,
  1714. [0x10] = emu_tceb,[0x11] = emu_tcdb,[0x12] = emu_tcxb,
  1715. [0x14] = emu_sqeb,[0x15] = emu_sqdb,[0x17] = emu_meeb,
  1716. [0x18] = emu_kdb, [0x19] = emu_cdb, [0x1a] = emu_adb,
  1717. [0x1b] = emu_sdb, [0x1c] = emu_mdb, [0x1d] = emu_ddb,
  1718. [0x1e] = emu_madb,[0x1f] = emu_msdb
  1719. };
  1720. switch (format_table[opcode[5]]) {
  1721. case 1: /* RXE format, double constant */ {
  1722. __u64 *dxb, temp;
  1723. __u32 opc;
  1724. emu_store_regd((opcode[1] >> 4) & 15);
  1725. opc = *((__u32 *) opcode);
  1726. dxb = (__u64 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1727. mathemu_copy_from_user(&temp, dxb, 8);
  1728. /* call the emulation function */
  1729. _fex = ((int (*)(struct pt_regs *, int, double *))
  1730. jump_table[opcode[5]])
  1731. (regs, opcode[1] >> 4, (double *) &temp);
  1732. emu_load_regd((opcode[1] >> 4) & 15);
  1733. break;
  1734. }
  1735. case 2: /* RXE format, float constant */ {
  1736. __u32 *dxb, temp;
  1737. __u32 opc;
  1738. emu_store_rege((opcode[1] >> 4) & 15);
  1739. opc = *((__u32 *) opcode);
  1740. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1741. mathemu_get_user(temp, dxb);
  1742. /* call the emulation function */
  1743. _fex = ((int (*)(struct pt_regs *, int, float *))
  1744. jump_table[opcode[5]])
  1745. (regs, opcode[1] >> 4, (float *) &temp);
  1746. emu_load_rege((opcode[1] >> 4) & 15);
  1747. break;
  1748. }
  1749. case 3: /* RXF format, double constant */ {
  1750. __u64 *dxb, temp;
  1751. __u32 opc;
  1752. emu_store_regd((opcode[1] >> 4) & 15);
  1753. emu_store_regd((opcode[4] >> 4) & 15);
  1754. opc = *((__u32 *) opcode);
  1755. dxb = (__u64 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1756. mathemu_copy_from_user(&temp, dxb, 8);
  1757. /* call the emulation function */
  1758. _fex = ((int (*)(struct pt_regs *, int, double *, int))
  1759. jump_table[opcode[5]])
  1760. (regs, opcode[1] >> 4, (double *) &temp, opcode[4] >> 4);
  1761. emu_load_regd((opcode[1] >> 4) & 15);
  1762. break;
  1763. }
  1764. case 4: /* RXF format, float constant */ {
  1765. __u32 *dxb, temp;
  1766. __u32 opc;
  1767. emu_store_rege((opcode[1] >> 4) & 15);
  1768. emu_store_rege((opcode[4] >> 4) & 15);
  1769. opc = *((__u32 *) opcode);
  1770. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1771. mathemu_get_user(temp, dxb);
  1772. /* call the emulation function */
  1773. _fex = ((int (*)(struct pt_regs *, int, float *, int))
  1774. jump_table[opcode[5]])
  1775. (regs, opcode[1] >> 4, (float *) &temp, opcode[4] >> 4);
  1776. emu_load_rege((opcode[4] >> 4) & 15);
  1777. break;
  1778. }
  1779. case 5: /* RXE format, double constant */
  1780. /* store double and load long double */
  1781. {
  1782. __u64 *dxb, temp;
  1783. __u32 opc;
  1784. if ((opcode[1] >> 4) & 0x20)
  1785. return SIGILL;
  1786. emu_store_regd((opcode[1] >> 4) & 15);
  1787. opc = *((__u32 *) opcode);
  1788. dxb = (__u64 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1789. mathemu_copy_from_user(&temp, dxb, 8);
  1790. /* call the emulation function */
  1791. _fex = ((int (*)(struct pt_regs *, int, double *))
  1792. jump_table[opcode[5]])
  1793. (regs, opcode[1] >> 4, (double *) &temp);
  1794. emu_load_regd((opcode[1] >> 4) & 15);
  1795. emu_load_regd(((opcode[1] >> 4) & 15) + 2);
  1796. break;
  1797. }
  1798. case 6: /* RXE format, float constant */
  1799. /* store float and load double */
  1800. {
  1801. __u32 *dxb, temp;
  1802. __u32 opc;
  1803. emu_store_rege((opcode[1] >> 4) & 15);
  1804. opc = *((__u32 *) opcode);
  1805. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1806. mathemu_get_user(temp, dxb);
  1807. /* call the emulation function */
  1808. _fex = ((int (*)(struct pt_regs *, int, float *))
  1809. jump_table[opcode[5]])
  1810. (regs, opcode[1] >> 4, (float *) &temp);
  1811. emu_load_regd((opcode[1] >> 4) & 15);
  1812. break;
  1813. }
  1814. case 7: /* RXE format, float constant */
  1815. /* store float and load long double */
  1816. {
  1817. __u32 *dxb, temp;
  1818. __u32 opc;
  1819. if ((opcode[1] >> 4) & 0x20)
  1820. return SIGILL;
  1821. emu_store_rege((opcode[1] >> 4) & 15);
  1822. opc = *((__u32 *) opcode);
  1823. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1824. mathemu_get_user(temp, dxb);
  1825. /* call the emulation function */
  1826. _fex = ((int (*)(struct pt_regs *, int, float *))
  1827. jump_table[opcode[5]])
  1828. (regs, opcode[1] >> 4, (float *) &temp);
  1829. emu_load_regd((opcode[1] >> 4) & 15);
  1830. emu_load_regd(((opcode[1] >> 4) & 15) + 2);
  1831. break;
  1832. }
  1833. case 8: /* RXE format, RX address used as int value */ {
  1834. __u64 dxb;
  1835. __u32 opc;
  1836. emu_store_rege((opcode[1] >> 4) & 15);
  1837. opc = *((__u32 *) opcode);
  1838. dxb = (__u64) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1839. /* call the emulation function */
  1840. _fex = ((int (*)(struct pt_regs *, int, long))
  1841. jump_table[opcode[5]])
  1842. (regs, opcode[1] >> 4, dxb);
  1843. break;
  1844. }
  1845. case 9: /* RXE format, RX address used as int value */ {
  1846. __u64 dxb;
  1847. __u32 opc;
  1848. emu_store_regd((opcode[1] >> 4) & 15);
  1849. opc = *((__u32 *) opcode);
  1850. dxb = (__u64) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1851. /* call the emulation function */
  1852. _fex = ((int (*)(struct pt_regs *, int, long))
  1853. jump_table[opcode[5]])
  1854. (regs, opcode[1] >> 4, dxb);
  1855. break;
  1856. }
  1857. case 10: /* RXE format, RX address used as int value */ {
  1858. __u64 dxb;
  1859. __u32 opc;
  1860. if ((opcode[1] >> 4) & 2)
  1861. return SIGILL;
  1862. emu_store_regd((opcode[1] >> 4) & 15);
  1863. emu_store_regd(((opcode[1] >> 4) & 15) + 2);
  1864. opc = *((__u32 *) opcode);
  1865. dxb = (__u64) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1866. /* call the emulation function */
  1867. _fex = ((int (*)(struct pt_regs *, int, long))
  1868. jump_table[opcode[5]])
  1869. (regs, opcode[1] >> 4, dxb);
  1870. break;
  1871. }
  1872. default: /* invalid operation */
  1873. return SIGILL;
  1874. }
  1875. if (_fex != 0) {
  1876. current->thread.fp_regs.fpc |= _fex;
  1877. if (current->thread.fp_regs.fpc & (_fex << 8))
  1878. return SIGFPE;
  1879. }
  1880. return 0;
  1881. }
  1882. /*
  1883. * Emulate LDR Rx,Ry with Rx or Ry not in {0, 2, 4, 6}
  1884. */
  1885. int math_emu_ldr(__u8 *opcode) {
  1886. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1887. __u16 opc = *((__u16 *) opcode);
  1888. if ((opc & 0x90) == 0) { /* test if rx in {0,2,4,6} */
  1889. /* we got an exception therefore ry can't be in {0,2,4,6} */
  1890. asm volatile( /* load rx from fp_regs.fprs[ry] */
  1891. " bras 1,0f\n"
  1892. " ld 0,0(%1)\n"
  1893. "0: ex %0,0(1)"
  1894. : /* no output */
  1895. : "a" (opc & 0xf0), "a" (&fp_regs->fprs[opc & 0xf].d)
  1896. : "1");
  1897. } else if ((opc & 0x9) == 0) { /* test if ry in {0,2,4,6} */
  1898. asm volatile ( /* store ry to fp_regs.fprs[rx] */
  1899. " bras 1,0f\n"
  1900. " std 0,0(%1)\n"
  1901. "0: ex %0,0(1)"
  1902. : /* no output */
  1903. : "a" ((opc & 0xf) << 4),
  1904. "a" (&fp_regs->fprs[(opc & 0xf0)>>4].d)
  1905. : "1");
  1906. } else /* move fp_regs.fprs[ry] to fp_regs.fprs[rx] */
  1907. fp_regs->fprs[(opc & 0xf0) >> 4] = fp_regs->fprs[opc & 0xf];
  1908. return 0;
  1909. }
  1910. /*
  1911. * Emulate LER Rx,Ry with Rx or Ry not in {0, 2, 4, 6}
  1912. */
  1913. int math_emu_ler(__u8 *opcode) {
  1914. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1915. __u16 opc = *((__u16 *) opcode);
  1916. if ((opc & 0x90) == 0) { /* test if rx in {0,2,4,6} */
  1917. /* we got an exception therefore ry can't be in {0,2,4,6} */
  1918. asm volatile( /* load rx from fp_regs.fprs[ry] */
  1919. " bras 1,0f\n"
  1920. " le 0,0(%1)\n"
  1921. "0: ex %0,0(1)"
  1922. : /* no output */
  1923. : "a" (opc & 0xf0), "a" (&fp_regs->fprs[opc & 0xf].f)
  1924. : "1");
  1925. } else if ((opc & 0x9) == 0) { /* test if ry in {0,2,4,6} */
  1926. asm volatile( /* store ry to fp_regs.fprs[rx] */
  1927. " bras 1,0f\n"
  1928. " ste 0,0(%1)\n"
  1929. "0: ex %0,0(1)"
  1930. : /* no output */
  1931. : "a" ((opc & 0xf) << 4),
  1932. "a" (&fp_regs->fprs[(opc & 0xf0) >> 4].f)
  1933. : "1");
  1934. } else /* move fp_regs.fprs[ry] to fp_regs.fprs[rx] */
  1935. fp_regs->fprs[(opc & 0xf0) >> 4] = fp_regs->fprs[opc & 0xf];
  1936. return 0;
  1937. }
  1938. /*
  1939. * Emulate LD R,D(X,B) with R not in {0, 2, 4, 6}
  1940. */
  1941. int math_emu_ld(__u8 *opcode, struct pt_regs * regs) {
  1942. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1943. __u32 opc = *((__u32 *) opcode);
  1944. __u64 *dxb;
  1945. dxb = (__u64 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1946. mathemu_copy_from_user(&fp_regs->fprs[(opc >> 20) & 0xf].d, dxb, 8);
  1947. return 0;
  1948. }
  1949. /*
  1950. * Emulate LE R,D(X,B) with R not in {0, 2, 4, 6}
  1951. */
  1952. int math_emu_le(__u8 *opcode, struct pt_regs * regs) {
  1953. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1954. __u32 opc = *((__u32 *) opcode);
  1955. __u32 *mem, *dxb;
  1956. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1957. mem = (__u32 *) (&fp_regs->fprs[(opc >> 20) & 0xf].f);
  1958. mathemu_get_user(mem[0], dxb);
  1959. return 0;
  1960. }
  1961. /*
  1962. * Emulate STD R,D(X,B) with R not in {0, 2, 4, 6}
  1963. */
  1964. int math_emu_std(__u8 *opcode, struct pt_regs * regs) {
  1965. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1966. __u32 opc = *((__u32 *) opcode);
  1967. __u64 *dxb;
  1968. dxb = (__u64 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1969. mathemu_copy_to_user(dxb, &fp_regs->fprs[(opc >> 20) & 0xf].d, 8);
  1970. return 0;
  1971. }
  1972. /*
  1973. * Emulate STE R,D(X,B) with R not in {0, 2, 4, 6}
  1974. */
  1975. int math_emu_ste(__u8 *opcode, struct pt_regs * regs) {
  1976. s390_fp_regs *fp_regs = &current->thread.fp_regs;
  1977. __u32 opc = *((__u32 *) opcode);
  1978. __u32 *mem, *dxb;
  1979. dxb = (__u32 *) calc_addr(regs, opc >> 16, opc >> 12, opc);
  1980. mem = (__u32 *) (&fp_regs->fprs[(opc >> 20) & 0xf].f);
  1981. mathemu_put_user(mem[0], dxb);
  1982. return 0;
  1983. }
  1984. /*
  1985. * Emulate LFPC D(B)
  1986. */
  1987. int math_emu_lfpc(__u8 *opcode, struct pt_regs *regs) {
  1988. __u32 opc = *((__u32 *) opcode);
  1989. __u32 *dxb, temp;
  1990. dxb= (__u32 *) calc_addr(regs, 0, opc>>12, opc);
  1991. mathemu_get_user(temp, dxb);
  1992. if ((temp & ~FPC_VALID_MASK) != 0)
  1993. return SIGILL;
  1994. current->thread.fp_regs.fpc = temp;
  1995. return 0;
  1996. }
  1997. /*
  1998. * Emulate STFPC D(B)
  1999. */
  2000. int math_emu_stfpc(__u8 *opcode, struct pt_regs *regs) {
  2001. __u32 opc = *((__u32 *) opcode);
  2002. __u32 *dxb;
  2003. dxb= (__u32 *) calc_addr(regs, 0, opc>>12, opc);
  2004. mathemu_put_user(current->thread.fp_regs.fpc, dxb);
  2005. return 0;
  2006. }
  2007. /*
  2008. * Emulate SRNM D(B)
  2009. */
  2010. int math_emu_srnm(__u8 *opcode, struct pt_regs *regs) {
  2011. __u32 opc = *((__u32 *) opcode);
  2012. __u32 temp;
  2013. temp = calc_addr(regs, 0, opc>>12, opc);
  2014. current->thread.fp_regs.fpc &= ~3;
  2015. current->thread.fp_regs.fpc |= (temp & 3);
  2016. return 0;
  2017. }
  2018. /* broken compiler ... */
  2019. long long
  2020. __negdi2 (long long u)
  2021. {
  2022. union lll {
  2023. long long ll;
  2024. long s[2];
  2025. };
  2026. union lll w,uu;
  2027. uu.ll = u;
  2028. w.s[1] = -uu.s[1];
  2029. w.s[0] = -uu.s[0] - ((int) w.s[1] != 0);
  2030. return w.ll;
  2031. }