uaccess_pt.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404
  1. /*
  2. * User access functions based on page table walks for enhanced
  3. * system layout without hardware support.
  4. *
  5. * Copyright IBM Corp. 2006
  6. * Author(s): Gerald Schaefer (gerald.schaefer@de.ibm.com)
  7. */
  8. #include <linux/errno.h>
  9. #include <linux/hardirq.h>
  10. #include <linux/mm.h>
  11. #include <asm/uaccess.h>
  12. #include <asm/futex.h>
  13. #include "uaccess.h"
  14. static inline pte_t *follow_table(struct mm_struct *mm, unsigned long addr)
  15. {
  16. pgd_t *pgd;
  17. pud_t *pud;
  18. pmd_t *pmd;
  19. pgd = pgd_offset(mm, addr);
  20. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  21. return (pte_t *) 0x3a;
  22. pud = pud_offset(pgd, addr);
  23. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  24. return (pte_t *) 0x3b;
  25. pmd = pmd_offset(pud, addr);
  26. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  27. return (pte_t *) 0x10;
  28. return pte_offset_map(pmd, addr);
  29. }
  30. static __always_inline size_t __user_copy_pt(unsigned long uaddr, void *kptr,
  31. size_t n, int write_user)
  32. {
  33. struct mm_struct *mm = current->mm;
  34. unsigned long offset, pfn, done, size;
  35. pte_t *pte;
  36. void *from, *to;
  37. done = 0;
  38. retry:
  39. spin_lock(&mm->page_table_lock);
  40. do {
  41. pte = follow_table(mm, uaddr);
  42. if ((unsigned long) pte < 0x1000)
  43. goto fault;
  44. if (!pte_present(*pte)) {
  45. pte = (pte_t *) 0x11;
  46. goto fault;
  47. } else if (write_user && !pte_write(*pte)) {
  48. pte = (pte_t *) 0x04;
  49. goto fault;
  50. }
  51. pfn = pte_pfn(*pte);
  52. offset = uaddr & (PAGE_SIZE - 1);
  53. size = min(n - done, PAGE_SIZE - offset);
  54. if (write_user) {
  55. to = (void *)((pfn << PAGE_SHIFT) + offset);
  56. from = kptr + done;
  57. } else {
  58. from = (void *)((pfn << PAGE_SHIFT) + offset);
  59. to = kptr + done;
  60. }
  61. memcpy(to, from, size);
  62. done += size;
  63. uaddr += size;
  64. } while (done < n);
  65. spin_unlock(&mm->page_table_lock);
  66. return n - done;
  67. fault:
  68. spin_unlock(&mm->page_table_lock);
  69. if (__handle_fault(uaddr, (unsigned long) pte, write_user))
  70. return n - done;
  71. goto retry;
  72. }
  73. /*
  74. * Do DAT for user address by page table walk, return kernel address.
  75. * This function needs to be called with current->mm->page_table_lock held.
  76. */
  77. static __always_inline unsigned long __dat_user_addr(unsigned long uaddr)
  78. {
  79. struct mm_struct *mm = current->mm;
  80. unsigned long pfn;
  81. pte_t *pte;
  82. int rc;
  83. retry:
  84. pte = follow_table(mm, uaddr);
  85. if ((unsigned long) pte < 0x1000)
  86. goto fault;
  87. if (!pte_present(*pte)) {
  88. pte = (pte_t *) 0x11;
  89. goto fault;
  90. }
  91. pfn = pte_pfn(*pte);
  92. return (pfn << PAGE_SHIFT) + (uaddr & (PAGE_SIZE - 1));
  93. fault:
  94. spin_unlock(&mm->page_table_lock);
  95. rc = __handle_fault(uaddr, (unsigned long) pte, 0);
  96. spin_lock(&mm->page_table_lock);
  97. if (!rc)
  98. goto retry;
  99. return 0;
  100. }
  101. size_t copy_from_user_pt(size_t n, const void __user *from, void *to)
  102. {
  103. size_t rc;
  104. if (segment_eq(get_fs(), KERNEL_DS)) {
  105. memcpy(to, (void __kernel __force *) from, n);
  106. return 0;
  107. }
  108. rc = __user_copy_pt((unsigned long) from, to, n, 0);
  109. if (unlikely(rc))
  110. memset(to + n - rc, 0, rc);
  111. return rc;
  112. }
  113. size_t copy_to_user_pt(size_t n, void __user *to, const void *from)
  114. {
  115. if (segment_eq(get_fs(), KERNEL_DS)) {
  116. memcpy((void __kernel __force *) to, from, n);
  117. return 0;
  118. }
  119. return __user_copy_pt((unsigned long) to, (void *) from, n, 1);
  120. }
  121. static size_t clear_user_pt(size_t n, void __user *to)
  122. {
  123. long done, size, ret;
  124. if (segment_eq(get_fs(), KERNEL_DS)) {
  125. memset((void __kernel __force *) to, 0, n);
  126. return 0;
  127. }
  128. done = 0;
  129. do {
  130. if (n - done > PAGE_SIZE)
  131. size = PAGE_SIZE;
  132. else
  133. size = n - done;
  134. ret = __user_copy_pt((unsigned long) to + done,
  135. &empty_zero_page, size, 1);
  136. done += size;
  137. if (ret)
  138. return ret + n - done;
  139. } while (done < n);
  140. return 0;
  141. }
  142. static size_t strnlen_user_pt(size_t count, const char __user *src)
  143. {
  144. char *addr;
  145. unsigned long uaddr = (unsigned long) src;
  146. struct mm_struct *mm = current->mm;
  147. unsigned long offset, pfn, done, len;
  148. pte_t *pte;
  149. size_t len_str;
  150. if (segment_eq(get_fs(), KERNEL_DS))
  151. return strnlen((const char __kernel __force *) src, count) + 1;
  152. done = 0;
  153. retry:
  154. spin_lock(&mm->page_table_lock);
  155. do {
  156. pte = follow_table(mm, uaddr);
  157. if ((unsigned long) pte < 0x1000)
  158. goto fault;
  159. if (!pte_present(*pte)) {
  160. pte = (pte_t *) 0x11;
  161. goto fault;
  162. }
  163. pfn = pte_pfn(*pte);
  164. offset = uaddr & (PAGE_SIZE-1);
  165. addr = (char *)(pfn << PAGE_SHIFT) + offset;
  166. len = min(count - done, PAGE_SIZE - offset);
  167. len_str = strnlen(addr, len);
  168. done += len_str;
  169. uaddr += len_str;
  170. } while ((len_str == len) && (done < count));
  171. spin_unlock(&mm->page_table_lock);
  172. return done + 1;
  173. fault:
  174. spin_unlock(&mm->page_table_lock);
  175. if (__handle_fault(uaddr, (unsigned long) pte, 0))
  176. return 0;
  177. goto retry;
  178. }
  179. static size_t strncpy_from_user_pt(size_t count, const char __user *src,
  180. char *dst)
  181. {
  182. size_t n = strnlen_user_pt(count, src);
  183. if (!n)
  184. return -EFAULT;
  185. if (n > count)
  186. n = count;
  187. if (segment_eq(get_fs(), KERNEL_DS)) {
  188. memcpy(dst, (const char __kernel __force *) src, n);
  189. if (dst[n-1] == '\0')
  190. return n-1;
  191. else
  192. return n;
  193. }
  194. if (__user_copy_pt((unsigned long) src, dst, n, 0))
  195. return -EFAULT;
  196. if (dst[n-1] == '\0')
  197. return n-1;
  198. else
  199. return n;
  200. }
  201. static size_t copy_in_user_pt(size_t n, void __user *to,
  202. const void __user *from)
  203. {
  204. struct mm_struct *mm = current->mm;
  205. unsigned long offset_from, offset_to, offset_max, pfn_from, pfn_to,
  206. uaddr, done, size, error_code;
  207. unsigned long uaddr_from = (unsigned long) from;
  208. unsigned long uaddr_to = (unsigned long) to;
  209. pte_t *pte_from, *pte_to;
  210. int write_user;
  211. if (segment_eq(get_fs(), KERNEL_DS)) {
  212. memcpy((void __force *) to, (void __force *) from, n);
  213. return 0;
  214. }
  215. done = 0;
  216. retry:
  217. spin_lock(&mm->page_table_lock);
  218. do {
  219. write_user = 0;
  220. uaddr = uaddr_from;
  221. pte_from = follow_table(mm, uaddr_from);
  222. error_code = (unsigned long) pte_from;
  223. if (error_code < 0x1000)
  224. goto fault;
  225. if (!pte_present(*pte_from)) {
  226. error_code = 0x11;
  227. goto fault;
  228. }
  229. write_user = 1;
  230. uaddr = uaddr_to;
  231. pte_to = follow_table(mm, uaddr_to);
  232. error_code = (unsigned long) pte_to;
  233. if (error_code < 0x1000)
  234. goto fault;
  235. if (!pte_present(*pte_to)) {
  236. error_code = 0x11;
  237. goto fault;
  238. } else if (!pte_write(*pte_to)) {
  239. error_code = 0x04;
  240. goto fault;
  241. }
  242. pfn_from = pte_pfn(*pte_from);
  243. pfn_to = pte_pfn(*pte_to);
  244. offset_from = uaddr_from & (PAGE_SIZE-1);
  245. offset_to = uaddr_from & (PAGE_SIZE-1);
  246. offset_max = max(offset_from, offset_to);
  247. size = min(n - done, PAGE_SIZE - offset_max);
  248. memcpy((void *)(pfn_to << PAGE_SHIFT) + offset_to,
  249. (void *)(pfn_from << PAGE_SHIFT) + offset_from, size);
  250. done += size;
  251. uaddr_from += size;
  252. uaddr_to += size;
  253. } while (done < n);
  254. spin_unlock(&mm->page_table_lock);
  255. return n - done;
  256. fault:
  257. spin_unlock(&mm->page_table_lock);
  258. if (__handle_fault(uaddr, error_code, write_user))
  259. return n - done;
  260. goto retry;
  261. }
  262. #define __futex_atomic_op(insn, ret, oldval, newval, uaddr, oparg) \
  263. asm volatile("0: l %1,0(%6)\n" \
  264. "1: " insn \
  265. "2: cs %1,%2,0(%6)\n" \
  266. "3: jl 1b\n" \
  267. " lhi %0,0\n" \
  268. "4:\n" \
  269. EX_TABLE(0b,4b) EX_TABLE(2b,4b) EX_TABLE(3b,4b) \
  270. : "=d" (ret), "=&d" (oldval), "=&d" (newval), \
  271. "=m" (*uaddr) \
  272. : "0" (-EFAULT), "d" (oparg), "a" (uaddr), \
  273. "m" (*uaddr) : "cc" );
  274. static int __futex_atomic_op_pt(int op, u32 __user *uaddr, int oparg, int *old)
  275. {
  276. int oldval = 0, newval, ret;
  277. switch (op) {
  278. case FUTEX_OP_SET:
  279. __futex_atomic_op("lr %2,%5\n",
  280. ret, oldval, newval, uaddr, oparg);
  281. break;
  282. case FUTEX_OP_ADD:
  283. __futex_atomic_op("lr %2,%1\nar %2,%5\n",
  284. ret, oldval, newval, uaddr, oparg);
  285. break;
  286. case FUTEX_OP_OR:
  287. __futex_atomic_op("lr %2,%1\nor %2,%5\n",
  288. ret, oldval, newval, uaddr, oparg);
  289. break;
  290. case FUTEX_OP_ANDN:
  291. __futex_atomic_op("lr %2,%1\nnr %2,%5\n",
  292. ret, oldval, newval, uaddr, oparg);
  293. break;
  294. case FUTEX_OP_XOR:
  295. __futex_atomic_op("lr %2,%1\nxr %2,%5\n",
  296. ret, oldval, newval, uaddr, oparg);
  297. break;
  298. default:
  299. ret = -ENOSYS;
  300. }
  301. if (ret == 0)
  302. *old = oldval;
  303. return ret;
  304. }
  305. int futex_atomic_op_pt(int op, u32 __user *uaddr, int oparg, int *old)
  306. {
  307. int ret;
  308. if (segment_eq(get_fs(), KERNEL_DS))
  309. return __futex_atomic_op_pt(op, uaddr, oparg, old);
  310. spin_lock(&current->mm->page_table_lock);
  311. uaddr = (u32 __force __user *)
  312. __dat_user_addr((__force unsigned long) uaddr);
  313. if (!uaddr) {
  314. spin_unlock(&current->mm->page_table_lock);
  315. return -EFAULT;
  316. }
  317. get_page(virt_to_page(uaddr));
  318. spin_unlock(&current->mm->page_table_lock);
  319. ret = __futex_atomic_op_pt(op, uaddr, oparg, old);
  320. put_page(virt_to_page(uaddr));
  321. return ret;
  322. }
  323. static int __futex_atomic_cmpxchg_pt(u32 *uval, u32 __user *uaddr,
  324. u32 oldval, u32 newval)
  325. {
  326. int ret;
  327. asm volatile("0: cs %1,%4,0(%5)\n"
  328. "1: la %0,0\n"
  329. "2:\n"
  330. EX_TABLE(0b,2b) EX_TABLE(1b,2b)
  331. : "=d" (ret), "+d" (oldval), "=m" (*uaddr)
  332. : "0" (-EFAULT), "d" (newval), "a" (uaddr), "m" (*uaddr)
  333. : "cc", "memory" );
  334. *uval = oldval;
  335. return ret;
  336. }
  337. int futex_atomic_cmpxchg_pt(u32 *uval, u32 __user *uaddr,
  338. u32 oldval, u32 newval)
  339. {
  340. int ret;
  341. if (segment_eq(get_fs(), KERNEL_DS))
  342. return __futex_atomic_cmpxchg_pt(uval, uaddr, oldval, newval);
  343. spin_lock(&current->mm->page_table_lock);
  344. uaddr = (u32 __force __user *)
  345. __dat_user_addr((__force unsigned long) uaddr);
  346. if (!uaddr) {
  347. spin_unlock(&current->mm->page_table_lock);
  348. return -EFAULT;
  349. }
  350. get_page(virt_to_page(uaddr));
  351. spin_unlock(&current->mm->page_table_lock);
  352. ret = __futex_atomic_cmpxchg_pt(uval, uaddr, oldval, newval);
  353. put_page(virt_to_page(uaddr));
  354. return ret;
  355. }
  356. struct uaccess_ops uaccess_pt = {
  357. .copy_from_user = copy_from_user_pt,
  358. .copy_from_user_small = copy_from_user_pt,
  359. .copy_to_user = copy_to_user_pt,
  360. .copy_to_user_small = copy_to_user_pt,
  361. .copy_in_user = copy_in_user_pt,
  362. .clear_user = clear_user_pt,
  363. .strnlen_user = strnlen_user_pt,
  364. .strncpy_from_user = strncpy_from_user_pt,
  365. .futex_atomic_op = futex_atomic_op_pt,
  366. .futex_atomic_cmpxchg = futex_atomic_cmpxchg_pt,
  367. };