dma.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240
  1. /*
  2. * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corporation
  3. *
  4. * Provide default implementations of the DMA mapping callbacks for
  5. * directly mapped busses.
  6. */
  7. #include <linux/device.h>
  8. #include <linux/dma-mapping.h>
  9. #include <linux/dma-debug.h>
  10. #include <linux/gfp.h>
  11. #include <linux/memblock.h>
  12. #include <linux/export.h>
  13. #include <linux/pci.h>
  14. #include <asm/vio.h>
  15. #include <asm/bug.h>
  16. #include <asm/abs_addr.h>
  17. #include <asm/machdep.h>
  18. /*
  19. * Generic direct DMA implementation
  20. *
  21. * This implementation supports a per-device offset that can be applied if
  22. * the address at which memory is visible to devices is not 0. Platform code
  23. * can set archdata.dma_data to an unsigned long holding the offset. By
  24. * default the offset is PCI_DRAM_OFFSET.
  25. */
  26. void *dma_direct_alloc_coherent(struct device *dev, size_t size,
  27. dma_addr_t *dma_handle, gfp_t flag,
  28. struct dma_attrs *attrs)
  29. {
  30. void *ret;
  31. #ifdef CONFIG_NOT_COHERENT_CACHE
  32. ret = __dma_alloc_coherent(dev, size, dma_handle, flag);
  33. if (ret == NULL)
  34. return NULL;
  35. *dma_handle += get_dma_offset(dev);
  36. return ret;
  37. #else
  38. struct page *page;
  39. int node = dev_to_node(dev);
  40. /* ignore region specifiers */
  41. flag &= ~(__GFP_HIGHMEM);
  42. page = alloc_pages_node(node, flag, get_order(size));
  43. if (page == NULL)
  44. return NULL;
  45. ret = page_address(page);
  46. memset(ret, 0, size);
  47. *dma_handle = virt_to_abs(ret) + get_dma_offset(dev);
  48. return ret;
  49. #endif
  50. }
  51. void dma_direct_free_coherent(struct device *dev, size_t size,
  52. void *vaddr, dma_addr_t dma_handle,
  53. struct dma_attrs *attrs)
  54. {
  55. #ifdef CONFIG_NOT_COHERENT_CACHE
  56. __dma_free_coherent(size, vaddr);
  57. #else
  58. free_pages((unsigned long)vaddr, get_order(size));
  59. #endif
  60. }
  61. int dma_direct_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
  62. void *cpu_addr, dma_addr_t handle, size_t size,
  63. struct dma_attrs *attrs)
  64. {
  65. unsigned long pfn;
  66. #ifdef CONFIG_NOT_COHERENT_CACHE
  67. vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
  68. pfn = __dma_get_coherent_pfn((unsigned long)cpu_addr);
  69. #else
  70. pfn = page_to_pfn(virt_to_page(cpu_addr));
  71. #endif
  72. return remap_pfn_range(vma, vma->vm_start,
  73. pfn + vma->vm_pgoff,
  74. vma->vm_end - vma->vm_start,
  75. vma->vm_page_prot);
  76. }
  77. static int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl,
  78. int nents, enum dma_data_direction direction,
  79. struct dma_attrs *attrs)
  80. {
  81. struct scatterlist *sg;
  82. int i;
  83. for_each_sg(sgl, sg, nents, i) {
  84. sg->dma_address = sg_phys(sg) + get_dma_offset(dev);
  85. sg->dma_length = sg->length;
  86. __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction);
  87. }
  88. return nents;
  89. }
  90. static void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sg,
  91. int nents, enum dma_data_direction direction,
  92. struct dma_attrs *attrs)
  93. {
  94. }
  95. static int dma_direct_dma_supported(struct device *dev, u64 mask)
  96. {
  97. #ifdef CONFIG_PPC64
  98. /* Could be improved so platforms can set the limit in case
  99. * they have limited DMA windows
  100. */
  101. return mask >= get_dma_offset(dev) + (memblock_end_of_DRAM() - 1);
  102. #else
  103. return 1;
  104. #endif
  105. }
  106. static u64 dma_direct_get_required_mask(struct device *dev)
  107. {
  108. u64 end, mask;
  109. end = memblock_end_of_DRAM() + get_dma_offset(dev);
  110. mask = 1ULL << (fls64(end) - 1);
  111. mask += mask - 1;
  112. return mask;
  113. }
  114. static inline dma_addr_t dma_direct_map_page(struct device *dev,
  115. struct page *page,
  116. unsigned long offset,
  117. size_t size,
  118. enum dma_data_direction dir,
  119. struct dma_attrs *attrs)
  120. {
  121. BUG_ON(dir == DMA_NONE);
  122. __dma_sync_page(page, offset, size, dir);
  123. return page_to_phys(page) + offset + get_dma_offset(dev);
  124. }
  125. static inline void dma_direct_unmap_page(struct device *dev,
  126. dma_addr_t dma_address,
  127. size_t size,
  128. enum dma_data_direction direction,
  129. struct dma_attrs *attrs)
  130. {
  131. }
  132. #ifdef CONFIG_NOT_COHERENT_CACHE
  133. static inline void dma_direct_sync_sg(struct device *dev,
  134. struct scatterlist *sgl, int nents,
  135. enum dma_data_direction direction)
  136. {
  137. struct scatterlist *sg;
  138. int i;
  139. for_each_sg(sgl, sg, nents, i)
  140. __dma_sync_page(sg_page(sg), sg->offset, sg->length, direction);
  141. }
  142. static inline void dma_direct_sync_single(struct device *dev,
  143. dma_addr_t dma_handle, size_t size,
  144. enum dma_data_direction direction)
  145. {
  146. __dma_sync(bus_to_virt(dma_handle), size, direction);
  147. }
  148. #endif
  149. struct dma_map_ops dma_direct_ops = {
  150. .alloc = dma_direct_alloc_coherent,
  151. .free = dma_direct_free_coherent,
  152. .mmap = dma_direct_mmap_coherent,
  153. .map_sg = dma_direct_map_sg,
  154. .unmap_sg = dma_direct_unmap_sg,
  155. .dma_supported = dma_direct_dma_supported,
  156. .map_page = dma_direct_map_page,
  157. .unmap_page = dma_direct_unmap_page,
  158. .get_required_mask = dma_direct_get_required_mask,
  159. #ifdef CONFIG_NOT_COHERENT_CACHE
  160. .sync_single_for_cpu = dma_direct_sync_single,
  161. .sync_single_for_device = dma_direct_sync_single,
  162. .sync_sg_for_cpu = dma_direct_sync_sg,
  163. .sync_sg_for_device = dma_direct_sync_sg,
  164. #endif
  165. };
  166. EXPORT_SYMBOL(dma_direct_ops);
  167. #define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
  168. int dma_set_mask(struct device *dev, u64 dma_mask)
  169. {
  170. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  171. if (ppc_md.dma_set_mask)
  172. return ppc_md.dma_set_mask(dev, dma_mask);
  173. if ((dma_ops != NULL) && (dma_ops->set_dma_mask != NULL))
  174. return dma_ops->set_dma_mask(dev, dma_mask);
  175. if (!dev->dma_mask || !dma_supported(dev, dma_mask))
  176. return -EIO;
  177. *dev->dma_mask = dma_mask;
  178. return 0;
  179. }
  180. EXPORT_SYMBOL(dma_set_mask);
  181. u64 dma_get_required_mask(struct device *dev)
  182. {
  183. struct dma_map_ops *dma_ops = get_dma_ops(dev);
  184. if (ppc_md.dma_get_required_mask)
  185. return ppc_md.dma_get_required_mask(dev);
  186. if (unlikely(dma_ops == NULL))
  187. return 0;
  188. if (dma_ops->get_required_mask)
  189. return dma_ops->get_required_mask(dev);
  190. return DMA_BIT_MASK(8 * sizeof(dma_addr_t));
  191. }
  192. EXPORT_SYMBOL_GPL(dma_get_required_mask);
  193. static int __init dma_init(void)
  194. {
  195. dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
  196. #ifdef CONFIG_PCI
  197. dma_debug_add_bus(&pci_bus_type);
  198. #endif
  199. #ifdef CONFIG_IBMVIO
  200. dma_debug_add_bus(&vio_bus_type);
  201. #endif
  202. return 0;
  203. }
  204. fs_initcall(dma_init);