tlbex.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * Synthesize TLB refill handlers at runtime.
  7. *
  8. * Copyright (C) 2004, 2005, 2006, 2008 Thiemo Seufer
  9. * Copyright (C) 2005, 2007, 2008, 2009 Maciej W. Rozycki
  10. * Copyright (C) 2006 Ralf Baechle (ralf@linux-mips.org)
  11. * Copyright (C) 2008, 2009 Cavium Networks, Inc.
  12. * Copyright (C) 2011 MIPS Technologies, Inc.
  13. *
  14. * ... and the days got worse and worse and now you see
  15. * I've gone completly out of my mind.
  16. *
  17. * They're coming to take me a away haha
  18. * they're coming to take me a away hoho hihi haha
  19. * to the funny farm where code is beautiful all the time ...
  20. *
  21. * (Condolences to Napoleon XIV)
  22. */
  23. #include <linux/bug.h>
  24. #include <linux/kernel.h>
  25. #include <linux/types.h>
  26. #include <linux/smp.h>
  27. #include <linux/string.h>
  28. #include <linux/init.h>
  29. #include <linux/cache.h>
  30. #include <asm/cacheflush.h>
  31. #include <asm/pgtable.h>
  32. #include <asm/war.h>
  33. #include <asm/uasm.h>
  34. #include <asm/setup.h>
  35. /*
  36. * TLB load/store/modify handlers.
  37. *
  38. * Only the fastpath gets synthesized at runtime, the slowpath for
  39. * do_page_fault remains normal asm.
  40. */
  41. extern void tlb_do_page_fault_0(void);
  42. extern void tlb_do_page_fault_1(void);
  43. struct work_registers {
  44. int r1;
  45. int r2;
  46. int r3;
  47. };
  48. struct tlb_reg_save {
  49. unsigned long a;
  50. unsigned long b;
  51. } ____cacheline_aligned_in_smp;
  52. static struct tlb_reg_save handler_reg_save[NR_CPUS];
  53. static inline int r45k_bvahwbug(void)
  54. {
  55. /* XXX: We should probe for the presence of this bug, but we don't. */
  56. return 0;
  57. }
  58. static inline int r4k_250MHZhwbug(void)
  59. {
  60. /* XXX: We should probe for the presence of this bug, but we don't. */
  61. return 0;
  62. }
  63. static inline int __maybe_unused bcm1250_m3_war(void)
  64. {
  65. return BCM1250_M3_WAR;
  66. }
  67. static inline int __maybe_unused r10000_llsc_war(void)
  68. {
  69. return R10000_LLSC_WAR;
  70. }
  71. static int use_bbit_insns(void)
  72. {
  73. switch (current_cpu_type()) {
  74. case CPU_CAVIUM_OCTEON:
  75. case CPU_CAVIUM_OCTEON_PLUS:
  76. case CPU_CAVIUM_OCTEON2:
  77. return 1;
  78. default:
  79. return 0;
  80. }
  81. }
  82. static int use_lwx_insns(void)
  83. {
  84. switch (current_cpu_type()) {
  85. case CPU_CAVIUM_OCTEON2:
  86. return 1;
  87. default:
  88. return 0;
  89. }
  90. }
  91. #if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
  92. CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
  93. static bool scratchpad_available(void)
  94. {
  95. return true;
  96. }
  97. static int scratchpad_offset(int i)
  98. {
  99. /*
  100. * CVMSEG starts at address -32768 and extends for
  101. * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
  102. */
  103. i += 1; /* Kernel use starts at the top and works down. */
  104. return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
  105. }
  106. #else
  107. static bool scratchpad_available(void)
  108. {
  109. return false;
  110. }
  111. static int scratchpad_offset(int i)
  112. {
  113. BUG();
  114. /* Really unreachable, but evidently some GCC want this. */
  115. return 0;
  116. }
  117. #endif
  118. /*
  119. * Found by experiment: At least some revisions of the 4kc throw under
  120. * some circumstances a machine check exception, triggered by invalid
  121. * values in the index register. Delaying the tlbp instruction until
  122. * after the next branch, plus adding an additional nop in front of
  123. * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
  124. * why; it's not an issue caused by the core RTL.
  125. *
  126. */
  127. static int __cpuinit m4kc_tlbp_war(void)
  128. {
  129. return (current_cpu_data.processor_id & 0xffff00) ==
  130. (PRID_COMP_MIPS | PRID_IMP_4KC);
  131. }
  132. /* Handle labels (which must be positive integers). */
  133. enum label_id {
  134. label_second_part = 1,
  135. label_leave,
  136. label_vmalloc,
  137. label_vmalloc_done,
  138. label_tlbw_hazard,
  139. label_split,
  140. label_tlbl_goaround1,
  141. label_tlbl_goaround2,
  142. label_nopage_tlbl,
  143. label_nopage_tlbs,
  144. label_nopage_tlbm,
  145. label_smp_pgtable_change,
  146. label_r3000_write_probe_fail,
  147. label_large_segbits_fault,
  148. #ifdef CONFIG_HUGETLB_PAGE
  149. label_tlb_huge_update,
  150. #endif
  151. };
  152. UASM_L_LA(_second_part)
  153. UASM_L_LA(_leave)
  154. UASM_L_LA(_vmalloc)
  155. UASM_L_LA(_vmalloc_done)
  156. UASM_L_LA(_tlbw_hazard)
  157. UASM_L_LA(_split)
  158. UASM_L_LA(_tlbl_goaround1)
  159. UASM_L_LA(_tlbl_goaround2)
  160. UASM_L_LA(_nopage_tlbl)
  161. UASM_L_LA(_nopage_tlbs)
  162. UASM_L_LA(_nopage_tlbm)
  163. UASM_L_LA(_smp_pgtable_change)
  164. UASM_L_LA(_r3000_write_probe_fail)
  165. UASM_L_LA(_large_segbits_fault)
  166. #ifdef CONFIG_HUGETLB_PAGE
  167. UASM_L_LA(_tlb_huge_update)
  168. #endif
  169. /*
  170. * For debug purposes.
  171. */
  172. static inline void dump_handler(const u32 *handler, int count)
  173. {
  174. int i;
  175. pr_debug("\t.set push\n");
  176. pr_debug("\t.set noreorder\n");
  177. for (i = 0; i < count; i++)
  178. pr_debug("\t%p\t.word 0x%08x\n", &handler[i], handler[i]);
  179. pr_debug("\t.set pop\n");
  180. }
  181. /* The only general purpose registers allowed in TLB handlers. */
  182. #define K0 26
  183. #define K1 27
  184. /* Some CP0 registers */
  185. #define C0_INDEX 0, 0
  186. #define C0_ENTRYLO0 2, 0
  187. #define C0_TCBIND 2, 2
  188. #define C0_ENTRYLO1 3, 0
  189. #define C0_CONTEXT 4, 0
  190. #define C0_PAGEMASK 5, 0
  191. #define C0_BADVADDR 8, 0
  192. #define C0_ENTRYHI 10, 0
  193. #define C0_EPC 14, 0
  194. #define C0_XCONTEXT 20, 0
  195. #ifdef CONFIG_64BIT
  196. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
  197. #else
  198. # define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
  199. #endif
  200. /* The worst case length of the handler is around 18 instructions for
  201. * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
  202. * Maximum space available is 32 instructions for R3000 and 64
  203. * instructions for R4000.
  204. *
  205. * We deliberately chose a buffer size of 128, so we won't scribble
  206. * over anything important on overflow before we panic.
  207. */
  208. static u32 tlb_handler[128] __cpuinitdata;
  209. /* simply assume worst case size for labels and relocs */
  210. static struct uasm_label labels[128] __cpuinitdata;
  211. static struct uasm_reloc relocs[128] __cpuinitdata;
  212. #ifdef CONFIG_64BIT
  213. static int check_for_high_segbits __cpuinitdata;
  214. #endif
  215. static int check_for_high_segbits __cpuinitdata;
  216. static unsigned int kscratch_used_mask __cpuinitdata;
  217. static int __cpuinit allocate_kscratch(void)
  218. {
  219. int r;
  220. unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
  221. r = ffs(a);
  222. if (r == 0)
  223. return -1;
  224. r--; /* make it zero based */
  225. kscratch_used_mask |= (1 << r);
  226. return r;
  227. }
  228. static int scratch_reg __cpuinitdata;
  229. static int pgd_reg __cpuinitdata;
  230. enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
  231. static struct work_registers __cpuinit build_get_work_registers(u32 **p)
  232. {
  233. struct work_registers r;
  234. int smp_processor_id_reg;
  235. int smp_processor_id_sel;
  236. int smp_processor_id_shift;
  237. if (scratch_reg > 0) {
  238. /* Save in CPU local C0_KScratch? */
  239. UASM_i_MTC0(p, 1, 31, scratch_reg);
  240. r.r1 = K0;
  241. r.r2 = K1;
  242. r.r3 = 1;
  243. return r;
  244. }
  245. if (num_possible_cpus() > 1) {
  246. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  247. smp_processor_id_shift = 51;
  248. smp_processor_id_reg = 20; /* XContext */
  249. smp_processor_id_sel = 0;
  250. #else
  251. # ifdef CONFIG_32BIT
  252. smp_processor_id_shift = 25;
  253. smp_processor_id_reg = 4; /* Context */
  254. smp_processor_id_sel = 0;
  255. # endif
  256. # ifdef CONFIG_64BIT
  257. smp_processor_id_shift = 26;
  258. smp_processor_id_reg = 4; /* Context */
  259. smp_processor_id_sel = 0;
  260. # endif
  261. #endif
  262. /* Get smp_processor_id */
  263. UASM_i_MFC0(p, K0, smp_processor_id_reg, smp_processor_id_sel);
  264. UASM_i_SRL_SAFE(p, K0, K0, smp_processor_id_shift);
  265. /* handler_reg_save index in K0 */
  266. UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
  267. UASM_i_LA(p, K1, (long)&handler_reg_save);
  268. UASM_i_ADDU(p, K0, K0, K1);
  269. } else {
  270. UASM_i_LA(p, K0, (long)&handler_reg_save);
  271. }
  272. /* K0 now points to save area, save $1 and $2 */
  273. UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  274. UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  275. r.r1 = K1;
  276. r.r2 = 1;
  277. r.r3 = 2;
  278. return r;
  279. }
  280. static void __cpuinit build_restore_work_registers(u32 **p)
  281. {
  282. if (scratch_reg > 0) {
  283. UASM_i_MFC0(p, 1, 31, scratch_reg);
  284. return;
  285. }
  286. /* K0 already points to save area, restore $1 and $2 */
  287. UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
  288. UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
  289. }
  290. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  291. /*
  292. * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
  293. * we cannot do r3000 under these circumstances.
  294. *
  295. * Declare pgd_current here instead of including mmu_context.h to avoid type
  296. * conflicts for tlbmiss_handler_setup_pgd
  297. */
  298. extern unsigned long pgd_current[];
  299. /*
  300. * The R3000 TLB handler is simple.
  301. */
  302. static void __cpuinit build_r3000_tlb_refill_handler(void)
  303. {
  304. long pgdc = (long)pgd_current;
  305. u32 *p;
  306. memset(tlb_handler, 0, sizeof(tlb_handler));
  307. p = tlb_handler;
  308. uasm_i_mfc0(&p, K0, C0_BADVADDR);
  309. uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
  310. uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
  311. uasm_i_srl(&p, K0, K0, 22); /* load delay */
  312. uasm_i_sll(&p, K0, K0, 2);
  313. uasm_i_addu(&p, K1, K1, K0);
  314. uasm_i_mfc0(&p, K0, C0_CONTEXT);
  315. uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
  316. uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
  317. uasm_i_addu(&p, K1, K1, K0);
  318. uasm_i_lw(&p, K0, 0, K1);
  319. uasm_i_nop(&p); /* load delay */
  320. uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
  321. uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
  322. uasm_i_tlbwr(&p); /* cp0 delay */
  323. uasm_i_jr(&p, K1);
  324. uasm_i_rfe(&p); /* branch delay */
  325. if (p > tlb_handler + 32)
  326. panic("TLB refill handler space exceeded");
  327. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  328. (unsigned int)(p - tlb_handler));
  329. memcpy((void *)ebase, tlb_handler, 0x80);
  330. dump_handler((u32 *)ebase, 32);
  331. }
  332. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  333. /*
  334. * The R4000 TLB handler is much more complicated. We have two
  335. * consecutive handler areas with 32 instructions space each.
  336. * Since they aren't used at the same time, we can overflow in the
  337. * other one.To keep things simple, we first assume linear space,
  338. * then we relocate it to the final handler layout as needed.
  339. */
  340. static u32 final_handler[64] __cpuinitdata;
  341. /*
  342. * Hazards
  343. *
  344. * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
  345. * 2. A timing hazard exists for the TLBP instruction.
  346. *
  347. * stalling_instruction
  348. * TLBP
  349. *
  350. * The JTLB is being read for the TLBP throughout the stall generated by the
  351. * previous instruction. This is not really correct as the stalling instruction
  352. * can modify the address used to access the JTLB. The failure symptom is that
  353. * the TLBP instruction will use an address created for the stalling instruction
  354. * and not the address held in C0_ENHI and thus report the wrong results.
  355. *
  356. * The software work-around is to not allow the instruction preceding the TLBP
  357. * to stall - make it an NOP or some other instruction guaranteed not to stall.
  358. *
  359. * Errata 2 will not be fixed. This errata is also on the R5000.
  360. *
  361. * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
  362. */
  363. static void __cpuinit __maybe_unused build_tlb_probe_entry(u32 **p)
  364. {
  365. switch (current_cpu_type()) {
  366. /* Found by experiment: R4600 v2.0/R4700 needs this, too. */
  367. case CPU_R4600:
  368. case CPU_R4700:
  369. case CPU_R5000:
  370. case CPU_R5000A:
  371. case CPU_NEVADA:
  372. uasm_i_nop(p);
  373. uasm_i_tlbp(p);
  374. break;
  375. default:
  376. uasm_i_tlbp(p);
  377. break;
  378. }
  379. }
  380. /*
  381. * Write random or indexed TLB entry, and care about the hazards from
  382. * the preceding mtc0 and for the following eret.
  383. */
  384. enum tlb_write_entry { tlb_random, tlb_indexed };
  385. static void __cpuinit build_tlb_write_entry(u32 **p, struct uasm_label **l,
  386. struct uasm_reloc **r,
  387. enum tlb_write_entry wmode)
  388. {
  389. void(*tlbw)(u32 **) = NULL;
  390. switch (wmode) {
  391. case tlb_random: tlbw = uasm_i_tlbwr; break;
  392. case tlb_indexed: tlbw = uasm_i_tlbwi; break;
  393. }
  394. if (cpu_has_mips_r2) {
  395. if (cpu_has_mips_r2_exec_hazard)
  396. uasm_i_ehb(p);
  397. tlbw(p);
  398. return;
  399. }
  400. switch (current_cpu_type()) {
  401. case CPU_R4000PC:
  402. case CPU_R4000SC:
  403. case CPU_R4000MC:
  404. case CPU_R4400PC:
  405. case CPU_R4400SC:
  406. case CPU_R4400MC:
  407. /*
  408. * This branch uses up a mtc0 hazard nop slot and saves
  409. * two nops after the tlbw instruction.
  410. */
  411. uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
  412. tlbw(p);
  413. uasm_l_tlbw_hazard(l, *p);
  414. uasm_i_nop(p);
  415. break;
  416. case CPU_R4600:
  417. case CPU_R4700:
  418. case CPU_R5000:
  419. case CPU_R5000A:
  420. uasm_i_nop(p);
  421. tlbw(p);
  422. uasm_i_nop(p);
  423. break;
  424. case CPU_R4300:
  425. case CPU_5KC:
  426. case CPU_TX49XX:
  427. case CPU_PR4450:
  428. case CPU_XLR:
  429. uasm_i_nop(p);
  430. tlbw(p);
  431. break;
  432. case CPU_R10000:
  433. case CPU_R12000:
  434. case CPU_R14000:
  435. case CPU_4KC:
  436. case CPU_4KEC:
  437. case CPU_M14KC:
  438. case CPU_SB1:
  439. case CPU_SB1A:
  440. case CPU_4KSC:
  441. case CPU_20KC:
  442. case CPU_25KF:
  443. case CPU_BMIPS32:
  444. case CPU_BMIPS3300:
  445. case CPU_BMIPS4350:
  446. case CPU_BMIPS4380:
  447. case CPU_BMIPS5000:
  448. case CPU_LOONGSON2:
  449. case CPU_R5500:
  450. if (m4kc_tlbp_war())
  451. uasm_i_nop(p);
  452. case CPU_ALCHEMY:
  453. tlbw(p);
  454. break;
  455. case CPU_NEVADA:
  456. uasm_i_nop(p); /* QED specifies 2 nops hazard */
  457. /*
  458. * This branch uses up a mtc0 hazard nop slot and saves
  459. * a nop after the tlbw instruction.
  460. */
  461. uasm_il_bgezl(p, r, 0, label_tlbw_hazard);
  462. tlbw(p);
  463. uasm_l_tlbw_hazard(l, *p);
  464. break;
  465. case CPU_RM7000:
  466. uasm_i_nop(p);
  467. uasm_i_nop(p);
  468. uasm_i_nop(p);
  469. uasm_i_nop(p);
  470. tlbw(p);
  471. break;
  472. case CPU_RM9000:
  473. /*
  474. * When the JTLB is updated by tlbwi or tlbwr, a subsequent
  475. * use of the JTLB for instructions should not occur for 4
  476. * cpu cycles and use for data translations should not occur
  477. * for 3 cpu cycles.
  478. */
  479. uasm_i_ssnop(p);
  480. uasm_i_ssnop(p);
  481. uasm_i_ssnop(p);
  482. uasm_i_ssnop(p);
  483. tlbw(p);
  484. uasm_i_ssnop(p);
  485. uasm_i_ssnop(p);
  486. uasm_i_ssnop(p);
  487. uasm_i_ssnop(p);
  488. break;
  489. case CPU_VR4111:
  490. case CPU_VR4121:
  491. case CPU_VR4122:
  492. case CPU_VR4181:
  493. case CPU_VR4181A:
  494. uasm_i_nop(p);
  495. uasm_i_nop(p);
  496. tlbw(p);
  497. uasm_i_nop(p);
  498. uasm_i_nop(p);
  499. break;
  500. case CPU_VR4131:
  501. case CPU_VR4133:
  502. case CPU_R5432:
  503. uasm_i_nop(p);
  504. uasm_i_nop(p);
  505. tlbw(p);
  506. break;
  507. case CPU_JZRISC:
  508. tlbw(p);
  509. uasm_i_nop(p);
  510. break;
  511. default:
  512. panic("No TLB refill handler yet (CPU type: %d)",
  513. current_cpu_data.cputype);
  514. break;
  515. }
  516. }
  517. static __cpuinit __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
  518. unsigned int reg)
  519. {
  520. if (kernel_uses_smartmips_rixi) {
  521. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_NO_EXEC));
  522. UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
  523. } else {
  524. #ifdef CONFIG_64BIT_PHYS_ADDR
  525. uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
  526. #else
  527. UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
  528. #endif
  529. }
  530. }
  531. #ifdef CONFIG_HUGETLB_PAGE
  532. static __cpuinit void build_restore_pagemask(u32 **p,
  533. struct uasm_reloc **r,
  534. unsigned int tmp,
  535. enum label_id lid,
  536. int restore_scratch)
  537. {
  538. if (restore_scratch) {
  539. /* Reset default page size */
  540. if (PM_DEFAULT_MASK >> 16) {
  541. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  542. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  543. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  544. uasm_il_b(p, r, lid);
  545. } else if (PM_DEFAULT_MASK) {
  546. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  547. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  548. uasm_il_b(p, r, lid);
  549. } else {
  550. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  551. uasm_il_b(p, r, lid);
  552. }
  553. if (scratch_reg > 0)
  554. UASM_i_MFC0(p, 1, 31, scratch_reg);
  555. else
  556. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  557. } else {
  558. /* Reset default page size */
  559. if (PM_DEFAULT_MASK >> 16) {
  560. uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
  561. uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
  562. uasm_il_b(p, r, lid);
  563. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  564. } else if (PM_DEFAULT_MASK) {
  565. uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
  566. uasm_il_b(p, r, lid);
  567. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  568. } else {
  569. uasm_il_b(p, r, lid);
  570. uasm_i_mtc0(p, 0, C0_PAGEMASK);
  571. }
  572. }
  573. }
  574. static __cpuinit void build_huge_tlb_write_entry(u32 **p,
  575. struct uasm_label **l,
  576. struct uasm_reloc **r,
  577. unsigned int tmp,
  578. enum tlb_write_entry wmode,
  579. int restore_scratch)
  580. {
  581. /* Set huge page tlb entry size */
  582. uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
  583. uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
  584. uasm_i_mtc0(p, tmp, C0_PAGEMASK);
  585. build_tlb_write_entry(p, l, r, wmode);
  586. build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
  587. }
  588. /*
  589. * Check if Huge PTE is present, if so then jump to LABEL.
  590. */
  591. static void __cpuinit
  592. build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
  593. unsigned int pmd, int lid)
  594. {
  595. UASM_i_LW(p, tmp, 0, pmd);
  596. if (use_bbit_insns()) {
  597. uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
  598. } else {
  599. uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
  600. uasm_il_bnez(p, r, tmp, lid);
  601. }
  602. }
  603. static __cpuinit void build_huge_update_entries(u32 **p,
  604. unsigned int pte,
  605. unsigned int tmp)
  606. {
  607. int small_sequence;
  608. /*
  609. * A huge PTE describes an area the size of the
  610. * configured huge page size. This is twice the
  611. * of the large TLB entry size we intend to use.
  612. * A TLB entry half the size of the configured
  613. * huge page size is configured into entrylo0
  614. * and entrylo1 to cover the contiguous huge PTE
  615. * address space.
  616. */
  617. small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
  618. /* We can clobber tmp. It isn't used after this.*/
  619. if (!small_sequence)
  620. uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
  621. build_convert_pte_to_entrylo(p, pte);
  622. UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
  623. /* convert to entrylo1 */
  624. if (small_sequence)
  625. UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
  626. else
  627. UASM_i_ADDU(p, pte, pte, tmp);
  628. UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
  629. }
  630. static __cpuinit void build_huge_handler_tail(u32 **p,
  631. struct uasm_reloc **r,
  632. struct uasm_label **l,
  633. unsigned int pte,
  634. unsigned int ptr)
  635. {
  636. #ifdef CONFIG_SMP
  637. UASM_i_SC(p, pte, 0, ptr);
  638. uasm_il_beqz(p, r, pte, label_tlb_huge_update);
  639. UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
  640. #else
  641. UASM_i_SW(p, pte, 0, ptr);
  642. #endif
  643. build_huge_update_entries(p, pte, ptr);
  644. build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
  645. }
  646. #endif /* CONFIG_HUGETLB_PAGE */
  647. #ifdef CONFIG_64BIT
  648. /*
  649. * TMP and PTR are scratch.
  650. * TMP will be clobbered, PTR will hold the pmd entry.
  651. */
  652. static void __cpuinit
  653. build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  654. unsigned int tmp, unsigned int ptr)
  655. {
  656. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  657. long pgdc = (long)pgd_current;
  658. #endif
  659. /*
  660. * The vmalloc handling is not in the hotpath.
  661. */
  662. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  663. if (check_for_high_segbits) {
  664. /*
  665. * The kernel currently implicitely assumes that the
  666. * MIPS SEGBITS parameter for the processor is
  667. * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
  668. * allocate virtual addresses outside the maximum
  669. * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
  670. * that doesn't prevent user code from accessing the
  671. * higher xuseg addresses. Here, we make sure that
  672. * everything but the lower xuseg addresses goes down
  673. * the module_alloc/vmalloc path.
  674. */
  675. uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  676. uasm_il_bnez(p, r, ptr, label_vmalloc);
  677. } else {
  678. uasm_il_bltz(p, r, tmp, label_vmalloc);
  679. }
  680. /* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
  681. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  682. if (pgd_reg != -1) {
  683. /* pgd is in pgd_reg */
  684. UASM_i_MFC0(p, ptr, 31, pgd_reg);
  685. } else {
  686. /*
  687. * &pgd << 11 stored in CONTEXT [23..63].
  688. */
  689. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  690. /* Clear lower 23 bits of context. */
  691. uasm_i_dins(p, ptr, 0, 0, 23);
  692. /* 1 0 1 0 1 << 6 xkphys cached */
  693. uasm_i_ori(p, ptr, ptr, 0x540);
  694. uasm_i_drotr(p, ptr, ptr, 11);
  695. }
  696. #elif defined(CONFIG_SMP)
  697. # ifdef CONFIG_MIPS_MT_SMTC
  698. /*
  699. * SMTC uses TCBind value as "CPU" index
  700. */
  701. uasm_i_mfc0(p, ptr, C0_TCBIND);
  702. uasm_i_dsrl_safe(p, ptr, ptr, 19);
  703. # else
  704. /*
  705. * 64 bit SMP running in XKPHYS has smp_processor_id() << 3
  706. * stored in CONTEXT.
  707. */
  708. uasm_i_dmfc0(p, ptr, C0_CONTEXT);
  709. uasm_i_dsrl_safe(p, ptr, ptr, 23);
  710. # endif
  711. UASM_i_LA_mostly(p, tmp, pgdc);
  712. uasm_i_daddu(p, ptr, ptr, tmp);
  713. uasm_i_dmfc0(p, tmp, C0_BADVADDR);
  714. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  715. #else
  716. UASM_i_LA_mostly(p, ptr, pgdc);
  717. uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
  718. #endif
  719. uasm_l_vmalloc_done(l, *p);
  720. /* get pgd offset in bytes */
  721. uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
  722. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
  723. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
  724. #ifndef __PAGETABLE_PMD_FOLDED
  725. uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  726. uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
  727. uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
  728. uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
  729. uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
  730. #endif
  731. }
  732. /*
  733. * BVADDR is the faulting address, PTR is scratch.
  734. * PTR will hold the pgd for vmalloc.
  735. */
  736. static void __cpuinit
  737. build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
  738. unsigned int bvaddr, unsigned int ptr,
  739. enum vmalloc64_mode mode)
  740. {
  741. long swpd = (long)swapper_pg_dir;
  742. int single_insn_swpd;
  743. int did_vmalloc_branch = 0;
  744. single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
  745. uasm_l_vmalloc(l, *p);
  746. if (mode != not_refill && check_for_high_segbits) {
  747. if (single_insn_swpd) {
  748. uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
  749. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  750. did_vmalloc_branch = 1;
  751. /* fall through */
  752. } else {
  753. uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
  754. }
  755. }
  756. if (!did_vmalloc_branch) {
  757. if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
  758. uasm_il_b(p, r, label_vmalloc_done);
  759. uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
  760. } else {
  761. UASM_i_LA_mostly(p, ptr, swpd);
  762. uasm_il_b(p, r, label_vmalloc_done);
  763. if (uasm_in_compat_space_p(swpd))
  764. uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
  765. else
  766. uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
  767. }
  768. }
  769. if (mode != not_refill && check_for_high_segbits) {
  770. uasm_l_large_segbits_fault(l, *p);
  771. /*
  772. * We get here if we are an xsseg address, or if we are
  773. * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
  774. *
  775. * Ignoring xsseg (assume disabled so would generate
  776. * (address errors?), the only remaining possibility
  777. * is the upper xuseg addresses. On processors with
  778. * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
  779. * addresses would have taken an address error. We try
  780. * to mimic that here by taking a load/istream page
  781. * fault.
  782. */
  783. UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
  784. uasm_i_jr(p, ptr);
  785. if (mode == refill_scratch) {
  786. if (scratch_reg > 0)
  787. UASM_i_MFC0(p, 1, 31, scratch_reg);
  788. else
  789. UASM_i_LW(p, 1, scratchpad_offset(0), 0);
  790. } else {
  791. uasm_i_nop(p);
  792. }
  793. }
  794. }
  795. #else /* !CONFIG_64BIT */
  796. /*
  797. * TMP and PTR are scratch.
  798. * TMP will be clobbered, PTR will hold the pgd entry.
  799. */
  800. static void __cpuinit __maybe_unused
  801. build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
  802. {
  803. long pgdc = (long)pgd_current;
  804. /* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
  805. #ifdef CONFIG_SMP
  806. #ifdef CONFIG_MIPS_MT_SMTC
  807. /*
  808. * SMTC uses TCBind value as "CPU" index
  809. */
  810. uasm_i_mfc0(p, ptr, C0_TCBIND);
  811. UASM_i_LA_mostly(p, tmp, pgdc);
  812. uasm_i_srl(p, ptr, ptr, 19);
  813. #else
  814. /*
  815. * smp_processor_id() << 3 is stored in CONTEXT.
  816. */
  817. uasm_i_mfc0(p, ptr, C0_CONTEXT);
  818. UASM_i_LA_mostly(p, tmp, pgdc);
  819. uasm_i_srl(p, ptr, ptr, 23);
  820. #endif
  821. uasm_i_addu(p, ptr, tmp, ptr);
  822. #else
  823. UASM_i_LA_mostly(p, ptr, pgdc);
  824. #endif
  825. uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
  826. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  827. uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
  828. uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
  829. uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
  830. }
  831. #endif /* !CONFIG_64BIT */
  832. static void __cpuinit build_adjust_context(u32 **p, unsigned int ctx)
  833. {
  834. unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
  835. unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
  836. switch (current_cpu_type()) {
  837. case CPU_VR41XX:
  838. case CPU_VR4111:
  839. case CPU_VR4121:
  840. case CPU_VR4122:
  841. case CPU_VR4131:
  842. case CPU_VR4181:
  843. case CPU_VR4181A:
  844. case CPU_VR4133:
  845. shift += 2;
  846. break;
  847. default:
  848. break;
  849. }
  850. if (shift)
  851. UASM_i_SRL(p, ctx, ctx, shift);
  852. uasm_i_andi(p, ctx, ctx, mask);
  853. }
  854. static void __cpuinit build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
  855. {
  856. /*
  857. * Bug workaround for the Nevada. It seems as if under certain
  858. * circumstances the move from cp0_context might produce a
  859. * bogus result when the mfc0 instruction and its consumer are
  860. * in a different cacheline or a load instruction, probably any
  861. * memory reference, is between them.
  862. */
  863. switch (current_cpu_type()) {
  864. case CPU_NEVADA:
  865. UASM_i_LW(p, ptr, 0, ptr);
  866. GET_CONTEXT(p, tmp); /* get context reg */
  867. break;
  868. default:
  869. GET_CONTEXT(p, tmp); /* get context reg */
  870. UASM_i_LW(p, ptr, 0, ptr);
  871. break;
  872. }
  873. build_adjust_context(p, tmp);
  874. UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
  875. }
  876. static void __cpuinit build_update_entries(u32 **p, unsigned int tmp,
  877. unsigned int ptep)
  878. {
  879. /*
  880. * 64bit address support (36bit on a 32bit CPU) in a 32bit
  881. * Kernel is a special case. Only a few CPUs use it.
  882. */
  883. #ifdef CONFIG_64BIT_PHYS_ADDR
  884. if (cpu_has_64bits) {
  885. uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
  886. uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  887. if (kernel_uses_smartmips_rixi) {
  888. UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
  889. UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
  890. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
  891. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  892. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
  893. } else {
  894. uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  895. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  896. uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  897. }
  898. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  899. } else {
  900. int pte_off_even = sizeof(pte_t) / 2;
  901. int pte_off_odd = pte_off_even + sizeof(pte_t);
  902. /* The pte entries are pre-shifted */
  903. uasm_i_lw(p, tmp, pte_off_even, ptep); /* get even pte */
  904. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  905. uasm_i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */
  906. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  907. }
  908. #else
  909. UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
  910. UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
  911. if (r45k_bvahwbug())
  912. build_tlb_probe_entry(p);
  913. if (kernel_uses_smartmips_rixi) {
  914. UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_NO_EXEC));
  915. UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_NO_EXEC));
  916. UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
  917. if (r4k_250MHZhwbug())
  918. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  919. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  920. UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
  921. } else {
  922. UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
  923. if (r4k_250MHZhwbug())
  924. UASM_i_MTC0(p, 0, C0_ENTRYLO0);
  925. UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
  926. UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
  927. if (r45k_bvahwbug())
  928. uasm_i_mfc0(p, tmp, C0_INDEX);
  929. }
  930. if (r4k_250MHZhwbug())
  931. UASM_i_MTC0(p, 0, C0_ENTRYLO1);
  932. UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
  933. #endif
  934. }
  935. struct mips_huge_tlb_info {
  936. int huge_pte;
  937. int restore_scratch;
  938. };
  939. static struct mips_huge_tlb_info __cpuinit
  940. build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
  941. struct uasm_reloc **r, unsigned int tmp,
  942. unsigned int ptr, int c0_scratch)
  943. {
  944. struct mips_huge_tlb_info rv;
  945. unsigned int even, odd;
  946. int vmalloc_branch_delay_filled = 0;
  947. const int scratch = 1; /* Our extra working register */
  948. rv.huge_pte = scratch;
  949. rv.restore_scratch = 0;
  950. if (check_for_high_segbits) {
  951. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  952. if (pgd_reg != -1)
  953. UASM_i_MFC0(p, ptr, 31, pgd_reg);
  954. else
  955. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  956. if (c0_scratch >= 0)
  957. UASM_i_MTC0(p, scratch, 31, c0_scratch);
  958. else
  959. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  960. uasm_i_dsrl_safe(p, scratch, tmp,
  961. PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  962. uasm_il_bnez(p, r, scratch, label_vmalloc);
  963. if (pgd_reg == -1) {
  964. vmalloc_branch_delay_filled = 1;
  965. /* Clear lower 23 bits of context. */
  966. uasm_i_dins(p, ptr, 0, 0, 23);
  967. }
  968. } else {
  969. if (pgd_reg != -1)
  970. UASM_i_MFC0(p, ptr, 31, pgd_reg);
  971. else
  972. UASM_i_MFC0(p, ptr, C0_CONTEXT);
  973. UASM_i_MFC0(p, tmp, C0_BADVADDR);
  974. if (c0_scratch >= 0)
  975. UASM_i_MTC0(p, scratch, 31, c0_scratch);
  976. else
  977. UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
  978. if (pgd_reg == -1)
  979. /* Clear lower 23 bits of context. */
  980. uasm_i_dins(p, ptr, 0, 0, 23);
  981. uasm_il_bltz(p, r, tmp, label_vmalloc);
  982. }
  983. if (pgd_reg == -1) {
  984. vmalloc_branch_delay_filled = 1;
  985. /* 1 0 1 0 1 << 6 xkphys cached */
  986. uasm_i_ori(p, ptr, ptr, 0x540);
  987. uasm_i_drotr(p, ptr, ptr, 11);
  988. }
  989. #ifdef __PAGETABLE_PMD_FOLDED
  990. #define LOC_PTEP scratch
  991. #else
  992. #define LOC_PTEP ptr
  993. #endif
  994. if (!vmalloc_branch_delay_filled)
  995. /* get pgd offset in bytes */
  996. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  997. uasm_l_vmalloc_done(l, *p);
  998. /*
  999. * tmp ptr
  1000. * fall-through case = badvaddr *pgd_current
  1001. * vmalloc case = badvaddr swapper_pg_dir
  1002. */
  1003. if (vmalloc_branch_delay_filled)
  1004. /* get pgd offset in bytes */
  1005. uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
  1006. #ifdef __PAGETABLE_PMD_FOLDED
  1007. GET_CONTEXT(p, tmp); /* get context reg */
  1008. #endif
  1009. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
  1010. if (use_lwx_insns()) {
  1011. UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
  1012. } else {
  1013. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
  1014. uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
  1015. }
  1016. #ifndef __PAGETABLE_PMD_FOLDED
  1017. /* get pmd offset in bytes */
  1018. uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
  1019. uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
  1020. GET_CONTEXT(p, tmp); /* get context reg */
  1021. if (use_lwx_insns()) {
  1022. UASM_i_LWX(p, scratch, scratch, ptr);
  1023. } else {
  1024. uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
  1025. UASM_i_LW(p, scratch, 0, ptr);
  1026. }
  1027. #endif
  1028. /* Adjust the context during the load latency. */
  1029. build_adjust_context(p, tmp);
  1030. #ifdef CONFIG_HUGETLB_PAGE
  1031. uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
  1032. /*
  1033. * The in the LWX case we don't want to do the load in the
  1034. * delay slot. It cannot issue in the same cycle and may be
  1035. * speculative and unneeded.
  1036. */
  1037. if (use_lwx_insns())
  1038. uasm_i_nop(p);
  1039. #endif /* CONFIG_HUGETLB_PAGE */
  1040. /* build_update_entries */
  1041. if (use_lwx_insns()) {
  1042. even = ptr;
  1043. odd = tmp;
  1044. UASM_i_LWX(p, even, scratch, tmp);
  1045. UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
  1046. UASM_i_LWX(p, odd, scratch, tmp);
  1047. } else {
  1048. UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
  1049. even = tmp;
  1050. odd = ptr;
  1051. UASM_i_LW(p, even, 0, ptr); /* get even pte */
  1052. UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
  1053. }
  1054. if (kernel_uses_smartmips_rixi) {
  1055. uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_NO_EXEC));
  1056. uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_NO_EXEC));
  1057. uasm_i_drotr(p, even, even,
  1058. ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
  1059. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1060. uasm_i_drotr(p, odd, odd,
  1061. ilog2(_PAGE_GLOBAL) - ilog2(_PAGE_NO_EXEC));
  1062. } else {
  1063. uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
  1064. UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
  1065. uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
  1066. }
  1067. UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
  1068. if (c0_scratch >= 0) {
  1069. UASM_i_MFC0(p, scratch, 31, c0_scratch);
  1070. build_tlb_write_entry(p, l, r, tlb_random);
  1071. uasm_l_leave(l, *p);
  1072. rv.restore_scratch = 1;
  1073. } else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13) {
  1074. build_tlb_write_entry(p, l, r, tlb_random);
  1075. uasm_l_leave(l, *p);
  1076. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1077. } else {
  1078. UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
  1079. build_tlb_write_entry(p, l, r, tlb_random);
  1080. uasm_l_leave(l, *p);
  1081. rv.restore_scratch = 1;
  1082. }
  1083. uasm_i_eret(p); /* return from trap */
  1084. return rv;
  1085. }
  1086. /*
  1087. * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
  1088. * because EXL == 0. If we wrap, we can also use the 32 instruction
  1089. * slots before the XTLB refill exception handler which belong to the
  1090. * unused TLB refill exception.
  1091. */
  1092. #define MIPS64_REFILL_INSNS 32
  1093. static void __cpuinit build_r4000_tlb_refill_handler(void)
  1094. {
  1095. u32 *p = tlb_handler;
  1096. struct uasm_label *l = labels;
  1097. struct uasm_reloc *r = relocs;
  1098. u32 *f;
  1099. unsigned int final_len;
  1100. struct mips_huge_tlb_info htlb_info __maybe_unused;
  1101. enum vmalloc64_mode vmalloc_mode __maybe_unused;
  1102. memset(tlb_handler, 0, sizeof(tlb_handler));
  1103. memset(labels, 0, sizeof(labels));
  1104. memset(relocs, 0, sizeof(relocs));
  1105. memset(final_handler, 0, sizeof(final_handler));
  1106. if ((scratch_reg > 0 || scratchpad_available()) && use_bbit_insns()) {
  1107. htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
  1108. scratch_reg);
  1109. vmalloc_mode = refill_scratch;
  1110. } else {
  1111. htlb_info.huge_pte = K0;
  1112. htlb_info.restore_scratch = 0;
  1113. vmalloc_mode = refill_noscratch;
  1114. /*
  1115. * create the plain linear handler
  1116. */
  1117. if (bcm1250_m3_war()) {
  1118. unsigned int segbits = 44;
  1119. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1120. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1121. uasm_i_xor(&p, K0, K0, K1);
  1122. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1123. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1124. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1125. uasm_i_or(&p, K0, K0, K1);
  1126. uasm_il_bnez(&p, &r, K0, label_leave);
  1127. /* No need for uasm_i_nop */
  1128. }
  1129. #ifdef CONFIG_64BIT
  1130. build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
  1131. #else
  1132. build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
  1133. #endif
  1134. #ifdef CONFIG_HUGETLB_PAGE
  1135. build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
  1136. #endif
  1137. build_get_ptep(&p, K0, K1);
  1138. build_update_entries(&p, K0, K1);
  1139. build_tlb_write_entry(&p, &l, &r, tlb_random);
  1140. uasm_l_leave(&l, p);
  1141. uasm_i_eret(&p); /* return from trap */
  1142. }
  1143. #ifdef CONFIG_HUGETLB_PAGE
  1144. uasm_l_tlb_huge_update(&l, p);
  1145. build_huge_update_entries(&p, htlb_info.huge_pte, K1);
  1146. build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
  1147. htlb_info.restore_scratch);
  1148. #endif
  1149. #ifdef CONFIG_64BIT
  1150. build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
  1151. #endif
  1152. /*
  1153. * Overflow check: For the 64bit handler, we need at least one
  1154. * free instruction slot for the wrap-around branch. In worst
  1155. * case, if the intended insertion point is a delay slot, we
  1156. * need three, with the second nop'ed and the third being
  1157. * unused.
  1158. */
  1159. /* Loongson2 ebase is different than r4k, we have more space */
  1160. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1161. if ((p - tlb_handler) > 64)
  1162. panic("TLB refill handler space exceeded");
  1163. #else
  1164. if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
  1165. || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
  1166. && uasm_insn_has_bdelay(relocs,
  1167. tlb_handler + MIPS64_REFILL_INSNS - 3)))
  1168. panic("TLB refill handler space exceeded");
  1169. #endif
  1170. /*
  1171. * Now fold the handler in the TLB refill handler space.
  1172. */
  1173. #if defined(CONFIG_32BIT) || defined(CONFIG_CPU_LOONGSON2)
  1174. f = final_handler;
  1175. /* Simplest case, just copy the handler. */
  1176. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1177. final_len = p - tlb_handler;
  1178. #else /* CONFIG_64BIT */
  1179. f = final_handler + MIPS64_REFILL_INSNS;
  1180. if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
  1181. /* Just copy the handler. */
  1182. uasm_copy_handler(relocs, labels, tlb_handler, p, f);
  1183. final_len = p - tlb_handler;
  1184. } else {
  1185. #if defined(CONFIG_HUGETLB_PAGE)
  1186. const enum label_id ls = label_tlb_huge_update;
  1187. #else
  1188. const enum label_id ls = label_vmalloc;
  1189. #endif
  1190. u32 *split;
  1191. int ov = 0;
  1192. int i;
  1193. for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
  1194. ;
  1195. BUG_ON(i == ARRAY_SIZE(labels));
  1196. split = labels[i].addr;
  1197. /*
  1198. * See if we have overflown one way or the other.
  1199. */
  1200. if (split > tlb_handler + MIPS64_REFILL_INSNS ||
  1201. split < p - MIPS64_REFILL_INSNS)
  1202. ov = 1;
  1203. if (ov) {
  1204. /*
  1205. * Split two instructions before the end. One
  1206. * for the branch and one for the instruction
  1207. * in the delay slot.
  1208. */
  1209. split = tlb_handler + MIPS64_REFILL_INSNS - 2;
  1210. /*
  1211. * If the branch would fall in a delay slot,
  1212. * we must back up an additional instruction
  1213. * so that it is no longer in a delay slot.
  1214. */
  1215. if (uasm_insn_has_bdelay(relocs, split - 1))
  1216. split--;
  1217. }
  1218. /* Copy first part of the handler. */
  1219. uasm_copy_handler(relocs, labels, tlb_handler, split, f);
  1220. f += split - tlb_handler;
  1221. if (ov) {
  1222. /* Insert branch. */
  1223. uasm_l_split(&l, final_handler);
  1224. uasm_il_b(&f, &r, label_split);
  1225. if (uasm_insn_has_bdelay(relocs, split))
  1226. uasm_i_nop(&f);
  1227. else {
  1228. uasm_copy_handler(relocs, labels,
  1229. split, split + 1, f);
  1230. uasm_move_labels(labels, f, f + 1, -1);
  1231. f++;
  1232. split++;
  1233. }
  1234. }
  1235. /* Copy the rest of the handler. */
  1236. uasm_copy_handler(relocs, labels, split, p, final_handler);
  1237. final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
  1238. (p - split);
  1239. }
  1240. #endif /* CONFIG_64BIT */
  1241. uasm_resolve_relocs(relocs, labels);
  1242. pr_debug("Wrote TLB refill handler (%u instructions).\n",
  1243. final_len);
  1244. memcpy((void *)ebase, final_handler, 0x100);
  1245. dump_handler((u32 *)ebase, 64);
  1246. }
  1247. /*
  1248. * 128 instructions for the fastpath handler is generous and should
  1249. * never be exceeded.
  1250. */
  1251. #define FASTPATH_SIZE 128
  1252. u32 handle_tlbl[FASTPATH_SIZE] __cacheline_aligned;
  1253. u32 handle_tlbs[FASTPATH_SIZE] __cacheline_aligned;
  1254. u32 handle_tlbm[FASTPATH_SIZE] __cacheline_aligned;
  1255. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1256. u32 tlbmiss_handler_setup_pgd[16] __cacheline_aligned;
  1257. static void __cpuinit build_r4000_setup_pgd(void)
  1258. {
  1259. const int a0 = 4;
  1260. const int a1 = 5;
  1261. u32 *p = tlbmiss_handler_setup_pgd;
  1262. struct uasm_label *l = labels;
  1263. struct uasm_reloc *r = relocs;
  1264. memset(tlbmiss_handler_setup_pgd, 0, sizeof(tlbmiss_handler_setup_pgd));
  1265. memset(labels, 0, sizeof(labels));
  1266. memset(relocs, 0, sizeof(relocs));
  1267. pgd_reg = allocate_kscratch();
  1268. if (pgd_reg == -1) {
  1269. /* PGD << 11 in c0_Context */
  1270. /*
  1271. * If it is a ckseg0 address, convert to a physical
  1272. * address. Shifting right by 29 and adding 4 will
  1273. * result in zero for these addresses.
  1274. *
  1275. */
  1276. UASM_i_SRA(&p, a1, a0, 29);
  1277. UASM_i_ADDIU(&p, a1, a1, 4);
  1278. uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
  1279. uasm_i_nop(&p);
  1280. uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
  1281. uasm_l_tlbl_goaround1(&l, p);
  1282. UASM_i_SLL(&p, a0, a0, 11);
  1283. uasm_i_jr(&p, 31);
  1284. UASM_i_MTC0(&p, a0, C0_CONTEXT);
  1285. } else {
  1286. /* PGD in c0_KScratch */
  1287. uasm_i_jr(&p, 31);
  1288. UASM_i_MTC0(&p, a0, 31, pgd_reg);
  1289. }
  1290. if (p - tlbmiss_handler_setup_pgd > ARRAY_SIZE(tlbmiss_handler_setup_pgd))
  1291. panic("tlbmiss_handler_setup_pgd space exceeded");
  1292. uasm_resolve_relocs(relocs, labels);
  1293. pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
  1294. (unsigned int)(p - tlbmiss_handler_setup_pgd));
  1295. dump_handler(tlbmiss_handler_setup_pgd,
  1296. ARRAY_SIZE(tlbmiss_handler_setup_pgd));
  1297. }
  1298. #endif
  1299. static void __cpuinit
  1300. iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
  1301. {
  1302. #ifdef CONFIG_SMP
  1303. # ifdef CONFIG_64BIT_PHYS_ADDR
  1304. if (cpu_has_64bits)
  1305. uasm_i_lld(p, pte, 0, ptr);
  1306. else
  1307. # endif
  1308. UASM_i_LL(p, pte, 0, ptr);
  1309. #else
  1310. # ifdef CONFIG_64BIT_PHYS_ADDR
  1311. if (cpu_has_64bits)
  1312. uasm_i_ld(p, pte, 0, ptr);
  1313. else
  1314. # endif
  1315. UASM_i_LW(p, pte, 0, ptr);
  1316. #endif
  1317. }
  1318. static void __cpuinit
  1319. iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
  1320. unsigned int mode)
  1321. {
  1322. #ifdef CONFIG_64BIT_PHYS_ADDR
  1323. unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
  1324. #endif
  1325. uasm_i_ori(p, pte, pte, mode);
  1326. #ifdef CONFIG_SMP
  1327. # ifdef CONFIG_64BIT_PHYS_ADDR
  1328. if (cpu_has_64bits)
  1329. uasm_i_scd(p, pte, 0, ptr);
  1330. else
  1331. # endif
  1332. UASM_i_SC(p, pte, 0, ptr);
  1333. if (r10000_llsc_war())
  1334. uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
  1335. else
  1336. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1337. # ifdef CONFIG_64BIT_PHYS_ADDR
  1338. if (!cpu_has_64bits) {
  1339. /* no uasm_i_nop needed */
  1340. uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
  1341. uasm_i_ori(p, pte, pte, hwmode);
  1342. uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
  1343. uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
  1344. /* no uasm_i_nop needed */
  1345. uasm_i_lw(p, pte, 0, ptr);
  1346. } else
  1347. uasm_i_nop(p);
  1348. # else
  1349. uasm_i_nop(p);
  1350. # endif
  1351. #else
  1352. # ifdef CONFIG_64BIT_PHYS_ADDR
  1353. if (cpu_has_64bits)
  1354. uasm_i_sd(p, pte, 0, ptr);
  1355. else
  1356. # endif
  1357. UASM_i_SW(p, pte, 0, ptr);
  1358. # ifdef CONFIG_64BIT_PHYS_ADDR
  1359. if (!cpu_has_64bits) {
  1360. uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
  1361. uasm_i_ori(p, pte, pte, hwmode);
  1362. uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
  1363. uasm_i_lw(p, pte, 0, ptr);
  1364. }
  1365. # endif
  1366. #endif
  1367. }
  1368. /*
  1369. * Check if PTE is present, if not then jump to LABEL. PTR points to
  1370. * the page table where this PTE is located, PTE will be re-loaded
  1371. * with it's original value.
  1372. */
  1373. static void __cpuinit
  1374. build_pte_present(u32 **p, struct uasm_reloc **r,
  1375. int pte, int ptr, int scratch, enum label_id lid)
  1376. {
  1377. int t = scratch >= 0 ? scratch : pte;
  1378. if (kernel_uses_smartmips_rixi) {
  1379. if (use_bbit_insns()) {
  1380. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
  1381. uasm_i_nop(p);
  1382. } else {
  1383. uasm_i_andi(p, t, pte, _PAGE_PRESENT);
  1384. uasm_il_beqz(p, r, t, lid);
  1385. if (pte == t)
  1386. /* You lose the SMP race :-(*/
  1387. iPTE_LW(p, pte, ptr);
  1388. }
  1389. } else {
  1390. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_READ);
  1391. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_READ);
  1392. uasm_il_bnez(p, r, t, lid);
  1393. if (pte == t)
  1394. /* You lose the SMP race :-(*/
  1395. iPTE_LW(p, pte, ptr);
  1396. }
  1397. }
  1398. /* Make PTE valid, store result in PTR. */
  1399. static void __cpuinit
  1400. build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1401. unsigned int ptr)
  1402. {
  1403. unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
  1404. iPTE_SW(p, r, pte, ptr, mode);
  1405. }
  1406. /*
  1407. * Check if PTE can be written to, if not branch to LABEL. Regardless
  1408. * restore PTE with value from PTR when done.
  1409. */
  1410. static void __cpuinit
  1411. build_pte_writable(u32 **p, struct uasm_reloc **r,
  1412. unsigned int pte, unsigned int ptr, int scratch,
  1413. enum label_id lid)
  1414. {
  1415. int t = scratch >= 0 ? scratch : pte;
  1416. uasm_i_andi(p, t, pte, _PAGE_PRESENT | _PAGE_WRITE);
  1417. uasm_i_xori(p, t, t, _PAGE_PRESENT | _PAGE_WRITE);
  1418. uasm_il_bnez(p, r, t, lid);
  1419. if (pte == t)
  1420. /* You lose the SMP race :-(*/
  1421. iPTE_LW(p, pte, ptr);
  1422. else
  1423. uasm_i_nop(p);
  1424. }
  1425. /* Make PTE writable, update software status bits as well, then store
  1426. * at PTR.
  1427. */
  1428. static void __cpuinit
  1429. build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
  1430. unsigned int ptr)
  1431. {
  1432. unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
  1433. | _PAGE_DIRTY);
  1434. iPTE_SW(p, r, pte, ptr, mode);
  1435. }
  1436. /*
  1437. * Check if PTE can be modified, if not branch to LABEL. Regardless
  1438. * restore PTE with value from PTR when done.
  1439. */
  1440. static void __cpuinit
  1441. build_pte_modifiable(u32 **p, struct uasm_reloc **r,
  1442. unsigned int pte, unsigned int ptr, int scratch,
  1443. enum label_id lid)
  1444. {
  1445. if (use_bbit_insns()) {
  1446. uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
  1447. uasm_i_nop(p);
  1448. } else {
  1449. int t = scratch >= 0 ? scratch : pte;
  1450. uasm_i_andi(p, t, pte, _PAGE_WRITE);
  1451. uasm_il_beqz(p, r, t, lid);
  1452. if (pte == t)
  1453. /* You lose the SMP race :-(*/
  1454. iPTE_LW(p, pte, ptr);
  1455. }
  1456. }
  1457. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1458. /*
  1459. * R3000 style TLB load/store/modify handlers.
  1460. */
  1461. /*
  1462. * This places the pte into ENTRYLO0 and writes it with tlbwi.
  1463. * Then it returns.
  1464. */
  1465. static void __cpuinit
  1466. build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
  1467. {
  1468. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1469. uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
  1470. uasm_i_tlbwi(p);
  1471. uasm_i_jr(p, tmp);
  1472. uasm_i_rfe(p); /* branch delay */
  1473. }
  1474. /*
  1475. * This places the pte into ENTRYLO0 and writes it with tlbwi
  1476. * or tlbwr as appropriate. This is because the index register
  1477. * may have the probe fail bit set as a result of a trap on a
  1478. * kseg2 access, i.e. without refill. Then it returns.
  1479. */
  1480. static void __cpuinit
  1481. build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
  1482. struct uasm_reloc **r, unsigned int pte,
  1483. unsigned int tmp)
  1484. {
  1485. uasm_i_mfc0(p, tmp, C0_INDEX);
  1486. uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
  1487. uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
  1488. uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
  1489. uasm_i_tlbwi(p); /* cp0 delay */
  1490. uasm_i_jr(p, tmp);
  1491. uasm_i_rfe(p); /* branch delay */
  1492. uasm_l_r3000_write_probe_fail(l, *p);
  1493. uasm_i_tlbwr(p); /* cp0 delay */
  1494. uasm_i_jr(p, tmp);
  1495. uasm_i_rfe(p); /* branch delay */
  1496. }
  1497. static void __cpuinit
  1498. build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
  1499. unsigned int ptr)
  1500. {
  1501. long pgdc = (long)pgd_current;
  1502. uasm_i_mfc0(p, pte, C0_BADVADDR);
  1503. uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
  1504. uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
  1505. uasm_i_srl(p, pte, pte, 22); /* load delay */
  1506. uasm_i_sll(p, pte, pte, 2);
  1507. uasm_i_addu(p, ptr, ptr, pte);
  1508. uasm_i_mfc0(p, pte, C0_CONTEXT);
  1509. uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
  1510. uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
  1511. uasm_i_addu(p, ptr, ptr, pte);
  1512. uasm_i_lw(p, pte, 0, ptr);
  1513. uasm_i_tlbp(p); /* load delay */
  1514. }
  1515. static void __cpuinit build_r3000_tlb_load_handler(void)
  1516. {
  1517. u32 *p = handle_tlbl;
  1518. struct uasm_label *l = labels;
  1519. struct uasm_reloc *r = relocs;
  1520. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1521. memset(labels, 0, sizeof(labels));
  1522. memset(relocs, 0, sizeof(relocs));
  1523. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1524. build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
  1525. uasm_i_nop(&p); /* load delay */
  1526. build_make_valid(&p, &r, K0, K1);
  1527. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1528. uasm_l_nopage_tlbl(&l, p);
  1529. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1530. uasm_i_nop(&p);
  1531. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1532. panic("TLB load handler fastpath space exceeded");
  1533. uasm_resolve_relocs(relocs, labels);
  1534. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1535. (unsigned int)(p - handle_tlbl));
  1536. dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
  1537. }
  1538. static void __cpuinit build_r3000_tlb_store_handler(void)
  1539. {
  1540. u32 *p = handle_tlbs;
  1541. struct uasm_label *l = labels;
  1542. struct uasm_reloc *r = relocs;
  1543. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1544. memset(labels, 0, sizeof(labels));
  1545. memset(relocs, 0, sizeof(relocs));
  1546. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1547. build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
  1548. uasm_i_nop(&p); /* load delay */
  1549. build_make_write(&p, &r, K0, K1);
  1550. build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
  1551. uasm_l_nopage_tlbs(&l, p);
  1552. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1553. uasm_i_nop(&p);
  1554. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1555. panic("TLB store handler fastpath space exceeded");
  1556. uasm_resolve_relocs(relocs, labels);
  1557. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1558. (unsigned int)(p - handle_tlbs));
  1559. dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
  1560. }
  1561. static void __cpuinit build_r3000_tlb_modify_handler(void)
  1562. {
  1563. u32 *p = handle_tlbm;
  1564. struct uasm_label *l = labels;
  1565. struct uasm_reloc *r = relocs;
  1566. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1567. memset(labels, 0, sizeof(labels));
  1568. memset(relocs, 0, sizeof(relocs));
  1569. build_r3000_tlbchange_handler_head(&p, K0, K1);
  1570. build_pte_modifiable(&p, &r, K0, K1, -1, label_nopage_tlbm);
  1571. uasm_i_nop(&p); /* load delay */
  1572. build_make_write(&p, &r, K0, K1);
  1573. build_r3000_pte_reload_tlbwi(&p, K0, K1);
  1574. uasm_l_nopage_tlbm(&l, p);
  1575. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1576. uasm_i_nop(&p);
  1577. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1578. panic("TLB modify handler fastpath space exceeded");
  1579. uasm_resolve_relocs(relocs, labels);
  1580. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1581. (unsigned int)(p - handle_tlbm));
  1582. dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
  1583. }
  1584. #endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
  1585. /*
  1586. * R4000 style TLB load/store/modify handlers.
  1587. */
  1588. static struct work_registers __cpuinit
  1589. build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
  1590. struct uasm_reloc **r)
  1591. {
  1592. struct work_registers wr = build_get_work_registers(p);
  1593. #ifdef CONFIG_64BIT
  1594. build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
  1595. #else
  1596. build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
  1597. #endif
  1598. #ifdef CONFIG_HUGETLB_PAGE
  1599. /*
  1600. * For huge tlb entries, pmd doesn't contain an address but
  1601. * instead contains the tlb pte. Check the PAGE_HUGE bit and
  1602. * see if we need to jump to huge tlb processing.
  1603. */
  1604. build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
  1605. #endif
  1606. UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
  1607. UASM_i_LW(p, wr.r2, 0, wr.r2);
  1608. UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
  1609. uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
  1610. UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
  1611. #ifdef CONFIG_SMP
  1612. uasm_l_smp_pgtable_change(l, *p);
  1613. #endif
  1614. iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
  1615. if (!m4kc_tlbp_war())
  1616. build_tlb_probe_entry(p);
  1617. return wr;
  1618. }
  1619. static void __cpuinit
  1620. build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
  1621. struct uasm_reloc **r, unsigned int tmp,
  1622. unsigned int ptr)
  1623. {
  1624. uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
  1625. uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
  1626. build_update_entries(p, tmp, ptr);
  1627. build_tlb_write_entry(p, l, r, tlb_indexed);
  1628. uasm_l_leave(l, *p);
  1629. build_restore_work_registers(p);
  1630. uasm_i_eret(p); /* return from trap */
  1631. #ifdef CONFIG_64BIT
  1632. build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
  1633. #endif
  1634. }
  1635. static void __cpuinit build_r4000_tlb_load_handler(void)
  1636. {
  1637. u32 *p = handle_tlbl;
  1638. struct uasm_label *l = labels;
  1639. struct uasm_reloc *r = relocs;
  1640. struct work_registers wr;
  1641. memset(handle_tlbl, 0, sizeof(handle_tlbl));
  1642. memset(labels, 0, sizeof(labels));
  1643. memset(relocs, 0, sizeof(relocs));
  1644. if (bcm1250_m3_war()) {
  1645. unsigned int segbits = 44;
  1646. uasm_i_dmfc0(&p, K0, C0_BADVADDR);
  1647. uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
  1648. uasm_i_xor(&p, K0, K0, K1);
  1649. uasm_i_dsrl_safe(&p, K1, K0, 62);
  1650. uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
  1651. uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
  1652. uasm_i_or(&p, K0, K0, K1);
  1653. uasm_il_bnez(&p, &r, K0, label_leave);
  1654. /* No need for uasm_i_nop */
  1655. }
  1656. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1657. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1658. if (m4kc_tlbp_war())
  1659. build_tlb_probe_entry(&p);
  1660. if (kernel_uses_smartmips_rixi) {
  1661. /*
  1662. * If the page is not _PAGE_VALID, RI or XI could not
  1663. * have triggered it. Skip the expensive test..
  1664. */
  1665. if (use_bbit_insns()) {
  1666. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1667. label_tlbl_goaround1);
  1668. } else {
  1669. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1670. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
  1671. }
  1672. uasm_i_nop(&p);
  1673. uasm_i_tlbr(&p);
  1674. /* Examine entrylo 0 or 1 based on ptr. */
  1675. if (use_bbit_insns()) {
  1676. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1677. } else {
  1678. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1679. uasm_i_beqz(&p, wr.r3, 8);
  1680. }
  1681. /* load it in the delay slot*/
  1682. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1683. /* load it if ptr is odd */
  1684. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1685. /*
  1686. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1687. * XI must have triggered it.
  1688. */
  1689. if (use_bbit_insns()) {
  1690. uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
  1691. uasm_i_nop(&p);
  1692. uasm_l_tlbl_goaround1(&l, p);
  1693. } else {
  1694. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1695. uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
  1696. uasm_i_nop(&p);
  1697. }
  1698. uasm_l_tlbl_goaround1(&l, p);
  1699. }
  1700. build_make_valid(&p, &r, wr.r1, wr.r2);
  1701. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1702. #ifdef CONFIG_HUGETLB_PAGE
  1703. /*
  1704. * This is the entry point when build_r4000_tlbchange_handler_head
  1705. * spots a huge page.
  1706. */
  1707. uasm_l_tlb_huge_update(&l, p);
  1708. iPTE_LW(&p, wr.r1, wr.r2);
  1709. build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
  1710. build_tlb_probe_entry(&p);
  1711. if (kernel_uses_smartmips_rixi) {
  1712. /*
  1713. * If the page is not _PAGE_VALID, RI or XI could not
  1714. * have triggered it. Skip the expensive test..
  1715. */
  1716. if (use_bbit_insns()) {
  1717. uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
  1718. label_tlbl_goaround2);
  1719. } else {
  1720. uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
  1721. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1722. }
  1723. uasm_i_nop(&p);
  1724. uasm_i_tlbr(&p);
  1725. /* Examine entrylo 0 or 1 based on ptr. */
  1726. if (use_bbit_insns()) {
  1727. uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
  1728. } else {
  1729. uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
  1730. uasm_i_beqz(&p, wr.r3, 8);
  1731. }
  1732. /* load it in the delay slot*/
  1733. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
  1734. /* load it if ptr is odd */
  1735. UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
  1736. /*
  1737. * If the entryLo (now in wr.r3) is valid (bit 1), RI or
  1738. * XI must have triggered it.
  1739. */
  1740. if (use_bbit_insns()) {
  1741. uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
  1742. } else {
  1743. uasm_i_andi(&p, wr.r3, wr.r3, 2);
  1744. uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
  1745. }
  1746. if (PM_DEFAULT_MASK == 0)
  1747. uasm_i_nop(&p);
  1748. /*
  1749. * We clobbered C0_PAGEMASK, restore it. On the other branch
  1750. * it is restored in build_huge_tlb_write_entry.
  1751. */
  1752. build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
  1753. uasm_l_tlbl_goaround2(&l, p);
  1754. }
  1755. uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
  1756. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1757. #endif
  1758. uasm_l_nopage_tlbl(&l, p);
  1759. build_restore_work_registers(&p);
  1760. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
  1761. uasm_i_nop(&p);
  1762. if ((p - handle_tlbl) > FASTPATH_SIZE)
  1763. panic("TLB load handler fastpath space exceeded");
  1764. uasm_resolve_relocs(relocs, labels);
  1765. pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
  1766. (unsigned int)(p - handle_tlbl));
  1767. dump_handler(handle_tlbl, ARRAY_SIZE(handle_tlbl));
  1768. }
  1769. static void __cpuinit build_r4000_tlb_store_handler(void)
  1770. {
  1771. u32 *p = handle_tlbs;
  1772. struct uasm_label *l = labels;
  1773. struct uasm_reloc *r = relocs;
  1774. struct work_registers wr;
  1775. memset(handle_tlbs, 0, sizeof(handle_tlbs));
  1776. memset(labels, 0, sizeof(labels));
  1777. memset(relocs, 0, sizeof(relocs));
  1778. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1779. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1780. if (m4kc_tlbp_war())
  1781. build_tlb_probe_entry(&p);
  1782. build_make_write(&p, &r, wr.r1, wr.r2);
  1783. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1784. #ifdef CONFIG_HUGETLB_PAGE
  1785. /*
  1786. * This is the entry point when
  1787. * build_r4000_tlbchange_handler_head spots a huge page.
  1788. */
  1789. uasm_l_tlb_huge_update(&l, p);
  1790. iPTE_LW(&p, wr.r1, wr.r2);
  1791. build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
  1792. build_tlb_probe_entry(&p);
  1793. uasm_i_ori(&p, wr.r1, wr.r1,
  1794. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1795. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1796. #endif
  1797. uasm_l_nopage_tlbs(&l, p);
  1798. build_restore_work_registers(&p);
  1799. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1800. uasm_i_nop(&p);
  1801. if ((p - handle_tlbs) > FASTPATH_SIZE)
  1802. panic("TLB store handler fastpath space exceeded");
  1803. uasm_resolve_relocs(relocs, labels);
  1804. pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
  1805. (unsigned int)(p - handle_tlbs));
  1806. dump_handler(handle_tlbs, ARRAY_SIZE(handle_tlbs));
  1807. }
  1808. static void __cpuinit build_r4000_tlb_modify_handler(void)
  1809. {
  1810. u32 *p = handle_tlbm;
  1811. struct uasm_label *l = labels;
  1812. struct uasm_reloc *r = relocs;
  1813. struct work_registers wr;
  1814. memset(handle_tlbm, 0, sizeof(handle_tlbm));
  1815. memset(labels, 0, sizeof(labels));
  1816. memset(relocs, 0, sizeof(relocs));
  1817. wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
  1818. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1819. if (m4kc_tlbp_war())
  1820. build_tlb_probe_entry(&p);
  1821. /* Present and writable bits set, set accessed and dirty bits. */
  1822. build_make_write(&p, &r, wr.r1, wr.r2);
  1823. build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
  1824. #ifdef CONFIG_HUGETLB_PAGE
  1825. /*
  1826. * This is the entry point when
  1827. * build_r4000_tlbchange_handler_head spots a huge page.
  1828. */
  1829. uasm_l_tlb_huge_update(&l, p);
  1830. iPTE_LW(&p, wr.r1, wr.r2);
  1831. build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
  1832. build_tlb_probe_entry(&p);
  1833. uasm_i_ori(&p, wr.r1, wr.r1,
  1834. _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
  1835. build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
  1836. #endif
  1837. uasm_l_nopage_tlbm(&l, p);
  1838. build_restore_work_registers(&p);
  1839. uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
  1840. uasm_i_nop(&p);
  1841. if ((p - handle_tlbm) > FASTPATH_SIZE)
  1842. panic("TLB modify handler fastpath space exceeded");
  1843. uasm_resolve_relocs(relocs, labels);
  1844. pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
  1845. (unsigned int)(p - handle_tlbm));
  1846. dump_handler(handle_tlbm, ARRAY_SIZE(handle_tlbm));
  1847. }
  1848. void __cpuinit build_tlb_refill_handler(void)
  1849. {
  1850. /*
  1851. * The refill handler is generated per-CPU, multi-node systems
  1852. * may have local storage for it. The other handlers are only
  1853. * needed once.
  1854. */
  1855. static int run_once = 0;
  1856. #ifdef CONFIG_64BIT
  1857. check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
  1858. #endif
  1859. switch (current_cpu_type()) {
  1860. case CPU_R2000:
  1861. case CPU_R3000:
  1862. case CPU_R3000A:
  1863. case CPU_R3081E:
  1864. case CPU_TX3912:
  1865. case CPU_TX3922:
  1866. case CPU_TX3927:
  1867. #ifndef CONFIG_MIPS_PGD_C0_CONTEXT
  1868. build_r3000_tlb_refill_handler();
  1869. if (!run_once) {
  1870. build_r3000_tlb_load_handler();
  1871. build_r3000_tlb_store_handler();
  1872. build_r3000_tlb_modify_handler();
  1873. run_once++;
  1874. }
  1875. #else
  1876. panic("No R3000 TLB refill handler");
  1877. #endif
  1878. break;
  1879. case CPU_R6000:
  1880. case CPU_R6000A:
  1881. panic("No R6000 TLB refill handler yet");
  1882. break;
  1883. case CPU_R8000:
  1884. panic("No R8000 TLB refill handler yet");
  1885. break;
  1886. default:
  1887. if (!run_once) {
  1888. scratch_reg = allocate_kscratch();
  1889. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1890. build_r4000_setup_pgd();
  1891. #endif
  1892. build_r4000_tlb_load_handler();
  1893. build_r4000_tlb_store_handler();
  1894. build_r4000_tlb_modify_handler();
  1895. run_once++;
  1896. }
  1897. build_r4000_tlb_refill_handler();
  1898. }
  1899. }
  1900. void __cpuinit flush_tlb_handlers(void)
  1901. {
  1902. local_flush_icache_range((unsigned long)handle_tlbl,
  1903. (unsigned long)handle_tlbl + sizeof(handle_tlbl));
  1904. local_flush_icache_range((unsigned long)handle_tlbs,
  1905. (unsigned long)handle_tlbs + sizeof(handle_tlbs));
  1906. local_flush_icache_range((unsigned long)handle_tlbm,
  1907. (unsigned long)handle_tlbm + sizeof(handle_tlbm));
  1908. #ifdef CONFIG_MIPS_PGD_C0_CONTEXT
  1909. local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
  1910. (unsigned long)tlbmiss_handler_setup_pgd + sizeof(handle_tlbm));
  1911. #endif
  1912. }