smp.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. /*
  2. * This program is free software; you can redistribute it and/or
  3. * modify it under the terms of the GNU General Public License
  4. * as published by the Free Software Foundation; either version 2
  5. * of the License, or (at your option) any later version.
  6. *
  7. * This program is distributed in the hope that it will be useful,
  8. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. * GNU General Public License for more details.
  11. *
  12. * You should have received a copy of the GNU General Public License
  13. * along with this program; if not, write to the Free Software
  14. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  15. *
  16. * Copyright (C) 2000, 2001 Kanoj Sarcar
  17. * Copyright (C) 2000, 2001 Ralf Baechle
  18. * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
  19. * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
  20. */
  21. #include <linux/cache.h>
  22. #include <linux/delay.h>
  23. #include <linux/init.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/smp.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/threads.h>
  28. #include <linux/module.h>
  29. #include <linux/time.h>
  30. #include <linux/timex.h>
  31. #include <linux/sched.h>
  32. #include <linux/cpumask.h>
  33. #include <linux/cpu.h>
  34. #include <linux/err.h>
  35. #include <linux/ftrace.h>
  36. #include <linux/atomic.h>
  37. #include <asm/cpu.h>
  38. #include <asm/processor.h>
  39. #include <asm/r4k-timer.h>
  40. #include <asm/mmu_context.h>
  41. #include <asm/time.h>
  42. #include <asm/setup.h>
  43. #ifdef CONFIG_MIPS_MT_SMTC
  44. #include <asm/mipsmtregs.h>
  45. #endif /* CONFIG_MIPS_MT_SMTC */
  46. volatile cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
  47. int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
  48. EXPORT_SYMBOL(__cpu_number_map);
  49. int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
  50. EXPORT_SYMBOL(__cpu_logical_map);
  51. /* Number of TCs (or siblings in Intel speak) per CPU core */
  52. int smp_num_siblings = 1;
  53. EXPORT_SYMBOL(smp_num_siblings);
  54. /* representing the TCs (or siblings in Intel speak) of each logical CPU */
  55. cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
  56. EXPORT_SYMBOL(cpu_sibling_map);
  57. /* representing cpus for which sibling maps can be computed */
  58. static cpumask_t cpu_sibling_setup_map;
  59. static inline void set_cpu_sibling_map(int cpu)
  60. {
  61. int i;
  62. cpu_set(cpu, cpu_sibling_setup_map);
  63. if (smp_num_siblings > 1) {
  64. for_each_cpu_mask(i, cpu_sibling_setup_map) {
  65. if (cpu_data[cpu].core == cpu_data[i].core) {
  66. cpu_set(i, cpu_sibling_map[cpu]);
  67. cpu_set(cpu, cpu_sibling_map[i]);
  68. }
  69. }
  70. } else
  71. cpu_set(cpu, cpu_sibling_map[cpu]);
  72. }
  73. struct plat_smp_ops *mp_ops;
  74. __cpuinit void register_smp_ops(struct plat_smp_ops *ops)
  75. {
  76. if (mp_ops)
  77. printk(KERN_WARNING "Overriding previously set SMP ops\n");
  78. mp_ops = ops;
  79. }
  80. /*
  81. * First C code run on the secondary CPUs after being started up by
  82. * the master.
  83. */
  84. asmlinkage __cpuinit void start_secondary(void)
  85. {
  86. unsigned int cpu;
  87. #ifdef CONFIG_MIPS_MT_SMTC
  88. /* Only do cpu_probe for first TC of CPU */
  89. if ((read_c0_tcbind() & TCBIND_CURTC) != 0)
  90. __cpu_name[smp_processor_id()] = __cpu_name[0];
  91. else
  92. #endif /* CONFIG_MIPS_MT_SMTC */
  93. cpu_probe();
  94. cpu_report();
  95. per_cpu_trap_init(false);
  96. mips_clockevent_init();
  97. mp_ops->init_secondary();
  98. /*
  99. * XXX parity protection should be folded in here when it's converted
  100. * to an option instead of something based on .cputype
  101. */
  102. calibrate_delay();
  103. preempt_disable();
  104. cpu = smp_processor_id();
  105. cpu_data[cpu].udelay_val = loops_per_jiffy;
  106. notify_cpu_starting(cpu);
  107. set_cpu_online(cpu, true);
  108. set_cpu_sibling_map(cpu);
  109. cpu_set(cpu, cpu_callin_map);
  110. synchronise_count_slave();
  111. /*
  112. * irq will be enabled in ->smp_finish(), enabling it too early
  113. * is dangerous.
  114. */
  115. WARN_ON_ONCE(!irqs_disabled());
  116. mp_ops->smp_finish();
  117. cpu_idle();
  118. }
  119. /*
  120. * Call into both interrupt handlers, as we share the IPI for them
  121. */
  122. void __irq_entry smp_call_function_interrupt(void)
  123. {
  124. irq_enter();
  125. generic_smp_call_function_single_interrupt();
  126. generic_smp_call_function_interrupt();
  127. irq_exit();
  128. }
  129. static void stop_this_cpu(void *dummy)
  130. {
  131. /*
  132. * Remove this CPU:
  133. */
  134. set_cpu_online(smp_processor_id(), false);
  135. for (;;) {
  136. if (cpu_wait)
  137. (*cpu_wait)(); /* Wait if available. */
  138. }
  139. }
  140. void smp_send_stop(void)
  141. {
  142. smp_call_function(stop_this_cpu, NULL, 0);
  143. }
  144. void __init smp_cpus_done(unsigned int max_cpus)
  145. {
  146. mp_ops->cpus_done();
  147. synchronise_count_master();
  148. }
  149. /* called from main before smp_init() */
  150. void __init smp_prepare_cpus(unsigned int max_cpus)
  151. {
  152. init_new_context(current, &init_mm);
  153. current_thread_info()->cpu = 0;
  154. mp_ops->prepare_cpus(max_cpus);
  155. set_cpu_sibling_map(0);
  156. #ifndef CONFIG_HOTPLUG_CPU
  157. init_cpu_present(cpu_possible_mask);
  158. #endif
  159. }
  160. /* preload SMP state for boot cpu */
  161. void __devinit smp_prepare_boot_cpu(void)
  162. {
  163. set_cpu_possible(0, true);
  164. set_cpu_online(0, true);
  165. cpu_set(0, cpu_callin_map);
  166. }
  167. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
  168. {
  169. mp_ops->boot_secondary(cpu, tidle);
  170. /*
  171. * Trust is futile. We should really have timeouts ...
  172. */
  173. while (!cpu_isset(cpu, cpu_callin_map))
  174. udelay(100);
  175. return 0;
  176. }
  177. /* Not really SMP stuff ... */
  178. int setup_profiling_timer(unsigned int multiplier)
  179. {
  180. return 0;
  181. }
  182. static void flush_tlb_all_ipi(void *info)
  183. {
  184. local_flush_tlb_all();
  185. }
  186. void flush_tlb_all(void)
  187. {
  188. on_each_cpu(flush_tlb_all_ipi, NULL, 1);
  189. }
  190. static void flush_tlb_mm_ipi(void *mm)
  191. {
  192. local_flush_tlb_mm((struct mm_struct *)mm);
  193. }
  194. /*
  195. * Special Variant of smp_call_function for use by TLB functions:
  196. *
  197. * o No return value
  198. * o collapses to normal function call on UP kernels
  199. * o collapses to normal function call on systems with a single shared
  200. * primary cache.
  201. * o CONFIG_MIPS_MT_SMTC currently implies there is only one physical core.
  202. */
  203. static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
  204. {
  205. #ifndef CONFIG_MIPS_MT_SMTC
  206. smp_call_function(func, info, 1);
  207. #endif
  208. }
  209. static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
  210. {
  211. preempt_disable();
  212. smp_on_other_tlbs(func, info);
  213. func(info);
  214. preempt_enable();
  215. }
  216. /*
  217. * The following tlb flush calls are invoked when old translations are
  218. * being torn down, or pte attributes are changing. For single threaded
  219. * address spaces, a new context is obtained on the current cpu, and tlb
  220. * context on other cpus are invalidated to force a new context allocation
  221. * at switch_mm time, should the mm ever be used on other cpus. For
  222. * multithreaded address spaces, intercpu interrupts have to be sent.
  223. * Another case where intercpu interrupts are required is when the target
  224. * mm might be active on another cpu (eg debuggers doing the flushes on
  225. * behalf of debugees, kswapd stealing pages from another process etc).
  226. * Kanoj 07/00.
  227. */
  228. void flush_tlb_mm(struct mm_struct *mm)
  229. {
  230. preempt_disable();
  231. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  232. smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
  233. } else {
  234. unsigned int cpu;
  235. for_each_online_cpu(cpu) {
  236. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  237. cpu_context(cpu, mm) = 0;
  238. }
  239. }
  240. local_flush_tlb_mm(mm);
  241. preempt_enable();
  242. }
  243. struct flush_tlb_data {
  244. struct vm_area_struct *vma;
  245. unsigned long addr1;
  246. unsigned long addr2;
  247. };
  248. static void flush_tlb_range_ipi(void *info)
  249. {
  250. struct flush_tlb_data *fd = info;
  251. local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
  252. }
  253. void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
  254. {
  255. struct mm_struct *mm = vma->vm_mm;
  256. preempt_disable();
  257. if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
  258. struct flush_tlb_data fd = {
  259. .vma = vma,
  260. .addr1 = start,
  261. .addr2 = end,
  262. };
  263. smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
  264. } else {
  265. unsigned int cpu;
  266. for_each_online_cpu(cpu) {
  267. if (cpu != smp_processor_id() && cpu_context(cpu, mm))
  268. cpu_context(cpu, mm) = 0;
  269. }
  270. }
  271. local_flush_tlb_range(vma, start, end);
  272. preempt_enable();
  273. }
  274. static void flush_tlb_kernel_range_ipi(void *info)
  275. {
  276. struct flush_tlb_data *fd = info;
  277. local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
  278. }
  279. void flush_tlb_kernel_range(unsigned long start, unsigned long end)
  280. {
  281. struct flush_tlb_data fd = {
  282. .addr1 = start,
  283. .addr2 = end,
  284. };
  285. on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
  286. }
  287. static void flush_tlb_page_ipi(void *info)
  288. {
  289. struct flush_tlb_data *fd = info;
  290. local_flush_tlb_page(fd->vma, fd->addr1);
  291. }
  292. void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
  293. {
  294. preempt_disable();
  295. if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
  296. struct flush_tlb_data fd = {
  297. .vma = vma,
  298. .addr1 = page,
  299. };
  300. smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
  301. } else {
  302. unsigned int cpu;
  303. for_each_online_cpu(cpu) {
  304. if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
  305. cpu_context(cpu, vma->vm_mm) = 0;
  306. }
  307. }
  308. local_flush_tlb_page(vma, page);
  309. preempt_enable();
  310. }
  311. static void flush_tlb_one_ipi(void *info)
  312. {
  313. unsigned long vaddr = (unsigned long) info;
  314. local_flush_tlb_one(vaddr);
  315. }
  316. void flush_tlb_one(unsigned long vaddr)
  317. {
  318. smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
  319. }
  320. EXPORT_SYMBOL(flush_tlb_page);
  321. EXPORT_SYMBOL(flush_tlb_one);