cpu.c 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. /*
  2. * Copyright (C) ST-Ericsson SA 2010
  3. *
  4. * Author: Rabin Vincent <rabin.vincent@stericsson.com> for ST-Ericsson
  5. * Author: Lee Jones <lee.jones@linaro.org> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/platform_device.h>
  9. #include <linux/io.h>
  10. #include <linux/clk.h>
  11. #include <linux/mfd/db8500-prcmu.h>
  12. #include <linux/clksrc-dbx500-prcmu.h>
  13. #include <linux/sys_soc.h>
  14. #include <linux/err.h>
  15. #include <linux/slab.h>
  16. #include <linux/stat.h>
  17. #include <linux/of.h>
  18. #include <linux/of_irq.h>
  19. #include <asm/hardware/gic.h>
  20. #include <asm/mach/map.h>
  21. #include <mach/hardware.h>
  22. #include <mach/setup.h>
  23. #include <mach/devices.h>
  24. #include "clock.h"
  25. void __iomem *_PRCMU_BASE;
  26. /*
  27. * FIXME: Should we set up the GPIO domain here?
  28. *
  29. * The problem is that we cannot put the interrupt resources into the platform
  30. * device until the irqdomain has been added. Right now, we set the GIC interrupt
  31. * domain from init_irq(), then load the gpio driver from
  32. * core_initcall(nmk_gpio_init) and add the platform devices from
  33. * arch_initcall(customize_machine).
  34. *
  35. * This feels fragile because it depends on the gpio device getting probed
  36. * _before_ any device uses the gpio interrupts.
  37. */
  38. static const struct of_device_id ux500_dt_irq_match[] = {
  39. { .compatible = "arm,cortex-a9-gic", .data = gic_of_init, },
  40. {},
  41. };
  42. void __init ux500_init_irq(void)
  43. {
  44. void __iomem *dist_base;
  45. void __iomem *cpu_base;
  46. if (cpu_is_u8500_family()) {
  47. dist_base = __io_address(U8500_GIC_DIST_BASE);
  48. cpu_base = __io_address(U8500_GIC_CPU_BASE);
  49. } else
  50. ux500_unknown_soc();
  51. #ifdef CONFIG_OF
  52. if (of_have_populated_dt())
  53. of_irq_init(ux500_dt_irq_match);
  54. else
  55. #endif
  56. gic_init(0, 29, dist_base, cpu_base);
  57. /*
  58. * Init clocks here so that they are available for system timer
  59. * initialization.
  60. */
  61. if (cpu_is_u8500_family())
  62. db8500_prcmu_early_init();
  63. clk_init();
  64. }
  65. void __init ux500_init_late(void)
  66. {
  67. clk_debugfs_init();
  68. clk_init_smp_twd_cpufreq();
  69. }
  70. static const char * __init ux500_get_machine(void)
  71. {
  72. return kasprintf(GFP_KERNEL, "DB%4x", dbx500_partnumber());
  73. }
  74. static const char * __init ux500_get_family(void)
  75. {
  76. return kasprintf(GFP_KERNEL, "ux500");
  77. }
  78. static const char * __init ux500_get_revision(void)
  79. {
  80. unsigned int rev = dbx500_revision();
  81. if (rev == 0x01)
  82. return kasprintf(GFP_KERNEL, "%s", "ED");
  83. else if (rev >= 0xA0)
  84. return kasprintf(GFP_KERNEL, "%d.%d",
  85. (rev >> 4) - 0xA + 1, rev & 0xf);
  86. return kasprintf(GFP_KERNEL, "%s", "Unknown");
  87. }
  88. static ssize_t ux500_get_process(struct device *dev,
  89. struct device_attribute *attr,
  90. char *buf)
  91. {
  92. if (dbx500_id.process == 0x00)
  93. return sprintf(buf, "Standard\n");
  94. return sprintf(buf, "%02xnm\n", dbx500_id.process);
  95. }
  96. static void __init soc_info_populate(struct soc_device_attribute *soc_dev_attr,
  97. const char *soc_id)
  98. {
  99. soc_dev_attr->soc_id = soc_id;
  100. soc_dev_attr->machine = ux500_get_machine();
  101. soc_dev_attr->family = ux500_get_family();
  102. soc_dev_attr->revision = ux500_get_revision();
  103. }
  104. struct device_attribute ux500_soc_attr =
  105. __ATTR(process, S_IRUGO, ux500_get_process, NULL);
  106. struct device * __init ux500_soc_device_init(const char *soc_id)
  107. {
  108. struct device *parent;
  109. struct soc_device *soc_dev;
  110. struct soc_device_attribute *soc_dev_attr;
  111. soc_dev_attr = kzalloc(sizeof(*soc_dev_attr), GFP_KERNEL);
  112. if (!soc_dev_attr)
  113. return ERR_PTR(-ENOMEM);
  114. soc_info_populate(soc_dev_attr, soc_id);
  115. soc_dev = soc_device_register(soc_dev_attr);
  116. if (IS_ERR_OR_NULL(soc_dev)) {
  117. kfree(soc_dev_attr);
  118. return NULL;
  119. }
  120. parent = soc_device_to_device(soc_dev);
  121. if (!IS_ERR_OR_NULL(parent))
  122. device_create_file(parent, &ux500_soc_attr);
  123. return parent;
  124. }