smp.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586
  1. /*
  2. * linux/arch/arm/kernel/smp.c
  3. *
  4. * Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/delay.h>
  12. #include <linux/init.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/sched.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/cache.h>
  17. #include <linux/profile.h>
  18. #include <linux/errno.h>
  19. #include <linux/mm.h>
  20. #include <linux/err.h>
  21. #include <linux/cpu.h>
  22. #include <linux/smp.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/irq.h>
  25. #include <linux/percpu.h>
  26. #include <linux/clockchips.h>
  27. #include <linux/completion.h>
  28. #include <linux/atomic.h>
  29. #include <asm/cacheflush.h>
  30. #include <asm/cpu.h>
  31. #include <asm/cputype.h>
  32. #include <asm/exception.h>
  33. #include <asm/idmap.h>
  34. #include <asm/topology.h>
  35. #include <asm/mmu_context.h>
  36. #include <asm/pgtable.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sections.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/ptrace.h>
  42. #include <asm/localtimer.h>
  43. #include <asm/smp_plat.h>
  44. /*
  45. * as from 2.5, kernels no longer have an init_tasks structure
  46. * so we need some other way of telling a new secondary core
  47. * where to place its SVC stack
  48. */
  49. struct secondary_data secondary_data;
  50. enum ipi_msg_type {
  51. IPI_TIMER = 2,
  52. IPI_RESCHEDULE,
  53. IPI_CALL_FUNC,
  54. IPI_CALL_FUNC_SINGLE,
  55. IPI_CPU_STOP,
  56. };
  57. static DECLARE_COMPLETION(cpu_running);
  58. int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
  59. {
  60. int ret;
  61. /*
  62. * We need to tell the secondary core where to find
  63. * its stack and the page tables.
  64. */
  65. secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
  66. secondary_data.pgdir = virt_to_phys(idmap_pgd);
  67. secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
  68. __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
  69. outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
  70. /*
  71. * Now bring the CPU into our world.
  72. */
  73. ret = boot_secondary(cpu, idle);
  74. if (ret == 0) {
  75. /*
  76. * CPU was successfully started, wait for it
  77. * to come online or time out.
  78. */
  79. wait_for_completion_timeout(&cpu_running,
  80. msecs_to_jiffies(1000));
  81. if (!cpu_online(cpu)) {
  82. pr_crit("CPU%u: failed to come online\n", cpu);
  83. ret = -EIO;
  84. }
  85. } else {
  86. pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
  87. }
  88. secondary_data.stack = NULL;
  89. secondary_data.pgdir = 0;
  90. return ret;
  91. }
  92. #ifdef CONFIG_HOTPLUG_CPU
  93. static void percpu_timer_stop(void);
  94. /*
  95. * __cpu_disable runs on the processor to be shutdown.
  96. */
  97. int __cpu_disable(void)
  98. {
  99. unsigned int cpu = smp_processor_id();
  100. int ret;
  101. ret = platform_cpu_disable(cpu);
  102. if (ret)
  103. return ret;
  104. /*
  105. * Take this CPU offline. Once we clear this, we can't return,
  106. * and we must not schedule until we're ready to give up the cpu.
  107. */
  108. set_cpu_online(cpu, false);
  109. /*
  110. * OK - migrate IRQs away from this CPU
  111. */
  112. migrate_irqs();
  113. /*
  114. * Stop the local timer for this CPU.
  115. */
  116. percpu_timer_stop();
  117. /*
  118. * Flush user cache and TLB mappings, and then remove this CPU
  119. * from the vm mask set of all processes.
  120. */
  121. flush_cache_all();
  122. local_flush_tlb_all();
  123. clear_tasks_mm_cpumask(cpu);
  124. return 0;
  125. }
  126. static DECLARE_COMPLETION(cpu_died);
  127. /*
  128. * called on the thread which is asking for a CPU to be shutdown -
  129. * waits until shutdown has completed, or it is timed out.
  130. */
  131. void __cpu_die(unsigned int cpu)
  132. {
  133. if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
  134. pr_err("CPU%u: cpu didn't die\n", cpu);
  135. return;
  136. }
  137. printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
  138. if (!platform_cpu_kill(cpu))
  139. printk("CPU%u: unable to kill\n", cpu);
  140. }
  141. /*
  142. * Called from the idle thread for the CPU which has been shutdown.
  143. *
  144. * Note that we disable IRQs here, but do not re-enable them
  145. * before returning to the caller. This is also the behaviour
  146. * of the other hotplug-cpu capable cores, so presumably coming
  147. * out of idle fixes this.
  148. */
  149. void __ref cpu_die(void)
  150. {
  151. unsigned int cpu = smp_processor_id();
  152. idle_task_exit();
  153. local_irq_disable();
  154. mb();
  155. /* Tell __cpu_die() that this CPU is now safe to dispose of */
  156. RCU_NONIDLE(complete(&cpu_died));
  157. /*
  158. * actual CPU shutdown procedure is at least platform (if not
  159. * CPU) specific.
  160. */
  161. platform_cpu_die(cpu);
  162. /*
  163. * Do not return to the idle loop - jump back to the secondary
  164. * cpu initialisation. There's some initialisation which needs
  165. * to be repeated to undo the effects of taking the CPU offline.
  166. */
  167. __asm__("mov sp, %0\n"
  168. " mov fp, #0\n"
  169. " b secondary_start_kernel"
  170. :
  171. : "r" (task_stack_page(current) + THREAD_SIZE - 8));
  172. }
  173. #endif /* CONFIG_HOTPLUG_CPU */
  174. /*
  175. * Called by both boot and secondaries to move global data into
  176. * per-processor storage.
  177. */
  178. static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
  179. {
  180. struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
  181. cpu_info->loops_per_jiffy = loops_per_jiffy;
  182. store_cpu_topology(cpuid);
  183. }
  184. static void percpu_timer_setup(void);
  185. /*
  186. * This is the secondary CPU boot entry. We're using this CPUs
  187. * idle thread stack, but a set of temporary page tables.
  188. */
  189. asmlinkage void __cpuinit secondary_start_kernel(void)
  190. {
  191. struct mm_struct *mm = &init_mm;
  192. unsigned int cpu = smp_processor_id();
  193. /*
  194. * All kernel threads share the same mm context; grab a
  195. * reference and switch to it.
  196. */
  197. atomic_inc(&mm->mm_count);
  198. current->active_mm = mm;
  199. cpumask_set_cpu(cpu, mm_cpumask(mm));
  200. cpu_switch_mm(mm->pgd, mm);
  201. enter_lazy_tlb(mm, current);
  202. local_flush_tlb_all();
  203. printk("CPU%u: Booted secondary processor\n", cpu);
  204. cpu_init();
  205. preempt_disable();
  206. trace_hardirqs_off();
  207. /*
  208. * Give the platform a chance to do its own initialisation.
  209. */
  210. platform_secondary_init(cpu);
  211. notify_cpu_starting(cpu);
  212. calibrate_delay();
  213. smp_store_cpu_info(cpu);
  214. /*
  215. * OK, now it's safe to let the boot CPU continue. Wait for
  216. * the CPU migration code to notice that the CPU is online
  217. * before we continue - which happens after __cpu_up returns.
  218. */
  219. set_cpu_online(cpu, true);
  220. complete(&cpu_running);
  221. /*
  222. * Setup the percpu timer for this CPU.
  223. */
  224. percpu_timer_setup();
  225. local_irq_enable();
  226. local_fiq_enable();
  227. /*
  228. * OK, it's off to the idle thread for us
  229. */
  230. cpu_idle();
  231. }
  232. void __init smp_cpus_done(unsigned int max_cpus)
  233. {
  234. int cpu;
  235. unsigned long bogosum = 0;
  236. for_each_online_cpu(cpu)
  237. bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
  238. printk(KERN_INFO "SMP: Total of %d processors activated "
  239. "(%lu.%02lu BogoMIPS).\n",
  240. num_online_cpus(),
  241. bogosum / (500000/HZ),
  242. (bogosum / (5000/HZ)) % 100);
  243. }
  244. void __init smp_prepare_boot_cpu(void)
  245. {
  246. }
  247. void __init smp_prepare_cpus(unsigned int max_cpus)
  248. {
  249. unsigned int ncores = num_possible_cpus();
  250. init_cpu_topology();
  251. smp_store_cpu_info(smp_processor_id());
  252. /*
  253. * are we trying to boot more cores than exist?
  254. */
  255. if (max_cpus > ncores)
  256. max_cpus = ncores;
  257. if (ncores > 1 && max_cpus) {
  258. /*
  259. * Enable the local timer or broadcast device for the
  260. * boot CPU, but only if we have more than one CPU.
  261. */
  262. percpu_timer_setup();
  263. /*
  264. * Initialise the present map, which describes the set of CPUs
  265. * actually populated at the present time. A platform should
  266. * re-initialize the map in platform_smp_prepare_cpus() if
  267. * present != possible (e.g. physical hotplug).
  268. */
  269. init_cpu_present(cpu_possible_mask);
  270. /*
  271. * Initialise the SCU if there are more than one CPU
  272. * and let them know where to start.
  273. */
  274. platform_smp_prepare_cpus(max_cpus);
  275. }
  276. }
  277. static void (*smp_cross_call)(const struct cpumask *, unsigned int);
  278. void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
  279. {
  280. smp_cross_call = fn;
  281. }
  282. void arch_send_call_function_ipi_mask(const struct cpumask *mask)
  283. {
  284. smp_cross_call(mask, IPI_CALL_FUNC);
  285. }
  286. void arch_send_call_function_single_ipi(int cpu)
  287. {
  288. smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
  289. }
  290. static const char *ipi_types[NR_IPI] = {
  291. #define S(x,s) [x - IPI_TIMER] = s
  292. S(IPI_TIMER, "Timer broadcast interrupts"),
  293. S(IPI_RESCHEDULE, "Rescheduling interrupts"),
  294. S(IPI_CALL_FUNC, "Function call interrupts"),
  295. S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
  296. S(IPI_CPU_STOP, "CPU stop interrupts"),
  297. };
  298. void show_ipi_list(struct seq_file *p, int prec)
  299. {
  300. unsigned int cpu, i;
  301. for (i = 0; i < NR_IPI; i++) {
  302. seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
  303. for_each_present_cpu(cpu)
  304. seq_printf(p, "%10u ",
  305. __get_irq_stat(cpu, ipi_irqs[i]));
  306. seq_printf(p, " %s\n", ipi_types[i]);
  307. }
  308. }
  309. u64 smp_irq_stat_cpu(unsigned int cpu)
  310. {
  311. u64 sum = 0;
  312. int i;
  313. for (i = 0; i < NR_IPI; i++)
  314. sum += __get_irq_stat(cpu, ipi_irqs[i]);
  315. return sum;
  316. }
  317. /*
  318. * Timer (local or broadcast) support
  319. */
  320. static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
  321. static void ipi_timer(void)
  322. {
  323. struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
  324. evt->event_handler(evt);
  325. }
  326. #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
  327. static void smp_timer_broadcast(const struct cpumask *mask)
  328. {
  329. smp_cross_call(mask, IPI_TIMER);
  330. }
  331. #else
  332. #define smp_timer_broadcast NULL
  333. #endif
  334. static void broadcast_timer_set_mode(enum clock_event_mode mode,
  335. struct clock_event_device *evt)
  336. {
  337. }
  338. static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
  339. {
  340. evt->name = "dummy_timer";
  341. evt->features = CLOCK_EVT_FEAT_ONESHOT |
  342. CLOCK_EVT_FEAT_PERIODIC |
  343. CLOCK_EVT_FEAT_DUMMY;
  344. evt->rating = 400;
  345. evt->mult = 1;
  346. evt->set_mode = broadcast_timer_set_mode;
  347. clockevents_register_device(evt);
  348. }
  349. static struct local_timer_ops *lt_ops;
  350. #ifdef CONFIG_LOCAL_TIMERS
  351. int local_timer_register(struct local_timer_ops *ops)
  352. {
  353. if (!is_smp() || !setup_max_cpus)
  354. return -ENXIO;
  355. if (lt_ops)
  356. return -EBUSY;
  357. lt_ops = ops;
  358. return 0;
  359. }
  360. #endif
  361. static void __cpuinit percpu_timer_setup(void)
  362. {
  363. unsigned int cpu = smp_processor_id();
  364. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  365. evt->cpumask = cpumask_of(cpu);
  366. evt->broadcast = smp_timer_broadcast;
  367. if (!lt_ops || lt_ops->setup(evt))
  368. broadcast_timer_setup(evt);
  369. }
  370. #ifdef CONFIG_HOTPLUG_CPU
  371. /*
  372. * The generic clock events code purposely does not stop the local timer
  373. * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
  374. * manually here.
  375. */
  376. static void percpu_timer_stop(void)
  377. {
  378. unsigned int cpu = smp_processor_id();
  379. struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
  380. if (lt_ops)
  381. lt_ops->stop(evt);
  382. }
  383. #endif
  384. static DEFINE_RAW_SPINLOCK(stop_lock);
  385. /*
  386. * ipi_cpu_stop - handle IPI from smp_send_stop()
  387. */
  388. static void ipi_cpu_stop(unsigned int cpu)
  389. {
  390. if (system_state == SYSTEM_BOOTING ||
  391. system_state == SYSTEM_RUNNING) {
  392. raw_spin_lock(&stop_lock);
  393. printk(KERN_CRIT "CPU%u: stopping\n", cpu);
  394. dump_stack();
  395. raw_spin_unlock(&stop_lock);
  396. }
  397. set_cpu_online(cpu, false);
  398. local_fiq_disable();
  399. local_irq_disable();
  400. while (1)
  401. cpu_relax();
  402. }
  403. /*
  404. * Main handler for inter-processor interrupts
  405. */
  406. asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
  407. {
  408. handle_IPI(ipinr, regs);
  409. }
  410. void handle_IPI(int ipinr, struct pt_regs *regs)
  411. {
  412. unsigned int cpu = smp_processor_id();
  413. struct pt_regs *old_regs = set_irq_regs(regs);
  414. if (ipinr >= IPI_TIMER && ipinr < IPI_TIMER + NR_IPI)
  415. __inc_irq_stat(cpu, ipi_irqs[ipinr - IPI_TIMER]);
  416. switch (ipinr) {
  417. case IPI_TIMER:
  418. irq_enter();
  419. ipi_timer();
  420. irq_exit();
  421. break;
  422. case IPI_RESCHEDULE:
  423. scheduler_ipi();
  424. break;
  425. case IPI_CALL_FUNC:
  426. irq_enter();
  427. generic_smp_call_function_interrupt();
  428. irq_exit();
  429. break;
  430. case IPI_CALL_FUNC_SINGLE:
  431. irq_enter();
  432. generic_smp_call_function_single_interrupt();
  433. irq_exit();
  434. break;
  435. case IPI_CPU_STOP:
  436. irq_enter();
  437. ipi_cpu_stop(cpu);
  438. irq_exit();
  439. break;
  440. default:
  441. printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
  442. cpu, ipinr);
  443. break;
  444. }
  445. set_irq_regs(old_regs);
  446. }
  447. void smp_send_reschedule(int cpu)
  448. {
  449. smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
  450. }
  451. #ifdef CONFIG_HOTPLUG_CPU
  452. static void smp_kill_cpus(cpumask_t *mask)
  453. {
  454. unsigned int cpu;
  455. for_each_cpu(cpu, mask)
  456. platform_cpu_kill(cpu);
  457. }
  458. #else
  459. static void smp_kill_cpus(cpumask_t *mask) { }
  460. #endif
  461. void smp_send_stop(void)
  462. {
  463. unsigned long timeout;
  464. struct cpumask mask;
  465. cpumask_copy(&mask, cpu_online_mask);
  466. cpumask_clear_cpu(smp_processor_id(), &mask);
  467. if (!cpumask_empty(&mask))
  468. smp_cross_call(&mask, IPI_CPU_STOP);
  469. /* Wait up to one second for other CPUs to stop */
  470. timeout = USEC_PER_SEC;
  471. while (num_online_cpus() > 1 && timeout--)
  472. udelay(1);
  473. if (num_online_cpus() > 1)
  474. pr_warning("SMP: failed to stop secondary CPUs\n");
  475. smp_kill_cpus(&mask);
  476. }
  477. /*
  478. * not supported here
  479. */
  480. int setup_profiling_timer(unsigned int multiplier)
  481. {
  482. return -EINVAL;
  483. }